|
{ |
|
"paper_id": "O12-3002", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T08:03:12.711970Z" |
|
}, |
|
"title": "Predicting the Semantic Orientation of Terms in E-HowNet", |
|
"authors": [ |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "\uf9e1\u653f\u5112", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "National Taiwan University", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Ru", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "National Taiwan University", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Chi-Hsin", |
|
"middle": [], |
|
"last": "Yu", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "National Taiwan University", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Hsin-Hsi", |
|
"middle": [], |
|
"last": "Chen", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "National Taiwan University", |
|
"location": {} |
|
}, |
|
"email": "hhchen@ntu.edu.tw" |
|
} |
|
], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "The semantic orientation of terms is fundamental for sentiment analysis in sentence and document levels. Although some Chinese sentiment dictionaries are available, how to predict the orientation of terms automatically is still important. In this paper, we predict the semantic orientation of terms of E-HowNet. We extract many useful features from different sources to represent a Chinese term in E-HowNet, and use a supervised machine learning algorithm to predict its orientation. Our experimental results showed that the proposed approach can achieve 92.33% accuracy.", |
|
"pdf_parse": { |
|
"paper_id": "O12-3002", |
|
"_pdf_hash": "", |
|
"abstract": [ |
|
{ |
|
"text": "The semantic orientation of terms is fundamental for sentiment analysis in sentence and document levels. Although some Chinese sentiment dictionaries are available, how to predict the orientation of terms automatically is still important. In this paper, we predict the semantic orientation of terms of E-HowNet. We extract many useful features from different sources to represent a Chinese term in E-HowNet, and use a supervised machine learning algorithm to predict its orientation. Our experimental results showed that the proposed approach can achieve 92.33% accuracy.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Abstract", |
|
"sec_num": null |
|
} |
|
], |
|
"body_text": [ |
|
{ |
|
"text": "\u60c5\u7dd2\u5206\u6790(Sentiment Analysis)\u5728\u73fe\u4eca\u7684\u7db2\uf937\u4e16\u754c\u4e2d\uff0c\u6709\u8a31\u591a\u5be6\u969b\u4e14\u91cd\u8981\u7684\u904b\u7528\uff0c\uf9b5\u5982 \u5f9e\u7db2\uf937\u7684\u8a55\uf941\u6587\u7ae0\u4e2d\u5206\u6790\u6d88\u8cbb\u8005\u5c0d\u7522\u54c1\u7684\u8a55\u50f9\uff0c\u6216\u5206\u6790\u6d88\u8cbb\u8005\u5c0d\u7522\u54c1\u6027\u80fd\u7684\u95dc\u6ce8\u7126\u9ede\u7b49 \u7b49\u3002\uf967\u7ba1\u5c0d\uf906\u5b50\u6216\u6587\u4ef6\u5c64\u6b21\u7684\u60c5\u7dd2\u5206\u6790\uff0c\u610f\ufa0a\u8a5e\u8a5e\u5178\u90fd\u662f\u4e00\u500b\u91cd\u8981\u7684\u8cc7\u6e90\u3002\u901a\u5e38\u610f\ufa0a\u8a5e \u8a5e\u5178\u662f\u7528\u4eba\u5de5\uf92d\u6536\u96c6\u8a5e\u5f59\uff0c\u4e26\u7528\u4eba\u5de5\u6a19\u8a18\u8a5e\u5f59\u7684\u5404\u7a2e\u60c5\u7dd2\u5c6c\u6027\uff0c\u5305\u62ec\u4e3b\u5ba2\u89c0 (subjective or objective)\u3001\u6975\u6027(orientation/polarity)\u3001)\u53ca\u6975\u6027\u7684\u5f37\ufa01(strength) (Esuli & Sebastiani, 2005) \u3002\u9019\u4e9b\u60c5\u7dd2\u5c6c\u6027\u5c0d\uf967\u540c\u7684\u61c9\u7528\u6709\uf967\u540c\u7684\u91cd\u8981\u6027\uff0c\u6a19\u8a18\u96e3\ufa01\u4e5f\u5404\uf967\u76f8\u540c\uff0c\u901a\u5e38\u8a5e\u5f59\u7684 \u6975\u6027\u662f\u6700\u5bb9\uf9e0\u9032\ufa08\u6a19\u8a18\u7684\u5c6c\u6027\u3002 \u6a19\u8a18\u60c5\u7dd2\u5c6c\u6027\u6642\uff0c\u7814\u7a76\u8005\u53ef\u4ee5\u5f9e\uf9b2\u958b\u59cb\u6536\u96c6\u8a5e\u5f59\u4ee5\u5efa\uf9f7\u610f\ufa0a\u8a5e\u8a5e\u5178\uff0c\u5982\u53f0\u5927\u610f\ufa0a\u8a5e \u8a5e\u5178 NTUSD (Ku & Chen, 2007) \u3002\u5728\u53e6\u4e00\u65b9\u9762\uff0c\u4e5f\u6709\u7814\u7a76\u8005\u5617\u8a66\u70ba\u81ea\u7136\u8a9e\u8a00\u8655\uf9e4\u4e2d\u7684\u8a31 \u591a\u73fe\u5b58\u7684\u8cc7\u6e90\uff0c\u6dfb\u52a0\u60c5\u7dd2\u5c6c\u6027\uff0c\u5982 SentiWordNet (Esuli & Sebastiani, 2006a) (Esuli & Sebastiani, 2006b; Kamps, Marx, Mokken, & De Rijke, 2004; Turney & Littman, 2003) Yuen et al.(2004) (Han, Mo, Zuo, & Duan, 2010; Li, Ma, & Guo, 2009; Lu, Song, Zhang, & Tsou, 2010; Yao, Wu, Liu, & Zheng, 2006) (Dietterich, 1998) ", |
|
"cite_spans": [ |
|
{ |
|
"start": 230, |
|
"end": 256, |
|
"text": "(Esuli & Sebastiani, 2005)", |
|
"ref_id": "BIBREF4" |
|
}, |
|
{ |
|
"start": 355, |
|
"end": 372, |
|
"text": "(Ku & Chen, 2007)", |
|
"ref_id": "BIBREF11" |
|
}, |
|
{ |
|
"start": 427, |
|
"end": 454, |
|
"text": "(Esuli & Sebastiani, 2006a)", |
|
"ref_id": "BIBREF5" |
|
}, |
|
{ |
|
"start": 455, |
|
"end": 482, |
|
"text": "(Esuli & Sebastiani, 2006b;", |
|
"ref_id": "BIBREF6" |
|
}, |
|
{ |
|
"start": 483, |
|
"end": 521, |
|
"text": "Kamps, Marx, Mokken, & De Rijke, 2004;", |
|
"ref_id": "BIBREF10" |
|
}, |
|
{ |
|
"start": 522, |
|
"end": 545, |
|
"text": "Turney & Littman, 2003)", |
|
"ref_id": "BIBREF15" |
|
}, |
|
{ |
|
"start": 546, |
|
"end": 563, |
|
"text": "Yuen et al.(2004)", |
|
"ref_id": null |
|
}, |
|
{ |
|
"start": 564, |
|
"end": 592, |
|
"text": "(Han, Mo, Zuo, & Duan, 2010;", |
|
"ref_id": "BIBREF7" |
|
}, |
|
{ |
|
"start": 593, |
|
"end": 613, |
|
"text": "Li, Ma, & Guo, 2009;", |
|
"ref_id": "BIBREF12" |
|
}, |
|
{ |
|
"start": 614, |
|
"end": 644, |
|
"text": "Lu, Song, Zhang, & Tsou, 2010;", |
|
"ref_id": "BIBREF14" |
|
}, |
|
{ |
|
"start": 645, |
|
"end": 673, |
|
"text": "Yao, Wu, Liu, & Zheng, 2006)", |
|
"ref_id": "BIBREF16" |
|
}, |
|
{ |
|
"start": 674, |
|
"end": 692, |
|
"text": "(Dietterich, 1998)", |
|
"ref_id": "BIBREF2" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u7dd2\uf941", |
|
"sec_num": "1." |
|
}, |
|
{ |
|
"text": "\uff0c\u6548\u80fd\u5f9e 67%\u5230 88%\uf967\u7b49\uff0c\u4f46\u56e0\u70ba\u9019\u4e9b\u6f14\u7b97\u6cd5\u6240\u7528\u7684\u8cc7\uf9be\u96c6\u4e26\uf967 \u76f8\u540c\uff0c\u5be6\u9a57\u904e\u7a0b\u53ca\u8a55\u4f30\u6a19\u6e96\u4e5f\uf967\u4e00\u6a23\uff0c(\u6709\u7528 Accuracy\u3001Precision\u3001\u6216 F-Measure)\uff0c\u6240 \u4ee5\u6548\u80fd\u6c92\u6709\u8fa6\u6cd5\u76f4\u63a5\u6bd4\u8f03\u3002 \u5716 1.\u300c\u6c7d\u6cb9\u300d\u7684\u5ee3\u7fa9\u77e5\u7db2\u5b9a\u7fa9\u5f0f \u5728 \u4e2d \u6587 \u7684 \u60c5 \u7dd2 \u5c6c \u6027 \u6a19 \u8a18 \u76f8 \u95dc \u7814 \u7a76 \uff0c", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u7dd2\uf941", |
|
"sec_num": "1." |
|
}, |
|
{ |
|
"text": "\uff0c\u6240\u5f97\u5230\u7684\u6548\u80fd\u5728\uf967\u540c\u7684\u6307\u6a19(Accuracy\u3001Precision\u3001\u6216 F-Measure)\u4e0b\uff0c \u5f9e 89%\u5230 96%\uf967\u7b49\u3002\u56e0\u70ba\u57fa\u6e96\uf967\u540c\uff0c\u9019\u4e9b\u6548\u80fd\u4e00\u6a23\u6c92\u6709\u8fa6\u6cd5\u76f4\u63a5\u6bd4\u8f03\uff0c\u4f46\u76f8\u8f03\u65bc\u82f1\u6587\uff0c \u6210\u7e3e\u5247\u660e\u986f\u63d0\u9ad8\u3002 3. \u7279\u5fb5\u62bd\u53d6\u53ca\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5 \u7531\u65bc\u6211\u5011\u904b\u7528\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uf92d\u8a13\uf996\u4e8c\u5143\u5206\uf9d0\u5668(binary classifier)\uff0c\u6700\u91cd\u8981\u7684 \u554f\u984c\u662f\u70ba\u8a5e\u5f59\u62bd\u53d6\u51fa\u6709\u7528\u7684\u7279\u5fb5\u3002\u5728\u6b64\uf941\u6587\u4e2d\uff0c\u6211\u5011\u5206\u5225\u5f9e E-HowNet \u53ca Google Chinese Web 5-gram \u9019\uf978\u500b\uf92d\u6e90\u62bd\u53d6\uf978\u5927\uf9d0\u7684\u7279\u5fb5\uff0c\u63a5\u8457\u5c07\u9019\uf978\u500b\uf92d\u6e90\u7684\u7279\u5fb5\u7d44\u5408\u8a13\uf996\u5206\uf9d0\u5668\u3002 \u6b64\u5916\uff0c\u6211\u5011\u4e5f\u5617\u8a66\u4f7f\u7528\u7d44\u5408\u5f0f\u7684\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5(ensemble approach)\uff0c\uf92d\uf901\u9032 \u4e00\u6b65\u5f97\u5230\uf901\u9ad8\u7684\u6548\u80fd\uff0c\u4ee5\u4e0b\u6211\u5011\u5206\u5225\u8a73\u7d30\u4ecb\u7d39\u3002 \uf9e1\u653f\u5112 \u7b49 3.1 \u57fa\u790e\u7fa9\u539f\u7279\u5fb5 \u5f9e E-HowNet \u62bd\u53d6\u7684\u7279\u5fb5\u7a31\u4e4b\u70ba\u57fa\u790e\u7fa9\u539f\u7279\u5fb5\uff0c\u4e5f\u5c31\u662f\u5c0d\u6bcf\u4e00\u500b E-HowNet \u7684\u8a5e\u5f59 i\uff0c\u7528 \u4e00\u5411\uf97e V i = (w i,j ) = (w i,1 , w i,2 , \u2026, w i,n ) \u8868\u793a\uff0c\u5176\u4e2d n \u70ba\u5411\uf97e\u7684\u7dad\ufa01\u3002 \u7531\u65bc\u6bcf\u4e00\u8a5e\u5f59\u7684\u6bcf\u4e00\u500b\u8a9e\u610f(sense)\u90fd\u6709\u4e00\u500b\u7d50\u69cb\u5316\u7684\u5b9a\u7fa9\u5f0f\uff0c\u800c\u4e14\u5b9a\u7fa9\u5f0f\u4e2d\u90fd\u7528 \u7fa9\u539f\uf92d\u9032\ufa08\u5b9a\u7fa9\uff0c\u516c\u5f0f (1) \u5b9a\u7fa9 V i \u4e2d\u6bcf\u500b\u7279\u5fb5\u7684\u6b0a\u91cd\uff1a \u23a9 \u23a8 \u23a7 = j \u7fa9\u539f , 0 j \u7fa9\u539f \u4e2d i \u5b9a\u7fa9\u5f0f , 1 , \uf967\u51fa\u73fe \u51fa\u73fe \u5982\u679c j i w (1) \u4ee5\u5716 1\u300c\u6c7d\u6cb9\u300d\u9019\u500b\u8a5e\u5f59\u70ba\uf9b5\uff0c\u5176\u5b9a\u7fa9\u5f0f\u4e2d\u51fa\u73fe\uf9ba\u7fa9\u539f material\uff0c\u6240\u4ee5\u5b83\u7684\u503c w \u6c7d\u6cb9 , material \u5c31\u6703\u662f 1\uff0c\u5176\u4ed6\u6c92\u51fa\u73fe\u7684\u7fa9\u539f\uff0c\u503c\u5c31\u6703\u662f 0\u3002\u6211\u5011\u5171\u4f7f\u7528\uf9ba 2567 \u500b\u7fa9\u539f\uf92d\u7576\u7279\u5fb5\u3002 \u5ee3\u7fa9\u77e5\u7db2\u7684\u8a5e\u5f59\u6709\u6b67\uf962\u6027\uff0c\u4e5f\u5c31\u662f\u6bcf\u500b\u8a5e\u5f59\u53ef\u80fd\u6709\u8a31\u591a\u8a9e\u610f\u3002\u800c\u8a5e\u5f59\u7684\u7b2c\u4e00\u500b\u8a9e\u610f\uff0c \u662f\u51fa\u73fe\u983b\uf961\u6700\u9ad8\u7684\u8a9e\u610f(\u9664\uf9ba\u56db\u500b\u8a5e\u5f59\uf9b5\u5916)\uff0c\u6240\u4ee5\u6211\u5011\u7528\u8a5e\u5f59\u7684\u7b2c\u4e00\u500b\u8a9e\u610f\uf92d\u62bd\u53d6\u7279 \u5fb5\u3002\u53ea\u5f9e\u8a5e\u5f59\u7684\u4e00\u500b\u8a9e\u610f\u62bd\u53d6\u7279\u5fb5\uff0c\u800c\uf967\u628a\u8a72\u8a5e\u5f59\u6240\u6709\u7684\u8a9e\u610f\u653e\u5728\u4e00\u8d77\uff0c\u4ee3\u8868\u9019\u7a2e\u65b9\u6cd5 \u53ef\u70ba\uf967\u540c\u7684\u8a9e\u610f\u7d66\u51fa\uf967\u540c\u7684\u6975\u6027\u9810\u6e2c\u3002\u53ea\u662f\u7531\u65bc\u76ee\u524d NTUSD \u6975\u6027\u6a19\u8a18\u53ea\u5230\u8a5e\u5f59\u7684\u5c64\u7d1a\uff0c \u6240\u4ee5\u7121\u6cd5\u5c0d\u8a9e\u610f\u7684\u5c64\u7d1a\u9032\ufa08\u6975\u6027\u9810\u6e2c\u3002\u4f46\u53ea\u8981\u6709\u8a9e\u610f\u5c64\u7d1a\u7684\u6975\u6027\u6a19\u8a18\uff0c\u6211\u5011\u9019\u7a2e\u505a\u6cd5\u53ef \u99ac\u4e0a\u5957\u7528\u3002 3.1.1 \u57fa\u790e\u7fa9\u539f\u7279\u5fb5\u52a0\u6b0a\u503c \u9664\uf9ba\u516c\u5f0f (1) \u7684\u65b9\u5f0f\u5916\uff0c\u6211\u5011\u53ef\u4ee5\uf9dd\u7528\uf901\u591a E-HowNet \u7684\u7279\u6027\uff0c\uf92d\u62bd\u53d6\u51fa\u6709\u7528\u7684\u8cc7\u8a0a\u3002 \u4e00\u500b\u53ef\u80fd\u7684\u65b9\u5f0f\u662f\u5b9a\u7fa9\u5f0f\u4e2d\u7684\u7d50\u69cb\uff0c\u5982\u679c\u628a\u5b9a\u7fa9\u5f0f\u5c55\u958b\uff0c\u6703\u5f97\u5230\u5982\u5716 2 \u7684\u6a39\uf9fa\u7d50\u69cb\u3002\u5728 \u9019\u6a39\uf9fa\u7d50\u69cb\u4e2d\uff0c\u7fa9\u539f\u6240\u5728\u7684\u6df1\ufa01\u662f\u4e00\u500b\u6709\u7528\u7684\u8cc7\u8a0a\uff0c\u56e0\u6b64\u6211\u5011\u4eff\u7167\uf9c7\u7fa4&\uf9e1\u7d20\u5efa(\u5218 & \uf9e1, 2002)\u7684\u516c\u5f0f\uff0c\u5c07\u6df1\ufa01\u7684\u8cc7\u8a0a\u7576\u4f5c\u6b0a\u91cd\u5f15\u5165\u516c\u5f0f (1)\uff0c\u5f97\u5230\u516c\u5f0f (2)\u3002 \u5716 2.\u300c\u5929\uf9d4\u4e4b\uf914\u300d\u5b9a\u7fa9\u5f0f\u7684\u6a39\uf9fa\u8868\u793a \u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c 25 \u23aa \u23a9 \u23aa \u23a8 \u23a7 \u00d7 + = j \u7fa9\u539f , 0 j \u7fa9\u539f \u4e2d i \u5b9a\u7fa9\u5f0f , 1 1 , , \uf967\u51fa\u73fe \u51fa\u73fe \u5982\u679c j i j i d w \u03b1 (2) \u516c\u5f0f (2) \u4e2d\uff0c\u03b1 \u662f\u53ef\u8abf\u7684\uf96b\uf969\uff0c j i d , \u662f\u8a5e\u5f59 i \u8ddf\u7fa9\u539f j \u7684\u8ddd\uf9ea\uff0c\u9019\u53ef\u7528\u7fa9\u539f j \u7684\u6df1\ufa01\u8868 \u793a\u3002\u8abf\u6574\u516c\u5f0f (2) \u4e2d\u7684 \u03b1 \uff0c\u8b93\u6211\u5011\u53ef\u4ee5\u5be6\u9a57\u90a3\u4e00\u7a2e\u65b9\u5f0f\uff0c\u624d\u61c9\u7d66\u8f03\u9ad8\u7684\u6b0a\u91cd\uff1a (\u53ef\u80fd\u4e00) \u03b1 < 0 : \u6df1\ufa01\u8d8a\u6df1\uff0c\u8868\u793a\u8a72\u7fa9\u539f\u6709\u8f03\u591a\u8cc7\u8a0a\uff0c\u61c9\u7d66\u8f03\u9ad8\u6b0a\u91cd\u3002 (\u53ef\u80fd\u4e8c) \u03b1 > 0 : \u6df1\ufa01\u8d8a\u6df1\uff0c\u8868\u793a\u8a72\u7fa9\u539f\u6709\u8f03\u5c11\u8cc7\u8a0a\uff0c\u61c9\u7d66\u8f03\u5c11\u6b0a\u91cd\u3002 \u7531\u65bc \u03b1 < 0 \u6642\uff0cw i,j \u53ef\u80fd\u8b8a\u70ba\u8ca0\u503c\uff0c\u6240\u4ee5\u6700\u5c0f\u7684 \u03b1 \u8a2d\u70ba \u22120.05\u3002\u53e6\u5916\uff0c\u7576 \u03b1 = 0\uff0c\u516c\u5f0f (2) \u6703\u7b49\u65bc\u516c\u5f0f (1)\uff0c\u6240\u4ee5\u6211\u5011\u5728\u505a\u5be6\u9a57\u6642\uff0c\u53ea\u8981\u4f7f\u7528\u516c\u5f0f (2) \u5373\u53ef\u3002 3.1.2 \u52a0\u5165\u5426\u5b9a\u95dc\u4fc2\u8abf\u6574\u7279\u5fb5\u7684\u52a0\u6b0a\u503c \u5728\u8a08\u7b97\u7fa9\u539f\u6df1\ufa01\u6642\uff0c\u53ef\u80fd\u6703\u7d93\u904e\u5e36\u6709\u5426\u5b9a\u610f\u7fa9\u7684\u95dc\u4fc2\uff0c\uf9b5\u5982\u300c\u4e00\u4e8b\u7121\u6210\u300d\u5b9a\u7fa9\u5f0f\u4e2d\u6709 \u300c{not({succeed|\u6210\u529f})}\u300d\uff0c\u53ef\u4ee5\u767c\u73fe succeed \u88ab not \u6240\u4fee\u98fe\u3002\u9019\u6642\uff0c\u7fa9\u539f succeed \u7684\u6b0a\u91cd \u7528\u8ca0\u503c\uf92d\u8868\u793a\u53ef\u80fd\u6703\uf901\u597d\uff0c\u56e0\u6b64\u6211\u5011\u5c07\u5426\u5b9a\u7684\u6982\uf9a3\u5f15\u5165\u516c\u5f0f (3) \u5982\u4e0b\uff1a \u23aa \u23a9 \u23aa \u23a8 \u23a7 \u00d7 + = j \u7fa9\u539f , 0 j \u7fa9\u539f \u4e2d i \u5b9a\u7fa9\u5f0f , 1 , , , \uf967\u51fa\u73fe \u51fa\u73fe \u5982\u679c j i j i j i d Neg w \u03b1 (3) \u5176\u4e2d\uff0c j i Neg , \u8868\u793a\u7fa9\u539f j \u662f\u5426\u6709\u88ab\u5426\u5b9a\u610f\u7fa9\u7684\u95dc\u4fc2\u6240\u4fee\u98fe\uff0c\uf974\u6709\u5247 j i Neg , \u70ba \u2212 1\uff0c \uf974\u7121\u5247 j i Neg , \u70ba", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u7dd2\uf941", |
|
"sec_num": "1." |
|
}, |
|
{ |
|
"text": "V i = (c i,j ) = (c i,1 , c i,2 ,\u2026, c i,m )\u3002\u5176\u4e2d\uff0cm \u662f\u7279\u5fb5\u96c6\u5408\u7684 \u5927\u5c0f\uff0cc i,j \u662f\u300c\u8a5e\u5f59", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u7dd2\uf941", |
|
"sec_num": "1." |
|
}, |
|
{ |
|
"text": "\u7528 V i = (c i,1 , c i,2 ,\u2026, c i,m ) \u7684\u65b9\u5f0f\uf92d\u8868\u793a\u7684\u7f3a\u9ede\uff0c\u662f c i,j \u7684\u503c\u8b8a\u5316\u7684\u7bc4\u570d\u6703\u975e\u5e38\u5927\uff0c\u6700\u5c0f\u70ba 40\uff0c\u6700\u5927\u6703\u5230\u4e0a\u5343\u842c\u3002\u9019\u5728\u6a5f\u5668\u5b78\u7fd2\u4e2d\uff0c\u901a\u5e38\u9700\u8981\u505a\u9032\u4e00\u6b65\u7684\u8655\uf9e4\u624d\u6703\u6709\u6bd4\u8f03\u597d\u7684\u7d50\u679c\u3002 \u6211 \u5011 \u5be6 \u9a57 \uf9ba \uf978 \u500b \uf967 \u540c \u7684 \u65b9 \u6cd5 \uf92d \u8655 \uf9e4 \u9019 \u4e00 \u554f \u984c \uff1a \u7b2c \u4e00 \u7a2e \u662f \u4e00 \u822c \u7684 \u9918 \u5f26 \u6a19 \u6e96 \u5316 (cosine-normalization)\uff0c\u5c07\u539f\u672c\u7684\u5411\uf97e V i \u7528\u516c\u5f0f (4) \u8655\uf9e4\uff1b\u7b2c\u4e8c\u7a2e\u662f Esuli & Sebastiani (2005) \u6240\u63d0\u7684\u9918\u5f26\u6a19\u6e96\u5316 TFIDF (cosine-normalized TF-IDF)\uff0c\u4ed6\u5011\u7528\u8a72\u65b9\u6cd5\uf92d\u8655\uf9e4 WordNet \u4e2d\u7684\u8a5e\u5f59\u7684\u6b0a\u91cd\uff0c\u5982\u516c\u5f0f (5) \u6240\u8ff0\u3002 m m k k i i i c V V CosNorm \u211c \u2208 = \u2211 \u2264 \u2264 1 2 , ) ( (4) m m k k i i i tfidf TFIDF TFIDF CosNorm \u211c \u2208 = \u2211 \u2264 \u2264 1 2 , ) ( ) ,..., , ( , 2 , 1 , m i i i i tfidf tfidf tfidf TFIDF = j j i j i idf tf tfidf * , , = \u2211 \u2208 = = D k j k j i j i j i c c j c tf , , , , \u7e3d\u51fa\u73fe\u6b21\uf969 \u7279\u5fb5 } , 0 : { log ) log( , 1 D i c i D df idf j i j j \u2208 \u2200 > = = \u2212 (5) \u516c\u5f0f (5)\u4e2d D \u8868\u793a\u6587\u4ef6\u7684\u96c6\u5408\uff0c\u6b64\u8655\u628a\u8a5e\u5f59 i \u7576\u6210\u6587\u4ef6\uff0c\u7279\u5fb5 j \u7576\u6210 term\u3002 \u516c\u5f0f (4) \u7684\u6a19\u6e96\u5316\u53ef\u4ee5\u8b93\u6240\u6709\u8a5e\u5f59\u7684\u5411\uf97e\u7b49\u9577\uff0c\u6d88\u6389\u6b21\uf969\u8b8a\u5316\u904e\u5927\u7684\u7f3a\u9ede\u3002\u516c\u5f0f (5) \u7684\u60f3\u6cd5\u5247\u8a8d\u70ba\u7279\u5fb5 j \u7684\u6b0a\u91cd\uff0c\u61c9\u8a72\u5148\u8de8\u8a5e\u5f59\u9032\ufa08\u6a19\u6e96\u5316(normalization)\uff0c\u6240\u4ee5 tf i , j \u6703 \u9664\u4ee5\u7279\u5fb5 j \u7684\u7e3d\u51fa\u73fe\u6b21\uf969\uff0c\u53e6\u5916\u518d\u8003\u616e\u7279\u5fb5 j \u7684\u7a00\u6709\ufa01\uff0c\u6240\u4ee5\u4e58\u4e0a idf j \uff0c\u6700\u5f8c\u518d\u8b93\u6240 \u6709\u8a5e\u5f59\u7684\u5411\uf97e\u7b49\u9577\u3002\u6211\u5011\u6703\u5728\u5f8c\u9762\u7684\u5be6\u9a57\u4e2d\uff0c\u6bd4\u8f03\u9019\uf978\u7a2e\uf967\u540c\u6b0a\u91cd\u8655\uf9e4\u65b9\u5f0f\u7684\u6548\u80fd\u3002 3.3 \uf967\u540c\u7279\u5fb5\u7684\u7d44\u5408 \u6211\u5011\u7528\uf9ba\u57fa\u790e\u7fa9\u539f\u7279\u5fb5 (w i,1 , w i,2 ,\u2026, w i,n ) = (w i,j ) \uff0c\u53ca\u8a9e\u7bc7\u7279\u5fb5 (c i,1 , c i,2 ,\u2026, c i,m ) = (c i,j ) \uf92d \u8868\u793a\u8a5e\u5f59 i\u3002\u5982\u679c\u60f3\u540c\u6642\u4f7f\u7528\u9019\uf978\u7a2e\u7279\u5fb5\u4e2d\u7684\u8cc7\u8a0a\uff0c\u4e00\u7a2e\u76f4\u89c0\u7684\u65b9\u5f0f\uff0c\u662f\u5c07\uf978\u7a2e\u7279\u5fb5\u8868 \u793a\u65b9\u5f0f\u6df7\u5408\uff0c\u7528 V i = (w i,1 , w i,2 ,\u2026, w i,n ,c i,1 , c i,2 ,\u2026, c i,m ) \uf92d\u8868\u793a\u3002\u7531\u65bc\u57fa\u790e\u7fa9\u539f\u7279\u5fb5\u53ca\u8a9e\u7bc7 \u7279\u5fb5\u90fd\u6709\u8a31\u591a\uf967\u540c\u7684\u8b8a\u5f62\uff0c\u6211\u5011\u7121\u6cd5\u4e00\u4e00\u5617\u8a66\u6240\u6709\u53ef\u80fd\u7684\u7d44\u5408\uff0c\u6240\u4ee5\u6703\u5148\u5206\u5225\u7528\u5be6\u9a57\u627e \u51fa\u6700\u597d\u7684\u57fa\u790e\u7fa9\u539f\u7279\u5fb5 (w i,j ) \u53ca\u8a9e\u7bc7\u7279\u5fb5 (c i,j )", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u7dd2\uf941", |
|
"sec_num": "1." |
|
}, |
|
{ |
|
"text": "\uf92d\u6e2c\u8a66\u5206\uf9d0\u5668\u7684\u6548\u80fd\u5dee\u8ddd\u662f\u5426\u70ba\u986f\u8457\uff0c\u986f\u8457\u6c34 \u6e96\u8a2d\u5b9a\u70ba 0.95\u3002 McNemar \u6aa2\u5b9a\u5c07\u6e2c\u8a66\u8cc7\uf9be\u4f9d\u7167\uf978\u500b\u5206\uf9d0\u5668 (\u4ee5\u4e0b\u7a31\u70ba\u5206\uf9d0\u5668 A \u8207\u5206\uf9d0\u5668 B) \u7684\u6a19\u8a18\uff0c \u5206\u6210\u56db\u7d44\u4e26\u8a08\uf969\u3002\u5176\u4e2d\u6e2c\u8a66\u6a23\u672c\uf969\u5373\u70ba\u4e0b\u9762 n 1,1 \u3001n 0,1 \u3001n 1,0 \u3001n 0,0 \u56db\u500b\uf969\u5b57\u7684\u7e3d\u5408\uff0c\u5728\u865b \u7121\u5047\u8a2d(null hypothesis)\u4e2d\uff0c\uf978\u500b\u5206\uf9d0\u5668\u61c9\u5177\u6709\u76f8\u540c\u7684\u932f\u8aa4\uf961\uff0c\u4e5f\u5c31\u662f n 0,1 =n 1,0 \u3002 n 1,1 \uff1a \u5206\uf9d0\u5668 A \u8207\u5206\uf9d0\u5668 B \u7686\u6b63\u78ba\u6a19\u8a18 \u7684\u6a23\u672c\uf969 n 0,1 \uff1a \u5206\uf9d0\u5668 A \u6a19\u8a18\u932f\u8aa4\uff0c\u4f46\u5206\uf9d0\u5668 B \u6a19\u8a18\u6b63\u78ba\u7684\u6a23\u672c\uf969 n 1,0 \uff1a \u5206\uf9d0\u5668 B \u6a19\u8a18\u932f\u8aa4\uff0c\u4f46\u5206\uf9d0\u5668 A \u6a19\u8a18\u6b63\u78ba\u7684\u6a23\u672c\uf969 n 0,0 \uff1a \u5206\uf9d0\u5668 A \u8207\u5206\uf9d0\u5668 B \u7686\u932f\u8aa4\u6a19\u8a18", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u7dd2\uf941", |
|
"sec_num": "1." |
|
}, |
|
{ |
|
"text": "http://ehownet.iis.sinica.edu.tw/", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
} |
|
], |
|
"back_matter": [], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "Creating robust supervised classifiers via web-scale N-gram data", |
|
"authors": [ |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Bergsma", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "E", |
|
"middle": [], |
|
"last": "Pitler", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Lin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2010, |
|
"venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "865--874", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Bergsma, S., Pitler, E., & Lin, D. (2010). Creating robust supervised classifiers via web-scale N-gram data. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, 865-874.", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "LIBSVM: a library for support vector machines", |
|
"authors": [ |
|
{ |
|
"first": "C.-C", |
|
"middle": [], |
|
"last": "Chang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "C.-J", |
|
"middle": [], |
|
"last": "Lin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2001, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines.", |
|
"links": null |
|
}, |
|
"BIBREF2": { |
|
"ref_id": "b2", |
|
"title": "Approximate statistical tests for comparing supervised classification learning algorithms", |
|
"authors": [ |
|
{ |
|
"first": "T", |
|
"middle": [ |
|
"G" |
|
], |
|
"last": "Dietterich", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1998, |
|
"venue": "Neural computation", |
|
"volume": "10", |
|
"issue": "", |
|
"pages": "1895--1923", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. In Neural computation, 10(7), 1895-1923.", |
|
"links": null |
|
}, |
|
"BIBREF3": { |
|
"ref_id": "b3", |
|
"title": "HowNet and the Computation of Meaning", |
|
"authors": [ |
|
{ |
|
"first": "Z", |
|
"middle": [], |
|
"last": "Dong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Q", |
|
"middle": [], |
|
"last": "Dong", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Dong, Z., & Dong, Q. (2006). HowNet and the Computation of Meaning. World Scientific.", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "Determining the semantic orientation of terms through gloss classification", |
|
"authors": [ |
|
{ |
|
"first": "A", |
|
"middle": [], |
|
"last": "Esuli", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "F", |
|
"middle": [], |
|
"last": "Sebastiani", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2005, |
|
"venue": "Proceedings of CIKM-05", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "617--624", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Esuli, A., & Sebastiani, F. (2005). Determining the semantic orientation of terms through gloss classification, In Proceedings of CIKM-05, 617-624.", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "SentiWordNet: A publicly available lexical resource for opinion mining", |
|
"authors": [ |
|
{ |
|
"first": "A", |
|
"middle": [], |
|
"last": "Esuli", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "F", |
|
"middle": [], |
|
"last": "Sebastiani", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 06", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "417--422", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Esuli, A., & Sebastiani, F. (2006a). SentiWordNet: A publicly available lexical resource for opinion mining. In Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 06) , 417-422.", |
|
"links": null |
|
}, |
|
"BIBREF6": { |
|
"ref_id": "b6", |
|
"title": "Determining term subjectivity and term orientation for opinion mining", |
|
"authors": [ |
|
{ |
|
"first": "A", |
|
"middle": [], |
|
"last": "Esuli", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "F", |
|
"middle": [], |
|
"last": "Sebastiani", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "193--200", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Esuli, A., & Sebastiani, F. (2006b). Determining term subjectivity and term orientation for opinion mining. In Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics, 193-200.", |
|
"links": null |
|
}, |
|
"BIBREF7": { |
|
"ref_id": "b7", |
|
"title": "Efficiently identifying semantic orientation algorithm for Chinese words", |
|
"authors": [ |
|
{ |
|
"first": "Z", |
|
"middle": [], |
|
"last": "Han", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Q", |
|
"middle": [], |
|
"last": "Mo", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Zuo", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Duan", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2010, |
|
"venue": "International Conference on Computer Application and System Modeling", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "260--264", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Han, Z., Mo, Q., Zuo, M., & Duan, D. (2010). Efficiently identifying semantic orientation algorithm for Chinese words. In International Conference on Computer Application and System Modeling, Vol. 2, 260-264.", |
|
"links": null |
|
}, |
|
"BIBREF8": { |
|
"ref_id": "b8", |
|
"title": "Predicting the semantic orientation of adjectives", |
|
"authors": [ |
|
{ |
|
"first": "V", |
|
"middle": [], |
|
"last": "Hatzivassiloglou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "K", |
|
"middle": [ |
|
"R" |
|
], |
|
"last": "Mckeown", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1997, |
|
"venue": "Proceedings of ACL-97", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "174--181", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Hatzivassiloglou, V., & McKeown, K. R. (1997). Predicting the semantic orientation of adjectives. In Proceedings of ACL-97, 174-181.", |
|
"links": null |
|
}, |
|
"BIBREF10": { |
|
"ref_id": "b10", |
|
"title": "Using WordNet to measure semantic orientation of adjectives", |
|
"authors": [ |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Kamps", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Marx", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "R", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Mokken", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "De Rijke", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2004, |
|
"venue": "Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC'04)", |
|
"volume": "IV", |
|
"issue": "", |
|
"pages": "1115--1118", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Kamps, J., Marx, M., Mokken, R. J., & De Rijke, M. (2004). Using WordNet to measure semantic orientation of adjectives. In Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC'04), Vol. IV, 1115-1118.", |
|
"links": null |
|
}, |
|
"BIBREF11": { |
|
"ref_id": "b11", |
|
"title": "Mining opinions from the Web: Beyond relevance retrieval", |
|
"authors": [ |
|
{ |
|
"first": "L.-W", |
|
"middle": [], |
|
"last": "Ku", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H.-H", |
|
"middle": [], |
|
"last": "Chen", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2007, |
|
"venue": "In Journal of the American Society for Information Science and Technology", |
|
"volume": "58", |
|
"issue": "12", |
|
"pages": "1838--1850", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Ku, L.-W., & Chen, H.-H. (2007). Mining opinions from the Web: Beyond relevance retrieval. In Journal of the American Society for Information Science and Technology, 58(12), 1838-1850.", |
|
"links": null |
|
}, |
|
"BIBREF12": { |
|
"ref_id": "b12", |
|
"title": "Words semantic orientation classification based on HowNet", |
|
"authors": [ |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y.-Tao", |
|
"middle": [], |
|
"last": "Ma", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J.-Li", |
|
"middle": [], |
|
"last": "Guo", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2009, |
|
"venue": "The Journal of China Universities of Posts and Telecommunications", |
|
"volume": "16", |
|
"issue": "", |
|
"pages": "106--110", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Li, D., Ma, Y.-tao, & Guo, J.-li. (2009). Words semantic orientation classification based on HowNet. In The Journal of China Universities of Posts and Telecommunications, 16(1), 106-110.", |
|
"links": null |
|
}, |
|
"BIBREF13": { |
|
"ref_id": "b13", |
|
"title": "Chinese Web 5-gram Version 1. Linguistic Data Consortium", |
|
"authors": [ |
|
{ |
|
"first": "F", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Lin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2010, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Liu, F., Yang, M., & Lin, D. (2010). Chinese Web 5-gram Version 1. Linguistic Data Consortium, Philadelphia.", |
|
"links": null |
|
}, |
|
"BIBREF14": { |
|
"ref_id": "b14", |
|
"title": "Learning Chinese polarity lexicons by integration of graph models and morphological features", |
|
"authors": [ |
|
{ |
|
"first": "B", |
|
"middle": [], |
|
"last": "Lu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Song", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "X", |
|
"middle": [], |
|
"last": "Zhang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "B", |
|
"middle": [], |
|
"last": "Tsou", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2010, |
|
"venue": "Information Retrieval Technology: 6th Asia Information Retrieval Societies Conference", |
|
"volume": "2010", |
|
"issue": "", |
|
"pages": "466--477", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Lu, B., Song, Y., Zhang, X., & Tsou, B. (2010). Learning Chinese polarity lexicons by integration of graph models and morphological features. In Information Retrieval Technology: 6th Asia Information Retrieval Societies Conference, AIRS 2010, 466-477.", |
|
"links": null |
|
}, |
|
"BIBREF15": { |
|
"ref_id": "b15", |
|
"title": "Measuring praise and criticism: Inference of semantic orientation from association", |
|
"authors": [ |
|
{ |
|
"first": "P", |
|
"middle": [ |
|
"D" |
|
], |
|
"last": "Turney", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [ |
|
"L" |
|
], |
|
"last": "Littman", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2003, |
|
"venue": "In ACM Transactions on Information Systems", |
|
"volume": "21", |
|
"issue": "", |
|
"pages": "315--346", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Turney, P. D., & Littman, M. L. (2003). Measuring praise and criticism: Inference of semantic orientation from association. In ACM Transactions on Information Systems, 21, 315-346.", |
|
"links": null |
|
}, |
|
"BIBREF16": { |
|
"ref_id": "b16", |
|
"title": "Using bilingual lexicon to judge sentiment orientation of Chinese words", |
|
"authors": [ |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Yao", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "Wu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Zheng", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "Proceedings of the Sixth IEEE International Conference on Computer and Information Technology", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Yao, J., Wu, G., Liu, J., & Zheng, Y. (2006). Using bilingual lexicon to judge sentiment orientation of Chinese words, In Proceedings of the Sixth IEEE International Conference on Computer and Information Technology, p. 38.", |
|
"links": null |
|
}, |
|
"BIBREF18": { |
|
"ref_id": "b18", |
|
"title": "Morpheme-based derivation of bipolar semantic orientation of Chinese words", |
|
"authors": [], |
|
"year": null, |
|
"venue": "Proceedings of the 20th international conference on Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1008--1014", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Morpheme-based derivation of bipolar semantic orientation of Chinese words, In Proceedings of the 20th international conference on Computational Linguistics, 1008-1014.", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"FIGREF0": { |
|
"type_str": "figure", |
|
"text": "", |
|
"num": null, |
|
"uris": null |
|
}, |
|
"TABREF0": { |
|
"content": "<table><tr><td>(Extended-HowNet Ontology)\uff0c\u4e26\u7528\u9019\u4e9b\u65b0\u7684\u8a9e\u7fa9\u7fa9\u539f\uff0c\u4ee5\u7d50\u69cb\u5316\u7684\u5f62\u5f0f\uf92d\u5b9a\u7fa9\u8a5e\u689d\uff0c</td></tr><tr><td>\u8a5e\u689d\u5b9a\u7fa9\u5f0f\u7684\uf9b5\u5b50\u5982\u5716 1\u3002</td></tr><tr><td>\u6709\u95dc\u60c5\u7dd2\u5c6c\u6027\u6a19\u8a18\u7684\u7814\u7a76\uff0c\u6211\u5011\u5206\u70ba\u82f1\u6587\u53ca\u4e2d\u6587\uf92d\u8a0e\uf941\u3002\u5728\u82f1\u6587\u65b9\u9762\uff0c\u6700\u65e9\u662f\u7531</td></tr><tr><td>Hatzivassiloglou & McKeown(1997) \u5728 1997 \uf98e\u91dd\u5c0d\u5f62\u5bb9\u8a5e\u6240\u505a\u7684\u7814\u7a76\uff0c\u4ed6\u5011\u6240\u7528\u7684\u5f62\u5bb9</td></tr><tr><td>\u8a5e\u5206\u5225\u6709\u6b63\u9762\u8a5e 657 \u500b\u53ca\u8ca0\u9762\u8a5e 679 \u500b\uff0c\u8a72\uf941\u6587\u4f9d\u64da\uf967\u540c\u7684\u5be6\u9a57\u8a2d\u5b9a\uff0c\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2</td></tr><tr><td>\u7684\u6e96\u78ba\uf961(Accuracy)\u7531 82% \u5230 90%\u3002\u4e4b\u5f8c\uf9d3\u7e8c\u6709\uf967\u540c\u7684\u7814\u7a76\uff0c\u6240\u7528\u591a\u70ba\u534a\u76e3\u7763\u5f0f\u6a5f</td></tr><tr><td>\u5668\u5b78\u7fd2\u7684\u6f14\u7b97\u6cd5</td></tr><tr><td>\u8981\u5168\u90e8\u7528\u4eba\u5de5\u9032\ufa08\u6a19\u8a18\u4e4b\u6210\u672c\u592a\u9ad8\u3002\u56e0\u6b64\uff0c\u901a\u5e38\u7684\u4f5c\u6cd5\u662f\u5c11\uf97e\u6a19\u8a18\u4e00\u4e9b\u8a5e\u5f59\uff0c\u518d\u7528\u6a5f\u5668</td></tr><tr><td>\u5b78\u7fd2\u65b9\u6cd5\uff0c\u70ba\u5269\u4e0b\u7684\u8a5e\u5f59\u9032\ufa08\u81ea\u52d5\u6a19\u8a18\uff0c\u96d6\u7136\u81ea\u52d5\u6a19\u8a18\u7684\u6e96\u78ba\uf961\uf967\u5982\u4eba\u5de5\u6a19\u8a18\uff0c\u4f46\u5c0d\u4e00</td></tr><tr><td>\u822c\u61c9\u7528\u6709\u67d0\u7a2e\u7a0b\ufa01\u7684\u5e6b\u52a9\u3002</td></tr><tr><td>\u5728\u4e2d\u6587\u81ea\u7136\u8a9e\u8a00\u8655\uf9e4\uff0cNTUSD \u662f\u4e00\u90e8\u91cd\u8981\u7684\u610f\ufa0a\u8a5e\u8a5e\u5178\uff0c\u4f46\u6b64\u8a5e\u5178\u53ea\u5305\u62ec\u8a5e\u5f59\u53ca</td></tr><tr><td>\u6975\u6027\u7684\u8cc7\u8a0a\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u8463\u632f\u6771\u5148\u751f\u548c\u9673\u514b\u5065\u6559\u6388\u6240\u5efa\uf9f7\u7684\u77e5\u7db2\u548c\u5ee3\u7fa9\u77e5\u7db2(Z. Dong &</td></tr><tr><td>Dong, 2006; \u9673\u514b\u5065, \u9ec3, \u65bd, & \u9673, 2004)\uff0c\u662f\u91cd\u8981\u7684\u8a9e\u610f\u8cc7\u6e90\u3002\u5c0d\u65bc\u6bcf\u500b\u8a5e\u5f59\uff0c\u90fd\u7528\u6709</td></tr><tr><td>\u9650\u7684\u7fa9\u539f\u7d66\u4e88\u7cbe\u78ba\u7684\u5b9a\u7fa9\uff0c\u4f46\u9019\u4e9b\u5b9a\u7fa9\u537b\u7f3a\u4e4f\u60c5\u7dd2\u7684\u8a9e\u610f\u6a19\u8a18\u3002\u56e0\u6b64\uff0c\u5982\u4f55\u81ea\u52d5\u70ba\u5ee3\u7fa9</td></tr><tr><td>\u77e5\u7db2\u52a0\u4e0a\u60c5\u7dd2\u6a19\u8a18\uff0c\u6210\u70ba\u4e00\u500b\u91cd\u8981\u7684\u8ab2\u984c\uff0c\u4e5f\u662f\u672c\u7814\u7a76\u7684\u76ee\u7684\u3002</td></tr><tr><td>\u672c\u7814\u7a76\u63d0\u51fa\u70ba\u5ee3\u7fa9\u77e5\u7db2\u52a0\u4e0a\u60c5\u7dd2\u6a19\u8a18\u7684\u65b9\u6cd5\uff0c\u9996\u5148\uf9dd\u7528 NTUSD \u8ddf\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u7684</td></tr><tr><td>\u4ea4\u96c6\u5efa\uf9f7\u6a19\u6e96\u7b54\u6848\u96c6\uff0c\u518d\u7531\u6a19\u6e96\u7b54\u6848\u96c6\u8a13\uf996\u51fa\u5206\uf9d0\u5668\uff0c\u70ba\u5176\u4ed6\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u9032\ufa08\u6a19\u8a18\u3002</td></tr><tr><td>\u5982\u4f55\u6709\u6548\u7684\u904b\u7528\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uff0c\u5982\u4f55\u70ba\u8a5e\u5f59\u62bd\u53d6\u51fa\u6709\u7528\u7684\u7279\u5fb5\uff0c\u662f\u4e3b\u8981\u7684\u6311\u6230</td></tr><tr><td>\u8b70\u984c\u3002\u5728\u6b64\u7814\u7a76\u4e2d\uff0c\u6211\u5011\u6709\u7cfb\u7d71\u7684\u5617\u8a66\u62bd\u53d6\u5404\u7a2e\uf967\u540c\u7684\u8a5e\u5f59\u7279\u5fb5\uff0c\u6700\u5f8c\u5f97\u5230\u9ad8\u6e96\u78ba\uf961\u7684</td></tr><tr><td>\u4e8c\u5143\u5206\uf9d0\u5668(binary classifiers)\u7528\u4ee5\u81ea\u52d5\u6a19\u8a18\u6b63\u8ca0\u9762\u60c5\u7dd2\u6a19\u8a18\u3002</td></tr><tr><td>\u7b2c\u4e8c\u7bc0\u4ecb\u7d39\u5ee3\u7fa9\u77e5\u7db2\u3001\u53ca\u82f1\u6587\u548c\u4e2d\u6587\u76f8\u95dc\u7684\u60c5\u7dd2\u5c6c\u6027\u6a19\u8a18\u7814\u7a76\uff0c\u7b2c\u4e09\u7bc0\u4ecb\u7d39\u5f9e</td></tr><tr><td>E-HowNet \u53ca \u8ddf\u77e5\u7db2\uf99a\u7d50\uff0c\u4e26\u4f5c\uf9ba\u4e00\u4e9b\u4fee\u6539\uff0c\u6700\u5f8c\u5f62\u6210\u5ee3\u7fa9\u77e5\u7db2(Extended-HowNet, E-HowNet 1 )\u3002</td></tr><tr><td>\u8a5e\u5eab\u5c0f\u7d44\u4fee\u6539\u4e26\u64f4\u5c55\u77e5\u7db2\u539f\u5148\u7684\u8a9e\u7fa9\u7fa9\u539f\u89d2\u8272\u77e5\uf9fc\u672c\u9ad4\uff0c\u5efa\u69cb\u51fa\u5ee3\u7fa9\u77e5\u7db2\u77e5\uf9fc\u672c\u9ad4</td></tr></table>", |
|
"num": null, |
|
"type_str": "table", |
|
"text": "\u3002\u4f46\u73fe\u6709\u8cc7\u6e90 \u7684\u8a9e\u5f59\uf97e\u901a\u5e38\u5f88\u5927\uff0c\u5982 WordNet 3.0 \u5c31\u5305\u62ec 206,941 \u500b\uf967\u540c\u7684\u82f1\u6587\u5b57\u7fa9 (word-sense pair) \uff0c Google Chinese Web 5-gram \u62bd\u53d6\u7279\u5fb5\u7684\u65b9\u6cd5\uff0c\u7b2c\u56db\u7bc0\u5448\u73fe\u5404\u7a2e\u5be6\u9a57\u7684\u7d50\u679c \u53ca\u5206\u6790\uff0c\u5305\u62ec\u8ddf NTUSD \u4eba\u5de5\u6a19\u8a18\u7684\u6bd4\u8f03\uff0c\u6700\u5f8c\u7e3d\u7d50\uf941\u6587\u7684\u6210\u679c\u3002 2. \u76f8\u95dc\u7814\u7a76 \u8463\u632f\u6771\u5148\u751f\u65bc 1998 \uf98e\u5275\u5efa\u77e5\u7db2(HowNet)\uff0c\u4e26\u5728 2003 \uf98e\uff0c\u8ddf\u4e2d\u592e\u7814\u7a76\u9662\u8cc7\u8a0a\u6240\u8a5e\u5eab\u5c0f \u7d44\u5728 2003 \uf98e\uff0c\u5c07\u4e2d\u7814\u9662\u8a5e\u5eab\u5c0f\u7d44\u8a5e\u5178(CKIP Chinese Lexical Knowledge Base)\u7684\u8a5e\u689d", |
|
"html": null |
|
}, |
|
"TABREF1": { |
|
"content": "<table><tr><td>2004 \uf98e \uf9dd \u7528 Turney &</td></tr><tr><td>Littman(2003)</td></tr></table>", |
|
"num": null, |
|
"type_str": "table", |
|
"text": "\u7684\u534a\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uff0c\u5728\u6b63\u9762\u8a5e 604 \u500b\u53ca\u8ca0\u9762\u8a5e 645 \u500b\u7684\u8cc7\uf9be\u96c6\u4e0a \u505a\u5be6\u9a57\uff0c\u5f97\u5230\u6700\u9ad8\u7684\u6210\u7e3e\u662f 80.23%\u7684\u7cbe\u78ba\ufa01\u53ca 85.03%\u7684\u53ec\u56de\uf961\u3002\u4e4b\u5f8c\u5f9e 2006 \u5230 2010 \uf98e\uff0c\uf9d3\u7e8c\u7684\u7814\u7a76\u4f7f\u7528\uf967\u540c\u7684\u8cc7\uf9be\u96c6\uff0c\u7528\uf967\u540c\uf9d0\u578b\u7684\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uf92d\u8655\uf9e4\u9019\u500b\u554f\u984c", |
|
"html": null |
|
}, |
|
"TABREF2": { |
|
"content": "<table><tr><td>3.2.1 Google Web 5-gram\u7279\u5fb5\u62bd\u53d6</td></tr><tr><td>\u6211\u5011\u4f7f\u7528\u7279\u5fb5\u8ddf\u8a5e\u5f59\u7684\u540c\u51fa\u73fe(co-occurrence)\u6b21\uf969\u505a\u70ba\u7279\u5fb5\u503c\uff0c\u4ee5\u5716 3 \u70ba\uf9b5\uff0c\u5982\u679c\u8a5e</td></tr><tr><td>+1\u3002\u53e6\u5916\uff0c\u5982\u679c\u6a39\uf9fa\u7d50\u69cb\u4e0a\u9762\u7684\u7fa9\u539f\u88ab\u5426\u5b9a\u610f\u7fa9\u7684\u95dc\u4fc2\u6240\u4fee\u98fe\uff0c\u9019\u5426\u5b9a \u5f59\u662f\u300c\u6050\u5413\u300d\uff0c\u4ee5\u300c\u975e\u6cd5\u300d\u7576\u7279\u5fb5\u503c\uff0c\u5247\u540c\u51fa\u73fe\u6b21\uf969\u6703\u5c07\u6240\u6709\u300c\u6050\u5413\u300d\u53ca\u300c\u975e\u6cd5\u300d\u4e00\u540c</td></tr><tr><td>\u610f\u7fa9\u6703\u50b3\u905e\u5230\u4e0b\u9762\u7684\u7fa9\u539f\u3002 \u51fa\u73fe\u7684 5-gram \u6b21\uf969\u76f8\u52a0\u3002\u5728\u4e0a\u9762\u7684\uf9b5\u5b50\u4e2d\uff0c\u300c\u6050\u5413\u300d\u53ca\u300c\u975e\u6cd5\u300d\u7684\u540c\u51fa\u73fe\u6b21\uf969\u70ba</td></tr><tr><td>574+200+4463 + 705=5942 \u6b21\u3002 3.2 \u8a9e\u7bc7(context)\u7279\u5fb5 \u53e6\u5916\uff0c\u7531\u65bc\u5ee3\u7fa9\u77e5\u7db2\u8ddf Google Web 5-gram \u7684\u65b7\u8a5e\u6a19\u6e96\u4e26\uf967\u4e00\u81f4\uff0c\u6240\u4ee5\u5728\u8655\uf9e4\u6642\u628a</td></tr><tr><td>\u5ee3\u7fa9\u77e5\u7db2\u96d6\u7136\u6709\u56b4\u8b39\u7684\u5b9a\u7fa9\u5f0f\u53ef\u7528\u4ee5\u8868\u793a\u8a5e\u5f59\uff0c\u4f46\u662f\u6709\u56db\u500b\u7f3a\u9ede\uff0c\u9020\u6210\u53ea\u7528\u7fa9\u539f\u7576\u7279\u5fb5 Google Web 5-gram \u7684\u7a7a\u767d\u53bb\u6389\uff0c\u76f4\u63a5\u627e\u51fa\u300c\u8a5e\u5f59\u300d\u8ddf\u300c\u7279\u5fb5\u300d\u9019\uf978\u5b57\uf905\u662f\u5426\u540c\u6642\u51fa\u73fe\uff0c</td></tr><tr><td>\u7121\u6cd5\u6b63\u78ba\u7372\u5f97\u8a5e\u5f59\u7684\u6975\u6027\u3002 \uf92d\u8a08\u7b97\u6b21\uf969\uff0c\u9019\u6a23\u53ef\u4ee5\u907f\u514d\u65b7\u8a5e\u6a19\u6e96\uf967\u4e00\u6240\u7522\u751f\u7684\u554f\u984c\u3002\uf9b5\u5982 \u300c\u4e00\u4e8b\u7121\u6210\u300d\u5728 Google Web</td></tr><tr><td>\u7b2c\u4e00\u500b\u7f3a\u9ede\u662f\u8a5e\u5f59\u6240\u6a19\u7684\u7fa9\u539f\uf97e\u592a\u5c11\uff0c\u56e0\u70ba\u8a5e\u5f59\u662f\u7528\u4eba\u5de5\u6a19\u793a\u7fa9\u539f\uff0c\u6240\u4ee5\u7121\u6cd5\u7d66\u4e88 5-gram \u4e2d\u88ab\u65b7\u6210\u56db\u500b\u7368\uf9f7\u7684\u8a5e\uff0c\u5c07\u7a7a\u767d\u53bb\u6389\u5c31\u53ef\u4ee5\u6b63\u78ba\u6bd4\u5c0d\u5230\u3002</td></tr><tr><td>\u5f88\u591a\u6a19\u793a\u3002\u9019\u8868\u793a\u8a5e\u5f59\u64c1\u6709\u7684\u8cc7\u8a0a\uf97e\u6709\u9650\uff0c\u6703\u9020\u6210\u5206\uf9d0\u5668\u7121\u6cd5\u6709\u6548\u5b78\u7fd2\u3002\u7b2c\u4e8c\u500b\u7f3a\u9ede\u662f \u56e0\u70ba\u9019\uf9e8\u7684\u8a5e\u5f59\u96c6\u5408\u5c31\u662f\u7b49\u5f85\u6a19\u793a\u6975\u6027\u7684\u8a5e\uff0c\u6240\u4ee5\u6211\u5011\u53ea\u8981\u6307\u5b9a\u7279\u5fb5\u7684\u96c6\u5408\u5305\u62ec\u90a3</td></tr><tr><td>\u7fa9\u539f\uf969\uf97e\u592a\u5c11\uff0c\u9019\u6703\u9020\u6210\u8a9e\u7fa9\u7684\u5283\u5206\uf967\u5920\u7cbe\u78ba\uff0c\u7121\u6cd5\u986f\u793a\u51fa\u771f\u5be6\u7684\u8a9e\u7fa9\u5dee\u5225\uff0c\uf9b5\u5982\u300c\u660e \u4e9b\u8a5e\uff0c\u5c31\u53ef\u7b97\u51fa\u8868\u793a\u8a5e\u5f59 i \u7684\u5411\uf97e</td></tr><tr><td>\u54f2\u4fdd\u8eab\u300d\u8ddf\u300c\ufa0a\u98a8\u8f49\u8235\u300d\u7684\u5b9a\u7fa9\u5f0f\u90fd\u662f\u300c{sly|\u72e1}\u300d\uff0c\u4f46\u300c\u660e\u54f2\u4fdd\u8eab\u300d\u662f\u6b63\u9762\u610f\ufa0a\uff0c\u300c\ufa0a</td></tr><tr><td>\u98a8\u8f49\u8235\u300d\u537b\u662f\u8ca0\u9762\u610f\ufa0a\u3002\u7b2c\u4e09\u500b\u7f3a\u9ede\u662f\u5ee3\u7fa9\u77e5\u7db2\u5b9a\u7fa9\u6a19\u6e96\u7684\u5dee\uf962\uff0c\uf9b5\u5982\uff0c\u5c08\u6709\u540d\u8a5e\u5728\u5ee3</td></tr><tr><td>\u7fa9\u77e5\u7db2\u4e2d\u6703\u7528\u5ba2\u89c0\u7684\u7fa9\u539f\uf92d\u5b9a\u7fa9\uff0c\u4f46\u8a72\u5c08\u6709\u540d\u8a5e\u7d93\u904e\u4f7f\u7528\uff0c\u537b\u53ef\u80fd\u6703\u5f15\u8d77\u4eba\u7684\u6b63\u53cd\u60c5\u7dd2</td></tr><tr><td>(\u5982\u300c\u83ab\u672d\u7279\u300d\u662f\u5c08\u6709\u540d\u8a5e\uff0c\u4f46\u537b\u5e38\u7528\uf92d\u7576\u6b63\u9762\u610f\ufa0a)\uff0c\u9019\u7a2e\u5dee\uf962\u6703\u5f15\u5165\u7a0b\ufa01\uf967\u7b49\u7684\u96dc</td></tr><tr><td>\u8a0a\u5230\u5206\uf9d0\u5668\u4e2d\u3002\u7b2c\u56db\u500b\u7f3a\u9ede\u662f\u5ee3\u7fa9\u77e5\u7db2\u5c1a\u672a\u5c0d\u6240\u6709\u8a5e\u5f59\u6a19\u4e0a\u5b9a\u7fa9\u5f0f\uff0c\uf9b5\u5982\u300c\u4e7e\u6de8\u4fd0\uf918\u300d</td></tr><tr><td>\u5728\u5ee3\u7fa9\u77e5\u7db2\u53ca NTUSD \u4e2d\u90fd\u51fa\u73fe\uff0c\u4f46\u5ee3\u7fa9\u77e5\u7db2\u537b\u6c92\u6709\u6a19\u4e0a\u5b9a\u7fa9\u5f0f\u3002</td></tr></table>", |
|
"num": null, |
|
"type_str": "table", |
|
"text": "\u6240\u5efa\uf9f7\u7684 Google Web \uf9e1\u653f\u5112 \u7b49 5-gram Version 1\uff0c\uf92d\u62bd\u53d6\u8a9e\u7bc7\u7279\u5fb5\u3002Google Web 5-gram \u662f Google \u5f9e\u7db2\uf937\u4e2d\u6536\u96c6\u5927\uf97e\u7684 \u7c21\u9ad4\u4e2d\u6587\u7db2\u9801\uff0c\u4e26\u7d93\u904e\u8655\uf9e4\u6240\u5efa\uf9f7\u7684\u8cc7\u6e90\u3002\u4ed6\u5011\u6536\u96c6\uf9ba 882,996,532,572 \u500b\u5b57\u7b26 (token) \uff0c \u5171 102,048,435,515 \u500b\uf906\u5b50\uff0c\u7d93\u904e\u65b7\u8a5e\u5f8c\u5efa\u6210 n-gram\u3002n-gram \u7684 n \u5f9e 1 \u5230 5\uff0c\u4e26\u4e14\u53ea \u4fdd\uf9cd\u983b\uf961\u5927\u65bc 40 \u7684 n-gram\u3002Google Web 5-gram \u7684\uf9b5\u5b50\u5982\u5716 3 \u6240\u793a\u3002", |
|
"html": null |
|
}, |
|
"TABREF3": { |
|
"content": "<table><tr><td>\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c</td><td>27</td></tr><tr><td>3.2</td><td/></tr><tr><td>NTUSD \u5b8c\u6574\u7248\u3002</td><td/></tr></table>", |
|
"num": null, |
|
"type_str": "table", |
|
"text": "i\u300d\u8ddf\u300c\u7279\u5fb5 j\u300d\u9019\uf978\u5b57\uf905\u540c\u51fa\u73fe\u7684\u6b21\uf969\u3002\u5728\u6211\u5011\u7684\u5be6\u9a57\u4e2d\uff0c\u5171\u5617\u8a66\uf9ba \u5341\u7a2e\uf967\u540c\u7684\u7279\u5fb5\u96c6\u5408\uff0c\u5206\u5225\u662f\u5ee3\u7fa9\u77e5\u7db2\u7684\u540d\u8a5e\u3001\u5ee3\u7fa9\u77e5\u7db2\u7684\u52d5\u8a5e\u3001\u5ee3\u7fa9\u77e5\u7db2\u7684\u526f\u8a5e\u3001\u5ee3 \u7fa9\u77e5\u7db2\u7684\u5f62\u5bb9\u8a5e\u3001\u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe\u7684 5000 \u8a5e\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe\u7684 5000 \u8a5e(\u4f46\u8a5e\u5f59\u9577\ufa01\u6700\u5c11\u70ba 2)\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe \u7684 10000 \u8a5e\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe\u7684 10000 \u8a5e(\u4f46\u8a5e\u5f59\u9577\ufa01\u6700\u5c11\u70ba 2)\u3001\u4ee5\u53ca", |
|
"html": null |
|
}, |
|
"TABREF5": { |
|
"content": "<table><tr><td>\u7684\u6a23\u672c\uf969 McNemar \u6aa2\u5b9a\u5efa\u69cb\u5728\u5361\u65b9\u9069\u5408\ufa01\u6aa2\u5b9a(\u03c72 test goodness of fit)\u4e0a\uff0c\u6574\uf9e4\u800c\u5f97\u7684\u6aa2\u5b9a 0 , 1 1 , 0 2 0 , 1 1 , 0 ) 1 ( n n n n + \u2212 \u2212 \uff0c\u6b64\u6aa2\u5b9a\u503c\u5728 n 0,1 +n 1,0 \u5920\u5927\u7684\u6642\u5019\u6703\u8da8\u8fd1\u65bc\u81ea\u7531\ufa01\u70ba 1 \u7684\u5361\u65b9\u5206\u914d\uff0c \u56e0\u6b64\u5728\u986f\u8457\u6c34\u6e96(significant level)\u70ba 0.95 \u6642\uff0c\u6b64\u503c\uf974\u5927\u65bc \u503c\u70ba 8415 . 3 2 95 . 0 , 1 = \u03c7 \uff0c\u5247\u62d2\u7d55\u865b\u7121\u5047 \u8a2d\u3002\u6211\u5011\u7528 (McNemar \u6aa2\u5b9a\u7d50\u679c, p-value) \uf92d\u986f\u793a\u6211\u5011\u7684\u6aa2\u5b9a\u7d50\u679c\uff0c\uf9b5\u5982\u6aa2\u5b9a\u7d50\u679c (1.50, 0.22) \u8868\u793a\uff0cMcNemar \u6aa2\u5b9a\u7d50\u679c\u70ba 1.50 < 3.84\uff0c\u6240\u4ee5\u6c92\u6709\u901a\u904e McNemar \u6aa2\u5b9a\uff0cp-value \u70ba 0.22\u3002 4.2 \u57fa\u790e\u7fa9\u539f\u7279\u5fb5\u7684\u6548\u80fd 89.4% 89.6% 89.8% 90.0% Accuracy PBF PBFN \u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c 31 \u6211\u5011\u4f7f\u7528\u4e09\u7a2e\uf967\u540c\u7684\u52a0\u6b0a\u65b9\u5f0f\u5f97\u5230\u7684\u9810\u6e2c\u6e96\u78ba\uf961\u5982\u5716 5\uff0c\u5716\u4e2d\u6211\u5011\u4e5f\u628a\u7279\u5fb5\u96c6\u7684\u7279 \u5fb5\uf969\u7531\u5de6\u81f3\u53f3\u7531\u5c0f\u5230\u5927\u6392\uf99c\u3002 \u5f9e\u5716 5 \u53ef\u4ee5\u770b\u51fa\uff0c\u6c92\u6709\u6a19\u6e96\u5316\u7684\u539f\u59cb\u983b\uf961\u7684\u6700\u4f73\u6e96\u78ba\uf961\u70ba 59.70%\uff0c\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u70ba \u300c\u5ee3\u7fa9\u77e5\u7db2\u540d\u8a5e\u300d\uff0c\u5176\u6548\u80fd\u6700\u5dee\u4e14\u5dee\u8ddd\u5f88\u5927\u3002\u9918\u5f26\u6a19\u6e96\u5316 TFIDF \u7684\u6548\u80fd\u6392\u5728\u4e2d\u9593\uff0c\u6700\u4f73 \u6e96\u78ba\uf961\u70ba 83.41%\uff0c\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u70ba\u300c\u6700\u5e38\u51fa\u73fe 10000 \u8a5e\u300d\u3002\u800c\u7d93\u904e\u9918\u5f26\u6a19\u6e96\u5316\u7684\u7279\u5fb5\u503c \u5247\u53ef\u4ee5\u5f97\u5230\u6700\u4f73\u6548\u80fd\uff0c\u5176\u6700\u4f73\u6e96\u78ba\uf961\u70ba 88.23%\uff0c\u6b64\u6642\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u70ba \u300c\u5ee3\u7fa9\u77e5\u7db2\u52d5\u8a5e\u300d \uff0c \uf9e1\u653f\u5112 \u7b49 \u63d0\u5347\uff0c\u63d0\u5347\u5f8c\u7684\u6700\u9ad8\u6e96\u78ba\uf961\u70ba 92. 3276%\uff0c\u4f7f\u7528\u300c\u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59 All+PBFN \u03b1 = \u22120.03 \u300d \u548c\u300c\u6700\u5e38\u51fa\u73fe 10000 \u8a5e(\u9577\ufa01\u22672) F10000-2+PBFN \u03b1 = \u22120.03 \u300d\u70ba\u7279\u5fb5\u96c6\u6642\u7686\u6709\u76f8\u540c\u7684\u6e96 \u78ba\uf961\u3002\u4e0a\u5716\u4e2d\uff0c\u300c\u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59 All\u300d\u6e96\u78ba\uf961\u5f9e 88.23%\u63d0\u5347\u81f3 92.33%\u6642\uff0c\u6b64\u5dee\u8ddd\u70ba \u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (32.14, 1.4*10 -8 )\u3002 95.0% \u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c 33 \u8868 4 \u4e2d\u7684\u7279\u5fb5\u96c6\u4ee3\u865f\u662f\u300c\u8a9e\u7bc7\u7279\u5fb5\u96c6\u4ee3\u78bc+PBFN \u03b1 = \u22120.03 \u300d\u7684\u7c21\u5beb\uff0c\u56e0\u70ba\u4f7f\u7528\u76f8\u540c\u7684 PBFN \u03b1 = \u22120.03 \uff0c\u6240\u4ee5\u5c07\u5176\u5ffd\uf976\u3002\u300c\u7e3d\u9ad4\u6548\u80fd\u300d\u662f\u6307\u5206\uf9d0\u5668\u8a13\uf996\u6642\u7684\u6574\u9ad4\u6548\u80fd\u3002\u8868\u4e2d\uff0c\u4e00\uf91d \u4e2d\u6700\u4f73\u7684\u6a19\u8a18\u6548\u80fd\u4ee5\u7c97\u9ad4\u5b57\u8868\u793a\u3002 \u8868 4 \u4e2d\u6211\u5011\u53ef\u4ee5\u767c\u73fe\uff0c\u8a13\uf996\u6642\uff0cF10000-2+PBFN \u03b1 = \u22120.03 \u6709\u6700\u9ad8\u7684\u7e3d\u9ad4\u6548\u80fd\uff0c\u5176\u5404\u8a5e \u6027\u6548\u80fd\u9664\uf9ba\u5f62\u5bb9\u8a5e\u5916\uff0c\u591a\u662f\u6700\u597d\uff1b\u8003\uf97e\u5230\u8cc7\uf9be\u96c6\u4e2d\u5f62\u5bb9\u8a5e\u7684\uf969\uf97e\u4e26\uf967\u591a\uff0c\u9019\u8868\u793a\u7d44\u5408\u591a \u500b\u5206\uf9d0\u5668\u5f8c\uff0c\u6548\u80fd\u7684\u63d0\u6607\u7a7a\u9593\u53ef\u80fd\u6709\u9650\u3002\u8868 4 \u4e2d\u53e6\u4e00\u500b\u503c\u5f97\u6ce8\u610f\u7684\u4e00\u9ede\u662f\u8a13\uf996\u8cc7\uf9be\u96c6\u7684 34 \uf9e1\u653f\u5112 \u7b49 4.6 \u76f8\u95dc\u7814\u7a76\u6548\u80fd\u6bd4\u8f03 \u6211\u5011\u7e3d\u7d50\u524d\u9762\u5404\u7a2e\uf967\u540c\u7684\u5be6\u9a57\u7d50\u679c\uff0c\u756b\u6210\u5716 7\uff0c\uf92d\u65b9\uf965\u6211\u5011\u6bd4\u8f03\u6548\u80fd\u3002\u5176\u4e2d\uff0cgloss \u8868\u57fa \u790e\u7fa9\u539f\u7279\u5fb5 PBFN \u03b1 = \u22120.03 \uff0c\u6700\u597d\u7684\u6548\u80fd\u5230 92.3276%\u3002 92.3276% 92.3276% 95.0% \u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c 35 5. \u7d50\uf941 \u672c\u7814\u7a76\u4f7f\u7528\uf9ba Google Web 5-gram Version 1 \uf92d\u62bd\u53d6\u8a9e\u7bc7\u7279\u5fb5\uff0c\u4e26\u52a0\u4e0a\uf92d\u81ea E-HowNet \u7684 \u57fa\u790e\u7fa9\u539f\u7279\u5fb5\uff0c\u7528\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u6cd5\uff0c\uf92d\u9810\u6e2c E-HowNet \u8a5e\u5f59\u7684\u610f\ufa0a\u6975\u6027\u3002\u96d6\u7136\u55ae \u7368\u4f7f\u7528\uf967\u540c\u7684\u7279\u5fb5\u5df2\u7d93\u53ef\u4ee5\u63a5\u8fd1 90% \u7684\u6e96\u78ba\uf961\uff0c\u4f46\u5982\u679c\u628a\uf978\u7a2e\u7279\u5fb5\u90fd\u52a0\u4ee5\u4f7f\u7528\uff0c\u5206\uf9d0 \u5668\u7684\u6975\u6027\u9810\u6e2c\u7684\u6e96\u78ba\uf961\u53ef\u5230\u9054 92.33% \u7684\u9ad8\u6e96\u78ba\uf961\uff1b\u4ee5\u9019\u7a2e\u65b9\u5f0f\u5efa\uf9f7\u7684\u5206\uf9d0\u5668\uff0c\u53ef\u7528\uf92d \u81ea\u52d5\u6a19\u8a18 E-HowNet \u8a5e\u5f59\u7684\u610f\ufa0a\u6975\u6027\u3002 \u5716 4 \uf9e1\u653f\u5112 \u7b49 \u5716 4. \u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u65bc\uf967\u540c \u03b1 \u503c\u7684\u6548\u80fd\u6bd4\u8f03 \u6211\u5011\u5f9e\u5716 4 \u53ef\u4ee5\u770b\u51fa\uff0c\u63cf\u8ff0 PBFN \u7684\u6298\u7dda\u5728\u6240\u6709\u7684 \u03b1 \u503c\u4e0b\uff0c\u6e96\u78ba\uf961\u7686\uf976\u9ad8\u65bc PBF\uff0c \u4f46\u662f\uf978\u500b\u6700\u5927\u503c (\u03b1 = \u22120.02) \u7684\u5dee\u8ddd\u50c5 0.1724%\uff0c\u6b64\u5dee\u8ddd\u70ba\uf967\u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (1.50, 0.22)\u3002 \u7531\u65bc \u03b1 < 0 \u6709\u6700\u4f73\u6548\u80fd\uff0c\u9019\u8868\u793a\u6df1\ufa01\u8f03\u6df1\u7d66\u8f03\u9ad8\u6b0a\u91cd\uff0c\u8a72\u7fa9\u539f\u6709\u8f03\u597d\u7684\u7279\u5fb5\uff0c\u53ef\u4ee5\u7d66\u5206 \uf9d0\u5668\u5b78\u7fd2\u3002 4.3 \u8a9e\u7bc7\u7279\u5fb5\u7684\u6548\u80fd \u8a9e\u7bc7\u7279\u5fb5\u4f7f\u7528\u5341\u7d44\u7279\u5fb5\u96c6\u7684\u540d\u7a31\uff0c\u4ee5\u53ca\u7279\u5fb5\uf969\uf97e\uff0c\u5982\u8868 3 \u6240\u793a\u3002\u5728\u8868\u4e2d\uff0c\u6211\u5011\u4f7f\u7528\u7279\u5fb5 \u96c6\u4ee3\u865f\uf92d\u4ee3\u8868\u8a72\u7279\u5fb5\u96c6\u3002\u5341\u7d44\u7279\u5fb5\u96c6\u4e2d\uff0c\u6700\u5c11\u7684\u662f Adj \u7684\u7279\u5fb5\u96c6\uff0c\u53ea\u6709 948 \u500b\u8a5e\uff0c\u6700\u591a \u7684\u662f All \u7684\u7279\u5fb5\u96c6\uff0c\u6709 86,712 \u500b\u8a5e\u3002 \u8868 3. \u8a9e\u7bc7\u7279\u5fb5\u6240\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u8207\u5176\u7279\u5fb5\uf969 \u7279\u5fb5\u96c6 \u7279\u5fb5\u96c6\u4ee3\u865f \u7279\u5fb5\uf969 \u5ee3\u7fa9\u77e5\u7db2\u540d\u8a5e Noun 46,807 \u5ee3\u7fa9\u77e5\u7db2\u52d5\u8a5e Verb 37,109 \u5ee3\u7fa9\u77e5\u7db2\u526f\u8a5e Adv. 2,364 \u5ee3\u7fa9\u77e5\u7db2\u5f62\u5bb9\u8a5e Adj. 948 All 86,712 \u7d44\u5408\u7279\u5fb5\u6642\uff0c\u56e0\u70ba\u9918\u5f26\u6a19\u6e96\u5316\u6709\u6700\u597d\u7684\u6548\u80fd\uff0c\u6240\u4ee5\u8a9e\u7bc7\u7279\u5fb5\u9078\u64c7\u9918\u5f26\u6a19\u6e96\u5316\u5f8c\u7684\u5341\u7d44\u7279 F5000-2 97.2635% 98.0392% 97.1705% 96.0912% 94.9153% 94.8718% \u7684\uf969\uf97e\u3002 \u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59 89.0% 89.2% -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 Alpha \u6b64\u6548\u80fd\u8ddf\u5176\u4ed6\uf978\u8005\u7684\u5dee\u8ddd\u70ba\u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (4.61, 0.03)\u3002 \u5716 5. \u4f7f\u7528\u8a9e\u7bc7\u7279\u5fb5\u6642\u7684\u9810\u6e2c\u6548\u80fd \u5716 5 \u4e2d\u7279\u5fb5\u96c6\u7684\u500b\uf969\uff0c\u4e26\u6c92\u6709\u7d55\u5c0d\u7684\u5f71\u97ff\uff0c\u4f46\uf974\u500b\uf969\u592a\u5c11\uff0c\u5982\u7279\u5fb5\u500b\uf969\u5c0f\u65bc 2364 \u500b\uff0c\u5247\u6548\u80fd\u6703\u660e\u986f\u8b8a\u5dee\u3002\u5716 4 \u4e2d\u7684\u6700\u4f73\u503c PBFN(\u03b1 = \u22120.02)\u70ba 89.61%\uff0c\u7279\u5fb5\u500b\uf969\u70ba 2,567 \u500b\uff0c\u9019\u500b\u503c\u6bd4\u5716 5 \u4e2d\u7684\u6700\u4f73\u503c 88.23%\u9084\u8981\u5927\uff0c\u9019\u8868\u793a\u5ee3\u7fa9\u77e5\u7db2\u4e2d\u7684\u7279\u5fb5\u6bd4\u8f03\u6e96\u78ba\uff0c\u4f46\u9019 \u5dee\u8ddd\u70ba\uf967\u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (2.49, 0.11)\u3002 4.4 \u7d44\u5408\uf967\u540c\u7279\u5fb5\u7684\u6548\u80fd 50.0% 60.0% 70.0% 80.0% 90.0% 100.0% Adj. (948) Adv. (2364) F5000-1 (5000) F5000-2 (5000) F10000-1 (10000) F10000-2 (10000) Verb (37109) NTUSD (42614) Noun (46807) All (86712) Accuracy Feature set Original Frequency Cos-Normalized Frequency Cos-Normalized TFIDF \u5716 6. \u5ee3\u7fa9\u77e5\u7db2\u3001\u8a9e\u7bc7\u7279\u5fb5\u3001\u8207\u7d44\u5408\u7279\u5fb5\u7684\u6e96\u78ba\uf961\u6bd4\u8f03 4.5 \u7d44\u5408\u5f0f\u7684\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\u6548\u80fd \u5728\u5716 6 \u4e2d\uff0c\u7d44\u5408\u51fa\u7684\u7279\u5fb5\u96c6\u6709\u5341\u500b\uff0c\u6240\u4ee5\u5171\u6709\u5341\u500b\u5206\uf9d0\u5668\uff0c\u6bcf\u500b\u5206\uf9d0\u5668\u5728\u8a13\uf996\u6642\uff0c\u5c0d\uf967 \u540c\u8a5e\u6027\u6709\uf967\u540c\u7684\u6548\u80fd\uff0c\u6211\u5011\u5c07\u9019\u5341\u500b\u5206\uf9d0\u5668\u5c0d\u65bc\u6bcf\u500b\u8a5e\u6027\u6a19\u8a18\u7684\u6548\u80fd(\u5167\u90e8\u6e2c\u8a66)\u6574\uf9e4 \u6210\u8868 4\u3002 \u8868 4. \u8a13\uf996\u8cc7\uf9be\u96c6\u4e2d\uff0c\u7d44\u5408\u7279\u5fb5\u5c0d\uf967\u540c\u8a5e\u6027\u7684\u6a19\u8a18\u6e96\u78ba\uf961 \u7279\u5fb5\u96c6\u4ee3\u865f \u7e3d\u9ad4\u6548\u80fd \u8a13\uf996\u8cc7\uf9be\u96c6\u4e2d\uff0c\u4f9d\u8a5e\u6027\u5206\u5225\u8a08\u7b97\u7684\u6e96\u78ba\uf961 \u540d\u8a5e \u52d5\u8a5e \u526f\u8a5e \u5f62\u5bb9\u8a5e \u5176\u4ed6 Adj. 94.3223% 95.9559% 94.2167% 89.9023% 93.2203% 82.0513% Adv. 95.3243% 96.5074% 95.2795% 92.1824% 91.5254% 84.6154% F5000-1 96.1000% 97.3039% 96.0110% 92.8339% 94.9153% 89.7436% 75.0% 80.0% 85.0% 90.0% Adj. (948) Adv. (2364) F5000-1 (5000) F5000-2 (5000) F10000-1 (10000) F10000-2 (10000) Verb (37109) NTUSD (42614) Noun (46807) All (86712) Accuracy Feature set Gloss Context Combine gloss and Context \u5167\u90e8\u6e2c\u8a66\u6548\u80fd(inside test)F10000-2+PBFN \u03b1 = \u22120.03 \u7684 97.5005% \u8ddf\u5be6\u969b\u6e2c\u8a66\u6548\u80fd 92. 3276%\u76f8\u6bd4\uff0c\ufa09\u4f4e\uf9ba 5.31%\uff0c\u9019\ufa09\u4f4e\u5e45\ufa01\u4e26\uf967\u5927\uff0c\u986f\u793a\u9019\u5206\uf9d0\u5668\u7684 generalization \u80fd\uf98a\uf967 \u932f\uff0c\u9019\u4e5f\u662f\u4f7f\u7528 Google Web 5-gram \u7684\u512a\u9ede\uff0c\u5b83\u53ef\u7522\u751f\u8f03\u5f37\u5065 (robust) \u7684\u5206\uf9d0\u5668(Bergsma, Pitler, & Lin, 2010)\u3002 \u6211\u5011\u7528\u5167\u90e8\u6e2c\u8a66\u6548\u80fd\uf92d\u6311\u9078\u5206\uf9d0\u5668\uff0c\u4ee5\uf965\u7528\u5728\u7d44\u5408\u5f0f\u7684\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\u4e2d\u3002 \u6211\u5011\u5728\u8868 4 \u4e2d\u9078\uf967\u540c\u8a5e\u6027\u505a\u5f97\u6700\u597d\u7684\u5206\uf9d0\u5668\uf92d\u7d44\u5408\uff0c\u5982\u679c\u6548\u80fd\u76f8\u540c\uff0c\u5247\u9078\u7279\u5fb5\uf969\uf97e\u8f03\u5c11 \u7684\u90a3\u4e00\u500b\u5206\uf9d0\u5668\uff0c\u56e0\u70ba\u7279\u5fb5\uf969\u8f03\u5c11\u901a\u5e38\u5728\u672a\u770b\u904e\u7684\u8cc7\uf9be\u96c6\u6703\u505a\u5f97\u8f03\u597d\u3002\u7d44\u5408\u51fa\u7684\u5206\uf9d0\u5668 \u6211\u5011\u7a31\u70ba EnsembleClassifier\uff0c\u5176\u7d50\u679c\uf99c\u5728\u8868 5\uff0c\u5176\u4e2d F10000-2+PBFN \u03b1 = \u22120.03 \u65bc\u5404\u8a5e\u6027\u7684 \u6a19\u8a18\u6548\u80fd\u4e5f\uf99c\u51fa\uf92d\u6bd4\u8f03\u3002 \u8868 5. \u7d44\u5408\u5206\uf9d0\u5668\u65bc\u5404\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd\u53ca\u6bd4\u8f03 \u5206 \uf9d0 \u5668 \u8a5e\u6027 F10000-2+PBFN \u03b1 = \u22120.03 \u5206\uf9d0\u5668 \u65bc\u5404\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd \u7d44\u5408\u5206\uf9d0\u5668 EnsembleClassifier \u65bc\u5404\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd \u6b63\u78ba \u500b\uf969 \u932f\u8aa4 \u500b\uf969 \u6e96\u78ba\uf961 \u4f7f\u7528\u7684 \u5206\uf9d0\u5668 \u6b63\u78ba \u500b\uf969 \u589e\u6e1b \u932f\u8aa4 \u500b\uf969 \u6e96\u78ba\uf961 \u540d\u8a5e 371 37 90.9314% F10000-2 371 (+0) 37 90.9314% \u52d5\u8a5e 1,681 130 92.8216% F10000-2 1,681 (+0) 130 92.8216% \u526f\u8a5e 67 9 88.1579% F5000-2 69 (+2) 7 90.7895% \u5f62\u5bb9\u8a5e 14 1 93.3333% Noun 12 (-2) 3 80.0000% \u5176\u4ed6 9 1 90.0000% F5000-2 9 (+0) 1 90.0000% \u7e3d\uf969 2,142 178 92.3276% 2142 (+0) 178 92.3276% \u8868 5 \u4e2d\uff0c\u6211\u5011\u4e5f\uf99c\u51fa\u6bcf\u7a2e\u8a5e\u6027\u505a\u932f\u8207\u505a\u5c0d\u7684\u500b\uf969\uff0c\u4e26\u4ee5 F10000-2+PBFN \u03b1 = \u22120.03 \u5206\uf9d0 \u5668\u70ba\u57fa\u6e96\uff0c\u770b\u7d44\u5408\u5f8c\u7684\u5206\uf9d0\u5668\uff0c\u5728\u5404\u8a5e\u6027\u4e2d\u505a\u5c0d\u505a\u932f\u7684\u6b21\uf969\u7684\u589e\u6e1b\uff0c\u7528\u62ec\u865f\uf92d\u6a19\u51fa\u589e\u6e1b \u5716 7. \u56db\u7a2e\u65b9\u6cd5\u6548\u80fd\u6bd4\u8f03 \u7531\u65bc\u6211\u5011\u4f7f\u7528 NTUSD\uff0c\u6211\u5011\u60f3\u770b\u770b NTUSD \u4eba\uf9d0\u6a19\u8a18\u7684\u6548\u80fd\u8ddf\u6211\u5011\u5206\uf9d0\u5668\u7684\u6548\u80fd\u6709 \u4f55\u5dee\uf962\u3002\u5728 Ku & Chen (2007)\u7684\u7814\u7a76\u4e2d\uff0c\u5c0d\u8a5e\u6709\u5206\u56db\uf9d0\u6a19\u8a18\uff0c\u5206\u5225\u662f\u6b63\u9762\u3001\u8ca0\u9762\u3001\u4e2d\uf9f7\u3001 \u53ca\u975e\u610f\ufa0a\u8a5e\uff0c\u4e26\u8058\u8acb\u6a19\u8a18\u8005\u5c0d NTUSD \u9032\ufa08\u6a19\u8a18\uff0c\u6211\u5011\u5c07\u8a72\u7814\u7a76\u4e2d\u6a19\u8a18\u8005\u7684\u6700\u4f73\u6a19\u8a18\u6548 \u80fd\u8207\u672c\u7814\u7a76\u7684\u6bd4\u8f03\u5982\u8868 6\u3002\u7531\u65bc\u4eba\uf9d0\u6a19\u8a18\u8005\u662f\u5c07\u8a5e\u5206\u6210\u56db\uf9d0\uff0c\u4f46\u6211\u5011\u7684\u7cfb\u7d71\u53ea\u5206\uf978\uf9d0\uff0c \u6240\u4ee5\u9019\uf969\u64da\u6c92\u6709\u8fa6\u6cd5\u8ddf\u6211\u5011\u7684\u7d50\u679c\u76f4\u63a5\u76f8\u6bd4\u8f03\uff1b\u4f46\u6211\u5011\u4ecd\u53ef\u5f9e\u8868 6 \u4e2d\u770b\u51fa\uff0c\u672c\u7814\u7a76\u6240\u7522 \u751f\u7684\u6b63\u8ca0\u9762\u8a5e\u5f59\u81ea\u52d5\u6a19\u8a18\u6f14\u7b97\u6cd5\uff0c\u5df2\u9054\u5230\uf9ba\u5f88\u9ad8\u7684\u6548\u80fd\u3002 \u8868 6. NTUSD \u6a19\u8a18\u8005\u8207\u672c\u7814\u7a76\u6a19\u8a18\u6548\u80fd\u6bd4\u8f03 \u5206\uf9d0\u5668 Recall Precision F-Measure F10000-2+PBFN \u03b1 = \u22120.03 92.36% 92.20% 92.27% \u4e09\u4eba\u4e2d\u6700\u4f73\u7684\u4eba\uf9d0\u6a19\u8a18\u8005 96.58% 88.87% 92.56% 88.2328% 90.0% Gloss Context Combine gloss and Context Ensemble classifier \u6211\u5011\u5e0c\u671b\u5728\u672a\uf92d\u80fd\u628a\u9019\u7a2e\u65b9\u5f0f\uff0c\u5f80\uf967\u540c\u7684\u65b9\u5411\u64f4\u5c55\uff0c\uf92d\u7d66\u4e88 E-HowNet \u8a5e\u5f59\uf901\u591a\u610f Accuracy \ufa0a\u7684\u5c6c\u6027\uff0c\u9019\u5305\u62ec\u5c0d\u8a5e\u5f59\u6a19\u8a18\u4e3b\u5ba2\u89c0\u7684\u5c6c\u6027\u53ca\u6b63\u8ca0\u9762\u50be\u5411\u7684\u5f37\ufa01\u7b49\u3002\u9664\u6b64\u4e4b\u5916\uff0c\u56e0\u70ba E-HowNet \u8a5e\u5f59\u6709\u8a31\u591a\uf967\u540c\u7684\u8a5e\u6027\uff0c\u6211\u5011\u4e5f\u5e0c\u671b\u80fd\u628a\u6211\u5011\u7684\u65b9\u6cd5\uff0c\u904b\u7528\u8a5e\u6027\u7684\u5c64\u6b21\uf92d\u9032\ufa08 \u6a19\u8a18\u3002\u85c9\u7531\u63d0\u4f9b\uf901\u7cbe\u78ba\u7684\u5b57\u5f59\u610f\ufa0a\u6a19\u8a18\u8cc7\u8a0a\uff0c\uf92d\u652f\u63f4\uf906\u5b50\u53ca\u6587\u4ef6\u5c64\u6b21\u7684\u610f\ufa0a\u5206\u6790\u3002 \u8868 6 89.6121% 85.0% \u81f4\u8b1d</td></tr><tr><td>\u6700\u5e38\u51fa\u73fe 5000 \u8a5e \u5fb5\u96c6\uff0c\u5206\u5225\u8207\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u6548\u80fd\u6700\u597d\u7684 PBFN \u03b1 = \u22120.03 \u7d44\u5408\uff0c\uf92d\u8a13\uf996\u5206\uf9d0\u5668\uff0c\u5206\uf9d0\u5668\u9810\u6e2c\u6e96 F5000-1 5,000 F10000-1 96.2400% 97.3652% 96.1767% 92.8339% 94.9153% 89.7436% EnsembleClassifier \u6240\u5f97\u6210\u7e3e\u8ddf F10000-2+PBFN \u03b1 = \u22120.03 \u76f8\u540c\uff0c\u9019\u8868\u793a\u76ee\u524d\u7684\u5206\uf9d0\u5668\u7d44</td></tr><tr><td>\u6700\u5e38\u51fa\u73fe 5000 \u8a5e(\u9577\ufa01\u22672) \u78ba\uf961\u5982\u5716 6\u3002\u5176\u4e2d\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u7684\u7279\u5fb5\u96c6\u6548\u80fd\u70ba\u56fa\u5b9a\uff0c\u56e0\u6b64\u4ee5\u6c34\u5e73\u76f4\u7dda\u8868\u793a(gloss \u90a3\u689d F5000-2 5,000 F10000-2 97.5005% 98.2843% 97.4189% 96.0912% 94.9153% 94.8718% \u5408\u65b9\u5f0f\uff0c\u7121\u6cd5\u63d0\u5347\u6548\u80fd\u3002</td></tr><tr><td>\u6700\u5e38\u51fa\u73fe 10000 \u8a5e \u6298\u7dda)\u3002\u7d44\u5408\u800c\u6210\u7684\u7279\u5fb5\u96c6\uff0c\u4ee5\u300c\u8a9e\u7bc7\u7279\u5fb5\u96c6\u4ee3\u78bc+PBFN \u03b1 = \u22120.03 \u300d\u52a0\u4ee5\u547d\u540d\uff0c\uf9b5\u5982 F10000-1 Verb 96.5632% 97.5490% 96.5079% 94.4625% 91.5254% 89.7436% 10,000 \u300cF10000-2+PBFN \u03b1 = \u22120.03 \u300d\u8868\u793a\u300c\u6700\u5e38\u51fa\u73fe 10000 \u8a5e(\u9577\ufa01\u22672)\u300d\u8ddf\u300cPBFN \u03b1 = \u22120.03 \u300d\uf978 NTUSD 96.8218% 97.3039% 96.8254% 95.1140% 93.2203% 94.8718% \u6700\u5e38\u51fa\u73fe 10000 \u8a5e(\u9577\ufa01\u22672) F10000-2 10,000 \u500b\u7279\u5fb5\u96c6\u7684\u7d44\u5408\u3002 Noun 96.8541% 98.1005% 96.6460% 96.0912% 96.6102% 89.7436%</td></tr><tr><td>NTUSD(\u5b8c\u6574\u7248) \u6211\u5011\u5f9e\u5716 6 \u53ef\u4ee5\u770b\u51fa\uff0c\u5c07\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u8207\u5916\u90e8\u8a9e\uf9be\u7279\u5fb5\u7d44\u5408\u4e4b\u5f8c\uff0c\u6e96\u78ba\uf961\u90fd\u6709\u986f\u8457 NTUSD 42,614 All 96.4124% 97.4265% 96.3699% 93.1596% 94.9153% 89.7436%</td></tr></table>", |
|
"num": null, |
|
"type_str": "table", |
|
"text": "\u70ba\u57fa\u790e\u7fa9\u539f\u65b9\u6cd5\u5728\uf967\u540c \u03b1 \u503c\u6240\u5f97\u5230\u7684\u9810\u6e2c\u6e96\u78ba\uf961\uff0c\u5176\u4e2d\u516c\u5f0f (2) \u7684\u7d50\u679c\u662f PBF (Prime-Based Feature)\u90a3\u689d\u6298\u7dda\uff0c\u6700\u4f73\u7684 \u03b1 \u503c\u70ba \u22120.02\uff0c\u6e96\u78ba\uf961\u70ba 89.4397%\u3002\u7576 PBF \u4e2d \u03b1 = 0\uff0c\u8a72\u7d50\u679c\u5373\u70ba\u516c\u5f0f (1) \u7684\u7d50\u679c\u3002\u516c\u5f0f (3) \u7684\u7d50\u679c\u662f PBFN(Prime-Based Feature with Negation)\u90a3\u689d\u6298\u7dda\uff0c\u6700\u4f73\u7684 \u03b1 \u503c\u70ba \u22120.02 \u53ca \u22120.03\uff0c\u6e96\u78ba\uf961\u70ba 89.6121%\u3002 \u4e2d\uff0c\u4eba\uf9d0\u6a19\u8a18\u8005\u7684 Recall \u53ca Precision \u53d6\u81ea Ku & Chen (2007)\u3002F10000-2+PBFN \u03b1 = \u22120.03 \u7684\u9810\u6e2c\u7d50\u679c\u70ba (True Positive, False Positive, True Negative, False Negative) = (TP, FP, TN, FN) = (968, 77, 1174, 101)\uff0c\u5176\u4e2d Positive \u8868\u6b63\u9762\u6975\u6027\u3002\u6211\u5011\u5206\u5225\u5c0d\u6b63\u8ca0\u9762\u6975\u6027\u8a08\u7b97 Recall\u3001Precision \u53ca F-Measure (R + \u3001P + \u3001F + \u3001R \u2212 \u3001P \u2212 \u3001F \u2212 )\uff0c\u5176\u4e2d\uff0cP + =TP/(TP+FP)\u3001 R + =TP/(TP+FN)\u3001F + = 2P + R + /(P + +R + )\u3001P \u2212 =TN/(TN+FN)\u3001R \u2212 =TN/(TN+FP)\u3001F \u2212 = 2P \u2212 R \u2212 /(P \u2212 +R \u2212 )\uff0c \u6700\u5f8c\u7cfb\u7d71\u7684 Recall=(R + +R \u2212 )/2\u3001Precision=(P + +P \u2212 )/2 \u53ca F-Measure = (F + +F \u2212 )/2 = (91.58% + 92.95%)/2 = 92.27%\u3002\u7531\u8a08\u7b97\u4e2d\u6211\u5011\u53ef\u4ee5\u770b\u5230\uff0c\u6211\u5011\u7684\u7cfb\u7d71\u5c0d\u8ca0\u9762\u6975\u6027\u505a\u5f97\u8f03\u597d\uff0c\u800c\u4e14\u56e0 \u8cc7\uf9be\u96c6\u6709\u8f03\u591a\u7684\u8ca0\u9762\u8a5e\u5f59\uff0c\u6240\u4ee5\u6700\u5f8c\u7684\u6e96\u78ba\uf961 92.33% \u6bd4 F + \u9ad8\u3002 Research of this paper was partially supported by National Science Council (Taiwan) under the contract NSC 98-2221-E-002-175-MY3.", |
|
"html": null |
|
} |
|
} |
|
} |
|
} |