Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "O13-1011",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:04:08.801551Z"
},
"title": "An Exploration of Textual Entailment and Reading Comprehension for Chinese and English",
"authors": [
{
"first": "Wei-Jie",
"middle": [],
"last": "Huang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Chengchi University {100753014",
"location": {
"postCode": "101753028"
}
},
"email": ""
},
{
"first": "Po-Cheng",
"middle": [],
"last": "Lin",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Chengchi University {100753014",
"location": {
"postCode": "101753028"
}
},
"email": ""
},
{
"first": "Chao-Lin",
"middle": [],
"last": "Liu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Chengchi University {100753014",
"location": {
"postCode": "101753028"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Research on text entailment studies the logical relationships between statements. We employed linguistic information at the lexical, syntactic, and semantic levels to build heuristics and machine-learning based models for algorithmic judgment of text entailment relationships. Methods proposed in this paper achieved relatively very good performances in the RITE task for both traditional and simplified Chinese entailment problems in NTCIR-10. We extended our work and attempted to automatically answer questions in reading comprehension tests in Chinese and English used in elementary and middle schools. To make the automatic answering more feasible, we manually selected statements which were relevant to the test items before we ran the text entailment component. Experimental results indicated that it was then possible to find the answers better than 50% of the time for one out of four multiple-choice items.",
"pdf_parse": {
"paper_id": "O13-1011",
"_pdf_hash": "",
"abstract": [
{
"text": "Research on text entailment studies the logical relationships between statements. We employed linguistic information at the lexical, syntactic, and semantic levels to build heuristics and machine-learning based models for algorithmic judgment of text entailment relationships. Methods proposed in this paper achieved relatively very good performances in the RITE task for both traditional and simplified Chinese entailment problems in NTCIR-10. We extended our work and attempted to automatically answer questions in reading comprehension tests in Chinese and English used in elementary and middle schools. To make the automatic answering more feasible, we manually selected statements which were relevant to the test items before we ran the text entailment component. Experimental results indicated that it was then possible to find the answers better than 50% of the time for one out of four multiple-choice items.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "T 1 \u548c T 2 \u5206\u5225\u4f5c\u70ba\u53e5\u5c0d\u65b7\u8a5e\u6216\u5206\u8a5e\u5f8c\u7684\u8a5e\u5f59\u96c6\u5408\uff0c\u5176\u4e2d\u4ee5 T 2 \u4f5c\u70ba\u6587\u672c\uff0c\u8a08\u7b97\u5169 \u500b\u53e5\u5b50\u7684\u8a5e\u5f59\u91cd\u758a\u6bd4\u4f8b\uff0c\u5982\u4e0b\u65b9\u516c\u5f0f(1)\uff0cT 1 \u548c T 2 \u5206\u5225\u70ba\u5169\u500b\u53e5\u5b50\u65b7\u8a5e\u6216\u5206\u8a5e\u5f8c\u7684\u8a5e\u5f59\u96c6 \u5408\uff0c\u900f\u904e\u8a72\u516c\u5f0f\u8a08\u7b97\u5169\u500b\u53e5\u5b50\u9593\u76f8\u540c\u8a5e\u5f59\u7684\u6bd4\u4f8b\uff0c\u4ee5 0 \u81f3 1 \u8868\u793a\u76f8\u540c\u6bd4\u4f8b\u7684\u9ad8\u4f4e\u3002 (1) \u4f46\u516c\u5f0f(1)\u9700\u8981\u8a5e\u5f59\u5b8c\u5168\u76f8\u540c\u624d\u6703\u7d0d\u5165\u8a08\u7b97\uff0c\u5982\u6b64\u4e00\u4f86\u53ef\u80fd\u6703\u6f0f\u6389\u90e8\u5206\u7684\u7e2e\u5beb\u8a5e\u5f59\u3001\u540c \u7fa9\u8a5e\u5f59\u6216\u56e0\u70ba\u5404\u7a2e\u539f\u56e0\u88ab\u65b7\u8a5e\u5668\u65b7\u958b\u7684\u60c5\u6cc1\uff0c\u56e0\u6b64\u6211\u5011\u4fee\u6539\u4e86\u516c\u5f0f(1)\uff0c\u52a0\u5165\u8a5e\u5f59\u90e8\u5206\u76f8\u540c \u7684\u8a08\u7b97\uff0c\u4e5f\u628a\u8fd1\u7fa9\u8a5e\u7684\u5224\u65b7[12][15]\u52a0\u5165\u5230\u516c\u5f0f(1)\u7684\u4fee\u6539\uff0c\u4f7f\u4e4b\u6210\u70ba\u516c\u5f0f(2) (2) 3.2 \u5be6\u9ad4\u540d\u8a5e\u5224\u65b7 \u5982\u679c\u53ea\u4f7f\u7528\u8a5e\u5f59\u7684\u8986\u84cb\u6bd4\u4f8b\u4f86\u8868\u793a\u53e5\u5b50\u9593\u7684\u63a8\u8ad6\u95dc\u4fc2\uff0c\u6211\u5011\u50c5\u80fd\u638c\u63e1\u53e5\u5b50\u8868\u9762\u7684\u8cc7\u8a0a\u542b \u91cf\uff0c\u800c\u7121\u6cd5\u4e86\u89e3\u53e5\u5b50\u6240\u8868\u9054\u7684\u5167\u5bb9\uff0c\u56e0\u6b64\u900f\u904e\u5be6\u9ad4\u540d\u8a5e\u6a19\u8a18\uff0c\u5c07\u53e5\u5b50\u4e2d\u7684\u4eba\u540d\u3001\u5730\u540d\u548c\u7d44 \u7e54\u540d\u64f7\u53d6\u51fa\u4f86\uff0c\u4e26\u628a\u9019\u4e9b\u6a19\u8a18\u51fa\u4f86\u7684\u8a5e\u5f59\u8996\u70ba\u91cd\u8981\u7684\u8cc7\u8a0a\uff0c\u5c07\u6709\u52a9\u65bc\u5224\u5225\u53e5\u5b50\u9593\u7684\u63a8\u8ad6\u95dc \u4fc2\u3002 \u6211\u5011\u5c07\u4e0a\u8ff0\u7684\u5047\u8a2d\u52a0\u5165\u4e00\u500b\u51fd\u6578\uff0c\u8abf\u6574\u63a8\u8ad6\u95dc\u4fc2\u7684\u8a08\u7b97\uff0c\u5982\u516c\u5f0f(3)\uff0cNE t2 \u70ba t 2 \u4e2d\u64f7\u53d6 \u51fa\u7684\u5be6\u9ad4\u540d\u8a5e\uff0c\u5176\u4e2d t \u70ba T \u53e5\u5b50\u7d93\u7531\u65b7\u8a5e\u6216\u5206\u8a5e\u5f8c\u7684\u96c6\u5408\uff1bf NEPenalty \u6703\u5224\u65b7 NE t2 \u4e2d\u7684\u5143\u7d20 \u6703\u88ab\u5305\u542b\u65bc t 1 \u8207\u5426\uff0c\u7576\u6709\u5143\u7d20\u4e0d\u5305\u542b\u5728 t 1 \u6642\uff0c\u5247\u7d66\u4e88\u4e00\u6b21\u7bc4\u570d 0 \u81f3 1 \u7684 \u03b1 \u61f2\u7f70\u5206\u6578\u3002\u56e0\u6b64 \u63a8\u8ad6\u95dc\u4fc2\u7684\u5224\u65b7\u52a0\u5165\u8a72\u51fd\u5f0f\uff0c\u8b8a\u6210\u516c\u5f0f(4)\u3002 \u03b1 (3)",
"eq_num": "(4)"
}
],
"section": "",
"sec_num": null
},
{
"text": "Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing(ROCLING 2013)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Textual Entailment Through Extended Lexical Overlap",
"authors": [
{
"first": "Rod",
"middle": [],
"last": "Adams",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment",
"volume": "",
"issue": "",
"pages": "128--133",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rod Adams, \"Textual Entailment Through Extended Lexical Overlap\", Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, pp. 128-133, 2006.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "The PASCAL Recognising Textual Entailment Challenge",
"authors": [
{
"first": "Oren",
"middle": [],
"last": "Ido Dagon",
"suffix": ""
},
{
"first": "Bernardo",
"middle": [],
"last": "Glickman",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Magnini",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "3944",
"issue": "",
"pages": "177--190",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ido Dagon, Oren Glickman and Bernardo Magnini, \"The PASCAL Recognising Textual Entailment Challenge\", Machine Learning Challenges. Lecture Notes in Computer Science, 3944, pp. 177-190, Springer, 2006.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "The WEKA Data Mining Software: An Update",
"authors": [
{
"first": "Mark",
"middle": [],
"last": "Hall",
"suffix": ""
},
{
"first": "Eibe",
"middle": [],
"last": "Frank",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [],
"last": "Holmes",
"suffix": ""
},
{
"first": "Bernhard",
"middle": [],
"last": "Pfahringer",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Reutemann",
"suffix": ""
},
{
"first": "Ian",
"middle": [
"H"
],
"last": "Witten",
"suffix": ""
}
],
"year": 2009,
"venue": "",
"volume": "11",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten, \"The WEKA Data Mining Software: An Update\", SIGKDD Explorations, 11(1), 2009.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Team SKL's Strategy and Experience in RITE2",
"authors": [
{
"first": "Shohei",
"middle": [],
"last": "Hattori",
"suffix": ""
},
{
"first": "Satoshi",
"middle": [],
"last": "Sato",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of NTCIR-10 Workshop Meeting",
"volume": "",
"issue": "",
"pages": "435--442",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shohei Hattori, Satoshi Sato, \"Team SKL's Strategy and Experience in RITE2\", Proceedings of NTCIR-10 Workshop Meeting, pp. 435-442, 2013.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "A Practical Guide to Support Vector Classification",
"authors": [
{
"first": "Chih-Wei",
"middle": [],
"last": "Hsu",
"suffix": ""
},
{
"first": "Chih-Chung",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Chih Jen",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chih-Wei Hsu, Chih-Chung Chang and Chih Jen Lin, A Practical Guide to Support Vector Classification. Retrieved from website: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf, 2010.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "The WHUTE System in NTCIR-10 RITE Task",
"authors": [
{
"first": "Hongmial",
"middle": [],
"last": "Han Ren",
"suffix": ""
},
{
"first": "Chen",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Donghong",
"middle": [],
"last": "Lv",
"suffix": ""
},
{
"first": "Jing",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Wan",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of NTCIR-10 Workshop Meeting",
"volume": "",
"issue": "",
"pages": "560--565",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Han Ren, Hongmial Wu, Chen Lv, Donghong Ji, and Jing Wan, \"The WHUTE System in NTCIR-10 RITE Task\", Proceedings of NTCIR-10 Workshop Meeting, pp. 560-565, 2013.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Foundations of Statistical Natural Language Processing",
"authors": [
{
"first": "Chris",
"middle": [],
"last": "Manning",
"suffix": ""
},
{
"first": "Hinrich",
"middle": [],
"last": "Schutze",
"suffix": ""
}
],
"year": 1999,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chris Manning and Hinrich Schutze, Foundations of Statistical Natural Language Processing, MIT Press. Cambridge, MA: May 1999.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Overview of NTCIR-9 RITE: Recognizing Inference in Text",
"authors": [
{
"first": "Hideki",
"middle": [],
"last": "Shima",
"suffix": ""
},
{
"first": "Hiroshi",
"middle": [],
"last": "Kanayama",
"suffix": ""
},
{
"first": "Cheng-Wei",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Chuan-Jie",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Teruko",
"middle": [],
"last": "Mitamura",
"suffix": ""
},
{
"first": "Yusuke",
"middle": [],
"last": "Miyao",
"suffix": ""
},
{
"first": "Shuming",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "Koichi",
"middle": [],
"last": "Takeda",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of NTCIR-9 Workshop Meeting",
"volume": "",
"issue": "",
"pages": "291--301",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hideki Shima, Hiroshi Kanayama, Cheng-Wei Lee, Chuan-Jie Lin, Teruko Mitamura, Yusuke Miyao, Shuming Shi and Koichi Takeda, \"Overview of NTCIR-9 RITE: Recognizing Inference in Text,\" Proceedings of NTCIR-9 Workshop Meeting, pp. 291-301, 2011.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "NTCIR(NII Test Collection for IR Systems",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "NTCIR(NII Test Collection for IR Systems) Project http://research.nii.ac.jp/ntcir/index-en.html",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Microsoft Research Paraphrase Corpus",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Microsoft Research Paraphrase Corpus, http://research.microsoft.com/en-us/downloads/607d14d9-20cd-47e3-85bc-a2f65cd28042/",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "WEKA",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "WEKA, http://www.cs.waikato.ac.nz/ml/weka/",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"html": null,
"num": null,
"type_str": "table",
"text": ":\u65e5\u672c\u6642\u9593 2011 \u5e74 3 \u65e5 11 \u65e5\uff0c\u65e5\u672c\u5bae\u57ce\u7e23\u767c\u751f\u82ae\u6c0f\u898f\u6a21 9.0 \u5f37\u9707\uff0c\u9020\u6b7b\u50b7\u5931\u8e64\u7d04 3 \u842c\u591a\u4eba\u3002 \u5047\u8a2d:\u65e5\u672c\u6642\u9593 2011 \u5e74 3 \u65e5 11 \u65e5\uff0c\u65e5\u672c\u5bae\u57ce\u7e23\u767c\u751f\u82ae\u6c0f\u898f\u6a21 9.0 \u5f37\u9707\u3002 Recognizing Textual Entailment(RTE)[2]\u548c Recognizing Inference in Text(RITE)[8]\u5247\u70ba \u76ee\u524d\u70ba\u6587\u5b57\u860a\u6db5\u6240\u8209\u8fa6\u7684\u76f8\u95dc\u7af6\u8cfd\uff0c\u8a72\u6bd4\u8cfd\u5c07\u53e5\u5c0d\u5206\u985e\u70ba Yes \u6216 No \u5169\u7a2e\u63a8\u8ad6\u7684\u7d50\u679c\uff1b\u4ee5 \u4e0b\u9762\u9019\u7d44\u53e5\u5c0d\u70ba\u4f8b\uff0c\u300e\u5c3c\u6cca\u723e\u6bdb\u6d3e\u53db\u4e82\u4efd\u5b50\u5728\u65b0\u570b\u738b\u5927\u58fd\u524d\u5915\u767c\u52d5\u653b\u64ca\u300f\u8207\u300e\u5c3c\u6cca\u723e\u6bdb\u6d3e \u53db\u4e82\u4efd\u5b50\u5728\u65b0\u570b\u738b\u83ef\u8a95\u524d\u5915\u767c\u52d5\u653b\u64ca\u300f\uff0c\u524d\u53e5\u8207\u5f8c\u53e5\u5dee\u5225\u65bc\u300c\u5927\u58fd\u300d\u8207\u300c\u83ef\u8a95\u300d\uff0c\u4f46\u5169\u53e5 \u7684\u542b\u7fa9\u662f\u76f8\u540c\u7684\uff0c\u56e0\u6b64\u6211\u5011\u671f\u5f85\u7cfb\u7d71\u5224\u5225\u8a72\u53e5\u5c0d\u6709\u63a8\u8ad6\u7684\u95dc\u4fc2\uff0c\u4e26\u5f97\u5230 (Parse Trees) \u3001 POSes(Parts-Of-Speech) \u52d5 \u8a5e \u6a19 \u8a18 \u548c \u8a5e \u5f59 \u4f9d \u8cf4 \u95dc \u4fc2 (Word Dependency) [7]\u505a\u70ba\u8a13\u7df4\u6a21\u578b\u7684\u7279\u5fb5\u96c6\u5408\uff0c\u4e26\u63a1\u7528\u4e09\u7a2e\u4e0d\u540c\u7684\u5206\u985e\u6f14\u7b97\u6cd5\u8a13\u7df4\u5206\u985e\u6a21\u578b\uff0c \u5206\u5225\u662f\u652f\u6301\u5411\u91cf\u6a5f(Support Vector Machines, SVMs)[5]\u3001\u6c7a\u7b56\u6a39(Decision Trees)\u8207\u7dda\u6027\u56de\u6b78 (Linear Regression)[3]\uff0c\u900f\u904e\u4e0d\u540c\u985e\u578b\u7684\u5206\u985e\u5668\u7372\u5f97\u63a8\u8ad6\u95dc\u4fc2\u7684\u7d50\u679c\u3002 Question Answering(QA)\u3001Information Retrieval(IR)\u3001multi-document Summarization \u7b49\u7b49\u3002 Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) \u5716\u4e00\u3001\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u7cfb\u7d71\u67b6\u69cb\u8207\u6d41\u7a0b RITE \u5247\u662f NTCIR(NACSIS Test Collections for IR)\u570b\u969b\u8cc7\u8a0a\u6aa2\u7d22\u8a55\u4f30\u7af6\u8cfd\u7684\u5176\u4e2d\u4e00\u9805\u5b50 \u4efb\u52d9\uff0c\u8207 RTE \u4e0d\u540c\u7684\u662f\uff0cRecognizing Inference in Text (RITE-1) \u7af6\u8cfd\u958b\u59cb\u91dd\u5c0d\u4e2d\u6587\u8a9e\u53e5\u63a8 \u8ad6\u7684\u7814\u7a76\u8b70\u984c\u63d0\u4f9b\u8a55\u4f30\u7684\u5e73\u53f0\uff0c\u76ee\u7684\u662f\u70ba\u4e86\u8b93\u4e2d\u6587\u6bcd\u8a9e\u4f7f\u7528\u8005\u4e5f\u80fd\u5c08\u6ce8\u5230\u6b64\u8b70\u984c\u4e0a\u3002",
"content": "<table><tr><td>1 \u7dd2\u8ad6 \u5728\u81ea\u7136\u8a9e\u8a00\u8655\u7406\u7684\u9818\u57df\u4e2d\uff0c\u8b93\u96fb\u8166\u80fd\u5920\u7406\u89e3\u4eba\u985e\u4f7f\u7528\u7684\u8a9e\u8a00\uff0c\u9032\u800c\u5e36\u7d66\u4eba\u985e\u4fbf\u5229\u7684\u751f\u6d3b\uff0c \u662f\u8a72\u9818\u57df\u7684\u7814\u7a76\u8005\u4e00\u76f4\u8ffd\u6c42\u7684\u76ee\u6a19\uff0c\u5176\u4e2d\u6587\u5b57\u860a\u6db5 Textual Entailment(TE)\u4fbf\u662f\u4e00\u500b\u76f8\u7576\u91cd \u8981\u7684\u8b70\u984c\uff0c\u85c9\u7531\u6587\u5b57\u860a\u6db5\u7684\u6280\u8853\u53ef\u4ee5\u5ef6\u4f38\u5230\u5f88\u591a\u61c9\u7528\u65b9\u9762\uff0c\u4f8b\u5982\u5728\u554f\u7b54\u7cfb\u7d71\u3001\u4fe1\u606f\u62bd\u53d6\u3001 \u95b1\u8b80\u7406\u89e3\u7b49\u7b49\u90fd\u6709\u5f88\u5927\u7684\u76ca\u52a9\uff0c\u800c\u6240\u8b02\u7684\u6587\u5b57\u860a\u6db5\u5c31\u662f\u8b93\u96fb\u8166\u81ea\u52d5\u5224\u65b7\u5169\u500b\u53e5\u5b50\u662f\u5426\u5177\u6709 \u63a8\u5c0e\u7684\u95dc\u4fc2\uff0c\u5728\u6587\u5b57\u860a\u6db5\u7684\u6846\u67b6\u4e2d\uff0c\u6211\u5011\u5c07\u53e5\u5c0d\u500b\u5225\u4ee5\u6587\u672c( )\u548c\u5047\u8a2d( )\u4f5c\u70ba\u5206\u5225\uff0c\u4ee5\u4e0b \u9762\u7684\u53e5\u5c0d\u70ba\u4f8b\uff0c\u6587\u672c\u5373\u53ef\u4ee5\u63a8\u5c0e\u81f3\u5047\u8a2d\uff0c\u56e0\u70ba\u5047\u8a2d\u6240\u64c1\u6709\u7684\u8cc7\u8a0a\u90fd\u5305\u542b\u65bc\u6587\u672c\u5167\u3002\u540c\u6642\uff0c Yes \u7684\u63a8\u8ad6\u7d50\u679c\u3002 \u6211\u5011\u5728\u5224\u65b7\u53e5\u5b50\u7684\u63a8\u8ad6\u95dc\u4fc2\u4e0a\u5206\u70ba\u5169\u500b\u505a\u6cd5\u4f5c\u70ba\u5224\u5225\u7684\u4f9d\u64da\uff1b\u7b2c\u4e00\u500b\u65b9\u6cd5\u662f\u4f7f\u7528\u7d93\u9a57 \u6cd5\u5247\u5f0f\u7684\u63a8\u8ad6\u6a21\u578b\uff0c\u8a72\u6a21\u578b\u5c07\u53ef\u80fd\u6703\u5f71\u97ff\u5230\u6587\u5b57\u860a\u6db5\u7684\u7279\u5fb5\u8cc7\u8a0a\u64f7\u53d6\u4e0b\u4f86\uff0c\u4e26\u5229\u7528\u52a0\u6e1b\u5206 \u7684\u6a5f\u5236\uff0c\u5c07\u4e4b\u5f62\u6210\u4e00\u500b\u8a08\u7b97\u516c\u5f0f\uff0c\u4f8b\u5982\u6211\u5011\u8a8d\u70ba\u7576\u5169\u500b\u53e5\u5b50\u7684\u8a5e\u5f59\u8986\u84cb[1]\u6bd4\u4f8b\u5920\u9ad8\uff0c\u67d0\u65b9 \u9762\u4e5f\u4ee3\u8868\u8457\u53e5\u5c0d\u9593\u5177\u6709\u76f8\u540c\u7684\u8cc7\u8a0a\u91cf\uff0c\u56e0\u6b64\u5728\u516c\u5f0f\u4e2d\uff0c\u8a5e\u5f59\u8986\u84cb\u7684\u6bd4\u4f8b\u5c31\u4ee5\u52a0\u5206\u7684\u65b9\u5f0f\u4f86 \u8655\u7406\uff1b\u800c\u53e5\u5c0d\u9593\u7684\u5426\u5b9a\u8a5e\u6578\u91cf\u5982\u679c\u4e0d\u4e00\u6a23\uff0c\u53e5\u5b50\u7684\u542b\u7fa9\u4e5f\u53ef\u80fd\u5927\u76f8\u9015\u5ead\uff0c\u56e0\u6b64\u7576\u5426\u5b9a\u8a5e\u7684 \u6578\u91cf\u4e0d\u540c\u6642\u7cfb\u7d71\u5247\u4ee5\u6e1b\u5206\u7684\u65b9\u5f0f\u8655\u7406\uff0c\u85c9\u7531\u9019\u4e9b\u7279\u5fb5\u7684\u52a0\u6e1b\u5206\u8a08\u7b97\u6700\u5f8c\u6211\u5011\u53ef\u4ee5\u5224\u5225\u6240\u5f97 \u7684\u5206\u6578\u662f\u5426\u6709\u8d85\u904e\u63a8\u8ad6\u7684\u9580\u6abb\u503c\uff0c\u518d\u4ee5\u6b64\u4f5c\u70ba\u5224\u5225\u63a8\u8ad6\u7684\u4f9d\u64da\u3002 \u7b2c\u4e8c\u500b\u65b9\u6cd5\u662f\u4f7f\u7528\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u5f0f\uff0c\u9664\u4e86\u85c9\u7531\u7b2c\u4e00\u500b\u65b9\u6cd5\u6240\u8490\u96c6\u5230\u7684\u7279\u5fb5\u8cc7\u8a0a\uff0c\u6211\u5011 \u4e5f\u5c07\u5256 \u6790 \u6a39 \u6211\u5011\u5229\u7528\u4ee5\u4e0a\u8ff0\u5efa\u69cb\u7684\u63a8\u8ad6\u6a21\u578b\u53c3\u52a0 NTCIR-10[10]\u570b\u969b\u8cc7\u8a0a\u8a55\u4f30\u7af6\u8cfd\uff0c\u5728\u6587\u672c\u860a\u6db5 RITE \u7c21\u9ad4\u4e2d\u6587\u8207\u7e41\u9ad4\u4e2d\u6587\u5169\u500b\u5206\u9805\u7372\u5f97\u7b2c\u4e8c\u540d\u3002\u5176\u4e2d\u4f5c\u70ba\u7e41\u9ad4\u4e2d\u6587\u53ca\u7c21\u9ad4\u4e2d\u6587\u63a8\u8ad6\u8a55\u5206\u6a19 \u6e96\u7684 Macro-F1 \u5206\u5225\u70ba 67.07%\u548c 68.09%\u3002 \u672c\u7bc7\u8ad6\u6587\u65bc\u7b2c\u4e8c\u7bc0\u4ecb\u7d39\u95dc\u65bc\u53e5\u5b50\u860a\u6db5\u7684\u76f8\u95dc\u7af6\u8cfd\uff0c\u7b2c\u4e09\u7bc0\u4ecb\u7d39\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u4ee5 \u53ca\u6211\u5011\u6240\u8490\u96c6\u8a8d\u70ba\u5c0d\u6587\u5b57\u860a\u6db5\u6709\u5e6b\u52a9\u7684\u8a9e\u6587\u7279\u5fb5\u8cc7\u8a0a\uff0c\u4e26\u65bc\u7b2c\u56db\u7bc0\u5448\u73fe\u5be6\u9a57\u7684\u7d50\u679c\u548c\u7d50 \u8ad6\uff1b\u7b2c\u4e94\u7bc0\u4ecb\u7d39\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u6cd5\u5305\u542b\u8490\u96c6\u65b0\u7684\u7279\u5fb5\u3001\u7279\u5fb5\u7684\u64f7\u53d6\uff1b\u7b2c\u516d\u7bc0\u5247\u662f\u5be6\u6e2c\u6211\u5011\u7684 \u6f14\u7b97\u6cd5\u7684\u5be6\u9a57\u7d50\u679c\u3002\u7b2c\u4e03\u7bc0\u6211\u5011\u5c07\u524d\u9762\u6240\u5efa\u69cb\u7684\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u548c\u6a5f\u5668\u5b78\u7fd2\u6a21\u578b\u61c9\u7528 \u5728\u95b1\u8b80\u7406\u89e3\u7684\u61c9\u7528\u4e0a\uff0c\u7b2c\u516b\u7bc0\u5247\u5448\u73fe\u95b1\u8b80\u7406\u89e3\u5be6\u9a57\u7684\u7d50\u679c\u53ca\u7d50\u8ad6\uff0c\u6700\u5f8c\u7b2c\u4e5d\u7bc0\u70ba\u7d50\u8ad6\u4ee5\u53ca \u672a\u4f86\u5c55\u671b\u3002 2 Textual Entailment \u80cc\u666f\u8cc7\u8a0a 2.1 \u76f8\u95dc\u7af6\u8cfd RTE \u662f\u57fa\u65bc\u82f1\u6587\u8a9e\u6599\u5c0d\u8a9e\u53e5\u63a8\u8ad6\u7684\u76f8\u95dc\u7af6\u8cfd\uff0c\u5f9e 2005 \u5e74\u958b\u59cb\uff0c\u7531 First Recognition Textual Entailment(RTE-1)\u6240\u8209\u8fa6\u7684\u7b2c\u4e00\u6b21\u6bd4\u8cfd\uff0c\u4e26\u91dd\u5c0d\u82f1\u6587\u8a9e\u53e5\u63a8\u8ad6\u63d0\u4f9b\u8a55\u4f30\u7684\u5e73\u53f0\uff0c\u4f7f\u5f97\u53e5\u5b50 \u7684\u63a8\u8ad6\u95dc\u4fc2\u9010\u6f38\u53d7\u5230\u91cd\u8996\uff0c\u800c\u96a8\u5f8c RTE \u7684\u7af6\u8cfd\u4e5f\u589e\u52a0\u4e86\u8a31\u591a\u95dc\u65bc\u8a9e\u610f\u63a8\u8ad6\u7684\u76f8\u95dc\u61c9\u7528\uff0c\u4f8b \u5728 RITE-2 \u7684\u7af6\u8cfd\u4e2d\uff0c\u6211\u5011\u767c\u73fe\u591a\u6578\u7684\u968a\u4f0d\u5728\u7814\u7a76\u6587\u5b57\u860a\u6db5\u6642\uff0c\u90fd\u6709\u4f7f\u7528\u8a5e\u5f59\u7684\u8986\u84cb\u6bd4\u7387 \u8207\u53e5\u5b50\u8868\u9762\u76f8\u4f3c\u5ea6[4]\u4f5c\u70ba\u5224\u5225\u6587\u5b57\u860a\u6db5\u7684\u91cd\u8981\u7279\u5fb5\uff0c\u7136\u800c\u50c5\u50c5\u9019\u4e9b\u65b9\u6cd5\u4e26\u4e0d\u8db3\u4ee5\u5224\u5225\u6587\u5b57 \u7684\u860a\u6db5\u95dc\u4fc2\uff0c\u56e0\u6b64\u67d0\u4e9b\u65b9\u6cd5\u5982 Wu[6]\u6240\u63d0\u51fa\u7684 LCS Similarity \u7528\u4f86\u5224\u5225 \u53ca \u53e5\u5c0d\u7684\u6700\u9577\u76f8 \u540c\u5b57\u4e32\uff0c\u7576\u4f5c\u5224\u5225\u860a\u542b\u7684\u4f9d\u64da\uff0c\u6216\u662f Hattori[4]\u5229\u7528\u53e5\u5b50\u8868\u9762\u76f8\u4f3c\u5ea6\u548c\u53e5\u610f\u76f8\u4f3c\u5ea6\u7684\u9ad8\u4f4e\uff0c \u7d44\u5408\u6210\u4e00\u500b 2x2 \u7684\u77e9\u9663\u4f5c\u70ba\u5224\u5225\u7684\u7b56\u7565\uff0c\u56e0\u6b64\u53ef\u4ee5\u9032\u4e00\u6b65\u7684\u5206\u6790 2x2 \u56db\u7a2e\u60c5\u6cc1\u7684\u7d44\u5408\u6703\u5728 \u4ec0\u9ebc\u60c5\u6cc1\u4e0b\u767c\u751f\uff0c\u4f8b\u5982\u7576\u8868\u9762\u76f8\u4f3c\u5ea6\u5f88\u9ad8\u4f46\u53e5\u610f\u76f8\u4f3c\u5ea6\u537b\u5f88\u4f4e\u6642\uff0c\u53ef\u4ee5\u731c\u60f3\u53e5\u5c0d\u4e2d\u53ef\u80fd\u6709 \u4e0d\u540c\u6578\u91cf\u7684\u5426\u5b9a\u8a5e\u5b58\u5728\uff1b\u6211\u5011\u53c3\u8003 RITE-1 \u7af6\u8cfd\u4e2d\u5177\u6709\u9ad8\u6548\u80fd\u7684\u65b9\u6cd5\u4e26\u642d\u914d\u6211\u5011\u81ea\u5df1\u7684\u65b9 \u6cd5\uff0c\u5efa\u69cb\u51fa\u5224\u5225\u6587\u5b57\u860a\u6db5\u7684\u6a21\u578b\u3002 3 \u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u8207\u7279\u5fb5\u4ecb\u7d39 \u7d93\u9a57\u6cd5\u5247\u5f0f(Heuristics)\u63a8\u8ad6\u6a21\u578b\u7684\u7cfb\u7d71\u67b6 \u69cb\u8207\u904b\u884c\u6d41\u7a0b\u5982\u5716\u4e00\u6240\u793a\uff0c\u9996\u5148\u5c07\u8a9e\u6599\u8b80 \u5165\u7cfb\u7d71\u5f8c\uff0c\u900f\u904e\u6578\u5b57\u8f49\u63db\u6a21\u7d44\u5c07\u6578\u5b57\u6b63\u898f \u5316\uff0c\u63a5\u8457\u9032\u884c\u4e2d\u6587\u65b7\u8a5e\u6216\u82f1\u6587\u5206\u8a5e[7]\uff0c\u4e26 \u6a19\u8a18\u5be6\u9ad4\u540d\u8a5e[10]\u8207\u89e3\u6790\u53e5\u6cd5\u7d50\u69cb\uff0c\u6700\u5f8c \u901a\u904e\u6211\u5011\u63d0\u51fa\u7684\u8a08\u7b97\u65b9\u6cd5\u8207\u9580\u6abb\u503c\u8a2d\u5b9a\uff0c \u8a08\u7b97\u63a8\u8ad6\u95dc\u4fc2\u7684\u8a55\u5206\uff0c\u7531 0 \u81f3 1\uff0c\u4e26\u6839\u64da\u9580 \u6abb\u503c\u7372\u5f97\u6b32\u5224\u65b7\u7684\u6587\u5b57\u860a\u6db5\u95dc\u4fc2\uff0c\u800c\u8a73\u7d30 \u7684\u7279\u5fb5\u6211\u5011\u5c07\u5728 3.1 \u7bc0\u81f3 3.5 \u7bc0\u4f5c\u4ecb\u7d39\u3002 3.1 \u8a5e\u5f59\u8986\u84cb\u6bd4\u4f8b \u5728\u8a55\u4f30\u4e00\u500b\u53e5\u5b50\u7684\u610f\u7fa9\u662f\u5426\u80fd\u63a8\u8ad6\u81f3\u53e6\u4e00\u500b\u53e5\u5b50\u6642\uff0c\u6211\u5011\u8a8d\u70ba\u53e5\u5b50\u4e2d\u6bcf\u4e00\u500b\u8a5e\u5f59\u90fd\u4ee3\u8868\u4e00 \u9805\u8cc7\u8a0a\uff0c\u7576\u5169\u500b\u53e5\u5b50\u88e1\u76f8\u540c\u7684\u8a5e\u5f59\u6bd4\u4f8b\u5920\u9ad8\u6642\uff0c\u901a\u5e38\u4ee3\u8868\u9019\u5169\u500b\u53e5\u5b50\u64c1\u6709\u76f8\u540c\u7684\u8cc7\u8a0a\u91cf\uff0c \u56e0\u6b64\u5177\u6709\u63a8\u8ad6\u7684\u95dc\u4fc2\u3002 \u5982 2.2 \u6587\u737b\u63a2\u8a0e \u6211\u5011\u4ee5</td></tr><tr><td>\u6211\u5011\u4e5f\u5229\u7528\u6587\u5b57\u860a\u6db5\u7684\u6280\u8853\u61c9\u7528\u5728\u95b1\u8b80\u6e2c\u9a57\u7684\u81ea\u52d5\u7b54\u984c\u4e0a\uff0c\u5982\u679c\u53ef\u4ee5\u5224\u5225\u95b1\u8b80\u6e2c\u9a57\u7684\u9078\u9805</td></tr><tr><td>\u8207\u672c\u6587\u5177\u6709\u63a8\u8ad6\u7684\u95dc\u4fc2\uff0c\u5247\u9593\u63a5\u53ef\u4ee5\u5224\u5225\u8a72\u9078\u9805\u70ba\u7b54\u6848\u7684\u6a5f\u7387\u8f03\u5927\uff0c\u8b93\u7cfb\u7d71\u80fd\u5920\u81ea\u52d5\u7b54\u984c\u3002</td></tr></table>"
},
"TABREF1": {
"html": null,
"num": null,
"type_str": "table",
"text": "Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) \u5be6\u9a57\u8a9e\u6599 \u6211\u5011\u7d93\u7531\u53c3\u8207 NTCIR \u7684\u7af6\u8cfd\uff0c\u53d6\u5f97 RITE \u7684\u8a13\u7df4(Dev.)\u8207\u6e2c\u8a66(Test)\u4e2d\u6587\u8a9e\u6599\u96c6\uff0c\u8a9e\u6599\u70ba\u63a8 \u8ad6\u95dc\u4fc2\u4e8c\u5143\u5206\u985e(Binary Classification)\u3002\u5716\u4e09\u70ba\u4e2d\u6587\u4e8c\u5143\u5206\u985e\u7684\u8cc7\u6599\u5167\u5bb9\uff0c\u6bcf\u7b46\u8cc7\u6599\u7686\u6709 \u4e00\u500b\u7de8\u865f\u8a18\u9304\uff0c\u4e26\u5305\u542b\u5169\u500b\u53e5\u5b50-t 1 \u8207 t 2 \uff0c\u800c label \u4ee3\u8868\u7684\u662f t 1 \u7684\u5167\u5bb9\u662f\u5426\u80fd\u63a8\u8ad6\u51fa t 2 \u4e2d\u7684 \u5047\u8a2d\uff0cY \u8868\u793a\u6210\u7acb\uff0cN \u5247\u53cd\u4e4b\u3002\u6211\u5011\u53d6\u5f97\u4e86\u548c NTCIR-10 RITE-2 \u7684\u8a13\u7df4\u8207\u6e2c\u8a66\u8a9e\u6599\uff0c\u8868\u4e00 \u70ba\u8a13\u7df4\u8207\u6e2c\u8a66\u8a9e\u6599\u96c6\u7684\u6578\u91cf\u7d71\u8a08\u3002 \u82f1\u6587\u8a9e\u6599\u6211\u5011\u5247\u63a1\u7528 Microsoft Research Paraphrase Corpus(MSR Corpus)[12]\uff0cMSR \u65bc 2004 \u5e74\u7531 Quirk \u7b49\u4eba\u63d0\u51fa\uff0c\u8a9e\u6599\u96c6\u5171\u5305\u542b 5801 \u500b\u82f1\u6587\u53e5\u5c0d\uff0c\u4e26\u4e14\u6a19\u8a18\u5169\u500b\u53e5\u5b50\u4e4b\u9593\u662f\u5426 \u76f8\u95dc\u806f\u3002 Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) \u5716\u516d\u3001\u6a5f\u5668\u5b78\u7fd2\u63a8\u8ad6\u7cfb\u7d71\u67b6\u69cb \u8a66\u8a9e\u6599\u900f\u904e\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u7684\u7cfb\u7d71\u6548\u80fd\u7d9c\u5408\u6307\u6a19\u3002\u6211\u5011\u89c0\u5bdf MSR \u6e2c\u8a66\u8a9e\u6599\u7684\u5be6\u9a57\u7d50 \u679c\uff0c\u5f9e\u8868\u4e94\u53ef\u4ee5\u770b\u51fa\u5be6\u9ad4\u540d\u8a5e\u932f\u4f4d\u7684\u61f2\u7f70\u53c3\u6578 \u03b4\uff0cC15 \u81f3 C17 \u7686\u70ba\u6700\u4f4e\u7684\u61f2\u7f70\u5206\u6578 1.0\uff0c\u6240\u4ee5 \u53ef\u5f97\u77e5\u8a72\u7279\u5fb5\u5c0d\u65bc\u63a8\u8ad6\u95dc\u4fc2\u7684\u5f71\u97ff\u4e0d\u5927\uff0c\u56e0\u6b64\u4e5f\u9593\u63a5\u5c0d\u5426\u5b9a\u63a8\u8ad6\u95dc\u4fc2\u5224\u5b9a\u8f03\u5dee\u7684\u60c5\u5f62\u767c \u751f\uff0c\u4f46\u4ecd\u80fd\u9054\u5230\u4e0d\u932f\u7684\u6e96\u78ba\u7387\u3002 Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)",
"content": "<table><tr><td>Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)</td></tr><tr><td>3.3 \u5426\u5b9a\u8a5e\u5224\u65b7 \u5373\u4f7f\u5169\u500b\u53e5\u5b50\u64c1\u6709\u9ad8\u6bd4\u4f8b\u7684\u8a5e\u5f59\u8986\u84cb\u548c\u5be6\u9ad4\u540d\u7a31\u76f8\u540c\uff0c\u4f46\u53e5\u5b50\u9593\u5e38\u56e0\u70ba\u5b58\u5728\u5426\u5b9a\u8a5e\u800c\u4f7f\u53e5 \u610f\u5927\u70ba\u6539\u8b8a\uff0c\u9032\u800c\u9020\u6210\u932f\u8aa4\u7684\u63a8\u8ad6\u5224\u65b7\uff0c\u56e0\u6b64\u6211\u5011\u589e\u52a0\u7cfb\u7d71\u5c0d\u5426\u5b9a\u8a5e\u7684\u64f7\u53d6\uff0c\u4e26\u8a2d\u8a08\u7c21\u55ae \u7684\u898f\u5247\u5224\u65b7\u5426\u5b9a\u8a5e\u5c0d\u8a08\u7b97\u63a8\u8ad6\u95dc\u4fc2\u7684\u5f71\u97ff\uff0c\u6240\u8b02\u7684\u5426\u5b9a\u8a5e\u6211\u5011\u4ee5\u5426\u5b9a\u8a5e\u8fad\u5178\u4f5c\u70ba\u4f9d\u64da\uff0c\u4f8b \u5982\u8fad\u5178\u4e2d\uff1a\u300c\u7121\u300d\u3001\u300c\u672a\u300d\u3001\u300c\u4e0d\u300d\u3001\u300c\u6c92\u6709\u300d\u2026\u8996\u70ba\u5426\u5b9a\u8a5e\uff0c\u4e26\u85c9\u7531\u53e5\u5b50\u4e2d\u7684\u5426\u5b9a\u8a5e\u96c6\uff0c \u9069\u7576\u5730\u8abf\u6574\u63a8\u8ad6\u95dc\u4fc2\u7684\u8a55\u5206\u3002 \u6211\u5011\u8a8d\u70ba\u5169\u500b\u53e5\u5b50\u82e5\u5305\u542b\u4e0d\u540c\u6578\u91cf\u7684\u5426\u5b9a\u8a5e\u6642\uff0c\u8f03\u5bb9\u6613\u6709\u4e0d\u540c\u7684\u610f\u7fa9\u7522\u751f\uff0c\u800c\u964d\u4f4e\u63a8 \u8ad6\u95dc\u4fc2\u7684\u53ef\u80fd\u6027\uff0c\u56e0\u6b64\u518d\u5ea6\u52a0\u5165\u4e00\u500b\u51fd\u5f0f\u91dd\u5c0d\u5426\u5b9a\u8a5e\u505a\u63a8\u8ad6\u5206\u6578\u7684\u8abf\u6574\uff0c\u5982\u4e0b\u65b9\u516c\u5f0f(5)\u6240 \u793a\u3002Negation \u8868\u793a\u53e5\u5b50\u7576\u4e2d\u5305\u542b\u7684\u5426\u5b9a\u8a5e\u96c6\u5408\uff0c\u03b2 \u70ba\u5426\u5b9a\u8a5e\u6578\u91cf\u4e0d\u76f8\u7b49\u6642\u7528\u4ee5\u8abf\u6574\u7684\u61f2\u7f70 \u5206\u6578\uff0c\u5176\u503c\u4ecb\u65bc 0 \u81f3 1\uff0c\u4e26\u5c07\u63a8\u8ad6\u95dc\u4fc2\u7684\u5224\u65b7\u5ef6\u4f38\u6210\u516c\u5f0f(6)\u3002 \u03b2 (5) (6) 3.4 \u53cd\u7fa9\u8a5e\u5224\u65b7 \u9664\u4e86\u5426\u5b9a\u8a5e\u5916\uff0c\u53e5\u5b50\u4e4b\u9593\u82e5\u5b58\u5728\u53cd\u7fa9\u8a5e[12]\uff0c\u6211\u5011\u8a8d\u70ba\u9019\u6a23\u662f\u66f4\u52a0\u986f\u793a\u5169\u500b\u53e5\u5b50\u4e4b\u9593\u53ef\u80fd \u4e0d\u5177\u6709\u63a8\u8ad6\u7684\u95dc\u4fc2\uff0c\u56e0\u6b64\u6211\u5011\u5617\u8a66\u5206\u6790\u53e5\u5b50\u4e4b\u9593\u7684\u53cd\u7fa9\u8a5e\u5305\u542b\u72c0\u6cc1\uff0c\u82e5\u5305\u542b\u53cd\u7fa9\u8a5e\uff0c\u5247\u7d66 \u4e88\u8f03\u91cd\u7684\u61f2\u7f70\u5206\u6578\uff0c\u5927\u5e45\u8abf\u6574\u63a8\u8ad6\u95dc\u4fc2\u7684\u5224\u65b7\u3002\u516c\u5f0f(7)\u986f\u793a\u53cd\u7fa9\u8a5e\u5224\u65b7\u7684\u51fd\u5f0f\uff0cAntonym \u8868\u793a\u4e00\u500b\u8a5e\u5f59\u7684\u53cd\u7fa9\u8a5e\u96c6\u5408\uff0c\u03b3 \u5247\u662f\u53cd\u7fa9\u8a5e\u5b58\u5728\u6642\u7684\u61f2\u7f70\u5206\u6578\uff0c\u5176\u503c\u70ba 1 \u81f3 2\uff0c\u800c\u5224\u65b7\u63a8\u8ad6 \u95dc\u4fc2\u7684\u516c\u5f0f\u5247\u8b8a\u6210\u516c\u5f0f(8)\u3002 (7) (8) 3.5 \u5be6\u9ad4\u540d\u8a5e\u932f\u4f4d \u4e3b\u8a5e\u8207\u53d7\u8a5e\u4f4d\u7f6e\u53ef\u80fd\u5f71\u97ff\u53e5\u5b50\u7684\u8a9e\u610f\uff0c\u56e0\u6b64\u6211\u5011\u5728\u524d\u8655\u7406\u4fbf\u6a19\u8a18\u51fa\u5be6\u9ad4\u540d\u8a5e\u7684\u7d22\u5f15\uff0c\u4e26\u4e14 \u6211\u5011\u8a8d\u70ba\u7576\u63a8\u8ad6\u5206\u6578\u8f03\u9ad8\u6642\uff0c\u4ee3\u8868\u53e5\u5b50\u4e4b\u9593\u7684\u8a5e\u5f59\u4f7f\u7528\u975e\u5e38\u76f8\u8fd1\uff0c\u6b64\u6642\u82e5\u5be6\u9ad4\u540d\u8a5e\u767c\u751f\u932f \u4f4d\uff0c\u5247\u8f03\u5bb9\u6613\u5f71\u97ff\u5169\u500b\u53e5\u5b50\u8a9e\u610f\u7684\u76f8\u4f3c\u7a0b\u5ea6\uff0c\u5982\u5716\u4e8c\uff0c\u56e0\u6b64\u589e\u52a0\u4e00\u500b\u51fd\u5f0f\u5224\u65b7\u7d22\u5f15\u503c\u7684\u8fe5 \u7570\uff0c\u85c9\u4ee5\u8abf\u6574\u63a8\u8ad6\u95dc\u4fc2\u7684\u8a55\u5206\uff0c\u5982\u516c\u5f0f(9)\u3002\u516c\u5f0f\u4e2d i \u4ee3\u8868\u5be6\u9ad4\u540d\u8a5e\u65bc\u53e5\u5b50\u4e2d\u7684\u4f4d\u7f6e\uff0cm \u548c n \u70ba NE_Order \u7684\u7d22\u5f15\u503c\uff0c\u03b4 \u70ba\u7bc4\u570d 1 \u5230 2 \u7684\u61f2\u7f70\u5206\u6578\uff0c\u03bb \u70ba\u4f7f\u7528\u8a72\u51fd\u5f0f\u7684\u63a8\u8ad6\u5206\u6578\u9580\u6abb\u503c\u3002 \u900f\u904e\u4e0a\u8ff0\u7684\u5404\u7a2e\u8a9e\u8a00\u8cc7\u8a0a\u7684\u4f7f\u7528\uff0c\u6700\u5f8c\u5408\u4f75\u6210\u4e00\u9805\u63a8\u8ad6\u95dc\u4fc2\u7684\u8a08\u7b97\u516c\u5f0f(11)\uff0c\u5c07\u63a8\u8ad6\u95dc\u4fc2 \u7684\u7a0b\u5ea6\u4ee5 0 \u81f3 1 \u7684\u5206\u6578\u986f\u793a\u9ad8\u4f4e\uff0c\u6211\u5011\u9810\u671f\u8a72\u65b9\u6cd5\u80fd\u6709\u6548\u5730\u5224\u5b9a\u8a9e\u53e5\u9593\u7684\u63a8\u8ad6\u95dc\u4fc2\u3002 t 1 \uff1a\u53f0\u7063\u51fa\u53e3\u81f3\u5370\u5ea6\u6210\u9577 28.6% t 2 \uff1a\u5370\u5ea6\u5f9e\u53f0\u7063\u51fa\u53e3\u6210\u9577\u7387\u53ef\u9054 28.6% \u53f0\u7063\uff1a \u5370\u5ea6\uff1a \u53f0\u7063\uff1a \u5370\u5ea6\uff1a \u5716\u4e8c\u3001\u5be6\u9ad4\u540d\u8a5e\u4f4d\u7f6e\u6bd4\u5c0d\u7bc4\u4f8b (9) (10) (11) 4 \u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u5be6\u6e2c 4.1 \u8868\u4e00\u3001\u4e2d\u6587\u8a13\u7df4\u8a9e\u6599\u96c6\u7d71\u8a08 \u4f86\u6e90 NTCIR-10 RITE-2 MSR \u8a9e\u8a00 \u7e41\u9ad4\u4e2d\u6587 \u82f1\u6587 \u985e\u5225 Dev. Test Dev. Test Y 716 479 2753 1147 N 605 402 1323 578 \u7e3d\u548c 1321 881 4076 1725 4.2 \u63a8\u8ad6\u6a21\u578b\u9580\u6abb\u503c\u8207\u7279\u5fb5\u53c3\u6578\u9078\u5b9a \u70ba\u4e86\u6700\u4f73\u5316\u63a8\u8ad6\u7cfb\u7d71\u7684\u6548\u679c\uff0c\u6211\u5011\u900f\u904e RITE-2\u3001MSR \u53ca RTE \u4e09\u7a2e\u4e0d\u540c\u7684\u8a13\u7df4\u8a9e\u6599\u5f9e\u5be6\u9a57 \u88e1\u8a2d\u5b9a\u6240\u6709\u53c3\u6578\u7d44\u5408\u85c9\u7531\u6548\u80fd\u7684\u8b8a\u5316\u4ee5\u4eba\u5de5\u7684\u65b9\u5f0f\u8a2d\u5b9a\u53c3\u6578\uff0c\u8abf\u6574\u4e2d\u82f1\u6587\u63a8\u8ad6\u6a21\u578b\u7684\u5404\u9805 \u53c3\u6578\u8207\u9580\u6abb\u503c\u4ee5\u5c0b\u6c42\u6e96\u78ba\u7387\u7684\u6975\u5927\u503c\uff0c\u85c9\u4ee5\u5206\u6790\u53c3\u6578\u7d44\u5408\u5c0d\u65bc\u55ae\u9805\u63a8\u8ad6\u7684\u6548\u679c\uff0c\u6240\u8b02\u7684\u55ae \u9805\u63a8\u8ad6\u5373\u662f\u5728\u5224\u65b7\u6587\u5b57\u860a\u6db5\u95dc\u4fc2\u6642\uff0c\u50c5\u5224\u65b7\u5177\u6709\u860a\u6db5\u95dc\u4fc2\u6216\u4e0d\u5177\u6709\u860a\u6db5\u95dc\u4fc2\u5169\u7a2e\uff1b\u6700\u5f8c\u6211 \u5011\u4ee5\u6e96\u78ba\u7387\u8f03\u4f73\u7684\u53c3\u6578\u8a2d\u5b9a\u91dd\u5c0d\u6e2c\u8a66\u8a9e\u6599\u9032\u884c\u63a8\u8ad6\u7cfb\u7d71\u7684\u8a55\u4f30\uff0c\u4e0d\u904e\u7919\u65bc\u7248\u9762\u9650\u5236\uff0c\u672c\u7bc7 \u8ad6\u6587\u4e2d\u6587\u8a9e\u6599\u53ea\u7bc0\u9304 RITE-2 \u7e41\u9ad4\u8a9e\u6599\u4f5c\u70ba\u4ee3\u8868\uff0c\u800c\u82f1\u6587\u8a9e\u6599\u5247\u4ee5 MSR \u4f5c\u70ba\u4ee3\u8868\uff0c\u5176\u5b83\u8a73 \u7d30\u7684\u5be6\u9a57\u7d50\u679c\u53ef\u53c3\u7167\u9ec3\u744b\u6770\u78a9\u58eb\u8ad6\u6587[13]\u3002 \u8868\u56db\u5217\u51fa\u7e41\u9ad4\u4e2d\u6587\u8a13\u7df4\u8a9e\u6599\u7684\u53c3\u6578\u641c\u5c0b\u7d50\u679c\uff0c\u7531\u65bc\u641c\u5c0b\u7684\u7d50\u679c\u904e\u591a\uff0c\u56e0\u6b64\u5728\u9019\u88e1\u50c5\u5217 \u51fa\u8f03\u4f73\u7684\u5e7e\u7d44\u53c3\u6578\u8a2d\u5b9a\u8207\u8a13\u7df4\u8a9e\u6599\u7684\u6e96\u78ba\u7387\uff0c\u5176\u4e2d\u7de8\u865f E \u4ee3\u8868\u63a8\u8ad6\u6210\u7acb\u7684\u9580\u6abb\u503c\u3002\u800c\u8868\u4e94 \u5247\u5217\u51fa\u82f1\u6587\u8a13\u7df4\u8a9e\u6599-MSR \u7684\u53c3\u6578\u641c\u5c0b\u7d50\u679c\uff0c\u540c\u6a23\u5730\u50c5\u5217\u51fa\u8f03\u4f73\u7684\u5e7e\u7d44\u8a2d\u5b9a\u8207\u6e96\u78ba\u7387\uff0c\u6211 \u5011\u5c07\u6e96\u78ba\u7387(Acc)\u8207 Macro-F1 \u5b9a\u7fa9\u5982\u4e0b\u516c\u5f0f\u3002 \u6e96\u78ba\u7387 \u63a8\u8ad6\u7d50\u679c\u6b63\u78ba\u500b\u6578 \u8a9e\u6599\u500b\u6578 \u7cbe\u78ba\u7387 \u63a8\u8ad6\u7d50\u679c\u55ae\u9805\u6b63\u78ba\u500b\u6578 \u63a8\u8ad6\u7d50\u679c\u55ae\u9805\u500b\u6578 \u5716\u4e09\u3001\u4e8c\u5143\u5206\u985e\u8cc7\u6599\u96c6 \u63a8\u8ad6\u7d50\u679c\u55ae\u9805\u6b63\u78ba\u500b\u6578 5.2 POSes \u52d5\u8a5e\u6a19\u8a18 \u8868\u4e03\u3001\u82f1\u6587\u7279\u5fb5\u96c6\u7de8\u865f\u8868 \u985e\u6f14\u7b97\u6cd5\u9032\u884c\u4e2d\u82f1\u6587\u6e2c\u8a66\u8a9e\u6599\u7684\u6548\u80fd\u8a55 6.3 \u5be6\u9a57\u8a2d\u8a08\u3001\u6f14\u7b97\u6cd5\u8207\u53c3\u6578\u7684\u9078\u5b9a\u548c\u7d50\u679c 7.2 \u5f9e\u77ed\u6587\u7be9\u9078\u76f8\u95dc\u53e5 \u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u7684\u53c3\u6578\u8a2d\u5b9a\uff0c\u4e2d\u6587\u7684\u90e8\u4efd\u6211\u5011\u63a1\u7528 NTCIR-10 RITE-2 \u7af6\u8cfd\u6642\u7684\u6700 \u63a5\u8457\u89c0\u5bdf\u5716\u5341\u4e09\uff0c\u82f1\u6587\u8a9e\u6599\u63a1\u7528\u77ed\u6587\u904e\u6ffe\u7684\u65b9\u6cd5\u4f86\u9032\u884c\u5be6\u9a57\u6bd4\u8f03\uff0c\u5982\u540c\u4e2d\u6587\u95b1\u8b80\u6e2c\u9a57 \u53ec\u56de\u7387 \u53c3\u8003\u7b54\u6848\u4e2d\u7684\u55ae\u9805\u500b\u6578 Macro-F1 \u8868\u56db\u3001RITE-2 \u7e41\u9ad4\u4e2d\u6587\u8a13\u7df4\u8a9e\u6599\u53c3\u6578\u8a2d\u5b9a \u7de8\u865f E \u03b1 \u03b2 \u03b3 \u03bb \u03b4 Acc C1 0.54 0.1 0.27 1.8 0.85 1.9 73.05% C2 0.56 0.08 0.25 1.0 0.85 1.8 73.13% C3 0.56 0.08 0.25 1.7 0.85 1.8 73.20% \u8868\u4e94\u3001MSR \u8a13\u7df4\u8a9e\u6599\u53c3\u6578\u8a2d\u5b9a \u7de8\u865f E \u03b1 \u03b2 \u03b3 \u03bb \u03b4 Acc C13 0.47 0.05 0.13 1.3 0.55 1.2 71.07% C14 0.47 0.05 0.17 1.3 0.55 1.0 71.12% C15 0.49 0.05 0.14 1.2 0.55 1.0 71.15% C16 0.49 0.05 0.17 1.2 0.55 1.0 71.17% C17 0.49 0.05 0.20 1.2 0.55 1.0 71.20% 4.3 \u5be6\u6e2c\u7d50\u679c \u6839\u64da\u4e0a\u8ff0\u9019\u4e9b\u8a13\u7df4\u8a9e\u6599\u7684\u53c3\u6578\u8abf\u6574\uff0c\u9032\u884c\u6e2c\u8a66\u8a9e\u6599\u7684\u5be6\u9a57\uff0c\u5206\u6790\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u7d93\u7531 \u53c3\u6578\u8abf\u6821\u5f8c\u7684\u6548\u80fd\u8207\u55ae\u9805\u63a8\u8ad6\u80fd\u529b\u3002 \u6211\u5011\u4f7f\u7528\u8868\u56db\u7684\u53c3\u6578\u9032\u884c RITE-2 \u7e41\u9ad4\u4e2d\u6587\u6e2c\u8a66\u8a9e\u6599\u7684\u63a8\u8ad6\u95dc\u4fc2\u9810\u6e2c\uff0c\u4e26\u4e14\u52a0\u5165\u8fd1\u7fa9 \u8a5e\u7684\u5224\u5b9a\uff0c\u89c0\u5bdf\u662f\u5426\u80fd\u63d0\u5347\u63a8\u8ad6\u6548\u679c\uff0c\u6700\u5f8c\u91dd\u5c0d\u9810\u6e2c\u7684\u7d50\u679c\u9032\u884c\u5206\u6790\uff0c\u8a08\u7b97\u55ae\u9805\u7b54\u6848\u7684\u6e96 \u78ba\u7387\u8207\u53ec\u56de\u7387\u3002\u5716\u56db\u5247\u70ba RITE-2 \u7e41\u9ad4\u4e2d\u6587\u6e2c\u8a66\u8a9e\u6599\u4f7f\u7528\u8fd1\u7fa9\u8a5e\u7684\u6548\u80fd\u6bd4\u8f03\uff0c\u5f9e\u5716\u4e2d\u7684\u7d50 \u679c\u986f\u793a\u8fd1\u7fa9\u8a5e\u5728 RITE-2 \u7684\u6e2c\u8a66\u8a9e\u6599\u4e2d\u80fd\u63d0\u5347\u4e0d\u5c11\u7cfb\u7d71\u6548\u80fd\uff0c\u800c\u6211\u5011\u4e5f\u6709\u5c0d RITE-1 \u6e2c\u8a66\u8a9e \u6599\u9032\u884c\u5be6\u9a57\u5176\u7d50\u679c\u5247\u662f\u7565\u5fae\u7684\u4e0b\u964d\uff0c\u7919\u65bc\u7248\u9762\u6240\u4ee5\u7701\u7565\u5176\u7d50\u679c\uff0c\u56e0\u6b64\u6211\u5011\u8a8d\u70ba\u8fd1\u7fa9\u8a5e\u5728\u63a8 \u8ad6\u95dc\u4fc2\u7684\u5224\u65b7\u662f\u5426\u5177\u6709\u5e6b\u52a9\uff0c\u56e0\u8a9e\u6599\u7279\u6027\u7684\u4e0d\u540c\u800c\u6709\u6240\u5dee\u7570\u3002 \u5716\u56db\u3001\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u8fd1\u7fa9\u8a5e\u6548\u80fd\u6bd4\u8f03\uff1aRITE-2 \u7e41\u9ad4\u4e2d\u6587\u8a9e\u6599 \u6700\u5f8c\u900f\u904e\u76f8\u540c\u7684\u63a8\u8ad6\u6a21\u578b\uff0c\u4f7f\u7528 MSR \u82f1\u6587\u8a13\u7df4\u8a9e\u6599\u7684\u53c3\u6578\u8a2d\u5b9a\u5c0d\u8a9e\u6599\u9810\u6e2c\u63a8\u8ad6\u7d50 \u679c\uff0c\u85c9\u4ee5\u77ad\u89e3\u76f8\u540c\u7684\u8a9e\u8a00\u6a21\u578b\u662f\u5426\u53ef\u4ee5\u5957\u7528\u5728\u4e0d\u540c\u7684\u8a9e\u6599\u4e2d\u7684\u63a8\u8ad6\u95dc\u4fc2\u5224\u65b7\uff0c\u5716\u4e94\u986f\u793a\u6e2c C1 C2 C3 \u7121\u8fd1\u7fa9\u8a5e Macro-F1 65.79% 65.73% 65.55% \u8fd1\u7fa9\u8a5e Macro-F1 66.79% 67.46% 67.12% \u7121\u8fd1\u7fa9\u8a5e Accuracy 66.29% 66.29% 65.95% \u8fd1\u7fa9\u8a5e Accuracy 67.76% 68.56% 67.99% 58.00% 63.00% 68.00% 73.00% \u5716\u4e94\u3001 \u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u7cfb\u7d71\u6548\u80fd\uff1aMSR \u6e2c\u8a66\u8a9e\u6599 \u7d93\u7531\u591a\u7d44\u4e2d\u6587\u8207\u82f1\u6587\u8a9e\u6599\u5be6\u9a57\uff0c\u53ef\u4ee5\u767c\u73fe\u6211\u5011\u63d0\u51fa\u7684\u51fd\u5f0f\u7d44\u6210\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u7cfb\u7d71\u8207 NTCIR-9\u3001NTCIR-10 \u7af6\u8cfd\u6210\u7e3e\u76f8\u6bd4\uff0c\u5728\u4e2d\u6587\u8a9e\u6599\u4e2d\u4ecd\u5c6c\u65bc\u4e0d\u932f\u7684\u6548\u679c\u3002\u82f1\u6587\u7684\u5be6\u9a57\u7d50\u679c \u5247\u4ecd\u6709\u9032\u6b65\u7a7a\u9593\uff0c\u5169\u7a2e\u63a8\u8ad6\u80fd\u529b\u90fd\u9700\u8981\u5c31\u73fe\u6709\u7684\u51fd\u5f0f\u9032\u884c\u6539\u5584\uff0c\u4ee5\u63d0\u5347\u82f1\u6587\u8a9e\u53e5\u7684\u63a8\u8ad6\u6548 \u679c\u3002\u5f9e\u9019\u4e9b\u5be6\u9a57\u53ef\u4ee5\u5f97\u77e5\u672a\u4f86\u6211\u5011\u9700\u8981\u767c\u5c55\u66f4\u591a\u51fd\u5f0f\u4f86\u5224\u5b9a\u5426\u5b9a\u7684\u63a8\u8ad6\u95dc\u4fc2\uff0c\u5c24\u5176\u662f\u91dd\u5c0d \u8a9e\u53e5\u9593\u7684\u53cd\u7fa9\u3001\u7368\u7acb\u8207\u77db\u76fe\u7b49\u73fe\u8c61\u9700\u8981\u8655\u7406\u3002 5 \u6a5f\u5668\u5b78\u7fd2\u65b9\u6cd5 \u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\u5efa\u69cb\u7684\u63a8\u8ad6\u6a21\u578b\u7cfb\u7d71\u67b6\u69cb\u5982\u5716 \u516d\u6240\u793a\uff0c\u540c\u6a23\u4f7f\u7528\u4e0a\u4e00\u7bc0\u7684\u5143\u4ef6\u9032\u884c\u524d\u8655\u7406\uff0c \u63a5\u8457\u64f7\u53d6\u6211\u5011\u8a8d\u70ba\u53ef\u4ee5\u589e\u52a0\u63a8\u8ad6\u6548\u679c\u7684\u8a9e\u6587\u8cc7 \u8a0a\uff0c\u505a\u70ba\u8a13\u7df4\u6a21\u578b\u7684\u7279\u5fb5\u96c6\u5408\uff1b\u6700\u5f8c\u6211\u5011\u63a1\u7528 \u4e09\u7a2e\u4e0d\u540c\u7684\u5206\u985e\u6f14\u7b97\u6cd5\u8a13\u7df4\u5206\u985e\u6a21\u578b\uff0c\u5206\u5225\u662f \u652f\u6301\u5411\u91cf\u6a5f(Support Vector Machines, SVMs)\u3001 Weka J48 \u6c7a\u7b56\u6a39(J48 Decision Trees)\u8207 Weka \u7dda \u6027\u56de\u6b78(Linear Regression)[13]\uff0c\u900f\u904e\u4e0d\u540c\u985e\u578b \u7684\u5206\u985e\u5668\u7372\u5f97\u63a8\u8ad6\u95dc\u4fc2\u7684\u7d50\u679c\u3002 \u524d\u4e00\u5c0f\u7bc0\u8aaa\u660e\u4e86\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u6240\u4f7f\u7528\u7684\u51fd\u5f0f\uff0c\u6211\u5011\u91dd\u5c0d\u9019\u4e9b\u51fd\u5f0f\u9032\u884c\u6578\u503c\u5316\u7684 \u8f49\u63db\uff0c\u505a\u70ba\u8a13\u7df4\u63a8\u8ad6\u6a21\u578b\u7684\u7279\u5fb5\uff1b\u9019\u4e9b\u7279\u5fb5\u5305\u542b\u8a5e\u5f59\u8986\u84cb\u6bd4\u4f8b\u3001\u5be6\u9ad4\u540d\u8a5e\u6578\u91cf\u3001\u5be6\u9ad4\u540d\u8a5e \u76f8\u4f3c\u5ea6\u3001\u5be6\u9ad4\u540d\u8a5e\u932f\u4f4d\u6578\u91cf\u3001\u53e5\u5b50\u9577\u5ea6\u3001\u5426\u5b9a\u8a5e\u6578\u91cf\u3001\u8fd1\u7fa9\u8a5e\u6578\u91cf\u3001\u53cd\u7fa9\u8a5e\u6578\u91cf\u7b49\u9805\u76ee\u3002 \u9664\u6b64\u4e4b\u5916\uff0c\u6211\u5011\u5e0c\u671b\u52a0\u6df1\u63a8\u8ad6\u6a21\u578b\u5c0d\u8a9e\u6cd5\u7d50\u69cb\u7684\u8a8d\u8b58\uff0c\u56e0\u6b64\u52a0\u5165\u5256\u6790\u6a39\u5206\u6790\u3001POSes \u52d5\u8a5e \u6a19\u8a18\u8207\u8a5e\u5f59\u4f9d\u8cf4\u95dc\u4fc2\u7b49\u5143\u7d20\uff0c\u8a08\u7b97\u5176\u76f8\u4f3c\u5ea6\u505a\u70ba\u7279\u5fb5\uff0c\u5e0c\u671b\u63d0\u9ad8\u63a8\u8ad6\u6a21\u578b\u7684\u80fd\u529b\u3002 5.1 \u5256\u6790\u6a39\u5206\u6790 \u6211\u5011\u900f\u904e\u53f2\u4e39\u4f5b\u5256\u6790\u5668(Stanford Parser)[9]\u53d6\u5f97\u53e5\u5b50\u7684\u5256\u6790\u6a39\uff0c\u4e26\u4e14\u6211\u5011\u8a8d\u70ba\u4f7f\u7528\u6574\u500b\u5256 \u6790\u6a39\u5206\u6790\u53e5\u6cd5\u7d50\u69cb\u76f8\u4f3c\u5ea6\u5bb9\u6613\u589e\u52a0\u8a08\u7b97\u7684\u96e3\u5ea6\uff0c\u56e0\u70ba\u53e5\u5b50\u4e4b\u9593\u53ef\u80fd\u50c5\u6709\u90e8\u5206\u7684\u7d50\u69cb\u5177\u6709\u5171 \u901a\u6027\u5373\u53ef\u5177\u5099\u63a8\u8ad6\u7684\u95dc\u4fc2\uff0c\u56e0\u6b64\u4ee5\u6bcf\u4e00\u500b\u7bc0\u9ede\u505a\u70ba\u6839\u7bc0\u9ede(ROOT)\u64f7\u53d6\u5176\u4e0b\u5c64\u7bc0\u9ede\u5f62\u6210\u7684 \u5b50\u6a39\uff0c\u4f7f\u7528\u9019\u4e9b\u5b50\u6a39\u4f86\u8a08\u7b97\u5169\u500b\u53e5\u5b50\u7d50\u69cb\u7684\u76f8\u4f3c\u7a0b\u5ea6\u3002 C15 C16 C17 Macro-F1 64.82% 64.67% 64.67% Accuracy 72.46% 72.23% 72.12% 50.00% 55.00% 60.00% 65.00% 70.00% POSes \u6a19\u8a18\u7531\u53f2\u4e39\u4f5b\u5256\u6790\u5668\u7372\u5f97\uff0c\u6211\u5011\u8a8d\u70ba\u52d5\u8a5e\u5728\u53e5\u5b50\u4e2d\u626e\u6f14\u8f03\u91cd\u8981\u7684\u89d2\u8272\uff0c\u56e0\u5176\u6307\u51fa\u6574 \u500b\u53e5\u5b50\u7684\u4e8b\u4ef6\u8207\u52d5\u4f5c\u610f\u5716\uff0c\u56e0\u6b64\u7279\u610f\u5c07\u88ab\u6a19\u8a3b\u6210\u52d5\u8a5e\u7684\u8a5e\u5f59\u6293\u53d6\u51fa\u4f86\uff0c\u4ee5\u5169\u500b\u53e5\u5b50\u500b\u5225\u7684 \u52d5\u8a5e\u6578\u91cf\u8207\u76f8\u4f3c\u5ea6\u505a\u70ba\u7279\u5fb5[15]\uff0c\u4e26\u671f\u671b\u8b93\u5206\u985e\u5668\u5b78\u7fd2\u52d5\u8a5e\u4f7f\u7528\u5728\u63a8\u8ad6\u95dc\u4fc2\u4e0a\u7684\u5f71\u97ff\u529b\u3002 5.3 \u8a5e\u5f59\u4f9d\u8cf4\u95dc\u4fc2 \u53f2\u4e39\u4f5b\u5256\u6790\u5668\u4ea6\u80fd\u6839\u64da\u5256\u6790\u6a39\u7684\u751f\u6210\uff0c\u7522\u751f\u8a5e\u5f59\u4e4b\u9593\u4f9d\u8cf4\u7684\u95dc\u4fc2(Stanford Dependencies)\uff0c \u6211\u5011\u5c07\u4f9d\u8cf4\u95dc\u4fc2\u4e2d\u7684\u8a5e\u5f59\u505a\u70ba\u7bc0\u9ede\uff0c\u5c07\u53e5\u5b50\u4e2d\u7684\u8a5e\u5f59\u95dc\u4fc2\u8996\u70ba\u4e00\u500b\u6709\u5411\u5716(Directed Graph)\uff0c\u4e26\u5316\u505a\u77e9\u9663\u5f62\u5f0f\u5982\u5716\u4e03\u3002 \u6211\u5011\u767c\u73fe\u4e00\u500b\u77e9\u9663\u5167\u53ef\u4ee5\u986f\u793a\u7684\u8cc7\u8a0a\u4e26\u4e0d\u5145\u6c9b\uff0c\u5982\u6b64\u7a00\u758f\u7684\u77e9\u9663\u4e2d\uff0c\u6211\u5011\u96e3\u4ee5\u627e\u5230\u53e5 \u5b50\u4e4b\u9593\u5305\u542b\u76f8\u540c\u95dc\u4fc2\u7684\u8a5e\u5f59\u7d44\u5408\uff0c\u56e0\u6b64\u4ee5\u76f8\u9130\u77e9\u9663(Adjacency Matrix)\u7684\u6982\u5ff5\u505a\u9032\u4e00\u6b65\u7684\u904b \u7b97\uff1b\u4f8b\u5982\u4e00\u500b\u77e9\u9663 M\uff0c\u53ef\u4ee5\u7d93\u7531\u77e9\u9663\u76f8\u4e58\u7372\u5f97\u7bc0\u9ede\u5230\u7bc0\u9ede\u4e4b\u9593\u79fb\u52d5\u6240\u9700\u8981\u7684\u6b65\u6578\uff0c\u56e0\u6b64 \u8a08\u7b97 M 3 \u4fbf\u80fd\u77ad\u89e3\u4efb\u4e00\u500b\u7bc0\u9ede\u904e\u7a0b\u7d93\u7531\u5169\u500b\u7bc0\u9ede\uff0c\u6240\u8207\u5176\u4ed6\u7bc0\u9ede\u7684\u9593\u63a5\u4f9d\u8cf4\u95dc\u4fc2\u3002\u6211\u5011\u5c07 \u9019\u6a23\u7684\u79fb\u52d5\u8996\u70ba\u4f9d\u8cf4\u95dc\u4fc2\u7684\u5ef6\u4f38\uff0c\u5982\u6b64\u80fd\u627e\u51fa\u66f4\u591a\u6f5b\u5728\u7684\u8a5e\u5f59\u4f9d\u8cf4\u95dc\u4fc2\uff0c\u4e26\u4e14\u5c07\u4e0d\u540c\u79fb\u52d5 \u6b65\u6578\u7684\u77e9\u9663\u7d50\u679c\u806f\u96c6\uff0c\u7372\u5f97\u66f4\u8c50\u5bcc\u7684\u4f9d\u8cf4\u95dc\u4fc2\u3002\u5716\u516b\u4fbf\u662f\u5716\u4e03\u7684\u77e9\u9663\u8a08\u7b97\u4efb\u4e00\u500b\u7bc0\u9ede\u7d93\u7531 \u56db\u500b\u4ee5\u5167\u7684\u7bc0\u9ede\u6240\u5f62\u6210\u7684\u76f4\u63a5\u6216\u9593\u63a5\u4f9d\u8cf4\u95dc\u4fc2\u8868\uff0c\u6211\u5011\u900f\u904e\u9019\u6a23\u7684\u77e9\u9663\uff0c\u5206\u6790\u53e5\u5b50\u4e4b\u9593\u8a5e \u5f59\u4f9d\u8cf4\u95dc\u4fc2\u76f8\u4f3c\u7684\u7a0b\u5ea6\uff0c\u4e26\u4ee5\u8a72\u6578\u503c\u505a\u70ba\u4e00\u9805\u7279\u5fb5\u3002 6 \u6a5f\u5668\u5b78\u7fd2\u65b9\u6cd5\u5be6\u6e2c 6.1 \u5be6\u9a57\u8a9e\u6599\u8207\u8a2d\u8a08 \u6211\u5011\u4f9d\u7167\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u6240\u4f7f\u7528\u7684\u8a9e\u8a00\u8cc7 \u8a0a\u62bd\u53d6\u7279\u5fb5\uff0c\u4e26\u63d0\u51fa\u5982\u5256\u6790\u6a39\u7d50\u69cb\u53ca\u8a5e\u5f59\u4f9d\u8cf4 \u95dc\u4fc2\u7b49\u8a9e\u6cd5\u7d50\u69cb\u7279\u5fb5\uff0c\u5e0c\u671b\u589e\u52a0\u63a8\u8ad6\u95dc\u4fc2\u7684\u5206 \u985e\u80fd\u529b\u3002\u63a5\u8457\u4ee5 SVM\u3001J48 \u548c\u7dda\u6027\u56de\u6b78\u7b49\u6f14\u7b97 \u6cd5\u8a13\u7df4\u5206\u985e\u6a21\u578b\uff0c\u4e26\u4ee5\u8caa\u5a6a\u5f0f\u641c\u5c0b\u5404\u500b\u8a9e\u6599\u7684 \u7279\u5fb5\u7d44\u5408\u8207\u5176\u5206\u985e\u6548\u679c\uff0c\u6700\u5f8c\u7d93\u7531\u6311\u9078\u51fa\u4f86\u7684 \u7279\u5fb5\u7d44\u5408\u9032\u884c\u5206\u985e\u6f14\u7b97\u6cd5\u8a55\u6bd4\uff0c\u518d\u4ee5\u6307\u5b9a\u7684\u5206 \u539f\u53e5\uff1a1997 \u5e74\u9999\u6e2f\u56de\u6b78\u4e2d\u570b 1997 \u5e74 \u9999 \u6e2f \u56de \u6b78 \u4e2d \u570b ROOT 1997 0 0 0 1 0 0 \u5e74 0 0 0 1 0 0 \u9999\u6e2f 0 0 0 1 0 0 \u56de\u6b78 0 0 0 0 0 1 \u4e2d\u570b 0 0 0 1 0 0 ROOT 0 0 0 0 0 0 \u5716\u4e03\u3001\u8a5e\u5f59\u4f9d\u8cf4\u95dc\u4fc2\u77e9\u9663 M \u539f\u53e5\uff1a1997 \u5e74\u9999\u6e2f\u56de\u6b78\u4e2d\u570b 1997 \u5e74 \u9999 \u6e2f \u56de \u6b78 \u4e2d \u570b ROOT 1997 0 0 0 1 0 1 \u5e74 0 0 0 1 0 1 \u9999\u6e2f 0 0 0 1 0 1 \u56de\u6b78 0 0 0 0 0 1 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 \u4f30\u8207\u6307\u5b9a\u7279\u5fb5\u5c0d\u63a8\u8ad6\u95dc\u4fc2\u5224\u65b7\u7684\u6548\u80fd\u6bd4 \u8f03\u3002\u4e0d\u904e\u7919\u65bc\u7248\u9762\u9650\u5236\uff0c\u672c\u7bc7\u8ad6\u6587\u4e2d\u6587 \u8a9e\u6599\u53ea\u7bc0\u9304 RITE-2 \u7e41\u9ad4\u8a9e\u6599\u4f5c\u70ba\u4ee3\u8868\uff0c \u800c\u82f1\u6587\u8a9e\u6599\u5247\u4ee5 MSR \u4f5c\u70ba\u4ee3\u8868\uff0c\u5176\u5b83\u8a73 \u7d30\u7684\u5be6\u9a57\u7d50\u679c\u53ef\u53c3\u7167\u9ec3\u744b\u6770\u78a9\u58eb\u8ad6\u6587 [13]\u3002 \u70ba\u4e86\u77ad\u89e3\u5404\u7a2e\u7279\u5fb5\u7d44\u5408\u7684\u5206\u985e\u6548\u679c\uff0c\u6211\u5011\u63a1\u7528\u8caa\u5a6a\u5f0f\u7684\u7279\u5fb5\u7d44\u5408\u641c\u5c0b\uff0c\u6e2c\u8a66\u8a13\u7df4\u8a9e\u6599 \u70ba\u4e86\u77ad\u89e3\u4e09\u7a2e\u5206\u985e\u5668\u5728\u63a8\u8ad6\u95dc\u4fc2\u5224\u65b7\u4e0a\u7684\u6548\u679c\uff0c\u6211\u5011\u6839\u64da\u4e0a\u4e00\u5c0f\u7bc0\u7372\u5f97\u7684\u7279\u5fb5\u7d44\u5408\uff0c\u900f\u904e SVM\u3001J48 \u53ca\u7dda\u6027\u56de\u6b78\u7b49\u6f14\u7b97\u6cd5\u9032\u884c\u5206\u985e\u5668\u7684\u6548\u80fd\u8a55\u4f30\uff0cSVM \u8207 J48 \u6f14\u7b97\u6cd5\u4ee5\u5341\u7b49\u5206\u7684\u5faa \u74b0\u4f30\u8a08\u6e96\u78ba\u503c\u70ba\u8a55\u4f30\u6307\u6a19\uff0c\u7dda\u6027\u56de\u6b78\u6f14\u7b97\u6cd5\u5247\u518d\u4ee5\u8a13\u7df4\u8a9e\u6599\u6e2c\u8a66\uff0c\u8a2d\u5b9a\u9580\u6abb\u503c\u70ba 0.5 \u5c0d\u63a8 \u8ad6\u95dc\u4fc2\u5206\u985e\uff0c\u8a55\u4f30\u5176\u6e96\u78ba\u503c\u3002\u6211\u5011\u5c07\u4f9d\u64da\u5404\u7a2e\u5206\u985e\u6a21\u578b\u5728\u8a13\u7df4\u8a9e\u6599\u7684\u6548\u679c\uff0c\u5728\u4e0d\u540c\u985e\u578b\u7684 \u8a9e\u6599\u4e2d\u63a1\u7528\u6307\u5b9a\u7684\u5206\u985e\u6f14\u7b97\u6cd5\u9032\u884c\u63a8\u8ad6\u95dc\u4fc2\u7684\u5206\u985e\u3002 \u5716\u4e5d\u548c\u5716\u5341\u5206\u5225\u70ba RITE-2 \u7e41\u9ad4\u4e2d\u6587\u53ca MSR \u8a13\u7df4\u8a9e\u6599\u5728\u4e0d\u540c\u5206\u985e\u6a21\u578b\u4e0b\uff0c\u4ee5\u6e96\u78ba\u7387\u8f03 \u4f73\u8a2d\u5b9a\uff0c\u800c\u82f1\u6587\u5247\u662f\u5f9e\u5be6\u9a57\u4e2d\u85c9\u7531\u6548\u80fd\u7684\u8b8a\u5316\u4ee5\u4eba\u5de5\u7684\u65b9\u5f0f\u8a2d\u5b9a\u53c3\u6578\uff0c\u5982\u8868\u5341\u4e00\u6240\u793a\u3002\u6a5f \u7684\u6548\u679c\uff0c\u539f\u59cb\u7684\u82f1\u6587\u8a9e\u6599\u900f\u904e\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u90fd\u80fd\u9054\u5230 30%\u4ee5\u4e0a\u7684\u57fa\u672c\u6548\u80fd\uff0c\u800c\u63a1\u7528 \u9664\u4e86\u5c07\u554f\u984c\u53ca\u9078\u9805\u8f49\u63db\u70ba\u76f4\u8ff0\u53e5\u4f86\u9032\u884c\u63a8\u8ad6\u95dc\u4fc2\u7684\u5224\u65b7\u4e4b\u5916\uff0c\u4e00\u7bc7\u77ed\u6587\u4e2d\u53ef\u80fd\u540c\u6642\u6558\u8ff0\u76f8 \u5668\u5b78\u7fd2\u7684\u5206\u985e\u6a21\u578b\u5247\u7531 RITE-2 \u7e41\u9ad4\u4e2d\u6587\u8a13\u7df4\u8a9e\u6599\u53ca MSR \u82f1\u6587\u8a13\u7df4\u8a9e\u6599\uff0c\u9078\u53d6\u9069\u7576\u7684\u7279\u5fb5 \u77ed\u6587\u904e\u6ffe\u5f8c\uff0c\u5247\u5927\u7d04\u90fd\u80fd\u63d0\u5347\u5341\u5230\u4e8c\u5341\u500b\u767e\u5206\u9ede\uff0c\u8aaa\u660e\u77ed\u6587\u904e\u6ffe\u5728\u589e\u5f37\u63a8\u8ad6\u7cfb\u7d71\u5224\u65b7\u95b1\u8b80 \u7576\u591a\u7a2e\u7684\u4e8b\u5be6\u8207\u52d5\u4f5c\uff0c\u56e0\u6b64\u6bcf\u4e00\u9053\u554f\u984c\u7684\u80cc\u5f8c\u5f80\u5f80\u90fd\u50c5\u6709\u5229\u7528\u5230\u77ed\u6587\u4e2d\u90e8\u5206\u7684\u9673\u8ff0\u53e5\u5b50\u4f86 \u8a13\u7df4\u5206\u985e\u6a21\u578b\uff0c\u63a5\u8457\u9032\u884c\u95b1\u8b80\u6e2c\u9a57\u4e2d\u77ed\u6587\u8207\u6bcf\u4e00\u500b\u9078\u9805\u7684\u63a8\u8ad6\u95dc\u4fc2\u5224\u65b7\u3002\u8868\u5341\u4e8c\u986f\u793a\u4e2d\u6587 \u6e2c\u9a57\u7b54\u6848\u6642\u5177\u6709\u826f\u597d\u7684\u529f\u6548\uff0c\u672a\u4f86\u53ef\u4ee5\u91dd\u5c0d\u6b64\u90e8\u5206\u767c\u5c55\u81ea\u52d5\u5316\u7684\u8655\u7406\u65b9\u6cd5\u904e\u6ffe\u77ed\u6587\u3002 \u56de\u7b54\u3002 \u70ba\u4e86\u77ad\u89e3\u7d93\u7531\u77ed\u6587\u5167\u5bb9\u6311\u9078\u9069\u7576\u7684\u53e5\u5b50\u5f8c\uff0c\u5c0d\u6307\u5b9a\u554f\u984c\u56de\u7b54\u7684\u63a8\u8ad6\u6548\u679c\uff0c\u6211\u5011\u9996\u5148\u63a1 \u95b1\u8b80\u6e2c\u9a57\u63a1\u7528 SVM \u6f14\u7b97\u6cd5\u7684\u7279\u5fb5\u96c6\uff0c\u8868\u5341\u4e09\u70ba\u4f7f\u7528\u7dda\u6027\u56de\u6b78\u4e4b\u7279\u5fb5\u96c6\uff0c\u8868\u5341\u56db\u70ba\u82f1\u6587\u4e4b \u63a5\u8457\u4f7f\u7528\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\u8a13\u7df4\u5206\u985e\u6a21\u578b\u5224\u65b7\u95b1\u8b80\u6e2c\u9a57\u4e2d\u6bcf\u500b\u9078\u9805\u7684\u63a8\u8ad6\u95dc\u4fc2\uff0c\u5728\u4e2d\u6587 \u7279\u5fb5\u96c6\u3002 \u95b1\u8b80\u6e2c\u9a57\uff0c\u6211\u5011\u4ee5\u4e0a\u4e00\u5c0f\u7bc0\u7684\u7279\u5fb5\u96c6\uff0c\u63a1\u7528 SVM \u53ca\u7dda\u6027\u56de\u6b78\u5169\u7a2e\u6f14\u7b97\u6cd5\u505a\u63a8\u8ad6\u95dc\u4fc2\u7684\u5206 \u7528\u4eba\u5de5\u7684\u65b9\u5f0f\u9032\u884c\u77ed\u6587\u7684\u904e\u6ffe\uff0c\u4f9d\u64da\u984c\u7d44\u4e2d\u6bcf\u4e00\u9053\u554f\u984c\uff0c\u5c0d\u77ed\u6587\u63a1\u53d6\u904e\u6ffe\uff0c\u6311\u9078\u5176\u4e2d\u8207\u6b64 \u8868\u5341\u4e09\u3001\u4e2d\u6587\u95b1\u8b80\u6e2c\u9a57\u7279\u5fb5\u96c6 -\u7dda\u6027\u56de\u6b78 \u8868\u5341\u4e8c\u3001\u4e2d\u6587\u95b1\u8b80\u6e2c\u9a57\u7279\u5fb5\u96c6 -SVM \u985e\u3002\u5716\u5341\u56db\u53ca\u5716\u5341\u4e94\u70ba\u4e2d\u6587\u95b1\u8b80\u6e2c\u9a57\u7684\u6548\u80fd\u6bd4\u8f03\uff0c\u7531\u5716\u8868\u89c0\u5bdf\u5f97\u77e5\uff0c\u77ed\u6587\u904e\u6ffe\u5728\u95b1\u8b80\u6e2c\u9a57 \u9053\u554f\u984c\u76f8\u95dc\u7684\u53e5\u5b50\uff0c\u5f62\u6210\u4e00\u500b\u8f03\u5c0f\u7684\u53e5\u5b50\u96c6\u5408\u4f86\u5c0d\u554f\u984c\u53ca\u9078\u9805\u7684\u7d44\u5408\u5224\u65b7\u63a8\u8ad6\u95dc\u4fc2\u3002 \u4e2d\u5224\u65b7\u63a8\u8ad6\u95dc\u4fc2\u662f\u4e00\u9805\u975e\u5e38\u6709\u6548\u7528\u7684\u6b65\u9a5f\u3002\u7136\u800c\u4f7f\u7528\u6a5f\u5668\u5b78\u7fd2\u5206\u985e\u6a21\u578b\u7684\u95b1\u8b80\u6e2c\u9a57\u6548\u679c\u5247 \u4e2d\u6240\u6709\u7684\u7279\u5fb5\u7d44\u5408\uff0c\u7531 LibSVM \u8207 Weka \u5c07\u8a13\u7df4\u8a9e\u6599\u81ea\u52d5\u5207\u70ba\u5341\u500b\u7b49\u5206(10-fold)\uff0c\u5728 SVM \u53ca J48 \u6f14\u7b97\u6cd5\u7684\u5206\u985e\u4e0b\u9032\u884c\u5faa\u74b0\u4f30\u8a08(Cross-Validation)\uff0c\u627e\u5c0b\u6e96\u78ba\u7387\u6975\u5927\u503c\u7684\u7279\u5fb5\u7d44\u5408\uff0c \u800c\u7dda\u6027\u56de\u6b78\u5247\u518d\u6b21\u4f7f\u7528\u8a13\u7df4\u8a9e\u6599\u505a\u70ba\u8a55\u4f30\u8a9e\u6599\uff0c\u8a2d\u5b9a\u9580\u6abb\u503c\u70ba 0.5 \u627e\u5c0b\u6e96\u78ba\u7387\u6700\u5927\u503c\uff0c\u6700 \u5f8c\u5c07\u7372\u5f97\u7684\u7279\u5fb5\u7d44\u5408\u9032\u884c\u6e2c\u8a66\u8a9e\u6599\u7684\u5be6\u9a57\u8a55\u4f30\u3002\u8868\u516d\u8207\u8868\u4e03\u5177\u6709\u7de8\u865f\u5f62\u5f0f\u7684\u4e2d\u82f1\u6587\u7279\u5fb5 \u4f73\u7684\u7279\u5fb5\u7d44\u5408\u9032\u884c\u63a8\u8ad6\u95dc\u4fc2\u7684\u5206\u985e\u7d50\u679c\uff0cM1 \u81f3 M3 \u53ef\u53c3\u7167\u8868\u516b\uff0c\u70ba\u7e41\u9ad4\u4e2d\u6587\u7684\u7279\u5fb5\u7d44\u5408\uff1b \u4e0d\u5982\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u4f86\u7684\u6709\u6548\u679c\u3002 \u6211\u5011\u5e0c\u671b\u5148\u900f\u904e\u4eba\u5de5\u904e\u6ffe\u7684\u5f62\u5f0f\uff0c\u9032\u884c\u90e8\u5206\u5be6\u9a57\u4f86\u9a57\u8b49\u9019\u6a23\u7684\u5de5\u4f5c\u5177\u6709\u4e00\u5b9a\u6210\u6548\uff0c\u63a5 M4 \u81f3 M6 \u53ef\u53c3\u7167\u8868\u4e5d\u70ba MSR \u82f1\u6587\u8a9e\u6599\u7684\u7279\u5fb5\u7d44\u5408\uff1b\u5f9e\u7e41\u9ad4\u4e2d\u6587\u8207 MSR \u5169\u7a2e\u8a9e\u6599\u7684\u7d50\u679c \u8457\u518d\u767c\u5c55\u76f8\u95dc\u7684\u81ea\u52d5\u5316\u6280\u8853\u8207\u65b9\u6cd5\uff0c\u5982\u5224\u5b9a\u77ed\u6587\u8207\u554f\u984c\u7684\u95dc\u9023\u6027\u3001\u4e2d\u5fc3\u8a5e\u5f59\u6216\u95dc\u9375\u5b57\u641c\u5c0b\uff0c \u89c0\u5bdf\uff0c\u4f7f\u7528\u7dda\u6027\u56de\u6b78\u6f14\u7b97\u6cd5\u9032\u884c\u63a8\u8ad6\u95dc\u4fc2\u5206\u985e\u6642\uff0c\u5e73\u5747\u4e0a\u90fd\u80fd\u7372\u5f97\u8f03\u4f73\u7684\u6e96\u78ba\u7387\uff0c\u5373\u4f7f\u5728 \u85c9\u4ee5\u63d0\u6607\u63a8\u8ad6\u7cfb\u7d71\u5728\u95b1\u8b80\u6e2c\u9a57\u4e2d\u7684\u6548\u80fd\u3002 SVM \u53ca J48 \u5206\u985e\u6a21\u578b\u80fd\u7372\u5f97\u6700\u9ad8\u6e96\u78ba\u7387\u7684\u7279\u5fb5\u7d44\u5408\uff0c\u900f\u904e\u7dda\u6027\u56de\u6b78\u6f14\u7b97\u6cd5\u7684\u4f7f\u7528\uff0c\u76f8\u8f03\u65bc \u4e2d\u570b 0 0 0 1 0 1 ROOT 0 0 0 0 0 \u96c6\u3002 \u5169\u7a2e\u6f14\u7b97\u6cd5\u7684\u6700\u9ad8\u6e96\u78ba\u7387\u50c5\u6709\u4e9b\u5fae\u7684\u4e0b\u8dcc\uff0c\u4ecd\u80fd\u9054\u5230\u4e0d\u932f\u7684\u6548\u679c 0 \u5716\u516b\u3001\u7d93\u904e\u4e94\u6b65\u7684\u8a5e\u5f59\u4f9d\u8cf4\u95dc\u4fc2\uff0c \u8868\u516d\u3001\u4e2d\u6587\u7279\u5fb5\u96c6\u7de8\u865f\u8868 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 6.2 \u7279\u5fb5\u9078\u53d6 \u63a5\u8457\u5c55\u958b\u4e09\u7a2e\u5206\u985e\u6f14\u7b97\u6cd5\u5728\u5404\u7a2e\u8a9e\u6599\u7684\u7279\u5fb5\u7d44\u5408\u641c\u5c0b\u3002\u6211\u5011\u7531\u4e09\u7a2e\u5206\u985e\u6f14\u7b97\u6cd5\u7684\u7d50\u679c\u4e2d\u641c \u5c0b\u5404\u7a2e\u8a9e\u6599\u4e2d\u6e96\u78ba\u7387\u8f03\u4f73\u7684\u7279\u5fb5\u7d44\u5408\uff0c\u8868\u516b\u8868\u4e5d\u986f\u793a\u5728\u4e0d\u540c\u8a9e\u6599\u8207\u5206\u985e\u6f14\u7b97\u6cd5\u4e2d\u7372\u5f97\u8f03\u4f73 \u679c\u3002 \u8868\u516b\u3001RITE-2 \u7e41\u9ad4\u4e2d\u6587\u8a13\u7df4\u8a9e\u6599\u7279\u5fb5\u7d44\u5408\u641c\u5c0b SVM \u7de8\u865f \u7279\u5fb5\u7d44\u5408\u7de8\u865f Accuracy M1 F1, F2, F3, F4, F5, F6, F8, F9, F12, F14 71.99% J48 M2 F1, F2, F3, F5, F7, F8, F12, F13, F15 71.78% \u7dda\u6027\u56de\u6b78 M3 F1,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,F14,F15,F16,F17 72.98% \u8868\u4e5d\u3001MSR \u8a13\u7df4\u8a9e\u6599\u7279\u5fb5\u7d44\u5408\u641c\u5c0b SVM \u7de8\u865f \u7279\u5fb5\u7d44\u5408\u7de8\u865f M4 E1, E6, E9, E12 70.93% J48 M5 E1, E6, E8, E10, E12, E14 71.82% \u7dda\u6027\u56de\u6b78 M6 E1,E2,E3,E4,E5,E6,E7,E9,E10,E11,E12,E13,E14 72.45% \u5716\u5341\u4e00\u3001\u76f4\u8ff0\u53e5\u8f49\u63db\u7bc4\u4f8b \u5c07\u554f\u53e5\u53ca\u9078\u9805\u901a\u904e\u4eba\u5de5\u7684\u65b9\u5f0f\u8f49\u63db\u6210\u56db\u500b\u76f4\u8ff0 \u53e5\uff0c\u518d\u63a1\u7528\u63a8\u8ad6\u7cfb\u7d71\u9032\u884c\u77ed\u6587\u8207\u56db\u500b\u76f4\u8ff0\u53e5\u7684\u63a8 \u8ad6\u95dc\u4fc2\u5224\u5b9a\uff0c\u5982\u5716\u5341\u4e00\u70ba\u4e2d\u6587\u95b1\u8b80\u6e2c\u9a57\u76f4\u8ff0\u53e5\u8f49 \u63db\u7684\u4f8b\u5b50\u3002 \u51fa\u7684\u65b9\u6cd5\u3002 \u5716\u5341\u4e09\u3001\u82f1\u6587\u95b1\u8b80\u6e2c\u9a57\u6e96\u78ba\u7387 -\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b \u5f62\u5f0f\u8207\u6e2c\u9a57\u8a2d\u8a08\uff0c\u9700\u8981\u66f4\u591a\u7684\u8a9e\u6599\u4f86\u9a57\u8b49\u6211\u5011\u63d0 \u63a8\u8ad6\u95dc\u4fc2\u5224\u65b7\uff0c\u4ee5\u6578\u503c\u6700\u9ad8\u7684\u9078\u9805\u505a\u70ba\u7b54\u6848\u3002 \u4e26\u7121\u6cd5\u6709\u6548\u986f\u793a\u771f\u6b63\u5728\u5c0f\u5b78\u4e00\u5e74\u7d1a\u95b1\u8b80\u6e2c\u9a57\u7684 \u8b80\u7406\u89e3\u7684\u90e8\u5206\u518d\u627e\u51fa\u6709\u7528\u7684\u8a9e\u8a00\u7279\u5fb5\u85c9\u4ee5\u63d0\u5347\u7b54\u984c\u7684\u6e96\u78ba\u7387\u3002 \u7387\u503c\uff0c\u4ee5\u9078\u9805\u4e2d\u6a5f\u7387\u503c\u6700\u9ad8\u7684\u505a\u70ba\u7b54\u6848\uff0c\u6b64\u5916\u6211\u5011\u5728\u4e2d\u6587\u7684\u90e8\u5206\u4e5f\u52a0\u5165\u7dda\u6027\u56de\u6b78\u6f14\u7b97\u6cd5\u7684 \u8a9e\u6599\u7684\u6578\u91cf\u975e\u5e38\u7a00\u5c11\uff0c\u56e0\u6b64\u6211\u5011\u8a8d\u70ba\u9019\u6a23\u7684\u6548\u679c \u7387\u4e0a\u5347\u5341\u5e7e\u500b\u767e\u5206\u9ede\uff0c\u6211\u5011\u5e0c\u671b\u672a\u4f86\u80fd\u5920\u81ea\u52d5\u5316\u7684\u5b8c\u6210\u95b1\u8b80\u6e2c\u9a57\u524d\u8655\u7406\u7684\u90e8\u5206\uff0c\u4e26\u91dd\u5c0d\u95b1 \u9ad8\u8005\u70ba\u8a72\u554f\u984c\u7684\u6700\u4f73\u7b54\u6848\uff1b\u800c\u6a5f\u5668\u5b78\u7fd2\u5206\u985e\u6a21\u578b\u5247\u7531 SVM \u6f14\u7b97\u6cd5\uff0c\u8f38\u51fa\u5176\u63a8\u8ad6\u95dc\u4fc2\u7684\u6a5f \u6211\u5011\u8a8d\u70ba\u548c\u8a9e\u6599\u7684\u6578\u91cf\u5177\u6709\u76f8\u7576\u7684\u95dc\u4fc2\uff0c\u4e00\u5e74\u7d1a \u76f4\u8ff0\u53e5\u548c\u7be9\u9078\u76f8\u95dc\u53e5\u7684\u90e8\u5206\u76ee\u524d\u4ecd\u662f\u4ee5\u4eba\u5de5\u8655\u7406\uff0c\u5176\u4e2d\u5728\u7be9\u9078\u76f8\u95dc\u53e5\u7684\u90e8\u5206\u5c31\u8db3\u4ee5\u8b93\u6e96\u78ba \u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u4e2d\uff0c\u6211\u5011\u4ee5\u5404\u500b\u9078\u9805\u901a\u904e\u8a08\u7b97\u5f8c\u7684\u63a8\u8ad6\u5206\u6578\u70ba\u8a55\u91cf\u6307\u6a19\uff0c\u9078\u53d6\u5176\u4e2d\u5206\u6578\u6700 \u6b65\u3002\u800c\u4e00\u5e74\u7d1a\u8a9e\u6599\u4e26\u672a\u5728\u77ed\u6587\u904e\u6ffe\u4e2d\u767c\u63ee\u529f\u6548\uff0c \u95dc\u4fc2\u7684\u6e96\u78ba\u7387\uff0c\u56e0\u70ba\u67d0\u4e9b\u7279\u5fb5\u53ef\u80fd\u53ea\u5c0d\u90e8\u5206\u7684\u8a9e\u6599\u6709\u6548\uff0c\u800c\u5728\u95b1\u8b80\u7406\u89e3\u7684\u90e8\u5206\uff0c\u5728\u554f\u984c\u8f49 \u7d71-\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u8207\u6a5f\u5668\u5b78\u7fd2\u5206\u985e\u6a21\u578b\uff0c\u5224\u65b7\u95b1\u8b80\u6e2c\u9a57\u4e2d\u6700\u4f73\u7684\u56de\u7b54\u9078\u9805\u3002\u5728\u7d93\u9a57 \u9810\u671f\u6709\u8f03\u591a\u7684\u9032\u6b65\u5e45\u5ea6\uff0c\u50c5\u5728\u56db\u5e74\u7d1a\u6709\u4e9b\u5fae\u7684\u9032 \u932f\u7684\u6548\u679c\u3002\u82f1\u6587\u7684\u7d50\u679c\u5247\u4ecd\u6709\u7684\u9032\u6b65\u7a7a\u9593\uff0c\u6211\u5011\u8a8d\u70ba\u8a9e\u6599\u7684\u4e0d\u540c\u8a9e\u8a00\u7279\u6027\uff0c\u8db3\u4ee5\u5f71\u97ff\u63a8\u8ad6 \u6211\u5011\u5c07\u8a9e\u6599\u5206\u70ba\u4e09\u7a2e\u985e\u5225\uff0c\u539f\u59cb\u8a9e\u6599\u3001\u554f\u53e5\u91cd\u7d44\u53ca\u77ed\u6587\u904e\u6ffe\uff0c\u4e26\u5206\u5225\u63a1\u7528\u5169\u7a2e\u63a8\u8ad6\u7cfb \u7b54\u95b1\u8b80\u6e2c\u9a57\u7684\u554f\u984c\uff1b\u800c\u76f4\u8ff0\u53e5\u8f49\u63db\u5247\u8f03\u4e0d\u5982\u6211\u5011 \u6211\u5011\u63d0\u51fa\u7684\u63a8\u8ad6\u7cfb\u7d71\u8207 NTCIR-9\u3001NTCIR-10 \u7af6\u8cfd\u6210\u7e3e\u76f8\u6bd4\uff0c\u5728\u4e2d\u6587\u8a9e\u6599\u4e2d\u4ecd\u5c6c\u65bc\u4e0d Accuracy 7 \u95b1\u8b80\u7406\u89e3\u7684\u5be6\u9a57\u6e96\u5099 \u672c\u7bc0\u5c07\u4ecb\u7d39\u6587\u5b57\u860a\u6db5\u5728\u95b1\u8b80\u6e2c\u9a57\u4e2d\u7684\u61c9\u7528\uff0c\u85c9\u7531\u524d\u9762\u7bc0\u6b21\u5224\u5225\u6587\u5b57\u860a\u6db5\u95dc\u4fc2\u6240\u5efa\u69cb\u7684\u6a21 7.1 \u554f\u984c\u8f49\u76f4\u8ff0\u53e5 \u5728\u524d\u9762\u5be6\u9a57\u6240\u4f7f\u7528\u7684\u63a8\u8ad6\u7cfb\u7d71\u4e2d\uff0c\u6240\u6709\u7684\u8a9e\u6599\u90fd \u662f\u4ee5\u5169\u500b\u76f4\u8ff0\u53e5\u9032\u884c\u63a8\u8ad6\u95dc\u4fc2\u7684\u5224\u65b7\uff0c\u800c\u5728\u95b1\u8b80 \u6e2c\u9a57\u4e2d\uff0c\u70ba\u4e86\u76f4\u63a5\u63d0\u5347\u63a8\u8ad6\u95dc\u4fc2\u7684\u6548\u679c\uff0c\u6211\u5011\u4e5f 8.2 \u5be6\u9a57\u8a2d\u8a08\u3001\u8a9e\u6599\u7684\u4f7f\u7528\u65b9\u5f0f \u5728\u95b1\u8b80\u6e2c\u9a57\u7684\u5be6\u9a57\u4e2d\uff0c\u6211\u5011\u63a1\u7528\u524d\u9762\u5169\u7a2e\u4e0d\u540c\u7684\u63a8 \u8ad6\u7cfb\u7d71\u9032\u884c\u6548\u80fd\u8a55\u4f30\uff0c\u4e26\u5c07\u8a9e\u6599\u63a1\u7528\u4e0d\u540c\u7684\u65b9\u5f0f\u9032 \u884c\u4eba\u5de5\u8f49\u63db\u6216\u904e\u6ffe\uff0c\u4ee5\u5617\u8a66\u6b64\u65b9\u6cd5\u5728\u95b1\u8b80\u6e2c\u9a57\u4e2d\u7684 \u6548\u679c\u3002 \u8a9e\u8a00 E \u03b1 \u03b2 \u03b3 \u03bb \u4e2d\u6587 \u82f1\u6587 0.47 0.0 0.26 1.3 0.6 \u5716\u5341\u4e8c\u3001\u4e2d\u6587\u95b1\u8b80\u6e2c\u9a57\u6e96\u78ba\u7387-\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b \u7684\u8a9e\u6599\u5916\uff0c\u90fd\u986f\u793a\u4e86\u6b64\u65b9\u6cd5\u6709\u52a9\u65bc\u63a8\u8ad6\u7cfb\u7d71\u6b63\u78ba\u56de \u7684\u63a8\u8ad6\u7cfb\u7d71\u4f5c\u95b1\u8b80\u6e2c\u9a57\u7684\u81ea\u52d5\u7b54\u984c\uff0c\u5728\u56db\u9078\u4e00\u7684\u95b1\u8b80\u6e2c\u9a57\u4e2d\u4e5f\u53ef\u4ee5\u7372\u5f97\u7d04 50%\u7684\u6e96\u78ba\u7387\u3002 1.2 \u6027\u56de\u6b78\u7684\u65b9\u6cd5\uff0c\u4e2d\u6587\u548c\u82f1\u6587\u8a9e\u6599\u7684\u6e96\u78ba\u7387\u5206\u5225\u53ef\u9054 72.98%\u548c 72.54%\uff1b\u800c\u57fa\u65bc\u4e0a\u8ff0\u5efa\u69cb\u597d \u6e2c\u9a57\u4e2d\u63a8\u8ad6\u95dc\u4fc2\u7684\u5224\u65b7\u662f\u8f03\u6709\u5e6b\u52a9\u7684\uff0c\u9664\u4e86\u4e00\u5e74\u7d1a 0.57 0.28 0.24 2.0 0.85 2.0 \u5f0f\u6a21\u578b\u7684\u65b9\u6cd5\u4e0a\uff0c\u4e2d\u6587\u548c\u82f1\u6587\u8a9e\u6599\u7684\u6e96\u78ba\u7387\u5206\u5225\u53ef\u9054 68.56%\u548c 72.23%\uff1b\u63a1\u7528\u6a5f\u5668\u5b78\u7fd2\u7dda \u6cd5\u5f8c\uff0c\u7531\u4e2d\u6587\u7684\u7d50\u679c\u53ef\u4ee5\u767c\u73fe\uff0c\u77ed\u6587\u904e\u6ffe\u5c0d\u65bc\u95b1\u8b80 \u03b4 \u80fd\u8a55\u4f30\uff0c\u6700\u5f8c\u4e26\u5229\u7528\u524d\u9762\u5efa\u69cb\u597d\u7684\u63a8\u8ad6\u7cfb\u7d71\u61c9\u7528\u65bc\u95b1\u8b80\u6e2c\u9a57\u7684\u81ea\u52d5\u7b54\u984c\u4e0a\u9762\uff0c\u5728\u7d93\u9a57\u6cd5\u5247 \u4e2d\uff0c\u4ecd\u53ef\u4ee5\u7372\u5f97\u7d04 37%\u7684\u6548\u679c\uff0c\u800c\u5728\u5957\u7528\u9069\u7576\u7684\u65b9 \u8868\u5341\u4e00\u3001\u95b1\u8b80\u6e2c\u9a57\u5be6\u9a57\u53c3\u6578\u8a2d\u5b9a \u8b80\u6e2c\u9a57\u4e2d\uff0c\u6211\u5011\u7684\u63a8\u8ad6\u7cfb\u7d71\u5373\u4f7f\u5728\u9ad8\u5e74\u7d1a\u7684\u8a9e\u6599 \u8a9e\u6599\u7684\u6587\u5b57\u860a\u6db5\u95dc\u4fc2\uff0c\u4e5f\u63a1\u7528\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u6cd5\u900f\u904e SVM\u3001J48 \u53ca\u7dda\u6027\u56de\u6b78\u7b49\u6f14\u7b97\u6cd5\u9032\u884c\u6548 \u5b57\u860a\u6db5\u5728\u95b1\u8b80\u6e2c\u9a57\u4e2d\u7684\u61c9\u7528\uff0c\u672a\u4f86\u53ef\u4ee5\u5c07\u6b64\u61c9\u7528\u63a8\u5ee3\u81f3\u5be6\u52d9\u7684\u6559\u80b2\u8cc7\u8a0a\u7cfb\u7d71\u3002 \u7684\u6548\u80fd\u5716\u8868\uff0c\u5f9e\u5404\u5e74\u7d1a\u7684\u7d50\u679c\u986f\u793a\uff0c\u5728\u56db\u9078\u4e00\u7684\u95b1 \u672c\u7814\u7a76\u5229\u7528\u6703\u5f71\u97ff\u6587\u5b57\u860a\u6db5\u7684\u7279\u5fb5\u8cc7\u8a0a\uff0c\u5efa\u69cb\u7d93\u9a57\u6cd5\u5247\u5f0f\u6a21\u578b\u7528\u4ee5\u5224\u5225 RITE\u3001RTE\u3001MSR \u578b\uff0c\u4f5c\u70ba\u63a8\u8ad6\u95b1\u8b80\u6e2c\u9a57\u7b54\u6848\u7684\u4f9d\u64da\uff1b\u6211\u5011\u5728 7.1 \u8207 7.2 \u5c0f\u7bc0\u4ecb\u7d39\u5be6\u9a57\u7684\u524d\u8655\u7406\u3002\u5e0c\u671b\u900f\u904e\u6587 \u5716\u4e5d\u3001\u5206\u985e\u6a21\u578b\u6e96\u78ba\u7387\u6bd4\u8f03\uff1aRITE-2 \u7e41\u9ad4\u4e2d\u6587\u8a13\u7df4\u8a9e\u6599 \u5716\u5341\u3001\u5206\u985e\u6a21\u578b\u6e96\u78ba\u7387\u6bd4\u8f03\uff1aMSR \u8a13\u7df4\u8a9e\u6599 J48 69.46% 71.78% 66.34% \u7dda\u6027\u56de\u6b78 71.01% 71.23% 72.98% J48 70.80% 71.82% 69.89% \u7dda\u6027\u56de\u6b78 72.06% 71.57% 72.45% 8.1 \u5be6\u9a57\u8a9e\u6599\u7684\u4f86\u6e90\u3001\u6578\u91cf \u6211\u5011\u8490\u96c6\u4e2d\u82f1\u6587\u7684\u95b1\u8b80\u6e2c\u9a57\u8a9e\u6599\u96c6\uff0c\u4e2d\u6587\u7684\u90e8\u5206\u4ee5\u570b\u5c0f\u5b69\u7ae5\u95b1\u8b80\u6e2c\u9a57\u70ba\u4e3b\uff0c\u82f1\u6587\u5247\u8490 \u96c6\u570b\u4e2d\u7684\u95b1\u8b80\u6e2c\u9a57\uff0c\u4e26\u4e14\u6211\u5011\u4f9d\u7167\u5e74\u7d1a\u5c07\u8a9e\u6599\u5206\u985e\uff0c\u76f8\u95dc\u7684\u7d71\u8a08\u5982\u8868\u5341\uff0c\u8a9e\u6599\u5167\u5bb9\u90fd\u4ee5\u4e00 \u8a9e\u6599\u5c6c\u65bc\u4e09\u500b\u9078\u9805\uff0c\u4e26\u4e14\u6bcf\u4e00\u9053\u984c\u76ee\u7684\u7b54\u6848\u90fd\u70ba\u55ae\u4e00\u9078\u9805\u3002 \u5716\u5341\u4e8c\u8207\u5716\u5341\u4e09\u5206\u5225\u70ba\u4e2d\u6587\u53ca\u82f1\u6587\u95b1\u8b80\u6e2c\u9a57 9 \u7d50\u8ad6 \u7bc7\u77ed\u6587\u8207\u6578\u5247\u984c\u76ee\u7d44\u6210\uff0c\u6bcf\u4e00\u9053\u984c\u76ee\u90fd\u5305\u542b\u4e00\u500b\u554f\u984c\u8207\u56db\u500b\u9078\u9805\uff0c\u50c5\u6709\u570b\u5c0f\u4e09\u5e74\u7d1a\u7684\u4e2d\u6587 \u570b\u5c0f\u4e94\u5e74\u7d1a 44 \u570b\u5c0f\u516d\u5e74\u7d1a \u65b7\u3002 \u5728\u56db\u9078\u4e00\u500b\u95b1\u8b80\u6e2c\u9a57\u4e2d\u53ef\u4ee5\u7372\u5f97 50%\u5de6\u53f3\u7684\u6e96\u78ba\u7387\u3002 \u6211\u5011\u4f9d\u5e8f\u5c0d\u539f\u59cb\u8a9e\u6599\u3001\u76f4\u8ff0\u53e5\u8f49\u63db\u8207\u77ed\u6587\u904e\u6ffe\u7684\u4e09\u7a2e\u5f62\u5f0f\u8a9e\u6599\u9032\u884c\u95b1\u8b80\u6e2c\u9a57\u7684\u63a8\u8ad6\u95dc\u4fc2\u5224 \u6e96\u78ba\u7387\u5728\u4e0d\u540c\u5e74\u7d1a\u8a9e\u6599\u4e2d\u90fd\u80fd\u7372\u5f97\u7d04\u5341\u4e94\u5230\u4e8c\u5341\u500b\u767e\u5206\u9ede\u7684\u9032\u6b65\uff0c\u662f\u500b\u76f8\u7576\u4e0d\u932f\u7684\u6548\u80fd\uff0c \u9996\u5148\u63a1\u7528\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u5c0d\u4e2d\u82f1\u6587\u95b1\u8b80\u6e2c\u9a57\u9032\u884c\u5be6\u9a57\uff0c\u6240\u4f7f\u7528\u7684\u53c3\u6578\u5982\u4e0a\u4e00\u7bc0\u6240\u793a\uff0c \u65b9\u6cd5\u5c0d\u95b1\u8b80\u6e2c\u9a57\u6587\u672c\u524d\u8655\u7406\uff0c\u5f9e\u5716\u5341\u516d\u7684\u7d50\u679c\u53ef\u4ee5\u767c\u73fe\u7d93\u7531\u77ed\u6587\u904e\u6ffe\u5f8c\uff0c\u95b1\u8b80\u6e2c\u9a57\u7684\u56de\u7b54 86 8.3 \u5be6\u9a57\u7d50\u679c \u800c\u82f1\u6587\u95b1\u8b80\u6e2c\u9a57\u4e2d\uff0c\u6211\u5011\u50c5\u4f7f\u7528 SVM \u6f14\u7b97\u6cd5\u9032\u884c\u90e8\u5206\u7684\u5be6\u9a57\uff0c\u4e26\u50c5\u63a1\u7528\u77ed\u6587\u904e\u6ffe\u7684 \u6e96\u78ba\u7387\u7684\u7279\u5fb5\u7d44\u5408\uff0c\u6211\u5011\u5c07\u900f\u904e\u9019\u4e9b\u7279\u5fb5\u7d44\u5408\u6bd4\u8f03\u4e09\u7a2e\u5206\u985e\u6f14\u7b97\u6cd5\u5728\u63a8\u8ad6\u95dc\u4fc2\u5224\u65b7\u4e0a\u7684\u6548 M1 M2 M3 SVM 71.99% 69.87% 70.40% 60.00% 65.00% 70.00% 75.00% M4 M5 M6 SVM 70.93% 68.38% 68.03% 65.00% 70.00% 8 \u95b1\u8b80\u6e2c\u9a57\u7b54\u984c\u5be6\u6e2c \u8868\u5341\u3001\u95b1\u8b80\u6e2c\u9a57\u8a9e\u6599\u96c6\u7d71\u8a08 75.00% \u4e2d\u6587\u95b1\u8b80\u6e2c\u9a57 \u82f1\u6587\u95b1\u8b80\u6e2c\u9a57 \u8868\u5341\u56db\u3001\u82f1\u6587\u95b1\u8b80\u6e2c\u9a57\u7279\u5fb5\u96c6 -SVM \u6211\u5011\u900f\u904e\u4e0a\u8ff0\u6240\u5efa\u69cb\u7684\u7d93\u9a57\u6cd5\u5247\u5f0f\u63a8\u8ad6\u6a21\u578b\u548c \u5e74\u7d1a \u6578\u91cf \u6578\u91cf \u6a5f\u5668\u5b78\u7fd2\u6a21\u578b\u5206\u5225\u5c0d\u4e2d\u82f1\u6587\u95b1\u8b80\u6e2c\u9a57\u9032\u884c\u7b54\u984c \u570b\u5c0f\u4e00\u5e74\u7d1a 21 \u570b\u4e2d\u4e00\u5e74\u7d1a 260 60.00% \u6548\u80fd\u7684\u8a55\u4f30\uff0c\u4e26\u4ecb\u7d39\u8a9e\u6599\u4f86\u6e90\u3001\u5be6\u9a57\u8a2d\u8a08\u53ca\u5448 \u73fe\u5be6\u9a57\u7d50\u679c\u3002 \u570b\u5c0f\u4e09\u5e74\u7d1a 39 \u570b\u4e2d\u4e8c\u5e74\u7d1a 468 \u570b\u5c0f\u56db\u5e74\u7d1a 40 498 \u570b\u4e2d\u4e09\u5e74\u7d1a \u5716\u5341\u56db\u3001\u4e2d\u6587\u95b1\u8b80\u6e2c\u9a57\u6e96\u78ba\u7387-SVM \u5716\u5341\u4e94\u3001\u4e2d\u6587\u95b1\u8b80\u6e2c\u9a57\u6e96\u78ba\u7387-\u7dda\u6027\u56de\u6b78 \u5716\u5341\u516d\u3001\u82f1\u6587\u95b1\u8b80\u6e2c\u9a57\u6e96\u78ba\u7387-SVM</td></tr></table>"
}
}
}
}