|
{ |
|
"paper_id": "O13-1015", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T08:03:31.274456Z" |
|
}, |
|
"title": "Employing linear prediction coding in feature time sequences for robust speech recognition in noisy environments", |
|
"authors": [ |
|
{ |
|
"first": "Hao-Teng", |
|
"middle": [], |
|
"last": "\u8303\u9865\u9a30", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Wen-Yu", |
|
"middle": [], |
|
"last": "Fan", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Jeih-Weih", |
|
"middle": [], |
|
"last": "Tseng", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Hung", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "jwhung@ncnu.edu.tw" |
|
} |
|
], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "", |
|
"pdf_parse": { |
|
"paper_id": "O13-1015", |
|
"_pdf_hash": "", |
|
"abstract": [], |
|
"body_text": [ |
|
{ |
|
"text": "EQUATION", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [ |
|
{ |
|
"start": 0, |
|
"end": 8, |
|
"text": "EQUATION", |
|
"ref_id": "EQREF", |
|
"raw_str": "= = -+ \u00e5 ,", |
|
"eq_num": "(1)" |
|
} |
|
], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "EQUATION", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [ |
|
{ |
|
"start": 0, |
|
"end": 8, |
|
"text": "EQUATION", |
|
"ref_id": "EQREF", |
|
"raw_str": "\u9032\u800c\u5c07\u4e0a\u5f0f\u7684 [ ] x n \u7d93\u904e LPC \u5206\u6790\u6240\u5f97\u5230\u7684\u65b0\u7279\u5fb5\u6642\u9593\u5e8f\uf99c\uff0c\u8868\u793a\u70ba\u02c6[ ] x n \uff0c\u4f5c\u6cd5\u662f\u5148\u5c07\u539f \u59cb\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\uf99c\u4ee5 [ ] x n \u4f5c P \u968e\u4e4b\u7dda\u6027\u4f30\u6e2c\uff0c\u6c42\u53d6\u5f0f(1)\u4e4b\u6700\u4f73\u4e4b\u7dda\u6027\u4f30\u6e2c\u4fc2\uf969 { } ,1 k a k P \u00a3 \u00a3 \u3002\u4e4b\u5f8c\uff0c\u7d93\u7531\u4e0b\u5f0f\u6c42\u5f97\u65b0\u7684\u7279\u5fb5\u6642\u9593\u5e8f\uf99c\uff1a = = - \u00e5 1 [ ] [ ] P k k x n a x n k ,", |
|
"eq_num": "(2)" |
|
} |
|
], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing(ROCLING 2013)", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
} |
|
], |
|
"back_matter": [], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "Multiband and adaptation approaches to robust speech recognition", |
|
"authors": [ |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Tiberewala", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Hermansky", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1997, |
|
"venue": "Proceedings of European Conference on Speech Communication and Technology", |
|
"volume": "25", |
|
"issue": "", |
|
"pages": "2619--2622", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "S. Tiberewala and H. Hermansky, \"Multiband and adaptation approaches to robust speech recognition,\" in Proceedings of European Conference on Speech Communication and Technology, 25(1-3), pp. 2619-2622, 1997.", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "Quantile based histogram equalization for noise robust large vocabulary speech recognition", |
|
"authors": [ |
|
{ |
|
"first": "F", |
|
"middle": [], |
|
"last": "Hilger", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Ney", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "IEEE Transactions on Audio, Speech and Language Processing", |
|
"volume": "14", |
|
"issue": "3", |
|
"pages": "845--854", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "F. Hilger and H. Ney, \"Quantile based histogram equalization for noise robust large vocabulary speech recognition,\" IEEE Transactions on Audio, Speech and Language Processing, 14(3), pp. 845-854, 2006.", |
|
"links": null |
|
}, |
|
"BIBREF2": { |
|
"ref_id": "b2", |
|
"title": "MVA processing of speech features", |
|
"authors": [ |
|
{ |
|
"first": "C", |
|
"middle": [ |
|
"P" |
|
], |
|
"last": "Chen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Bilmes", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2007, |
|
"venue": "IEEE Transactions on Audio Speech and Language Processing", |
|
"volume": "15", |
|
"issue": "1", |
|
"pages": "257--270", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "C. P. Chen and J. Bilmes, \"MVA processing of speech features,\" IEEE Transactions on Audio Speech and Language Processing, 15(1), pp. 257-270, 2007.", |
|
"links": null |
|
}, |
|
"BIBREF3": { |
|
"ref_id": "b3", |
|
"title": "Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains", |
|
"authors": [ |
|
{ |
|
"first": "J", |
|
"middle": [ |
|
"L" |
|
], |
|
"last": "Gauiain", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "C", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Lee", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1994, |
|
"venue": "IEEE Transactions on Speech and Audio Processing", |
|
"volume": "2", |
|
"issue": "2", |
|
"pages": "291--298", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "J. L. Gauiain and C. H. Lee, \"Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains,\" IEEE Transactions on Speech and Audio Processing, 2(2), pp. 291-298, 1994.", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "New approaches for domain transformation and parameter combination for improved accuracy in parallel model combination techniques", |
|
"authors": [ |
|
{ |
|
"first": "J", |
|
"middle": [ |
|
"W" |
|
], |
|
"last": "Hung", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [ |
|
"L" |
|
], |
|
"last": "Shen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "L", |
|
"middle": [ |
|
"S" |
|
], |
|
"last": "Lee", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2001, |
|
"venue": "IEEE Transactions on Speech and Audio Processing", |
|
"volume": "9", |
|
"issue": "8", |
|
"pages": "842--855", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "J. W. Hung, J. L. Shen and L. S. Lee, \"New approaches for domain transformation and parameter combination for improved accuracy in parallel model combination techniques,\" IEEE Transactions on Speech and Audio Processing, 9(8), pp. 842-855, 2001", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "A vector Taylor series approach for environment-independent speech recognition", |
|
"authors": [ |
|
{ |
|
"first": "P", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Moreno", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "B", |
|
"middle": [], |
|
"last": "Raj", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "R", |
|
"middle": [ |
|
"M" |
|
], |
|
"last": "Stern", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1996, |
|
"venue": "Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "733--736", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "P. J. Moreno, B. Raj, and R. M. Stern, \"A vector Taylor series approach for environment-independent speech recognition,\" in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing, 2, pp. 733-736, 1996.", |
|
"links": null |
|
}, |
|
"BIBREF7": { |
|
"ref_id": "b7", |
|
"title": "The AURORA experimental framework for the performance evaluations of speech recognition systems under noisy conditions", |
|
"authors": [ |
|
{ |
|
"first": "H", |
|
"middle": [ |
|
"G" |
|
], |
|
"last": "Hirsch", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Pearce", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2000, |
|
"venue": "Proceedings of the 2000 Automatic Speech Recognition Challenges for the new Millenium", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "181--188", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "H. G. Hirsch and D. Pearce, \"The AURORA experimental framework for the performance evaluations of speech recognition systems under noisy conditions,\" in Proceedings of the 2000 Automatic Speech Recognition Challenges for the new Millenium, pp. 181-188, 2000.", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"FIGREF0": { |
|
"uris": null, |
|
"num": null, |
|
"text": "", |
|
"type_str": "figure" |
|
}, |
|
"TABREF1": { |
|
"html": null, |
|
"text": "MVA\uff0c\u9019\uf9e8\u6211\u5011\u5c07 LPCF \u6cd5\u4f5c\u7528\u65bc\u7d93 CMVN\u3001CHN \u6216 MVA \u6cd5\u9810\u8655\uf9e4\u5f8c\u7684 MFCC \u7279\u5fb5\u4e0a\uff0c\u89c0\u5bdf LPCF \u6cd5\u662f\u5426\u80fd\u5920\u4f7f\u5b83\u5011\u7684\u8fa8\uf9fc\uf961\u9032\u4e00\u6b65\u63d0\u5347\uff0cLPCF \u6cd5\u80fd\u4f7f CMVN\u3001 CHN \u8207 MVA \u9810\u8655\uf9e4\u4e4b\u7279\u5fb5\u5206\u5225\u63d0\u5347\uf9ba 3.38%\u30012.2%\u8207 0.87%\uff0c\u6b64\u4ee3\u8868\uf9ba LPCF \u80fd\u8207\u9019\u4e9b\u8457 \u540d\u7684\u6642\u5e8f\u57df\u5f37\u5065\u6027\u6280\u8853\u6709\uf97c\u597d\u7684\u52a0\u6210\u6027\u3002 \u95dc\u9375\u8a5e\uff1a\u7dda\u6027\u4f30\u6e2c\u7de8\u78bc\u3001\u7279\u5fb5\u6642\u9593\u5e8f\uf99c\u3001\u96dc\u8a0a\u5f37\u5065\u6027\u3002 Keywords: noise robustness, speech recognition, linear predictive coding, temporal filtering.", |
|
"num": null, |
|
"type_str": "table", |
|
"content": "<table><tr><td>\u90e8\u4efd\u7121\u6cd5\u7dda\u6027\u4f30\u6e2c\u7684\u8fd1\u4f3c\u96dc\u8a0a\u6210\u4efd\u6216\u9031\u671f\u6027\u8a0a\u865f\u6210\u4efd\uff0c\u7136\u800c\u4e00\u822c\u5f9e\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\uf99c\u7684</td></tr><tr><td>\u8ecc\u8de1\uff0c\u5f88\u5c11\u51fa\u73fe\u9031\u671f\u6027\u7684\u73fe\u8c61\uff0c\u56e0\u6b64\u6211\u5011\u53ef\u8f03\u78ba\u5b9a\u7684\u662f\uff0c\u85c9\u7531 LPC \u5c0d\u65bc\u539f\u59cb\u7279\u5fb5\u5e8f\uf99c [ ] x n</td></tr><tr><td>\u7684\u5206\u89e3\uff0c\u6211\u5011\u53ef\u5c07\u5176\u5206\u4f48\u65bc\u5168\u983b\u5e36\u7684\u767d\u8272\u96dc\u8a0a\u6210\u4efd\u52a0\u4ee5\u6d88\u9664\u6216\u6e1b\u4f4e\uff0c\u800c\u4f7f\u65b0\u7279\u5fb5\u5e8f\u5217</td></tr><tr><td>[ ] x n \u5305\u542b\u8f03\u5c11\u7684\u5931\u771f\u6210\u4efd\u3002\u53e6\u5916\uff0c\u8aa4\u5dee\u5e8f\uf99c [ ] e n \u53ef\u80fd\u662f\u9031\u671f\u6027\u8a0a\u865f(\u983b\u8b5c\u4ea6\u6210\u9031\u671f\u6027)\u6216</td></tr><tr><td>\u767d\u8272\u96dc\u8a0a(\u983b\u8b5c\u5448\u73fe\u5e73\u5766\u4e4b\u5f62\uf9fa)\uff0c\u4f46\u6839\u64da\u8a31\u591a\u524d\u4eba\u7684\u7814\u7a76\uff0c\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\uf99c\u5176\u983b\u8b5c(\u5373</td></tr><tr><td>\u8abf\u8b8a\u983b\u8b5c)\u7684\u4e3b\u8981\u6210\u4efd\u662f\u96c6\u4e2d\u65bc\u4e2d\u4f4e\u983b\uf961\u4e0a\uff0c\u56e0\u6b64\u8aa4\u5dee\u5e8f\uf99c\uf967\u592a\u53ef\u80fd\u5305\u542b\u8a9e\u97f3\u7279\u5fb5\u5e8f\uf99c</td></tr><tr><td>\u7684\u91cd\u8981\u8cc7\u8a0a\uff0c\u4ea6\u5373\u5c07\u5176\u6263\u9664\uff0c\u81f3\u5c11\u7121\u640d\u65bc\u8a9e\u97f3\u8fa8\uf9fc\u7684\u7cbe\u78ba\ufa01\u3002</td></tr><tr><td>\u672c\uf941\u6587\u4e4b\u5be6\u9a57\u4e2d\u6240\u63a1\u7528\u7684\u8a9e\u97f3\u8cc7\uf9be\u5eab\u70ba\u6b50\u6d32\u96fb\u4fe1\u6a19\u6e96\u5354\u6703(European Telecommunication</td></tr><tr><td>Standard Institute, ETSI)\u6240\u767c\ufa08\u7684 AURORA 2.0[8]\u8a9e\u97f3\u8cc7\uf9be\u5eab\uff0c\u5167\u5bb9\u5305\u542b\u7f8e\u570b\u6210\uf98e\u7537\uf981\u4ee5</td></tr><tr><td>\u4eba\u5de5\u65b9\u5f0f\uf93f\u88fd\u7684\u4e00\u7cfb\uf99c\uf99a\u7e8c\u82f1\u6587\uf969\u5b57\u5b57\uf905\u3002\u8fa8\uf9fc\u7d50\u679c\u986f\u793a\uff0c\u6240\u63d0\u51fa\u7684\u65b9\u6cd5 LPCF \u512a\u65bc</td></tr><tr><td>MFCC\uff0c\u5e73\u5747\u9032\u6b65\uf961\u9054 4%\uff1b\u540c\u6642\uff0c\u6211\u5011\u4e5f\u7d50\u5408\u4e09\u7a2e\u77e5\u540d\u6642\u9593\u5e8f\uf99c\u8655\uf9e4\u6280\u8853\uff1aCMVN\u3001</td></tr><tr><td>CHN \u8207</td></tr><tr><td>\u4e0a\u8ff0\u7684\u65b0\u65b9\u6cd5\u96d6\u7136\u770b\u4f3c\u7c21\uf9e0\uff0c\u537b\u6709\u8a31\u591a\u5408\uf9e4\u7684\u539f\u56e0\u53ef\u986f\u793a\u65b0\u5e8f\uf99c\u76f8\u5c0d\u65bc\u539f\u59cb\u5e8f\uf99c\u800c\u8a00\uff0c</td></tr><tr><td>\u5305\u542b\uf9ba\u8f03\u5c11\u7684\u5931\u771f\u3001\u6216\u5c0d\u65bc\u96dc\u8a0a\uf901\u5177\u5f37\u5065\u6027\u3002\u8a9e\u97f3\u5206\u6790\u4e2d\uff0c\u539f\u59cb\u8a0a\u865f [ ] x n \u8207\u9810\u4f30\u8a0a\u865f\u02c6[ ] x n</td></tr><tr><td>\u4e4b\u9593\u7684\u8aa4\u5dee\u8a0a\u865f\u53ef\u80fd\u662f\u9031\u671f\u6027\u8a0a\u865f\u6216\u662f\u767d\u8272\u96dc\u8a0a\uff0c\u4e00\u822c\u7684\u7dda\u6027\u8ff4\u6b78\u6a21\u578b(auto-regression</td></tr><tr><td>model, AR model)\u4e5f\u662f\u5efa\uf9f7\u5728\u8aa4\u5dee\u8a0a\u865f\u672c\u8eab\u662f\u767d\u8272\u96dc\u8a0a\u7684\u5047\u8a2d\u4e0b\u3002\u5c07\u5176\u5957\u7528\u65bc\u6211\u5011\u9019\uf9e8</td></tr><tr><td>\u5206\u6790\u7684\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\uf99c [ ] x n \u4e2d\uff0c\u53ef\u5408\uf9e4\u63a8\u6e2c\u7dda\u6027\u9810\u4f30\u5e8f\uf99c\u02c6[ ] x n \u76f8\u7576\u65bc\u6263\u9664\uf9ba [ ] x n \u5176\u4e2d</td></tr></table>" |
|
} |
|
} |
|
} |
|
} |