Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "O15-1019",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:10:08.312284Z"
},
"title": "\u904b\u7528\u95dc\u806f\u5206\u6790\u63a2\u52d8\u6c11\u773e\u95dc\u6ce8 \u904b\u7528\u95dc\u806f\u5206\u6790\u63a2\u52d8\u6c11\u773e\u95dc\u6ce8 \u904b\u7528\u95dc\u806f\u5206\u6790\u63a2\u52d8\u6c11\u773e\u95dc\u6ce8 \u904b\u7528\u95dc\u806f\u5206\u6790\u63a2\u52d8\u6c11\u773e\u95dc\u6ce8\u8b70\u984c \u8b70\u984c \u8b70\u984c \u8b70\u984c\u8207\u767c\u5c55 \u8207\u767c\u5c55 \u8207\u767c\u5c55 \u8207\u767c\u5c55\u65b9\u5411 \u65b9\u5411 \u65b9\u5411 \u65b9\u5411:\u4ee5\u74b0\u4fdd\u8b70\u984c\u70ba\u4f8b \u4ee5\u74b0\u4fdd\u8b70\u984c\u70ba\u4f8b \u4ee5\u74b0\u4fdd\u8b70\u984c\u70ba\u4f8b \u4ee5\u74b0\u4fdd\u8b70\u984c\u70ba\u4f8b",
"authors": [
{
"first": "Chieh-Jen",
"middle": [],
"last": "\u738b\u754c\u4eba",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "\u5de5\u696d\u6280\u8853\u7814\u7a76\u9662\u5de8\u8cc7\u4e2d\u5fc3 Computational Intelligence Technology Center Industrial Technology Research Institute",
"location": {}
},
"email": "chiehjen@itri.org.tw"
},
{
"first": "",
"middle": [],
"last": "Wang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "\u5de5\u696d\u6280\u8853\u7814\u7a76\u9662\u5de8\u8cc7\u4e2d\u5fc3 Computational Intelligence Technology Center Industrial Technology Research Institute",
"location": {}
},
"email": ""
},
{
"first": "Min-Hsin",
"middle": [],
"last": "\u6c88\u6c11\u65b0",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "",
"middle": [],
"last": "Shen",
"suffix": "",
"affiliation": {},
"email": "mshen@itri.org.tw"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Association analysis has attracted considerable attention recently in many research fields, mining data relations and rules from huge volume of data especially. This study aims at mining issues of public concern and analyzing its relations from massive of unstructured data. The main resource of this study is environmental related documents from PTT bulletin board system. A model is constructed via the collected environmental documents for predictions of issues of public concerns and possible future directions. The experimental results show that mining information from documents of PTT bulletin board system can effectively understand the public concerns and predict possible future directions. The reports from the prediction system may be used as a reference for environmental authorities. The prediction model we propose not only precisely masters of opinions from public to improve the administrative quality of environmental authorities, but also strengthens the content of press release to cover and answer the significant important issues of public concerns. The prediction system can be also applied to different applications, such as market investigation and opinion analysis.",
"pdf_parse": {
"paper_id": "O15-1019",
"_pdf_hash": "",
"abstract": [
{
"text": "Association analysis has attracted considerable attention recently in many research fields, mining data relations and rules from huge volume of data especially. This study aims at mining issues of public concern and analyzing its relations from massive of unstructured data. The main resource of this study is environmental related documents from PTT bulletin board system. A model is constructed via the collected environmental documents for predictions of issues of public concerns and possible future directions. The experimental results show that mining information from documents of PTT bulletin board system can effectively understand the public concerns and predict possible future directions. The reports from the prediction system may be used as a reference for environmental authorities. The prediction model we propose not only precisely masters of opinions from public to improve the administrative quality of environmental authorities, but also strengthens the content of press release to cover and answer the significant important issues of public concerns. The prediction system can be also applied to different applications, such as market investigation and opinion analysis.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "(2) \u6bd4 \u5c0d \u793e \u7fa4 \u8cc7 \u6599 \u96c6 \u5b50 \u96c6 \u5408 (PttForumDB') \u8207 \u74b0 \u4fdd \u95dc \u9375 \u8a5e \u8cc7 \u6599 \u96c6 (EpaKeyword)\uff0c\u627e\u51fa\u793e\u7fa4\u8cc7\u6599\u96c6\u5b50\u96c6\u5408(PttForumDB')\u4e2d\u6240\u5305\u542b\u7684\u95dc\u9375\u8a5e\u96c6 \u5408(EpaKeyword')\u3002",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "(3) \u5206\u6790\u8a72\u7b46\u95dc\u9375\u8a5e\u96c6\u5408(EpaKeyword')\u6240\u96b1\u542b\u7684\u8a5e\u5f59\u95dc\u806f\uff0c\u5efa\u7acb\u95dc\u806f\u6cd5\u5247\u96c6 [2] L. Peipeng and R. T. T. Sim, \"Research experience of big data analytics: the tools for government: a case using social network in mining preferences of tourists,\" in",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u5408(AssociationRuleSet)\uff0c\u4e26\u4f9d\u64da\u6cd5\u5247\u4fe1\u5fc3\u503c\u6392\u5e8f\u3002 (4) \u6bd4 \u5c0d \u65b0 \u805e \u7a3f \u8207 \u95dc \u9375 \u8a5e \u8cc7 \u6599 \u96c6 \uff0c \u627e \u51fa \u65b0 \u805e \u7a3f \u4e2d \u6240 \u5305 \u542b \u7684 \u95dc \u9375 \u8a5e \u96c6 \u5408 (EpaPressKeyword)\u3002",
"eq_num": "("
}
],
"section": "",
"sec_num": null
},
{
"text": "Governance, Guimaraes, Portugal, 2014, pp. 312-315.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proceedings of the 8th International Conference on Theory and Practice of Electronic",
"sec_num": null
},
{
"text": "http://www.emarketer.com/Article/Social-Networking-Reaches-Nearly-One-Four-Around-World/1009976",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://technews.tw/2014/12/24/taiwan-new-the-prime-minister-talks-about-tech-policy/ 3 http://www.npf.org.tw/post/2/14788",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://www.chinatimes.com/newspapers/20141109000258-2601025 http://enews.epa.gov.tw/enews/fact_Newsdetail.asp?InputTime=1031105164404",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Survey of Text Mining",
"authors": [
{
"first": "M",
"middle": [
"W"
],
"last": "Berry",
"suffix": ""
}
],
"year": 2003,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. W. Berry, Survey of Text Mining. Springer-Verlag New York, Inc., 2003.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Segmented document classification: problem and solution",
"authors": [
{
"first": "H",
"middle": [],
"last": "Guo",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Zhou",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the 17th international conference on Database and Expert Systems Applications",
"volume": "",
"issue": "",
"pages": "538--548",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Guo and L. Zhou, \"Segmented document classification: problem and solution,\" in Proceedings of the 17th international conference on Database and Expert Systems Applications, Krak\u00f3w, Poland, 2006, pp. 538-548.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Dynamic Fluzzy Clustering Algorithm for Web Documents Mining",
"authors": [
{
"first": "Q",
"middle": [],
"last": "Luo",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 2010 International Conference on Computational Intelligence and Security",
"volume": "",
"issue": "",
"pages": "64--67",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Q. Luo, \"Dynamic Fluzzy Clustering Algorithm for Web Documents Mining,\" in Proceedings of the 2010 International Conference on Computational Intelligence and Security, 2010, pp. 64-67.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "An automatic text mining framework for knowledge discovery on the web",
"authors": [
{
"first": "W",
"middle": [],
"last": "Chung",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. Chung, \"An automatic text mining framework for knowledge discovery on the web,\" The University of Arizona, 2004.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Enhancing social network analysis with a concept-based text mining approach to discover key members on a virtual community of practice",
"authors": [
{
"first": "H",
"middle": [],
"last": "Alvarez",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Sebasti\u00e1n",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Aguilera",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Merlo",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Guerrero",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 14th international conference on Knowledge-based and intelligent information and engineering systems: Part II",
"volume": "",
"issue": "",
"pages": "591--600",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Alvarez, S. Sebasti\u00e1n A., F. Aguilera, E. Merlo, and L. Guerrero, \"Enhancing social network analysis with a concept-based text mining approach to discover key members on a virtual community of practice,\" in Proceedings of the 14th international conference on Knowledge-based and intelligent information and engineering systems: Part II, Cardiff, UK, 2010, pp. 591-600.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "More than words: Social networks' text mining for consumer brand sentiments",
"authors": [
{
"first": "M",
"middle": [
"M"
],
"last": "Mostafa",
"suffix": ""
}
],
"year": 2013,
"venue": "Expert Syst Appl",
"volume": "40",
"issue": "10",
"pages": "4241--4251",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. M. Mostafa, \"More than words: Social networks' text mining for consumer brand sentiments,\" Expert Syst Appl, vol. 40, no. 10, pp. 4241-4251, 2013.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Web mining research: a survey",
"authors": [
{
"first": "R",
"middle": [],
"last": "Kosala",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Blockeel",
"suffix": ""
}
],
"year": 2000,
"venue": "SIGKDD Explor Newsl",
"volume": "2",
"issue": "1",
"pages": "1--15",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Kosala and H. Blockeel, \"Web mining research: a survey,\" SIGKDD Explor Newsl, vol. 2, no. 1, pp. 1-15, 2000.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Fast Algorithms for Mining Association Rules in Large Databases",
"authors": [
{
"first": "R",
"middle": [],
"last": "Agrawal",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Srikant",
"suffix": ""
}
],
"year": 1994,
"venue": "Proceedings of the 20th International Conference on Very Large Data Bases",
"volume": "",
"issue": "",
"pages": "487--499",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Agrawal and R. Srikant, \"Fast Algorithms for Mining Association Rules in Large Databases,\" in Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp. 487-499.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Mining association rules between sets of items in large databases",
"authors": [
{
"first": "R",
"middle": [],
"last": "Agrawal",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Imieli\u0144ski",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Swami",
"suffix": ""
}
],
"year": 1993,
"venue": "Proceedings of the 1993 ACM SIGMOD international conference on Management of data",
"volume": "",
"issue": "",
"pages": "207--216",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Agrawal, T. Imieli\u0144ski, and A. Swami, \"Mining association rules between sets of items in large databases,\" in Proceedings of the 1993 ACM SIGMOD international conference on Management of data, Washington, D.C., USA, 1993, pp. 207-216.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Mining frequent patterns without candidate generation",
"authors": [
{
"first": "J",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Pei",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Yin",
"suffix": ""
}
],
"year": 2000,
"venue": "Proceedings of the 2000 ACM SIGMOD international conference on Management of data",
"volume": "",
"issue": "",
"pages": "1--12",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Han, J. Pei, and Y. Yin, \"Mining frequent patterns without candidate generation,\" in Proceedings of the 2000 ACM SIGMOD international conference on Management of data, Dallas, Texas, USA, 2000, pp. 1-12.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Mining association rules to support resource allocation in business process management",
"authors": [
{
"first": "Z",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Duan",
"suffix": ""
}
],
"year": 2011,
"venue": "Expert Syst Appl",
"volume": "38",
"issue": "8",
"pages": "9483--9490",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Z. Huang, X. Lu, and H. Duan, \"Mining association rules to support resource allocation in business process management,\" Expert Syst Appl, vol. 38, no. 8, pp. 9483-9490, 2011.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Association rules applied to credit card fraud detection",
"authors": [
{
"first": "D",
"middle": [],
"last": "S\u00e1nchez",
"suffix": ""
},
{
"first": "M",
"middle": [
"A"
],
"last": "Vila",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Cerda",
"suffix": ""
},
{
"first": "J",
"middle": [
"M"
],
"last": "Serrano",
"suffix": ""
}
],
"year": 2009,
"venue": "Expert Syst Appl",
"volume": "36",
"issue": "2",
"pages": "3630--3640",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. S\u00e1nchez, M. A. Vila, L. Cerda, and J. M. Serrano, \"Association rules applied to credit card fraud detection,\" Expert Syst Appl, vol. 36, no. 2, pp. 3630-3640, 2009.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Building Personalized Recommendation System in E-commerce Using Association Rule-based Mining and Classification",
"authors": [
{
"first": "Z",
"middle": [],
"last": "Xizheng",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the Eighth ACIS International Conference on Software Engineering",
"volume": "03",
"issue": "",
"pages": "853--857",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Z. Xizheng, \"Building Personalized Recommendation System in E-commerce Using Association Rule-based Mining and Classification,\" in Proceedings of the Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing -Volume 03, 2007, pp. 853-857.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "A stock market portfolio recommender system based on association rule mining",
"authors": [
{
"first": "P",
"middle": [],
"last": "Paranjape-Voditel",
"suffix": ""
},
{
"first": "U",
"middle": [],
"last": "Deshpande",
"suffix": ""
}
],
"year": 2013,
"venue": "Appl Soft Comput",
"volume": "13",
"issue": "2",
"pages": "1055--1063",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. Paranjape-Voditel and U. Deshpande, \"A stock market portfolio recommender system based on association rule mining,\" Appl Soft Comput, vol. 13, no. 2, pp. 1055-1063, 2013.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Recommendation System in Education: An Association Rule based Approach",
"authors": [
{
"first": "S",
"middle": [
"B"
],
"last": "Aher",
"suffix": ""
}
],
"year": 2012,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. B. Aher, Recommendation System in Education: An Association Rule based Approach. LAP Lambert Academic Publishing, 2012.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Mining Dynamic Interdimension Association Rules for Local-Scale Weather Prediction",
"authors": [
{
"first": "Z",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the 28th Annual International Computer Software and Applications Conference -Workshops and Fast Abstracts",
"volume": "02",
"issue": "",
"pages": "146--149",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Z. Zhang, W. Wu, and Y. Huang, \"Mining Dynamic Interdimension Association Rules for Local-Scale Weather Prediction,\" in Proceedings of the 28th Annual International Computer Software and Applications Conference -Workshops and Fast Abstracts - Volume 02, 2004, pp. 146-149.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Association Rule Mining -A Research: In Medical Perspective",
"authors": [
{
"first": "K",
"middle": [
"R"
],
"last": "Kumar",
"suffix": ""
}
],
"year": 2012,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. R. Kumar, Association Rule Mining -A Research: In Medical Perspective. LAP Lambert Academic Publishing, 2012.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"text": "(2) \u6bd4\u5c0d\u793e\u7fa4\u8cc7\u6599\u96c6\u5b50\u96c6\u5408(PttForumDB')\u8207\u624b\u52d5\u8a2d\u5b9a\u6b32\u767c\u5e03\u65b0\u805e\u7a3f\u4e4b\u95dc\u9375\u5b57\u8cc7\u6599\u96c6(EpaKeyword)\uff0c\u627e\u51fa\u793e\u7fa4\u8cc7\u6599\u96c6\u5b50\u96c6\u5408(PttForumDB')\u4e2d\u6240\u5305\u542b\u7684\u95dc \u9375\u5b57\u96c6\u5408(EpaKeyword')\u3002 (3) \u5206\u6790\u5305\u542b\u7684\u95dc\u9375\u5b57\u96c6\u5408(EpaKeyword')\u6240\u96b1\u542b\u7684\u8a5e\u5f59\u95dc\u806f\uff0c\u5efa\u7acb\u95dc\u806f\u6cd5\u5247 \u96c6\u5408(AssociationRuleSet)\uff0c\u4e26\u4f9d\u64da\u6cd5\u5247\u4fe1\u5fc3\u503c\u6392\u5e8f\u3002 (4) \u6bd4 \u5c0d \u65b0 \u805e \u7a3f \u8207 \u95dc \u9375 \u5b57 \u8cc7 \u6599 \u96c6 \uff0c \u627e \u51fa \u65b0 \u805e \u7a3f \u4e2d \u6240 \u5305 \u542b \u7684 \u95dc \u9375 \u5b57 \u96c6 \u5408",
"type_str": "figure",
"uris": null
},
"TABREF0": {
"num": null,
"text": "The 2015 Conference on Computational Linguistics and Speech Processing ROCLING 2015, pp. 196-205 \uf0d3 The Association for Computational Linguistics and Chinese Language Processing \u4e00\u3001\u7dd2\u8ad6 \u8fd1\u5e74\u4f86\u793e\u7fa4\u7db2\u8def\u7684\u4f7f\u7528\u8005\u4f86\u8d8a\u591a\uff0c\u6839\u64da eMarketer \u8abf\u67e5\u6307\u51fa\uff0c2015 \u5e74\u5168\u7403\u4f7f\u7528\u793e\u7fa4\u7db2 \u7ad9\u7684\u4eba\u6578\u9810\u4f30\u5c07\u7a81\u7834 21 \u5104 8000 \u842c\u4eba 1 \uff0c\u4e0d\u540c\u7a2e\u985e\u7684\u8a0e\u8ad6\u8a71\u984c\u90fd\u53ef\u80fd\u6703\u51fa\u73fe\u5728\u5404\u5927\u793e\u7fa4 \u7db2\u7ad9\u4e2d\u3002\u7db2\u8def\u5c07\u4eba\u8207\u4eba\u4e4b\u9593\u7684\u8ddd\u96e2\u62c9\u8fd1\uff0c\u4e0d\u540c\u4f86\u6e90\u7684\u8cc7\u8a0a\u4e5f\u96a8\u8457\u7db2\u8def\u7684\u4fbf\u5229\u6027\u4ee5\u53ca\u793e\u7fa4 \u7db2\u7ad9\u7684\u767c\u9054\uff0c\u5feb\u901f\u5730\u5c07\u8cc7\u8a0a\u50b3\u64ad\u958b\u4f86\u3002\u800c\u7db2\u8def\u4e0a\u7684\u8cc7\u8a0a\u4f86\u6e90\u4e0d\u53ea\u4f86\u81ea\u65b0\u805e\u5a92\u9ad4\uff0c\u6c11\u773e\u500b \u4eba\u7d93\u9a57\u3001\u5c0f\u9053\u6d88\u606f\u66f4\u662f\u6709\u5225\u65bc\u65b0\u805e\u5a92\u9ad4\u5118\u91cf\u4fdd\u6301\u5ba2\u89c0\u7684\u614b\u5ea6\uff0c\u4e3b\u89c0\u7684\u9673\u8ff0\u8207\u900f\u904e\u793e\u7fa4\u7db2 \u8def\u7684\u516c\u958b\u8a0e\u8ad6\uff0c\u4f7f\u5f97\u8a0a\u606f\u7684\u9762\u5411\u66f4\u52a0\u8c50\u5bcc\u591a\u5143\uff0c\u56e0\u6b64\uff0c\u793e\u7fa4\u7db2\u8def\u4f7f\u7528\u8005\u8a0e\u8ad6\u8cc7\u6599\u5df2\u7d93\u6210 \u70ba\u6587\u5b57\u63a2\u52d8\u8207\u8b70\u984c\u5206\u6790\u4e4b\u91cd\u8981\u7d20\u6750\u4f86\u6e90\u3002 \u6279\u8e22\u8e22\u5be6\u696d\u574a(PTT)\u662f\u4e00\u500b\u96fb\u5b50\u4f48\u544a\u6b04\u7cfb\u7d71(Bulletin Board System, BBS)\uff0c\u65bc 1995 \u5e74\u5275\u7acb\uff0c\u76ee\u524d\u5728\u6279\u8e22\u8e22\u5be6\u696d\u574a\u8207\u5176\u5206\u7ad9\u6279\u8e22\u8e22\u5154\u8a3b\u518a\u7e3d\u4eba\u6578\u7d04 125 \u842c\u4eba\uff0c\u5169\u7ad9\u5c16\u5cf0\u6642\u6bb5 \u8d85\u904e 15 \u842c\u540d\u4f7f\u7528\u8005\u540c\u6642\u4e0a\u7dda\uff0c\u64c1\u6709\u8d85\u904e 2 \u842c\u500b\u4e0d\u540c\u4e3b\u984c\u7684\u770b\u677f\uff0c\u6bcf\u65e5\u7d04 4 \u842c\u7bc7\u65b0\u6587\u7ae0 \u88ab\u767c\u8868\uff0c\u662f\u975e\u5e38\u597d\u7684\u6587\u5b57\u63a2\u52d8\u8207\u8b70\u984c\u5075\u6e2c\u7d20\u6750\u4f86\u6e90\u3002 \u5230 2014 \u5e74\u5728 PTT/Ecophilia \u74b0\u5883\u677f\u5171 12,412 \u7bc7 \u8207\u74b0\u4fdd\u8b70\u984c\u6709\u95dc\u4e4b\u6587\u7ae0\uff0c\u6587\u7ae0\u5167\u5bb9\u5305\u542b\uff1a\u4f5c\u8005 ID\u3001\u6a19\u984c\u3001\u6642\u9593\u3001\u6587\u7ae0\u5167\u5bb9\u3001\u5716\u7247\u7b49\uff0c",
"content": "<table><tr><td>\u70ba\u6709\u50f9\u503c\u7684\u8a0a\u606f\u3002\u8fd1\u5e7e\u5e74\u6587\u5b57\u63a2\u52d8\u6280\u8853\u8d8a\u81fb\u6210\u719f\uff0c\u9664\u4e86\u53ef\u4ee5\u5c07\u6587\u672c\u8cc7\u6599\u6709\u6548\u64f7\u53d6\uff0c\u4e14\u53ef \u8aaa\u660e\u5982\u4e0b\uff1a (\u4e00)\u653f\u7b56\u7814\u64ec\u968e\u6bb5\u8f3f\u60c5\u8490\u96c6 \u4ee5\u5229\u7528\u8a9e\u610f\u5206\u6790(Semantic Analysis)\u6280\u8853\u5075\u6e2c\u8cc7\u6599\u5167\u5bb9\u7684\u5c6c\u6027\u3002\u76ee\u524d\u5df2\u7d93\u5ee3\u6cdb\u61c9\u5728\u4e0d \u540c\u7814\u7a76\u4e3b\u984c\uff0c\u5305\u542b\u6587\u4ef6\u5206\u985e(Document Classification)[4]\u3001\u6587\u4ef6\u5206\u7fa4(Document \u793e\u7fa4\u6587\u7ae0\u8cc7\u6599\u96c6\uff1a \u65b0\u805e\u7a3f\u70ba\u74b0\u4fdd\u76f8\u95dc\u55ae\u4f4d\u5c0d\u5916\u767c\u5e03\u653f\u7b56\u91cd\u8981\u7ba1\u9053\u3002\u7576\u5404\u7d1a\u74b0\u4fdd\u55ae\u4f4d\u56e0\u61c9\u653f\u7b56\u9808\u767c\u5e03\u65b0</td></tr><tr><td>Clustering)[5]\u548c\u7db2\u9801\u63a2\u52d8(Web Mining)[6]\u3002 \u96a8\u8457\u884c\u52d5\u901a\u8a0a\u53ca\u7db2\u8def\u7684\u767c\u5c55\uff0c\u793e\u7fa4\u7db2\u8def\u5e73\u53f0\u5982 Facebook\u3001Plurk \u8207 PTT \u7b49\u76f8\u7e7c\u8208\u8d77\uff0c \u52a0\u4e0a\u667a\u6167\u624b\u6a5f\u7684\u666e\u53ca\uff0c\u4f7f\u7528\u8005\u53ef\u4ee5\u96a8\u6642\u96a8\u5730\u900f\u904e\u7db2\u8def\u767c\u8868\u81ea\u5df1\u7684\u610f\u898b\uff0c\u7db2\u8def\u4f7f\u7528\u8005\u4e3b\u52d5 \u805e\u7a3f\u6642\uff0c\u53ef\u81ea\u52d5\u5206\u6790\u65b0\u805e\u7a3f\u5167\u5bb9\u5305\u542b\u7684\u95dc\u9375\u5b57\uff0c\u4e26\u7d93\u7531\u95dc\u9375\u5b57\u95dc\u806f\u6cd5\u5247\uff0c\u7531\u6b77\u53f2\u793e\u7fa4\u8cc7 \u6599\u4e2d\u5206\u6790\u51fa\u7db2\u6c11\u6703\u540c\u6642\u8a0e\u8ad6\u7684\u95dc\u9375\u5b57\u9032\u884c\u6bd4\u5c0d\uff0c\u5217\u51fa\u6b64\u65b0\u805e\u7a3f\u4e2d\u672a\u5305\u542b\u5728\u95dc\u806f\u6cd5\u5247\u4e2d\u7684 \u6b64\u8cc7\u6599\u96c6\u662f\u5229\u7528\u7db2\u8def\u722c\u87f2\u8490\u96c6 2002 \u6b64 12,412 \u7bc7\u5c07\u7528\u4f86\u5efa\u7acb\u793e\u7fa4\u6587\u7ae0\u8cc7\u6599\u96c6(PttForumDB)\u3002\u6b64\u8cc7\u6599\u96c6\u662f\u7531\u7db2\u8def\u722c\u87f2(Web \u95dc\u9375\u5b57\u5217\u8868\uff0c\u4ee3\u8868\u9808\u95dc\u6ce8\u4e4b\u7126\u9ede\u3002</td></tr><tr><td>\u6587\u5b57\u63a2\u52d8\u662f\u8fd1\uf98e\uf92d\u96a8\u8457\u4eba\u5de5\u667a\u6167\u548c\u81ea\u7136\u8a9e\u8a00\u8655\u7406\u6280\u8853\u767c\u5c55\u7684\u4e00\u9580\u65b0\u8208\u6280\u8853\u3002\u4e3b\u8981\u5f9e \u5927\uf97e\u6587\u5b57\u8cc7\uf9be\u4e2d\u81ea\u52d5\u5316\u8fa8\u8b58\u8207\u6316\u6398\u6709\u7528\u7684\u8cc7\u8a0a\uff0c\u8403\u53d6\u51fa\u96b1\u542b\u7684\u6216\u904e\u53bb\uf967\u70ba\u4eba\u77e5\uff0c\u4f46\u53ef\u4fe1 \u8207\u6709\u6548\u7684\u8a0a\u606f\u3002\u4e26\u4e14\u4f9d\u64da\u4f7f\u7528\u8005\u6587\u5b57\u8868\u9054\u7279\u5fb5\uff0c\u5728\u4e00\u7fa4\u672a\u7d93\u8655\uf9e4\u7684\u8cc7\uf9be\u4e2d\u627e\u5230\u4f7f\u7528\u8005\u53ef \u5c07\u5404\u7a2e\u4e0d\u540c\u7684\u610f\u898b\u8207\u8a55\u8ad6\u8cc7\u8a0a\u4e0a\u50b3\u7db2\u8def\uff0c\u5982\u679c\u80fd\u5229\u7528\u81ea\u52d5\u5316\u6587\u5b57\u5206\u6790\u6280\u8853\uff0c\u5c31\u53ef\u4ee5\u628a\u9019 \u4e9b\u5de8\u91cf\u7684\u793e\u7fa4\u7db2\u8def\u8cc7\u6599\uff0c\u8f49\u63db\u6210\u6709\u7528\u7684\u8cc7\u8a0a\uff0c\u5354\u52a9\u653f\u5e9c\u55ae\u4f4d\u8207\u5404\u96c6\u5718\u516c\u53f8\u4e4b\u6c7a\u7b56\u53c3\u8003 [7][8]\u3002\u8fd1\u5e74\u4f86\u6211\u570b\u653f\u5e9c\u4e5f\u611f\u53d7\u5230\u793e\u7fa4\u8cc7\u6599\u7684\u91cd\u8981\u6027\uff0c\u8457\u624b\u7814\u7a76\u5229\u7528\u300c\u958b\u653e\u8cc7\u6599\u300d \u3001 \u300c\u5de8 \u91cf\u8cc7\u6599\u300d\u8207\u300c\u7fa4\u773e\u5916\u5305\u300d \uff0c\u5354\u52a9\u653f\u5e9c\u904b\u7528\u7db2\u8def\u5a92\u9ad4\u8207\u79d1\u6280\u6280\u8853\u5275\u9020\u300c\u6709\u611f\u65bd\u653f\u300d 2 \u3002 \u5de8\u91cf\u8cc7\u6599 (Big Data) \u7684\u8b70\u984c\u5728\u6211\u570b\u5f9e 2012 \u5e74\u958b\u59cb\u6301\u7e8c\u767c\u71d2\uff0c\u8a31\u591a\u61c9\u7528\u4e5f\u96a8\u4e4b\u800c\u751f\uff0c crawler)\u81ea\u52d5\u6293\u53d6\uff0c\u7db2\u8def\u722c\u87f2\u662f\u4e00\u7a2e\u300c\u81ea\u52d5\u5316\u700f\u89bd\u7db2\u8def\u300d\u7684\u7a0b\u5f0f\uff0c\u4e5f\u662f\u4e00\u7a2e\u7db2\u8def\u6a5f\u5668\u4eba\u3002 \u900f\u904e\u95dc\u806f\u6cd5\u5247\u5b78\u7fd2\u6cd5\uff0c\u5206\u6790\u9577\u671f\u7684\u7db2\u8def\u793e\u7fa4(PTT/Ecophilia \u74b0\u5883\u677f)\u8cc7\u6599\uff0c\u64da\u6b64\u5efa\u7acb \u7db2\u8def\u722c\u87f2\u88ab\u5ee3\u6cdb\u7528\u65bc\u7db2\u969b\u7db2\u8def\u641c\u5c0b\u5f15\u64ce\u6216\u8cc7\u6599\u8490\u96c6\u7db2\u7ad9\uff0c\u7528\u4ee5\u53d6\u5f97\u6216\u66f4\u65b0\u7db2\u7ad9\u7684\u5167\u5bb9\u3002 \u7db2\u6c11\u8a0e\u8ad6\u74b0\u4fdd\u95dc\u9375\u8a5e\u7684\u95dc\u806f\u6cd5\u5247\u3002\u7576\u74b0\u4fdd\u76f8\u95dc\u55ae\u4f4d\u5c07\u767c\u5e03\u65b0\u805e\u7a3f\u6642\uff0c\u81ea\u52d5\u5206\u6790\u65b0\u805e\u7a3f\u5167 \u7db2\u8def\u722c\u87f2\u53ef\u4ee5\u81ea\u52d5\u6536\u96c6\u6240\u6709\u9801\u9762\u5167\u5bb9\uff0c\u4f9b\u6587\u5b57\u63a2\u52d8\u6f14\u7b97\u6cd5\u505a\u63a2\u52d8(\u5206\u6790\u8655\u7406\u4e0b\u8f09\u7684\u9801 \u5bb9\u6240\u5305\u542b\u7684\u95dc\u9375\u8a5e\uff0c\u4e26\u7d93\u7531\u95dc\u9375\u8a5e\u95dc\u806f\u6cd5\u5247\u5206\u6790\u8207\u6bd4\u5c0d\uff0c\u5217\u51fa\u6b64\u65b0\u805e\u7a3f\u4e2d\u672a\u5305\u542b\u5728\u95dc\u806f \u9762) \uff0c\u7136\u5f8c\u9032\u4e00\u6b65\u5f97\u5230\u96b1\u542b\u5728\u7db2\u9801\u5167\u5bb9\u4e2d\u4e4b\u8cc7\u8a0a\u3002\u73fe\u4eca\u7684\u7db2\u8def\u722c\u87f2\u5305\u63d0\u4f9b\u8005\u6709\u958b\u6e90\u8edf\u9ad4 \u6cd5\u5247\u4e2d\u7684\u95dc\u9375\u8a5e\u5217\u8868\uff0c\u9019\u4e9b\u662f\u7531\u6b77\u53f2\u793e\u7fa4\u8cc7\u6599\u4e2d\u5206\u6790\u51fa\u7db2\u6c11\u6703\u540c\u6642\u8a0e\u8ad6\u7684\u95dc\u9375\u8a5e\uff0c\u56e0\u6b64 \u8207\u5546\u7528\u670d\u52d9\u5ee0\u5546\uff0c\u958b\u6e90\u8edf\u9ad4\u5305\u542b\uff1aApache Nutch\u3001Heritrix\u3001Aperture\u3001Grub \u7b49\uff1b\u570b\u5167\u5546 \u7528\u670d\u52d9\u5ee0\u5546\u5305\u542b\uff1a\u610f\u85cd\u8cc7\u8a0a\u3001\u78a9\u7db2\u8cc7\u8a0a\u3001\u78d0\u53e4\u6578\u4f4d\u3001\u5a01\u77e5\u8cc7\u8a0a\u3001i-buzz \u4e9e\u6d32\u6307\u6a19\u6578\u4f4d\u884c \u53ef\u4ee5\u9810\u5148\u63d0\u793a\u65b0\u805e\u7a3f\u4e2d\u6240\u6b20\u7f3a\u7db2\u6c11\u95dc\u5207\u7684\u95dc\u9375\u8a5e\u3002 \u5176\u4e2d\u5de8\u91cf\u8cc7\u6599\u662f\u6307\u5c0d\u6d77\u91cf\u8cc7\u6599\u9032\u884c\u5206\u6790\u8207\u63a2\u52d8\uff0c\u800c\u7372\u53d6\u6df1\u5165\u3001\u6709\u7528\u4e14\u6709\u50f9\u503c\u7684\u8a0a\u606f\u3002\u5de8 \u91cf\u8cc7\u6599\u7684\u7279\u6027\u5305\u62ec\uff1a\u8cc7\u6599\u591a\u3001\u901f\u5ea6\u5feb\u3001\u8b8a\u5316\u591a\uff0c\u4ee5\u53ca\u771f\u5be6\u6027\uff0c\u6240\u4ee5\u5de8\u91cf\u8cc7\u6599\u7684\u5206\u6790\u6f14\u7b97 \u6cd5\u662f\u6c7a\u5b9a\u6700\u7d42\u7522\u51fa\u8cc7\u8a0a\u662f\u5426\u5177\u6709\u50f9\u503c\u7684\u91cd\u8981\u56e0\u7d20 3 \u3002\u95dc\uf997\u5206\u6790(Association Analysis)\u662f \u5de8\u91cf\u8cc7\u6599\u4e2d\u91cd\u8981\u7684\u5206\u6790\u6f14\u7b97\u6cd5\u4e4b\u4e00\uff0c\u7279\u5fb5\u70ba\u53ef\u4ee5\u7522\u751f\u6cd5\u5247\uff0c\u7528\u4f86\u63cf\u8ff0\u8cc7\uf9be\u9593\u7684\u95dc\uf997\u6027\u3002 \u9019\u7a2e\u65b9\u6cd5\u5177\u6709\u7c21\u6f54\u3001\uf9e0\u61c2\u7684\u5206\u6790\u7d50\u679c\uff0c\u5e38\u5e38\u4f7f\u7528\u5728\u8cfc\u7269\u7c43\u5206\u6790(Market Basket Analysis)\u3001 \u92b7\u7b49\uff1b\u570b\u5916\u5546\u7528\u670d\u52d9\u5ee0\u5546\u5247\u6709 80legs \u7b49\u3002\u6b64\u5916\u7531 PTT \u6293\u53d6\u6587\u7ae0\u539f\u59cb\u683c\u5f0f\u70ba HTML\uff0c\u7121 \u5206\u6790\u67b6\u69cb\u5982\u4e0b\u8ff0\u6b65\u9a5f\uff1a \u6cd5\u76f4\u63a5\u9032\u884c\u6587\u5b57\u63a2\u52d8\u8207\u5206\u6790\uff0c\u6240\u6709\u6293\u53d6\u6587\u7ae0\u90fd\u7d93\u904e\u5256\u6790\u8207\u6e05\u6f54\u8655\u7406\uff0c\u5c07 HTML \u8f49\u63db\u6210 (1) \u4ee5\u6b32\u767c\u5e03\u65b0\u805e\u7a3f\u4e4b\u6642\u9593\u70ba\u555f\u59cb\u6642\u9593\uff0c\u5f9e\u793e\u7fa4\u8cc7\u6599\u96c6(PttForumDB)\u4e2d\u53d6\u51fa\u524d \u7d14\u6587\u5b57\u6a94\u7684\u683c\u5f0f\uff0c\u5982\uff1a&amp;nbsp;\u8f49\u70ba\u7a7a\u683c\u3001&amp;quot;\u8f49\u70ba\u96d9\u5f15\u865f\"\"\"\u3001\u522a\u9664\u6240\u6709\u7684 STYLE \u8a2d \u7f6e\u7b49\u6b65\u9a5f\u3002 \u4e00\u500b\u6708\u7684\u6587\u7ae0\uff0c\u5efa\u7acb\u793e\u7fa4\u8cc7\u6599\u96c6\u5b50\u96c6\u5408(PttForumDB')</td></tr><tr><td>\u80fd\u611f\u8208\u8da3\u7684\u8cc7\u8a0a\u3002\u5176\u4e2d\u95dc\uf997\u6cd5\u5247\u5206\u6790\u5c31\u662f\u6587\u5b57\u63a2\u52d8\u4e2d\u4e00\u7a2e\u91cd\u8981\u7684\u5206\u6790\u6a21\u578b\uff0c\u5229\u7528\u95dc\u806f\u5206 \u4ea4\u53c9\u6bd4\u5c0d\u3001\u9810\u6e2c\u3001\u5206\u7fa4\u3001\u5206\uf9d0\u7b49\u7814\u7a76\u9818\u57df[9]\u3002\u6700\u65e9\u7684\u95dc\uf997\u5206\u6790\u662f 1994 \uf98e IBM Almaden \u74b0\u4fdd\u95dc\u9375\u5b57\u8cc7\u6599\u96c6\uff1a</td></tr><tr><td>\u6790\u63a2\u52d8\u51fa\u6709\u7528\u7684\u8cc7\u8a0a\uff0c\u53ef\u505a\u70ba\u653f\u5e9c\u6c7a\u7b56\u7684\uf96b\u8003\u4f9d\u64da[1] [2]\u3002 \u653f\u5e9c\u55ae\u4f4d\u767c\u5e03\u653f\u7b56\u8cc7\u8a0a\u7d66\u6c11\u773e\uff0c\u5e38\u4f7f\u7528\u65b0\u805e\u7a3f\u7684\u5f62\u5f0f\u5411\u6c11\u773e\u5ba3\u9054\uff0c\u56e0\u6b64\uff0c\u5982\u4f55\u52a0\u5f37 Research Center \u7684\u5b78\u8005 Agrawal[10][11]\u6240\u63d0\u51fa Apriori \u6f14\u7b97\u6cd5\uff0c\u4e3b\u8981\u91dd\u5c0d\u5e02\u5834\u8cfc\u7269\u7c43\u554f \u900f\u904e\u8207\u74b0\u5883\u4fdd\u8b77\u9818\u57df\u5c08\u5bb6\u5b78\u8005\u591a\u6b21\u8a0e\u8ad6\uff0c\u5206\u6790\u65b0\u805e\u8cc7\u6599\u8207\u74b0\u4fdd\u7f72\u65b0\u805e\u7a3f\uff0c\u64ec\u5b9a\u91cd\u8981 \u984c\u52a0\u4ee5\u63a2\u8a0e\uff0c\u5176\u6f14\u7b97\u6cd5\u900f\u904e\u53cd\u8986\u7522\u751f\u5019\u9078\u9805\u76ee\u96c6\u5408(Candidate Item Set)\uff0c\u4ee5\u627e\u51fa\u6240\u6709\u9ad8 \u74b0\u4fdd\u95dc\u9375\u5b57\u5171 97 \u7d44\u3002 \u983b\u9805\u76ee\u96c6\u5408\uff0c\u4e26\u85c9\u7531\u6700\u5c0f\u652f\u6301\ufa01\u8207\u6700\u5c0f\u4fe1\u5fc3\ufa01\u4e4b\u7be9\u9078\u5f8c\uff0c\u63a8\u5c0e\u51fa\u6240\u6709\u7684\u95dc\uf997\u6cd5\u5247\u3002\u4f46 \u653f\u7b56\u6e9d\u901a\u5c0d\u653f\u5e9c\u6a5f\u95dc\u5341\u5206\u91cd\u8981\u3002\u4e00\u822c\u800c\u8a00\uff0c\u516c\u90e8\u9580\u64ec\u7a3f\u4eba\u662f\u6191\u85c9\u500b\u4eba\u7d93\u9a57\u8207\u8490\u96c6\u904e\u53bb\u6b77 Apriori \u6f14\u7b97\u6cd5\u6709\u4e00\u500b\u5148\u5929\u4e0a\u7684\u554f\u984c\uff0c\u5c31\u662f\u9700\u8981\u7522\u751f\u5927\u91cf\u5019\u9078\u9805\u96c6\u548c\u9700\u8981\u91cd\u8907\u5730\u6aa2\u8996\u8cc7 \u56db\u3001\u9810\u6e2c\u6a21\u578b \u53f2\u8cc7\u8a0a\u4f86\u64b0\u5beb\u6587\u7a3f\u3002\u7136\u800c\uff0c\u64ec\u7a3f\u4eba\u53ef\u80fd\u6703\u53d7\u9650\u65bc\u500b\u4eba\u8ff7\u601d\u6216\u56e0\u7279\u5b9a\u9818\u57df\u77e5\u8b58\u4e0d\u8db3\uff0c\u5c0d\u65bc \u6599\u3002Han \u7b49\u5b78\u8005\u63d0\u51fa\u7684 FP-growth \u6f14\u7b97\u6cd5[12]\uff0c\u6709\u6548\u5730\u514b\u670d\uf9ba\u9019\u65b9\u9762\u7684\u554f\u984c\u3002FP-growth \u8b70\u984c\u7126\u9ede\u4e4b\u638c\u63e1\u7a0b\u5ea6\uff0c\u6709\u53c3\u5dee\u4e0d\u9f4a\u7684\u73fe\u8c61\u3002\u73fe\u4eca\u793e\u7fa4\u7db2\u8def\u7684\u51fa\u73fe\uff0c\u4f7f\u5f97\u4efb\u4f55\u4eba\u90fd\u53ef\u4ee5\u900f \u5c07\u5927\uf97e\u7684\u8cc7\uf9be\u58d3\u7e2e\u6210\u4e00\u7a2e\u7dca\u5bc6\u7684\u6a39\uf9fa\u7d50\u69cb FP-tree\uff0c\u9019\u7a2e\u505a\u6cd5\u53ef\u4ee5\u5927\uf97e\u6e1b\u5c11\u5019\u9078\u9805\u76ee\u96c6 \u74b0\u4fdd\u8b70\u984c\u9810\u6e2c\u6a21\u578b\uff0c\u4e3b\u8981\u4fc2\u900f\u904e\u95dc\u806f\u6cd5\u5247\u5b78\u7fd2\u6cd5\uff0c\u5206\u6790\u9577\u671f\u7684\u7db2\u8def\u793e\u7fa4(PTT/Ecophilia \u904e\u793e\u7fa4\u7db2\u8def\u53d6\u5f97\u8cc7\u8a0a\uff0c\u4e26\u4e14\u900f\u904e\u5de8\u91cf\u7db2\u6c11\u7684\u8a0e\u8ad6\u8cc7\u8a0a\uff0c\u767c\u6398\u76ee\u524d\u5927\u773e\u6240\u95dc\u6ce8\u7684\u8b70\u984c\u8207\u8f3f \u5408\u7684\u500b\uf969\uff0c\u4e26\u4e14\u53ea\u9700\u6aa2\u8996\uf978\u6b21\u8cc7\uf9be\u5eab\uff0c\u53ef\u4ee5\u6539\u5584 Apriori \u9700\u8981\u5927\u91cf\u6642\u9593\u8a08\u7b97\u7684\u554f\u984c\uff0c\u986f \u74b0\u5883\u677f) \u8cc7\u6599\uff0c\u64da\u6b64\u5efa\u7acb\u7db2\u6c11\u8a0e\u8ad6\u74b0\u4fdd\u95dc\u9375\u5b57\u7684\u95dc\u806f\u6cd5\u5247\uff0c\u4ee5\u4e86\u89e3\u6c11\u773e\u95dc\u6ce8\u4e4b\u74b0\u4fdd\u8b70\u984c\u3002 \u60c5\u7126\u9ede\u3002\u900f\u904e\u5c0d\u5de8\u91cf\u793e\u7fa4\u7db2\u8def\u8cc7\u6599\u9032\u884c\u6587\u5b57\u63a2\u52d8\u5373\u53ef\u4ee5\u9054\u5230\u4e0a\u8ff0\u7684\u76ee\u6a19\u3002\u5efa\u7acb\u8b70\u984c\u9810\u6e2c \u8457\u63d0\u5347\u57f7\ufa08\u6548\u80fd\u3002 \u8cc7\u6599\u5206\u6790\u6d41\u7a0b\u5982\u5716 1 \u6240\u793a\uff0c\u4e3b\u8981\u5206\u70ba\u4e09\u500b\u968e\u6bb5\uff1a\u8cc7\u6599\u8490\u96c6\u3001\u95dc\u9375\u5b57\u6bd4\u5c0d\u3001\u95dc\u9375\u6cd5\u5247\u96c6\u5408 \u6a21\u578b\uff0c\u5354\u52a9\u516c\u90e8\u9580\u64ec\u7a3f\u4eba\u64b0\u5beb\u65b0\u805e\u7a3f\u4e4b\u65b9\u5411\uff1b\u904b\u7528\u5de8\u91cf\u8cc7\u6599\uff0c\u5206\u6790\u6c11\u773e\u95dc\u6ce8\u4e4b\u8b70\u984c\uff0c\u4f5c \u70ba\u653f\u7b56\u7814\u64ec\u8207\u65b0\u805e\u767c\u5e03\u5f8c\u4e4b\u8f3f\u60c5\u8490\u96c6\uff0c\u53ef\u4ee5\u5373\u6642\u56de\u61c9\u6216\u52a0\u5f37\u653f\u7b56\u6e9d\u901a\uff0c\u61c9\u662f\u53ef\u884c\u4e4b\u6709\u6548 \u65b9\u5f0f\u3002 \u5efa\u7acb\u3002\u6b64\u74b0\u4fdd\u8b70\u984c\u9810\u6e2c\u6a21\u578b\u9069\u7528\u4e4b\u5169\u7a2e\u60c5\u5883\uff1a (\u4e00)\u653f\u7b56\u7814\u64ec\u968e\u6bb5\u4e4b\u8f3f\u60c5\u8490\u96c6\u548c(\u4e8c) \u95dc\uf997\u5206\u6790\u5df2\u7d93\u88ab\u5ee3\u6cdb\u61c9\u7528\u5728\u4e0d\u540c\u9818\u57df\uff0c\u5728\u4e00\u822c\u5546\u696d\u61c9\u7528\u4e0a\uff0c\u85c9\u904e\u53bb\u5ba2\u6236\u8cfc\u8cb7\u884c\u70ba\u4e4b \u95dc\u806f\uff0c\u5206\u6790\u5ba2\u6236\u7684\u6d88\u8cbb\u7fd2\u6027\uff0c\u9032\u800c\u8b8a\u66f4\u898f\u5283\u7522\u54c1\u92b7\u552e\u3001\u64fa\u8a2d\u3001\u63a8\u51fa\u6709\u7af6\u722d\u529b\u7684\u5546\u54c1\u4fc3\u92b7 \u65b0\u805e\u767c\u5e03\u5f8c\u4e4b\u5373\u6642\u56de\u61c9\u3002</td></tr><tr><td>\u65b9\u6848\u8207\u8a55\u4f30\u642d\u914d\u92b7\u552e\u6a21\u5f0f[13]\u3002\u5728\u4fe1\u7528\u5361\u5e02\u5834\u4e2d\uff0c\u53ef\u6709\u6548\u4e14\u6e96\u78ba\u5730\u5206\u6790\u6301\u5361\u4eba\u7684\u4fe1\u7528\u72c0 \u672c\u7814\u7a76\u67b6\u69cb\u5171\u5206\u70ba\u4e94\u7ae0\uff0c\u5305\u542b\u300c\u7dd2\uf941\u300d \u3001 \u300c\u6587\u737b\u63a2\u8a0e\u300d \u3001 \u300c\u5be6\u9a57\u8cc7\u6599\u300d \u3001 \u300c\u9810\u6e2c\u6a21\u578b\u300d\u8207 \u6cc1\uff0c\u9810\u9632\u5446\u5e33\u8207\u60e1\u610f\u5012\u5e33\u7684\u884c\u70ba\uff0c\u6e1b\u5c11\u767c\u5361\u9280\u884c\u640d\u5931[14]\u3002\u5728\u96fb\u5b50\u5546\u52d9\u61c9\u7528\u4e0a\uff0c\u5206\u6790\u4f7f \u300c\u7d50\uf941\u300d \uff0c\u5167\u5bb9\u5206\u5225\uf96f\u660e\u5982\u4e0b\uff1a \u7528\u8005\u9032\u7ad9\u700f\u89bd\u53ca\u8cfc\u7269\u884c\u70ba\uff0c\u5176\u95dc\u806f\u6027\u53ef\u63d0\u4f9b\u7db2\u7ad9\u7d93\u71df\u8005\u5f88\u597d\u7684\u92b7\u552e\u6c7a\u7b56\u8207\u5546\u54c1\u63a8\u85a6\u4e4b\u53c3 \u7b2c\u4e00\u7ae0\u300c\u7dd2\uf941\u300d\uf96f\u660e\u7814\u7a76\u80cc\u666f\u8207\u52d5\u6a5f\u4ee5\u53ca\uf941\u6587\u67b6\u69cb\u3002 \u7b2c\u4e8c\u7ae0\u300c\u6587\u737b\u63a2\u8a0e\u300d\u5247\u56de\u9867 \u8003[15]\u3002\u5728\u8b49\u5238\u6295\u8cc7\u61c9\u7528\u4e0a\uff0c\u80a1\u7968\u6295\u8cc7\u7684\u9818\u57df\u4e2d\uff0c\u5e38\u4f7f\u7528\u6280\u8853\u6307\u6a19\u5206\u6790\u4f86\u8a55\u4f30\u80a1\u7968\u4ea4\u6613 \u6574\uf9e4\u904e\u53bb\u6587\u5b57\u63a2\u52d8\u65b9\u6cd5\u8207\u61c9\u7528\u3001\u95dc\u806f\u5206\u6790\u6f14\u7b97\u6cd5\uf9e4\uf941\u53ca\u6211\u570b\u653f\u5e9c\u5c0d\u65bc\u6587\u5b57\u63a2\u52d8\u8207\u5de8\u91cf\u8cc7 \u7b56\u7565\u3002\u6280\u8853\u6307\u6a19\u5f88\u591a\u5143\uff0c\u5229\u7528\u95dc\u806f\u5206\u6790\u7522\u751f\u8a31\u591a\u53ef\u4f9b\u5224\u65b7\u4e4b\u6295\u8cc7\u9032\u51fa\u5834\u898f\u5247\uff0c\u5354\u52a9\u5236\u8a02 \u6599\u5206\u6790\u4e4b\u7b56\uf976\u3002\u7b2c\u4e09\u7ae0\u300c\u5be6\u9a57\u8cc7\u6599\u300d\u8aaa\u660e\u8cc7\u6599\u53d6\u5f97\u4f86\u6e90\u8207\u7d71\u8a08\u8cc7\u8a0a\u3002\u7b2c\u56db\u7ae0\u300c\u9810\u6e2c\u6a21\u578b\u300d \u80a1\u7968\u6295\u8cc7\u4ea4\u6613\u7b56\u7565[16]\u3002\u5728\u6578\u4f4d\u5b78\u7fd2\u61c9\u7528\u4e0a\uff0c\u5229\u7528\u6559\u5b78\u7db2\u7ad9\uff0c\u5f9e\u5b78\u751f\u7684\u5b78\u7fd2\u7279\u5fb5\u4e2d\uff0c\u63a2 \u4ecb\u7d39\u672c\u7814\u7a76\u9810\u6e2c\u6a21\u578b\u8a2d\u8a08\u8207\uf96b\uf969\u8a2d\u5b9a\uff0c\u4ee5\u53ca\u7cfb\u7d71\u5206\u6790\u6d41\u7a0b\u3002\u7b2c\u4e94\u7ae0\u300c\u5be6\u9a57\u7d50\u679c\u8207\u5206\u6790\u300d \u52d8\u5b78\u751f\u7684\u5b78\u7fd2\u884c\u70ba\uff0c\u85c9\u4ee5\u638c\u63e1\u5b78\u751f\u7684\u5b78\u7fd2\u72c0\u614b[17]\u3002\u5728\u707d\u5bb3\u9632\u6cbb\u61c9\u7528\u4e0a\uff0c\u7d93\u7531\u5206\u6790\u6ebc\u5ea6\u3001 \u63a2\u8a0e\u8207\u5206\u6790\u5be6\u9a57\u7d50\u679c\u3002\u7b2c\u516d\u7ae0\u300c\u7d50\uf941\u300d\u7e3d\u7d50\u6240\u6709\u5206\u6790\u8cc7\u8a0a\u3001\u7814\u7a76\u8ca2\u737b\u4ee5\u53ca\u672a\uf92d\u53ef\u80fd\u7814\u7a76 \u6eab\u5ea6\u3001\u98a8\u529b\u7b49\u5404\u7a2e\u4e0d\u540c\u6c23\u8c61\u7279\u5fb5\uff0c\u53ef\u66f4\u8a73\u7d30\u6e96\u78ba\u9810\u6e2c\u6c23\u8c61[18]\u3002\u5728\u91ab\u5b78\u61c9\u7528\u4e0a\uff0c\u5206\u6790\u91ab \u65b9\u5411\u3002 \u7642\u8cc7\u6599\u5eab\uff0c\u9032\u884c\u75be\u75c5\u985e\u5225\u8207\u75c5\u4eba\u7279\u5fb5\u4e4b\u9810\u6e2c\uff0c\u986f\u793a\u75be\u75c5\u8207\u75c5\u4eba\u7279\u5fb5\u4e4b\u95dc\u806f\u6027\uff0c\u5982\u6027\u5225\u3001</td></tr><tr><td>\u5e74\u9f61\u8207\u8840\u578b\u7b49\uff0c\u53ef\u4ee5\u4f5c\u70ba\u91ab\u5e2b\u8a3a\u65b7\u6642\u8f14\u52a9\u53c3\u8003[19]\u3002</td></tr><tr><td>\u4e8c\u3001\u6587\u737b\u63a2\u8a0e</td></tr><tr><td>\u4e09\u3001\u5be6\u9a57\u8cc7\u6599</td></tr><tr><td>\u6587\u5b57\u63a2\u52d8 (Text Mining) \u4e3b\u8981\u662f\u91dd\u5c0d\u534a\u7d50\u69cb\u5316 (Semi-structured) \u6216\u975e\u7d50\u69cb\u5316 (Unstructured)</td></tr><tr><td>\u5132\u5b58\u683c\u5f0f\u7684\u6587\u4ef6\u8cc7\u6599\u9032\u884c\u63a2\u52d8\uff0c\u9019\u4e9b\u975e\u7d50\u69cb\u5316\u8cc7\u6599\u96b1\u85cf\u8457\u8a31\u591a\u91cd\u8981\u7684\u8cc7\u8a0a\uff0c\u662f\u8fd1\u5e74\u4f86\u91cd \u672c\u7814\u7a76\u4e3b\u8981\u4f7f\u7528\u5169\u7a2e\u4e0d\u540c\u4f86\u6e90\u8cc7\u6599\uff0c\u5206\u5225\u70ba\u793e\u7fa4\u6587\u7ae0\u8cc7\u6599\u8207\u74b0\u4fdd\u95dc\u9375\u5b57\u8cc7\u6599\uff0c\u8cc7\u6599\u5167\u5bb9</td></tr><tr><td>\u8981\u7684\u7814\u7a76\u9818\u57df\u4e4b\u4e00[3]\u3002\u900f\u904e\u5206\u6790\u6587\u672c\u4e2d\u7684\u6587\u5b57\u7279\u5fb5\uff0c\u5f9e\u4e2d\u8403\u53d6\u51fa\u96b1\u542b\u6027\u8cc7\u8a0a\uff0c\u8f49\u63db\u6210</td></tr><tr><td>\u5716 1\u3001\u8b70\u984c\u9810\u6e2c\u6a21\u578b\u5206\u6790\u6d41\u7a0b</td></tr></table>",
"type_str": "table",
"html": null
},
"TABREF1": {
"num": null,
"text": "\u689d\u6cd5\u5247\u70ba\u4f8b\uff0c\u53ef\u4ee5\u767c\u73fe\u300c\u5ee2\u68c4\u7269\u300d\u8207\u300c\u6c34\u6c61\u67d3\u300d\u8ddf\u300c\u6c34\u8cea\u300d\u7684\u95dc \u806f\u5ea6\u975e\u5e38\u9ad8\u3002\u6b64\u5916\uff0c\u56e0\u70ba 2014 \u5e74 11 \u6708 6 \u65e5\u5230 2014 \u5e74 12 \u6708 5 \u65e5\u5728 PTT/Ecophilia Hang, J. N. K. Liu, Y. Ren, and H. Dai, \"An incremental FP-growth web content mining and its application in preference identification,\" in Proceedings of the 9th international conference on Knowledge-Based Intelligent Information and Engineering Systems -Volume Part III, Melbourne, Australia, 2005, pp. 121-127.",
"content": "<table><tr><td>5) \u6bd4\u5c0d\u8a72\u7b46\u95dc\u9375\u8a5e\u96c6\u5408(EpaPressKeyword)\u8207\u793e\u7fa4\u95dc\u9375\u8a5e\u5f59\u95dc\u806f\u6cd5\u5247\u96c6\u5408 (AssociationRuleSet)\u7684\u5dee\u7570\u7a0b\u5ea6\uff0c\u4f9d\u7167\u6cd5\u5247\u4fe1\u5fc3\u503c\uff0c\u6392\u5e8f\u5217\u51fa\u5df2\u767c\u5e03\u65b0\u805e \u7a3f\u4e2d\u672a\u5305\u542b\u7684\u95dc\u9375\u8a5e\u5f59\u3002 \u4e94\u3001\u5be6\u9a57\u7d50\u679c\u8207\u5206\u6790 (\u4e00)\u653f\u7b56\u7814\u64ec\u968e\u6bb5\u4e4b\u8f3f\u60c5\u8490\u96c6 2014 \u5e74 11 \u6708\uff0c\u9ad8\u96c4\u5e02\u7206\u767c\u56b4\u91cd\u7684\u767b\u9769\u71b1\u75ab\u60c5 4 \u3002\u5047\u8a2d\u74b0\u4fdd\u76f8\u95dc\u55ae\u4f4d\u5c07\u767c\u5e03\u4e00\u7bc7\u8207\u767b \u9769\u71b1\u75ab\u60c5\u76f8\u95dc\u7684\u65b0\u805e\u7a3f\uff0c\u64b0\u7a3f\u8f14\u52a9\u7cfb\u7d71\u57f7\u884c\u8207\u5206\u6790\u7684\u904e\u7a0b\u5982\u4e0b\uff1a (1) \u5047\u8a2d\u74b0\u4fdd\u76f8\u95dc\u55ae\u4f4d\u6b32\u767c\u5e03\u65b0\u805e\u7a3f\u5305\u542b\u4e86 2 \u500b\u74b0\u4fdd\u95dc\u9375\u5b57\uff0c\u5206\u5225\u70ba\uff1a\u5ee2\u6c34\u3001\u5ee2\u68c4 \u7269\u3002 (2) \u5229\u7528\u8b70\u984c\u5075\u6e2c\u7cfb\u7d71\uff0c\u5206\u6790\u95dc\u9375\u8a5e\u96c6\u5408\u6240\u96b1\u542b\u7684\u8a5e\u5f59\u95dc\u806f\uff0c\u5efa\u7acb\u95dc\u806f\u6cd5\u5247\u96c6\u5408\u5982 \u4e0b\uff0c\u4fe1\u5fc3\u503c\u8d8a\u9ad8\u4ee3\u8868\u6cd5\u5247\u8d8a\u5f37\u5065\uff0c\u4e5f\u5c31\u662f\u8aaa\u7522\u751f\u7684\u95dc\u9375\u5b57\u95dc\u806f\u5ea6\u975e\u5e38\u9ad8\u3002\u95dc\u806f \u6cd5\u5247\u96c6\u5408\u5982\u8868 1\uff0c\u4ee5\u7b2c 1 \u689d\u6cd5\u5247\u70ba\u4f8b\uff0c\u53ef\u4ee5\u767c\u73fe\u300c\u6c34\u6c61\u67d3\u300d\u6703\u8ddf\u300c\u5ee2\u6c34\u300d\u7684\u95dc \u806f\u5ea6\u975e\u5e38\u9ad8\u3002\u8868 1 \u4e2d\u659c\u9ad4\u5b57\u8868\u793a\u539f\u672c\u5df2\u77e5\u4e4b\u95dc\u9375\u5b57\uff0c\u7c97\u9ad4\u5b57\u8868\u793a\u65b0\u767c\u73fe\u4e4b\u95dc\u9375 \u5b57\u3002 (3) \u7d93\u904e\u6bd4\u5c0d\u6b32\u767c\u5e03\u65b0\u805e\u7a3f\u95dc\u9375\u5b57\u96c6\u5408\u8207\u793e\u7fa4\u95dc\u9375\u8a5e\u5f59\u95dc\u806f\u6cd5\u5247\u96c6\u5408\uff0c\u53ef\u4ee5\u5f97\u5230\u74b0 \u4fdd\u95dc\u9375\u5b57\u5dee\u96c6\u4e26\u70ba\u300c\u6c34\u6c61\u67d3\u300d\u3001\u300c\u74b0\u4fdd\u5c40\u300d\u3001\u300c\u8cc7\u6e90\u56de\u6536\u300d\u3001\u300c\u6234\u5967\u8f9b\u300d\u3001\u300c\u6c34 \u8cea\u300d\u3001\u300c\u74b0\u4fdd\u7f72\u300d\u3001\u300c\u5730\u4e0b\u6c34\u6c61\u67d3\u300d\u3001\u300c\u5ee2\u6e05\u6cd5\u300d\u548c\u300c\u98f2\u7528\u6c34\u300d\u3002\u6b64\u65b9\u5f0f\u53ef\u4ee5 \u5354\u52a9\u64ec\u7a3f\u8005\uff0c\u7576\u64b0\u5beb\u6709\u95dc\u767b\u9769\u71b1\u9632\u75ab\u7684\u65b0\u805e\u7a3f\u6642\uff0c\u53ef\u4ee5\u77e5\u9053\u7db2\u6c11\u901a\u5e38\u4e5f\u6703\u95dc\u6ce8 \u300c\u6c34\u6c61\u67d3\u300d\u3001\u300c\u74b0\u4fdd\u5c40\u300d\u3001\u300c\u8cc7\u6e90\u56de\u6536\u300d\u3001\u300c\u6234\u5967\u8f9b\u300d\u3001\u300c\u6c34\u8cea\u300d\u3001\u300c\u74b0\u4fdd\u7f72\u300d\u3001 \u300c\u5730\u4e0b\u6c34\u6c61\u67d3\u300d\u3001\u300c\u5ee2\u6e05\u6cd5\u300d\u548c\u300c\u98f2\u7528\u6c34\u300d\u7b49\u8b70\u984c\uff0c\u5354\u52a9\u64ec\u7a3f\u4eba\u64b0\u5beb\u65b0\u805e\u7a3f\u6642\uff0c \u53ef\u7d0d\u5165\u53c3\u8003\uff0c\u63d0\u9ad8\u65b0\u805e\u7a3f\u5167\u5bb9\u5ee3\u5ea6\u8207\u95dc\u6ce8\u8b70\u984c\u6db5\u84cb\u7387\uff0c\u4ee5\u6b64\u8a55\u4f30\u662f\u5426\u8de8\u55ae\u4f4d\u5408 \u4f5c\u767c\u5e03\u65b0\u805e\u7a3f\uff0c\u4ee5\u53ca\u62c9\u8fd1\u8207\u7db2\u6c11\u7684\u8ddd\u96e2\u3002 (\u4e8c)\u65b0\u805e\u767c\u5e03\u5f8c\u4e4b\u5373\u6642\u56de\u61c9 \u5047\u8a2d\u4ee5\u74b0\u4fdd\u76f8\u95dc\u55ae\u4f4d\u5728 2014 \u5e74 11 \u6708 5 \u65e5\u6240\u767c\u8868\u7684\u65b0\u805e\u7a3f\u70ba\u4f8b 5 \uff0c\u6a19\u984c\u70ba\u300c\u5ee2\u98df\u7528 \u6cb9\u56de\u6536\u7ba1\u7406\u5de5\u4f5c\u63a8\u52d5\u60c5\u5f62\u53ca\u672a\u4f86\u898f\u5283\u300d \uff0c\u6839\u64da\u4e0a\u8ff0\u5206\u6790\u67b6\u69cb\u5f97\u5230\u5206\u6790\u7d50\u679c\u5982\u4e0b\uff1a (1) \u74b0\u4fdd\u76f8\u95dc\u55ae\u4f4d\u767c\u5e03\u65b0\u805e\u7a3f\u64f7\u53d6\u95dc\u9375\u5b57\u5171\u6709 4 \u500b\uff0c\u5206\u5225\u70ba\uff1a\u74b0\u4fdd\u5c40\u3001\u5ee2\u98df\u7528\u6cb9\u3001 \u5ee2\u68c4\u7269\u3001\u74b0\u4fdd\u7f72\u3002 (2) \u8a2d \u5b9a \u5206 \u6790 \u8cc7 \u6599 \u4f86 \u6e90 \u6642 \u9593 \u5340 \u9593 \uff1a \u672c \u7814 \u7a76 \u4f7f \u7528 \u65b0 \u805e \u767c \u5e03 \u5f8c 1.5 \u500b \u6708 (2013.11.06~2014.12.21)\uff0c\u6b64\u70ba\u52d5\u614b\u8a2d\u5b9a\u53c3\u6578\uff0c\u53ef\u4f9d\u64da\u9700\u6c42\u8abf\u6574\u3002 (3) \u5229\u7528\u8b70\u984c\u5075\u6e2c\u7cfb\u7d71\uff0c\u5206\u6790\u95dc\u9375\u8a5e\u96c6\u5408\u6240\u96b1\u542b\u7684\u8a5e\u5f59\u95dc\u806f\uff0c\u5efa\u7acb\u95dc\u806f\u6cd5\u5247\u96c6\u5408\u5982 \u98df\u7528\u6cb9\u300d\u6709\u95dc\u4e4b\u6cd5\u5247\u3002\u8868 2 \u4e2d\u659c\u9ad4\u5b57\u8868\u793a\u539f\u672c\u5df2\u77e5\u4e4b\u95dc\u9375\u5b57\uff0c\u7c97\u9ad4\u5b57\u8868\u793a\u65b0\u767c \u73fe\u4e4b\u95dc\u9375\u5b57\u3002 (4) \u7d93\u904e\u6bd4\u5c0d\u65b0\u805e\u7a3f\u95dc\u9375\u5b57\u96c6\u5408\uff0c\u8207\u793e\u7fa4\u95dc\u9375\u5b57\u95dc\u806f\u6cd5\u5247\u96c6\u5408\uff0c\u53ef\u4ee5\u5f97\u5230\u95dc\u9375\u5b57\u5dee \u96c6\u70ba\u300c\u6c34\u8cea\u300d\u3001\u300c\u6c34\u6c61\u67d3\u300d\u3001\u300c\u5730\u4e0b\u6c34\u6c61\u67d3\u300d\u548c\u300c\u6234\u5967\u8f9b\u300d\u3002\u6545\u7576\u5ee2\u98df\u7528\u6cb9\u7684 \u8b70\u984c\u5728\u7db2\u8def\u50b3\u958b\u5f8c\uff0cPTT \u7db2\u6c11\u95b1\u8b80\u7684\u6587\u7ae0\u9664\u4e86\u5305\u542b\u8207\u74b0\u4fdd\u76f8\u95dc\u55ae\u4f4d\u65b0\u805e\u7a3f\u76f8\u540c \u7684\u95dc\u9375\u5b57\u5916\uff0c\u901a\u5e38\u4e5f\u6703\u95dc\u6ce8\u6216\u8a0e\u8ad6\u8207\u300c\u6c34\u8cea\u300d\u3001\u300c\u6c34\u6c61\u67d3\u300d\u3001\u300c\u5730\u4e0b\u6c34\u6c61\u67d3\u300d \u548c\u300c\u6234\u5967\u8f9b\u300d\u7b49\u76f8\u95dc\u8b70\u984c\u4e4b\u6587\u7ae0\uff0c\u53ef\u63d0\u4f9b\u76f8\u95dc\u55ae\u4f4d\u53c3\u8003\u56e0\u61c9\u3002\u53e6\u4e00\u65b9\u9762\u65b0\u805e\u7a3f \u95dc\u9375\u5b57\u300c\u5ee2\u98df\u7528\u6cb9\u300d\u4e26\u6c92\u6709\u88ab\u7db2\u6c11\u8a0e\u8ad6\uff0c\u4e5f\u53ef\u601d\u8003\u662f\u5426\u52a0\u5f37\u653f\u7b56\u5ba3\u50b3\u3002 \u8868 1 \u653f\u7b56\u7814\u64ec\u968e\u6bb5\u95dc\u806f\u6cd5\u5247\u5206\u6790\u7d50\u679c \u8cc7\u6e90\u56de\u6536\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u6234\u5967 \u6234\u5967 \u6234\u5967 \u6234\u5967\u8f9b \u8f9b \u8f9b \u8f9b\u2190 \u74b0\u4fdd\u5c40 \u5ee2\u6c34 \u6234\u5967\u8f9b\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u5ee2\u6c34 \u6c34\u8cea \u6c34\u8cea \u6c34\u8cea \u6c34\u8cea\u2190 \u74b0\u4fdd\u5c40 \u5ee2\u6c34 \u6c34\u8cea\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u5ee2\u6c34 \u74b0\u4fdd\u7f72 \u74b0\u4fdd\u7f72 \u74b0\u4fdd\u7f72 \u74b0\u4fdd\u7f72\u2190 \u74b0\u4fdd\u5c40 \u5730\u4e0b\u6c34\u6c61\u67d3 \u5730\u4e0b\u6c34\u6c61\u67d3 \u5730\u4e0b\u6c34\u6c61\u67d3 \u5730\u4e0b\u6c34\u6c61\u67d3\u2190 \u74b0\u4fdd\u5c40 \u5ee2\u6c34 \u5730\u4e0b\u6c34\u6c61\u67d3\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u5730\u4e0b\u6c34\u6c61\u67d3\u2190 \u74b0\u4fdd\u5c40 \u5ee2\u6e05\u6cd5 \u5ee2\u6e05\u6cd5 \u5ee2\u6e05\u6cd5 \u5ee2\u6e05\u6cd5\u2190 \u74b0\u4fdd\u5c40 \u5ee2\u6c34 \u5ee2\u6e05\u6cd5\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u8868 2 \u65b0\u805e\u767c\u5e03\u5373\u6642\u56de\u61c9\u95dc\u806f\u6cd5\u5247\u5206\u6790\u7d50\u679c \u6c34\u8cea \u6c34\u8cea \u6c34\u8cea \u6c34\u8cea \u2190 \u5ee2\u68c4\u7269 \u6c34\u6c61\u67d3 \u6c34\u6c61\u67d3 \u6c34\u6c61\u67d3 \u6c34\u6c61\u67d3 \u6c34\u6c61\u67d3 \u2190 \u5ee2\u68c4\u7269 \u6c34\u8cea \u6c34\u8cea \u2190 \u74b0\u4fdd\u7f72 \u74b0\u4fdd\u7f72 \u2190 \u6c34\u8cea \u6c34\u8cea \u2190 \u74b0\u4fdd\u5c40 \u6c34\u8cea \u2190 \u74b0\u4fdd\u5c40 \u74b0\u4fdd\u7f72 \u74b0\u4fdd\u7f72 \u2190 \u74b0\u4fdd\u5c40 \u6c34\u8cea \u74b0\u4fdd\u7f72 \u2190 \u74b0\u4fdd\u5c40 \u6c34\u8cea \u2190 \u6c34\u6c61\u67d3 \u6c34\u8cea \u2190 \u6c34\u6c61\u67d3 \u74b0\u4fdd\u7f72 \u74b0\u4fdd\u7f72 \u2190 \u6c34\u6c61\u67d3 \u6c34\u8cea \u516d\u3001\u7d50\u8ad6\u8207\u672a\uf92d\u7814\u7a76\u65b9\u5411 \u672c\u7814\u7a76\u4ee5\u74b0\u4fdd\u9818\u57df\u8cc7\u6599\u70ba\u7814\u7a76\u6a23\u672c\uff0c\u5efa\u69cb\u74b0\u4fdd\u8b70\u984c\u5075\u6e2c\u6a21\u578b\uff0c\u63a2\u52d8\u6c11\u773e\u76ee\u524d\u95dc\u6ce8\u8b70 \u984c\u8207\u672a\u4f86\u8a0e\u8ad6\u65b9\u5411\u3002\u5206\u6790\u7d50\u679c\u986f\u793a\uff0c\u63a1\u7528 PTT \u96fb\u5b50\u4f48\u544a\u6b04\u4e4b\u6587\u7ae0\uff0c\u7d93\u904e\u5be6\u9a57\u8b49\u660e\uff0c\u80fd \u6709\u6548\u77ad\u89e3\u6c11\u773e\u904e\u53bb\u95dc\u6ce8\u8b70\u984c\u53ca\u6e96\u78ba\u9810\u6e2c\u672a\u4f86\u8b70\u984c\u767c\u5c55\u65b9\u5411\uff0c\u53ef\u4f5c\u70ba\u74b0\u4fdd\u6a5f\u95dc\u4e4b\u53c3\u8003\u8cc7 \u8a0a\u3002\u7136\u800c\uff0c\u7d93\u7531\u5206\u6790\u7d50\u679c\u53ef\u767c\u73fe\uff0c\u74b0\u4fdd\u76f8\u95dc\u55ae\u4f4d\u6240\u767c\u5e03\u4e4b\u65b0\u805e\u7a3f\u8207\u7db2\u6c11\u6240\u95dc\u6ce8\u7684\u8b70\u984c\u7126 \u9ede\u4ecd\u6709\u4e9b\u5fae\u5dee\u7570\u3002\u82e5\u80fd\u53ca\u65e9\u8655\u7406\u8207\u88dc\u5f37\u65b0\u805e\u7a3f\u672a\u63d0\u5230\u4e4b\u8b70\u984c\uff0c\u80fd\u964d\u4f4e\u6c11\u6028\uff0c\u63d0\u5347\u4eba\u6c11\u5c0d \u653f\u5e9c\u65bd\u653f\u6548\u7387\u8207\u6eff\u610f\u5ea6\u3002 (\u4e00) \u672c\u7814\u7a76\u4f7f\u7528 PTT \u70ba\u4e3b\u8981\u5206\u6790\u8cc7\u8981\u4f86\u6e90\uff0c\u7db2\u8def\u4e0a\u9084\u6709\u8a31\u591a\u4e0d\u540c\u614b\u6a23\u8cc7\u6599\u4f86\u6e90\u53ef \u7576\u6210\u672a\u4f86\u5206\u6790\u8cc7\u6599\u76ee\u6a19\uff0c\u4f8b\u5982 Facebook\u3001Plurk \u8207\u653f\u5e9c\u55ae\u4f4d\u7684\u5e02\u6c11\u4fe1\u7bb1\u7b49\uff0c\u900f \u904e\u591a\u7a2e\u4e0d\u540c\u4f86\u6e90\u8cc7\u6599\u4ea4\u53c9\u6bd4\u5c0d\uff0c\u61c9\u53ef\u6709\u6548\u63d0\u5347\u5206\u6790\u8cc7\u6599\u7684\u5ee3\u5ea6\u8207\u9762\u5411\u3002 (\u4e8c) \u8cc7\u6599\u6240\u4f7f\u7528\u7684\u6642\u9593\u5340\u6bb5\u53ef\u80fd\u6703\u76f4\u63a5\u5f71\u97ff\u5206\u6790\u7d50\u679c\uff0c\u5982\u4f7f\u7528\u8f03\u591a\u7684\u8cc7\u6599(\u6642\u9593\u5340 \u6bb5\u8a2d\u5b9a\u62c9\u9577)\u53ef\u4ee5\u5206\u6790\u8f03\u591a\u7684\u8cc7\u6599\u6a23\u672c\uff0c\u4f46\u662f\u6709\u53ef\u80fd\u6703\u63d0\u9ad8\u96dc\u8a0a\u5305\u542b\u7387\uff1b\u4f7f \u7528\u8f03\u5c11\u7684\u8cc7\u6599(\u6642\u9593\u5340\u6bb5\u8a2d\u5b9a\u6e1b\u77ed)\uff0c\u53ef\u964d\u4f4e\u96dc\u8a0a\u88ab\u5305\u542b\u7684\u6a5f\u7387\uff0c\u4f46\u662f\u53ef\u80fd \u6703\u5f71\u97ff\u5230\u5206\u6790\u8cc7\u6599\u8c50\u5bcc\u6027\u3002\u5982\u4f55\u62ff\u634f\u6700\u4f73\u7684\u5206\u6790\u5340\u6bb5\uff0c\u9700\u8981\u6642\u9593\u7d93\u9a57\u7d2f\u7a4d\u4f86 \u8abf\u6574\u3002 (\u4e09) \u672c\u7814\u7a76\u4f7f\u7528\u95dc\u806f\u6cd5\u5247\u6f14\u7b97\u6cd5\uff0c\u53ef\u5617\u8a66\u4e0d\u540c\u7684\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uff0c\u4e26\u5c07\u4e0d\u540c\u7684\u9810\u6e2c \u7d50\u679c\u52a0\u4ee5\u5408\u4f75\u6574\u7406\uff0c\u61c9\u53ef\u518d\u63d0\u5347\u5206\u6790\u7cfb\u7d71\u4e4b\u6548\u80fd\u3002 \u8868 2\uff0c\u4ee5\u7b2c 1 \u74b0\u5883\u677f\u4e4b\u6587\u7ae0\uff0c\u90fd\u6c92\u6709\u63d0\u5230\u95dc\u9375\u5b57\u300c\u5ee2\u98df\u7528\u6cb9\u300d\uff0c\u6240\u4ee5\u6c92\u6709\u7522\u751f\u8207\u95dc\u9375\u5b57\u300c\u5ee2 \u74b0\u4fdd\u7f72 \u2190 \u6c34\u6c61\u67d3 \u53c3\u8003\u6587\u737b \u5ee2\u6c34\u2190 \u6c34\u6c61\u67d3 \u5ee2\u6c34\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u6c34\u6c61\u67d3 \u6c34\u6c61\u67d3 \u74b0\u4fdd\u5c40 \u74b0\u4fdd\u5c40 \u74b0\u4fdd\u5c40 \u8cc7\u6e90\u56de\u6536 \u8cc7\u6e90\u56de\u6536 \u8cc7\u6e90\u56de\u6536 \u8cc7\u6e90\u56de\u6536\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u5ee2\u6c34 \u5ee2\u68c4\u7269 \u2190 \u74b0\u4fdd\u5c40 \u6c34\u8cea \u8cc7\u6e90\u56de\u6536\u2190 \u74b0\u4fdd\u5c40 \u5ee2\u6c34 \u5730\u4e0b\u6c34\u6c61\u67d3 \u2190 \u74b0\u4fdd\u5c40 \u74b0\u4fdd\u7f72 \u6c34\u8cea \u8cc7\u6e90\u56de\u6536\u2190 \u74b0\u4fdd\u5c40 \u6234\u5967\u8f9b \u2190 \u74b0\u4fdd\u5c40 \u5ee2\u68c4\u7269\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u5ee2\u6c34 \u6234\u5967\u8f9b \u6234\u5967\u8f9b \u6234\u5967\u8f9b \u6234\u5967\u8f9b \u2190 \u74b0\u4fdd\u5c40 \u74b0\u4fdd\u7f72 \u6c34\u8cea \u5ee2\u68c4\u7269\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u74b0\u4fdd\u5c40 \u2190 \u74b0\u4fdd\u7f72 \u6c34\u8cea \u5ee2\u68c4\u7269\u2190 \u74b0\u4fdd\u5c40 \u5ee2\u6c34 \u5730\u4e0b\u6c34\u6c61\u67d3 \u5730\u4e0b\u6c34\u6c61\u67d3 \u5730\u4e0b\u6c34\u6c61\u67d3 \u5730\u4e0b\u6c34\u6c61\u67d3 \u2190 \u6c34\u6c61\u67d3 \u6c34\u8cea \u5ee2\u68c4\u7269\u2190 \u74b0\u4fdd\u5c40 \u74b0\u4fdd\u5c40 \u2190 \u5ee2\u68c4\u7269 \u6c34\u8cea \u74b0\u4fdd\u5c40\u2190 \u5ee2\u6c34 \u6c34\u8cea \u2190 \u5ee2\u68c4\u7269 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3\u2190 \u5ee2\u6c34 \u74b0\u4fdd\u7f72 \u2190 \u5ee2\u68c4\u7269 \u74b0\u4fdd\u5c40\u2190 \u6c34\u6c61\u67d3 \u74b0\u4fdd\u7f72 \u2190 \u5ee2\u68c4\u7269 \u6c34\u8cea \u74b0\u4fdd\u5c40\u2190 \u6c34\u6c61\u67d3 \u5ee2\u6c34 \u6c34\u8cea \u2190 \u5ee2\u68c4\u7269 \u74b0\u4fdd\u7f72 \u6c34\u6c61\u67d3\u2190 \u74b0\u4fdd\u5c40 \u6c34\u8cea \u2190 \u5ee2\u68c4\u7269 \u6c34\u6c61\u67d3\u2190 \u74b0\u4fdd\u5c40 \u5ee2\u6c34 \u6c34\u8cea \u2190 \u6c34\u6c61\u67d3 \u74b0\u4fdd\u5c40 \u74b0\u4fdd\u7f72 \u5ee2\u6c34\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u6c34\u8cea \u2190 \u6c34\u6c61\u67d3 \u74b0\u4fdd\u5c40 \u74b0\u4fdd\u5c40 \u2190 \u6c34\u6c61\u67d3 \u6c34\u8cea [1] X.</td></tr><tr><td>\u5ee2\u6e05\u6cd5\u2190 \u74b0\u4fdd\u5c40 \u672a\u4f86\u7814\u7a76\u65b9\u5411\u53ef\u5206\u70ba\u4ee5\u4e0b 3 \u9ede\uff1a</td></tr><tr><td>\u98f2\u7528\u6c34 \u98f2\u7528\u6c34 \u98f2\u7528\u6c34 \u98f2\u7528\u6c34\u2190 \u74b0\u4fdd\u5c40 \u5ee2\u6c34</td></tr><tr><td>\u98f2\u7528\u6c34\u2190 \u74b0\u4fdd\u5c40 \u6c34\u6c61\u67d3 \u5ee2\u6c34</td></tr></table>",
"type_str": "table",
"html": null
}
}
}
}