{ "paper_id": "O00-1007", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T07:59:12.158722Z" }, "title": "", "authors": [], "year": "", "venue": null, "identifiers": {}, "abstract": "", "pdf_parse": { "paper_id": "O00-1007", "_pdf_hash": "", "abstract": [], "body_text": [ { "text": "\u5176\u4e2d 1 pf \u8207 2 pf \u5206\u5225\u662f 1 d \u8207 2 d \u7684\u4e3b\u8981\u7279\u5fb5\uff0c 1 sf \u8207 2 sf \u5206\u5225\u662f 1 d \u8207 2 d \u7684\u6b21\u8981\u7279\u5fb5\uff0c PF Sim \u8207 SF Sim \u5206\u5225\u662f 1 d \u548c 2 d \u7684\u4e3b\u8981\u7279\u5fb5\u8207\u6b21\u8981\u7279\u5fb5\u7684\u76f8", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "Sim IS IS ( , ) ", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": "Sim T T Sim T T T T Sim T T T T T Sim T T T T T Sim T T Sim T T T = = \uff0c \uff0c 2, 1 2 ),", "eq_num": "( , )" } ], "section": "", "sec_num": null }, { "text": "word Sim T T \u8868\u793a\u5169\u500b\u55ae\u7bc0\u9ede IS \u6790\u6a39\u9593\u7684\u76f8 \u5ea6\uff0c 1,i T \u548c 2, j T \u5206\u5225\u8868\u793a 1 T \u548c 2 T \u7684\u5b50 \u6a39\uff0c 1 T \u548c 2 T \u5206\u5225\u8868\u793a 1 T \u548c 2 T \u5b50\u6a39\u7684\u500b\u6578\uff0c subtree Sim \u8868\u793a\u5169\u500b\u975e\u55ae\u7bc0\u9ede IS \u6790\u6a39\u9593\u7684\u76f8 \u5ea6\uff0c \u5176\u5b9a\u7fa9\u5982\u4e0b\uff1a , , 1 1 2 ( , ( )) ( , ) max A T tree A k A k k subtree g A Sim T g T Sim T T T = = \u2211 (11) \u5176\u4e2d g \u662f\u4e00\u500b\u5f9e A T \u5230 B T \u7684\u4e00\u5c0d\u4e00\u51fd\u6578\uff0c , A k T \u8868\u793a A T \u7684\u4e00\u500b\u5b50\u6a39\uff0c A T \u8868\u793a A T \u5b50\u6a39\u7684\u500b\u6578\u3002 \u7531\u65bc g \u70ba\u4e00\u5c0d\u4e00\u51fd\u6578\uff0c\u6240\u4ee5 A B T T \uff0c\u56e0\u6b64\u9700\u8981\u7279\u5225 \u610f\uff1a\u82e5 1 2 T T \uff0c\u5247\u8a2d\u5b9a 1 A T T = \u4e14 2 B T T = \uff0c \u5426\u5247\u8a2d\u5b9a 2 A T T = \u4e14 1 B T T = \u3002 \u7576 1 T \u548c 2 T \u90fd\u662f\u5916\u90e8\u7bc0\u9ede\u7684\u6642\u5019\uff0c\u8868\u793a\u6b64\u4e8c\u8005\u7686\u70ba\u8a5e\uff0c\u5c0d\u65bc\u5169\u500b\u8a5e\u7684\u76f8 \u5ea6\uff0c\u5c31\u5229\u7528\u516c\u5f0f (1)\u6240\u63cf\u8ff0\u7684\u8a5e\u610f\u76f8 \u5ea6\u4f86\u91cf \u3002\u7576 1 T \u6216 2 T \u5176\u4e2d\u4e4b\u4e00\u70ba\u5916\u90e8\u7bc0\u9ede\u6642\uff0c\u8868\u793a\u5176\u4e2d\u4e00\u500b\u70ba\u8a5e\u53e6\u4e00\u500b \u5247\u70ba\u4e00\u500b\u7247\u8a9e\uff0c\u6b64\u6642\u5247\u905e\u8ff4\u5411\u4e0b \u51fa\u8a72\u7247\u8a9e\u4e2d\u8207\u8a72\u8a5e\u6700\u76f8 \u7684\u8a5e\u3002\u7576 1 T \u548c 2 T \u90fd\u4e0d\u70ba\u5916\u90e8\u7bc0\u9ede \u6642\uff0c\u5c31\u8868\u793a 1 T \u548c 2 T \u90fd\u542b\u6709\u5404\u81ea\u7684\u5b50\u6a39\u3002\u6b64\u6642\uff0c\u53ef\u4ee5\u5f9e\u4e09\u500b\u65b9\u5411\u4f86\u601d\u8003\uff1a\u6700\u57fa\u672c\u7684\u60f3\u6cd5\uff0c\u82e5\u5169 \u6a39\u7684\u6240\u6709\u5b50\u6a39\u90fd\u975e\u5e38\u76f8 \uff0c\u5247\u9019\u5169 \u6a39\u53ef\u80fd\u662f\u975e\u5e38\u76f8 \u7684\uff0c\u56e0\u6b64\u8003\u616e 1 2 ( , ) subtree Sim T T \u4f5c\u70ba 1 T \u548c 2 T \u7684\u76f8 \u5ea6\uff1b\u53e6\u5916\uff0c\u5982\u679c 1 T \u76f8 \u65bc 2 T \u7684\u4e00\u500b\u5b50\u6a39\uff0c\u6216\u662f 2 T \u76f8 \u65bc 1 T \u7684\u4e00\u500b\u5b50\u6a39\uff0c\u5247\u6839\u64da\u5206 \u7684\u591a\u5be1\u4f86\u6c7a\u5b9a\u8a72\u76f8 \u5ea6\u4e4b\u6b0a\u91cd\u3002", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null } ], "back_matter": [], "bib_entries": { "BIBREF2": { "ref_id": "b2", "title": "A Discourse Analysis of Questions in Mandarin Conversion", "authors": [ { "first": "Chung-Yin", "middle": [], "last": "Chang", "suffix": "" } ], "year": 1997, "venue": "", "volume": "", "issue": "", "pages": "16--81", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chang, Chung-Yin, \"A Discourse Analysis of Questions in Mandarin Conversion,\" M.A. Thesis, National Taiwan University Graduate Institute of Linguistics, June 1997, pp. 16-81.", "links": null }, "BIBREF3": { "ref_id": "b3", "title": "Head-driven Statistical Models for Natural Language Parsing", "authors": [ { "first": "M", "middle": [ "J" ], "last": "Collins", "suffix": "" } ], "year": 1999, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Collins, M. J., \"Head-driven Statistical Models for Natural Language Parsing,\" Ph.D. Thesis, University of Pennsylvania, Philadelphia, 1999.", "links": null }, "BIBREF5": { "ref_id": "b5", "title": "An Efficient Context-free Parsing Algorithm", "authors": [ { "first": "J", "middle": [], "last": "Earley", "suffix": "" } ], "year": 1970, "venue": "Communications of the ACM", "volume": "6", "issue": "8", "pages": "451--455", "other_ids": {}, "num": null, "urls": [], "raw_text": "Earley, J., \"An Efficient Context-free Parsing Algorithm,\" Communications of the ACM, vol. 6, no. 8, 1970, pp. 451-455.", "links": null }, "BIBREF7": { "ref_id": "b7", "title": "Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy", "authors": [ { "first": "Jay", "middle": [ "J" ], "last": "Jiang", "suffix": "" }, { "first": "David", "middle": [ "W" ], "last": "Conrath", "suffix": "" } ], "year": 1997, "venue": "Proceedings of the ROCLING X", "volume": "", "issue": "", "pages": "19--33", "other_ids": {}, "num": null, "urls": [], "raw_text": "Jiang, Jay J. and David W. Conrath, \"Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy,\" Proceedings of the ROCLING X, 1997, pp. 19-33.", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "Mandarin Chinese: A functional reference grammar", "authors": [ { "first": "Charles", "middle": [], "last": "Li", "suffix": "" }, { "first": "Sandra", "middle": [ "A" ], "last": "Thompson", "suffix": "" } ], "year": 1981, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Li, Charles and Sandra A. Thompson, \"Mandarin Chinese: A functional reference grammar,\" Berkeley and Los Angeles: University of California Press, 1981.", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "An Information-Theoretic Definition of Similarity", "authors": [ { "first": "D", "middle": [], "last": "Lin", "suffix": "" } ], "year": 1998, "venue": "Proceedings of the International Conference on Machine Learning", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Lin, D., \"An Information-Theoretic Definition of Similarity,\" Proceedings of the International Conference on Machine Learning, July 1998.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "Foundations of Statistical Natural Language Processing", "authors": [ { "first": "Christopher", "middle": [ "D" ], "last": "Manning", "suffix": "" }, { "first": "Hinrich", "middle": [], "last": "Sch Tze", "suffix": "" } ], "year": 1999, "venue": "", "volume": "", "issue": "", "pages": "296--303", "other_ids": {}, "num": null, "urls": [], "raw_text": "Manning, Christopher D. and Hinrich Sch tze, \"Foundations of Statistical Natural Language Processing,\" The MIT Press, 1999, pp. 296-303.", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "Structural Alignment During Similarity Comparisons", "authors": [ { "first": "A", "middle": [ "B" ], "last": "Markman", "suffix": "" }, { "first": "D", "middle": [], "last": "Gentner", "suffix": "" } ], "year": 1993, "venue": "Cognitive Psychology", "volume": "25", "issue": "", "pages": "431--467", "other_ids": {}, "num": null, "urls": [], "raw_text": "Markman, A. B. and D. Gentner, \"Structural Alignment During Similarity Comparisons,\" Cognitive Psychology, vol. 25, 1993, pp. 431-467.", "links": null }, "BIBREF12": { "ref_id": "b12", "title": "Using Information Content to Evaluate Semantic Similarity in a Taxonomy", "authors": [ { "first": "P", "middle": [], "last": "Resnik", "suffix": "" } ], "year": 1995, "venue": "Proceedings of the 14 th International Joint Conference on Artificial Intelligence", "volume": "1", "issue": "", "pages": "448--453", "other_ids": {}, "num": null, "urls": [], "raw_text": "Resnik, P., \"Using Information Content to Evaluate Semantic Similarity in a Taxonomy,\" Proceedings of the 14 th International Joint Conference on Artificial Intelligence, vol. 1, August 1995, pp. 448-453.", "links": null }, "BIBREF13": { "ref_id": "b13", "title": "A First Course in Probability", "authors": [ { "first": "S", "middle": [], "last": "Ross", "suffix": "" } ], "year": 1994, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Ross, S., \"A First Course in Probability,\" Macmillan, 1994.", "links": null }, "BIBREF14": { "ref_id": "b14", "title": "An Efficient Probabilistic Context-Free Parsing Algorithm that Computes Prefix Probabilities", "authors": [ { "first": "A", "middle": [], "last": "Stolcke", "suffix": "" } ], "year": 1995, "venue": "Computational Linguistics", "volume": "21", "issue": "2", "pages": "165--202", "other_ids": {}, "num": null, "urls": [], "raw_text": "Stolcke, A., \"An Efficient Probabilistic Context-Free Parsing Algorithm that Computes Prefix Probabilities,\" Computational Linguistics, vol. 21, no. 2, 1995, pp. 165-202.", "links": null }, "BIBREF15": { "ref_id": "b15", "title": "\u73fe\u4ee3\u6f22\u8a9e\u4e2d\u7684\u6cd5\u76f8\u8a5e", "authors": [], "year": 1993, "venue": "CKIP Technical Report", "volume": "", "issue": "93-06", "pages": "1--16", "other_ids": {}, "num": null, "urls": [], "raw_text": ", \"\u73fe\u4ee3\u6f22\u8a9e\u4e2d\u7684\u6cd5\u76f8\u8a5e\", CKIP Technical Report, no.93-06, June 1993, pp. 1-16.", "links": null }, "BIBREF16": { "ref_id": "b16", "title": "\u77e5\u7db2", "authors": [], "year": null, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "[17] , , \"\u77e5\u7db2\", http://how-net.com.", "links": null }, "BIBREF17": { "ref_id": "b17", "title": "The Hows of Why and the Whys of How", "authors": [], "year": 2000, "venue": "", "volume": "", "issue": "", "pages": "1--27", "other_ids": {}, "num": null, "urls": [], "raw_text": ", \"The Hows of Why and the Whys of How\", \u8a9e\u8a00\u5b78\u7684 \u9020\u529b\u5b78\u8853\u7814\u8a0e\u6703, 2000, pp.1-27.", "links": null } }, "ref_entries": { "TABREF0": { "html": null, "content": "
\u7db2 \u7db2\u8def FAQ \u6aa2 \u4e2d\u610f\u5716\u8403\u53d6\u8207\u8a9e\u610f\u6bd4\u5c0d\u4e4b\u7814\u7a76 \u5f0f\u624d\u80fd\u5f97\u5230\u60f3\u8981\u7684\u7d50\u679c\u3002(2)\u7576\u4f7f\u7528\u8005\u60f3\u8981\u67e5\u8a62\u7684\u8cc7\u6599\u4e0d\u5b58\u5728\u95dc \u8a5e\uff0c\u6216\u8005\u4f7f\u7528\u8005\u7121\u6cd5 \u5230\u9069 \u6240\u63d0\u51fa\u7684\u65b9\u6cd5 \u662f\u5e0c\u671b\u80fd\u6709\u6548\u5730\u8403\u53d6\u51fa\u8a62\u554f\u53e5\u4e2d\u6240\u5305\u542b\u7684\u610f\u5716\uff0c\u4e26\u4e14\u85c9\u7531\u610f\u5716\u4f86 \u52a9\u6211\u5011\u5206 \u6240\u8868\u793a\u6210\u7684\u5411\u91cf\u505a\u6bd4\u5c0d\uff0c \u51fa\u8207 KS \u6700\u76f8\u95dc\u7684 \u3002 \u4fc2\u554f\u53e5\u53ca\u8868\u610f\u554f\u53e5\u56db\u5927\u985e\u3002\u9019\u4e9b\u529f\u80fd\u6210\u4e00\u7dda\u6027\u5206\u4f48\uff0c\u5f9e\u8aaa \u8005\u7684 \u5b9a\u5ea6\u4f86 \uff0c\u5206\u5225\u8868\u793a\u8aaa \u7528\u5728\u7db2\u8def\u4e0a\u7684\u554f\u53e5\u985e\u578b\u9032\u884c\u5206\u6790\uff0c\u7814\u7a76\u554f\u53e5\u5728\u5404\u7a2e\u53e5\u578b\u7d50\u69cb\u4e0b\u7684\u610f\u5716\u3002 \u8868 4 \u4e0d\u542b\u6cd5\u76f8\u526f\u8a5e\u4e4b\u53e5 \u8a9e\u52a9\u8a5e\u70ba \u7684\u554f\u53e5\u53ca\u5176\u5c0d\u61c9\u7684\u610f\u5716 \u6bb5(IS) \u7d93\u7531 AutoTag \u7684 \u52a9\uff0c\u53ef\u4ee5\u5c07\u4e00\u500b\u53e5\u5b50\u4f9d\u7167\u5206\u6790\u7684\u7d50\u679c\u8f49\u63db\u6210\u4e00\u500b \u6709\u8a5e\u6027\u7684\u8a5e\u5e8f\u5217\u3002 \u8868 8 How-net \u5b9a\u7fa9\u7bc4\u4f8b
\u80b2 \u3001 \u570b\u7acb\u6210\u529f\u5927\u5b78\u8cc7\u8a0a\u5de5\u7a0b\u7814\u7a76\u6240 \u3001 {laiys, leekl, chwu}@csie.ncku.edu.tw Fax: +886-6-2747076 \u6458\u8981 \u672c\u8ad6\u6587\u4e4b\u4e3b\u8981\u76ee\u7684\u662f\u5e0c\u671b\u80fd\u5229\u7528\u81ea\u7136\u8a9e\u8a00\u67e5\u8a62\u4f86\u505a\u70ba FAQ \u6aa2 \u7684\u65b9\u5f0f\u3002\u4e00\u500b\u5b8c\u6574\u7684 FAQ \u6a23\u672c\u5fc5\u5b9a\u542b\u6709\u4e00\u500b\u554f\u984c\u8207\u8a72\u554f\u984c\u7684 \u3002\u85c9\u7531\u6bd4\u8f03\u4f7f\u7528\u8005\u7684\u8a62\u554f\u53e5\u4ee5\u53ca FAQ \u6a23\u672c\u7684\u554f\u53e5\uff0c\u5982 \u7576\u7684\u95dc \u8a5e\uff0c\u5247 \u81f3\u7121\u6cd5 \u5230\u6240\u9700\u7684\u8cc7\u6599\u3002 \u76f8\u8f03\u65bc\u95dc \u8a5e\u67e5\u8a62\uff0c\u4f7f\u7528\u81ea\u7136\u8a9e\u8a00\u67e5\u8a62\u662f\u6700\u80fd \u6e05 \u8868 \u4f7f\u7528\u8005\u610f\u5716\u7684\u65b9\u5f0f\uff0c\u4e5f\u662f\u6700\u81ea \u7136\u7684\u65b9\u5f0f\u3002 \u8457\u7db2\u8def\u7684 \u767c\u5c55\u4ee5\u53ca\u81ea\u7136\u8a9e\u8a00\u8655\u7406\u6280\u8853\u7684\u63d0 \uff0c\u4ee5\u81ea\u7136\u8a9e\u8a00\u70ba\u4e3b\u7684\u8cc7\u8a0a\u6aa2 \u662f\u4e00\u500b\u6b63\u5728\u8208\u8d77\u7684\u7814\u7a76\u65b9\u5411\u3002\u76ee\u524d\u5df2\u6709\u5e7e\u500b\u7db2 \u63d0\u4f9b\u81ea\u7136\u8a9e\u8a00\u67e5\u8a62\u7684 \uff1a\u5728\u570b\u5916\u6709 Ask Jeeves \u7db2 [1]\u4ee5\u53ca FAQ Finder \u7cfb\u7d71[7]\uff0c\u570b \u6709 \u4f86\u8b49 \u7684 E \u535a\u58eb[5]\u3002\u4f46\u662f\u7531\u65bc\u76ee\u524d\u96fb \u6280 \u8853\u9084\u4e0d\u80fd\u505a\u5230\u5b8c\u5168\u7406\u89e3\u81ea\u7136\u8a9e\u8a00\u7684\u610f\u7fa9\uff0c\u4ee5\u81f4\u4f7f\u7528\u81ea\u7136\u8a9e\u8a00\u4f86\u505a\u8cc7\u8a0a\u6aa2 \u7684\u7814\u7a76\u5c1a\u672a\u6210 \uff0c \u4f46\u662f\u9019\u537b\u662f\u672a\u4f86\u8cc7\u8a0a\u6aa2 \u5fc5\u5b9a\u8981\u767c\u5c55\u7684\u65b9\u5411\u3002\u82e5\u80fd\u4f7f\u4e4b\u7d50\u5408\u524d \u7684\u8a9e\u97f3\u8fa8\u8b58\uff0c\u76f4\u63a5\u5229\u7528\u8a9e\u97f3 \u67e5\u8a62\uff0c\u5c07\u662f\u66f4\u52a0 \u5229\u4e14\u4eba\u6027\u5316\u7684\u4e00\u7a2e\u65b9\u5f0f\u3002 1-2. \u7814\u7a76\u52d5\u6a5f\u8207\u76ee\u7684 \u8fa8\u5169\u500b\u53e5\u5b50\u7684\u8a9e\u610f\u3002\u900f\u904e\u8a9e\u610f\u6587\u6cd5(semantic grammar)\u4ee5\u53ca \u7528\u8a5e(stopping words)\u7684\u7be9\u9078\uff0c\u6211 \u5011\u5c07\u554f\u53e5\u5206\u6210\u5169\u500b\u90e8\u5206\uff1a \u610f\u5716 \u6bb5(intention segment, IS) \u548c \u95dc \u8a5e \u6bb5(keyword segment, KS) \uff0c\u554f\u53e5\u53e5\u610f\u7684\u6bd4\u5c0d\u5c07\u5efa\u7acb\u5728\u9019\u5169\u90e8\u5206\u5404\u81ea\u7684\u8a9e\u610f\u6bd4\u5c0d\u4e0a\u3002\u6b64\u5916\uff0c\u5728\u95dc \u8a5e\u7684\u6bd4\u5c0d\u4e0a\uff0c\u6211 \u5011\u4f9d \u4fdd \u76ee\u524d\u88ab \u4f7f\u7528\u7684\u95dc \u8a5e\u67e5\u8a62\u70ba\u57fa\u790e\u7684\u8cc7\u8a0a\u6aa2 \u6280\u8853 \u5411\u91cf \u9593\u6a21\u578b(vector space model, VSM)\uff0c\u7528\u4f86\u6bd4\u8f03\u8a62\u554f\u53e5\u4e2d\u7684\u95dc \u8a5e\u8207 FAQ \u6a23\u672c\u7684 \u3002 2. \u7cfb\u7d71\u67b6\u69cb \u5982\u5716 1 \u6240\u793a\uff0c\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u4e4b\u7cfb\u7d71\u67b6\u69cb\u4e3b\u8981\u5206\u70ba\u4e09\u5927\u90e8\u5206\uff1a \u8a9e\u610f\u5206\u6790\u5668 \u3001 \u554f\u53e5\u6bd4\u5c0d\u5668 \u53ca \u6587\u6bd4\u5c0d\u5668 \u3002\u4ee5\u4e0b\u91dd\u5c0d\u9019\u4e09\u500b\u90e8\u5206\u505a\u4e00\u500b\u7c21\u55ae\u7684\u4ecb\u7d39\u3002 \u9664\u4e86\u4e0a\u8ff0\u7684\u4e09\u5927\u6a5f\u5236\u5916\uff0cRanking Strategy \u5c07\u554f\u53e5\u6bd4\u5c0d\u5668\u53ca \u6587\u6bd4\u5c0d\u5668\u6240\u5f97\u5230\u7684\u7d50\u679c\uff0c\u5728 \u6b64\u505a\u4e00\u6574\u5408\uff0c\u6700\u5f8c\u5c07 \u540d\u5f8c\u7684\u7db2 \u8d85\u9023\u7d50\u8f38\u51fa\u3002 \u8005\u4e0d\u78ba\u5b9a\u6027\u9ad8\u7684\u5230\u4e0d\u78ba\u5b9a\u6027\u4f4e\u7684\uff1b\u5f9e\u8a0a \u7684\u89d2\u5ea6\u4f86 \uff0c\u5247\u8868\u793a\u8aaa \u8005\u5728 \u6c42\u8a0a \u7684\u5230\u50b3\u905e\u8a0a \u7684\u7591\u554f\u53e5\u3002\u540c\u6642\uff0c\u7591\u554f\u53e5\u4ea6\u986f\u73fe\u51fa\u5f9e \u6c42\u8f03 \u89c0\u3001\u6307\u793a\u6027\u7684\u8a0a \uff0c\u81f3\u50b3\u905e\u8f03\u4e3b\u89c0\u3001\u4ee5\u8aaa \u8005\u70ba\u51fa\u767c\u9ede\u7684 \u5ea6\u548c \u6cd5\u7684\u5206\u4f48\u3002\u56e0\u6b64\u9019\u8aaa\u660e\u5373\u4f7f\u5728\u53e5\u69cb\u5c64\u6b21\u610f\u7fa9\u7684\u4e3b\u89c0\u5316\u6216\u8aaa \u8005\u4ecb\u5165\u7a0b \u5ea6\u7684\u8868 \uff0c \u7a2e\u6a5f\u5236\u7684 \u4f5c\u4ea6\u660e\u986f\u53ef\u898b\u3002 \u5176\u7814\u7a76\u7d50\u679c\u986f\u793a\uff0c\u7591\u554f\u53e5\u7684\u8a9e\u6cd5\u5f62\u5f0f\u8207 \u901a\u529f\u80fd\u96d6\u662f\u591a\u5c0d\u591a\u7684\u95dc\u4fc2\uff0c\u5176\u4e2d\u537b\u4ecd\u5b58\u6709\u67d0\u7a2e \u7279\u5b9a\u7684\u5c0d\u61c9\u95dc\u4fc2\u3002\u8aaa \u8005 \u5411\u65bc\u4f7f\u7528 \u7591\u554f\u8a5e\u554f\u53e5 \u3001 \u662f\u975e\u554f\u53e5 \u53ca \u53e5\u5c3e\u8a9e\u52a9\u8a5e\u554f\u53e5\u70ba \u7684\u554f\u53e5 \u4f86 \u6c42\u81ea \u4e0d \u89e3 \u7684\u5916\u5728\u8a0a \u3002\u5728\u7db2 \u7db2\u8def\u4e0a\u7684\u554f\u984c\u4e5f\u591a\u4ee5\u9019\u4e09\u7a2e\u5f62\u5f0f\u5b58\u5728\uff0c \u56e0\u6b64\uff0c\u672c\u8ad6\u6587\u5373\u91dd\u5c0d\u6b64\u4e09\u7a2e\u985e\u578b\u7684\u554f\u53e5\u4f86\u505a\u5206\u6790\u3002 3-2. \u610f\u5716 \u6bb5(Intention Segment)\u7684\u5b9a\u7fa9 \u554f\u53e5 IS \u4e00\u822c\u5728\u505a\u95dc \u8a5e\u67e5\u8a62\u6642\uff0c\u591a \u7528\u7684\u662f\u540d\u8a5e\u6216\u52d5\u8a5e\uff0c\u6240\u4ee5\u65b7\u8a5e\u5f8c\uff0c\u6211\u5011\u5148\u5f9e\u53e5\u5b50\u4e2d \u51fa\u540d W_C G_C DEF 3-3-1. \u7591\u554f\u8a5e\u554f\u53e5 \u7591\u554f\u8a5e\u554f\u53e5\u76f8\u5c0d\u65bc\u82f1\u6587\u7684 WH \u554f\u53e5\u6709\u76f8\u7576\u63a5\u8fd1\u7684\u5730\u4f4d\uff0c\u7591\u554f\u8a5e\u901a\u5e38\u51fa\u73fe\u5728\u8207\u4e0d \u7591\u554f\u8a0a \u8a5e\u76f8\u540c\u6587\u6cd5\u529f\u80fd\u7684\u4f4d \u4e0a[3]\u3002\u4e2d\u6587\u5b58\u5728\u6709\u8a31\u591a\u7591\u554f\u8a5e\uff0c\u4f8b\u5982\uff1a \u3001 \u3001 \u6a23 \u3001 \u70ba \u3001 \u591a\u5c11 \u3001 \u88e1 \u3001 \u4f8b\u5982\u554f\u53e5\u4e2d\u5982\u679c\u554f\u5230 \u70ba \u8868 2 \u7591\u554f\u8a5e \u7684\u610f\u5716\u56e0\u8a9e\u6cd5\u4f4d \u7684\u4e0d\u540c\u800c\u6709\u6240\u4e0d\u540c \u5f8c\u52d5\u8a5e\u7247\u8a9e\u3002\u8868 5 \u5217\u8209\u51fa\u90e8\u5206\u662f\u975e\u554f\u53e5\u53ca\u5176\u5c0d\u61c9\u7684 IS\u3002 \u8868 7 \u554f\u53e5\u53ca\u5176\u76f8\u5c0d\u61c9\u95dc \u8a5e \u6bb5(KS)\u4e4b\u7bc4\u4f8b \u505a\u70ba\u8a62\u554f\u505a\u67d0\u4ef6\u4e8b\u7684\u65b9\u6cd5[16]\u3002 \u4e0d\u540c\u53e5\u578b\u7684\u554f\u53e5\u4e5f\u6703\u5177\u6709\u76f8\u540c\u7684 IS\u3002\u5c0d\u662f\u975e\u554f\u53e5\u800c\u8a00\uff0c\u6211\u5011\u8a8d\u70ba\u610f\u5716\u70ba\u63a5\u5728 A-not-A \u8a5e\u7d44\u4e4b \u8868 7 \u5217\u8209\u51fa\u90e8\u5206\u554f\u53e5\u53ca\u5176\u5c0d\u61c9\u7684 KS\u3002 \u9019\u500b\u7591\u554f\u8a5e\uff0c\u82e5\u51fa\u73fe\u5728\u526f\u8a5e\u4e4b\u524d\u53ef\u505a\u70ba\u8a62\u554f\u67d0\u4ef6\u4e8b\u60c5\u6216\u73fe\u8c61\u7684\u539f\u56e0\uff0c\u4f46\u82e5\u51fa\u73fe\u5728\u52d5\u8a5e\u4e4b\u524d\u537b \u52a9\u52d5\u8a5e\u958b\u982d\u7684\u554f\u53e5\uff0c\u9019\u5169\u985e\u554f\u53e5\u5728\u7d50\u69cb\u4e0a\u662f\u53ef\u4ee5\u4e92\u63db\u7684\u3002\u540c\u6a23\u5730\uff0c\u8868\u73fe\u5728 IS \u4e0a\u9762\uff0c\u76f8\u540c\u8a9e\u610f \u8a5e (stopping word dictionary)\uff0c\u7576\u4e00\u500b\u8a5e\u51fa\u73fe\u5728 \u7528\u8a5e\u8a5e \u4e2d\uff0c \u5c07\u4e4b\u5f9e\u95dc \u8a5e\u7d44\u88e1\u53bb\u9664\u3002 \u6709\u4e9b\u7591\u554f\u8a5e\u6703 \u8457\u5728\u53e5\u5b50\u4e2d\u7684\u76f8\u5c0d\u8a9e\u6cd5\u4f4d \u4e0d\u540c\uff0c\u5176\u610f\u7fa9\u4e5f\u4e0d\u76e1\u76f8\u540c\u3002\u5982\u8868 2 \u6240\u793a\uff0c \u4e0d\u53ef\u4ee5 \u3001 \u662f\u5426 \u3002\u662f\u975e\u554f\u53e5\u548c\u53e5 \u8a9e\u52a9\u8a5e\u70ba \u7684\u554f\u53e5\uff0c\u76f8\u5c0d\u65bc\u82f1\u6587 \u662f\u7531 be \u52d5\u8a5e\u6216\u662f \u8996\u70ba\u975e\u95dc \u8a5e\u3002\u7d93\u7531\u7d71\u8a08\u8a9e\u6599\u5eab\u53ef\u5f97\u5230\u4e00\u4e9b\u8a5e\u983b\uff0c\u5c07\u9ad8\u983b\u7684\u8a5e\u7d93\u904e\u4eba\u5de5\u7be9\u9078\u5efa\u7acb\u4e00\u500b \u7528\u8a5e \uff0c\u5e7e\u4e4e\u53ef\u4ee5\u60f3\u898b\u7684\u8a72\u53e5\u5c31\u662f\u5728\u554f\u67d0\u4ef6\u4e8b\u60c5\u6216\u73fe\u8c61\u7684\u539f\u56e0\uff1b\u4f46\u662f\uff0c \u662f\u975e\u554f\u53e5\u662f\u6307\u5305\u542b\u5177\u6709 A-not-AB \u6216\u662f A-not-A \u7279\u6027\u4e4b\u8a5e\u7d44\u7684\u554f\u53e5\uff0c\u4f8b\u5982\uff1a \u662f\u4e0d\u662f \u3001 \u53ef \u53e6\u5916\uff0c\u6709\u4e9b\u8a5e\u96d6\u7136\u7b26\u5408\u4ee5\u4e0a\u898f\u5247\uff0c\u4f46\u662f\u51fa\u73fe\u983b\u7387\u537b\u76f8\u7576\u9ad8\uff1b\u76f8\u5c0d\u800c\u8a00\uff0c\u5176\u91cd\u8981\u6027 \u4f4e\uff0c \u3001 \u70ba\u4f55 \u3002\u901a\u5e38\u7591\u554f\u8a5e\u53ef\u4ee5 \u52a9\u5224\u65b7\u554f\u53e5\u7684\u610f\u5716\uff0c 3-3-3. \u662f\u975e\u554f\u53e5 \u6211\u5011 \u9019\u4e9b\u8a5e\u985e\u7684\u8a5e\u8996\u70ba\u975e\u95dc \u8a5e\u3002 \u3001 \u6027 C \u578b \u53ef \u53ef \u5b50 \u5207\u7247\u7684\u7d50\u679c\u6b63\u78ba \u5bdf N human|\u4eba, police| \u8a5e\u53ca\u52d5\u8a5e\u7684\u90e8\u5206\u3002\u4f46\u662f AutoTag \u6240\u6a19\u8a18\u7684\u8a5e\u6027\u5206\u985e\u76f8\u7576 \uff0c\u5373\u4f7f\u662f\u540d\u8a5e\u985e\u4ecd\u6709\u8a31\u591a \u5206\uff0c\u800c \u4eba N human|\u4eba, *SufferFrom| , $cure| , #medical| , undesired| \u6b63\u78ba \u90e8\u5206\u985e\u5225\u96d6\u5c6c\u65bc\u540d\u8a5e\u537b\u4e0d\u505a\u95dc \u8a5e\u7528\uff0c\u5982\u5b9a\u8a5e(Ne)\u3001\u91cf\u8a5e(Nf)\u3001\u65b9\u4f4d\u8a5e(Ng)\u4ee5\u53ca\u4ee3\u540d\u8a5e(Nh)\uff0c N FlowerGrass|
\u679c\u5169\u8005\u7684\u8a9e\u610f\u76f8\u7576\u63a5\u8fd1\uff0c\u5247\u8a72 FAQ \u6a23\u672c\u7684 FAQ \u6a23\u672c\u7684 \u5728\u4ee5\u81ea\u7136\u8a9e\u8a00\u67e5\u8a62\u70ba\u4e3b\u7684\u8cc7\u8a0a\u6aa2 \u61c9\u7528\u4e2d\uff0cFAQ (Frequently Asked Questions)\u6aa2 \u662f\u4e00\u500b \u4e5f\u5c31\u53ef\u80fd\u5305\u542b\u4f7f\u7528\u8005\u60f3\u8981\u7684\u8cc7\u8a0a\u3002\u6b64\u5916\uff0c\u4e00\u500b 2-1. \u8a9e\u610f\u5206\u6790\u5668 \u5c0d\u4e00\u500b\u81ea\u7136\u8a9e\u8a00\u554f\u53e5\u800c\u8a00\uff0c\u6211\u5011\u8a8d\u70ba\u9664\u4e86\u95dc \u8a5e\u4e4b\u5916\uff0c\u4ecd\u6709\u5176\u4ed6\u56e0\u7d20\u53ef\u7528\u4f86\u5206\u8fa8\u554f\u53e5\u9593 \u554f\u53e5 \u610f\u5716 \u554f\u53e5 KS \u8868 5 \u90e8\u5206\u662f\u975e\u554f\u53e5\u53ca\u5176\u5c0d\u61c9\u7684\u610f\u5716 \u6bb5(IS) \u4e2d \u5982\u4f55 \u4e2d (Na)\u3001 (VC)\u3001 (Na) \u4e5f\u53ef\u80fd\u5305\u542b\u5176\u4ed6 \u5916\u7684\u8cc7\u8a0a\u3002\u56e0\u6b64\uff0c\u9664\u4e86\u5169\u500b\u7591\u554f\u53e5\u7684\u6bd4\u5c0d\u4e4b\u5916\uff0c\u4f7f\u7528\u8005\u6240 \u9700\u7684\u8cc7\u8a0a\u4e5f\u53ef\u4ee5\u900f\u904e\u6bd4\u5c0d\u8a62\u554f\u53e5\u8207 FAQ \u6a23\u672c\u7684 \u800c\u5f97\u5230\u3002 \u900f\u904e\u8a9e\u610f\u6587\u6cd5\u4ee5\u53ca \u7528\u8a5e\u7684\u7be9\u9078\uff0c\u6211\u5011\u5c07\u554f\u53e5\u5206\u6210\u5169\u500b\u90e8\u5206\uff1a \u610f\u5716 \u6bb5 \u548c \u95dc \u8a5e \u6bb5 \u3002\u610f\u5716 \u6bb5\u50b3 \u4f7f\u7528\u8005\u4e3b\u8981\u7684\u610f\u5716\uff0c\u95dc \u8a5e \u6bb5\u5305\u542b\u554f\u53e5\u4e2d\u6240\u6709\u7684\u95dc \u8a5e\uff0c\u554f\u53e5\u53e5\u610f\u7684\u6bd4 \u5c0d\u5c07\u5efa\u7acb\u5728\u9019\u5169\u90e8\u5206\u5404\u81ea\u7684\u8a9e\u610f\u6bd4\u5c0d\u4e0a\u3002\u6b64\u5916\uff0c\u6211\u5011 \u7528\u5411\u91cf \u9593\u6a21\u578b\u4f86\u6bd4\u8f03\u8a62\u554f\u53e5\u4e2d\u7684\u95dc \u8a5e\u8207 FAQ \u6a23\u672c\u7684 \u3002 \u7d93\u5be6\u9a57\u9a57\u8b49\uff0c\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u7684\u65b9\u6cd5\u78ba\u5be6\u6bd4\u55ae\u7d14\u4f7f\u7528\u95dc \u8a5e\u67e5\u8a62\u4f86\u5f97\u6e96\u78ba\uff0c\u4f7f\u5e73\u5747\u6b63\u78ba \u7684 1. \u7dd2\u8ad6 1-1. \u8aaa\u660e \u76ee\u524d\u8cc7\u8a0a\u6aa2 (information retrieval)\u7684\u6280\u8853\u5df2\u7d93 \u4f7f\u7528\u5728\u6211\u5011\u65e5\u5e38\u751f \u4e2d\u3002\u8209 \u4e0a\u5716\u66f8 \u9928\u501f\u66f8\u3001\u7db2\u8def\u641c \u8cc7\u6599\uff0c\u6211\u5011\u5e38\u6703\u9700\u8981\u4e00\u4e9b\u8cc7\u8a0a\u6aa2 \u7684\u5de5\u5177 \u52a9\u6211\u5011 \u51fa\u60f3\u8981\u7684\u8cc7\u6599\u3002\u4ee5\u76ee \u524d\u7684\u6280\u8853\uff0c\u8cc7\u8a0a\u6aa2 \u7684\u61c9\u7528\u5927\u591a\u53ea\u63d0\u4f9b\u7531\u95dc \u8a5e\u9032\u884c\u67e5\u8a62\uff0c\u85c9\u7531\u95dc \u8a5e\u7684\u6bd4\u5c0d\u4ee5 \u51fa\u76f8\u95dc\u7684 \u6587 \u6216\u8cc7\u6599\u3002\u4f46\u662f\uff0c\u53ea\u5229\u7528\u95dc \u8a5e\u67e5\u8a62\u6709\u5169\u500b\u7f3a\u9ede\uff1a(1)\u95dc \u8a5e\u4e0d\u80fd\u6e05 \u4e14\u5b8c\u6574\u5730\u8868 \u4f7f\u7528\u8005 \u7684\u610f\u5716\uff0c\u4ee5\u81f4\u76f8\u95dc\u7684\u641c \u7d50\u679c\u904e\u591a\uff0c\u4f7f\u7528\u8005\u5f80\u5f80\u9700\u8981\u7d93\u904e\u597d\u5e7e\u6b21\u7684\u4f86\u56de\u4fee\u6539\u95dc \u8a5e\u6216\u67e5\u8a62\u65b9 \u4e0d\u932f\u7684\u65b9\u5411\u3002\u8a31\u591a\u7db2 \u901a\u5e38\u6703\u91dd\u5c0d\u8a72 \u57df\u4e2d\u5e38\u88ab\u554f\u5230\u7684\u554f\u984c\uff0c\u7d93\u7531\u4eba\u5de5\u6574\u7406\u9019\u4e9b\u554f\u984c\u53ca \uff0c \u63d0\u4f9b \u9032\u5165\u8a72\u7db2 \u7684\u4f7f\u7528\u8005\u76f4\u63a5 \u89bd\uff0c\u4ee5\u7bc0 \u8a62\u554f\u8207\u56de \u91cd\u8907\u6216\u76f8\u95dc\u6027\u554f\u984c\u7684\u6642\u9593\u3002\u4f46\u662f \u8457\u91cf\u7684\u589e\u52a0\uff0c\u4f7f\u7528\u8005\u4e5f \u4f86 \u96e3\u85c9\u7531\u76f4\u63a5 \u89bd \u5230\u6240\u9700\u7684 \uff0c\u56e0\u6b64\uff0c\u73fe \u8a31\u591a\u7db2 \u4e5f\u63d0\u4f9b FAQ \u6aa2 \u7684 \uff0c \u4f7f\u7528\u8005\u641c \u6240\u9700\u7684\u8cc7\u8a0a\u3002\u672c\u8ad6\u6587\u4e4b\u4e3b\u8981\u76ee\u7684 \u662f\u5e0c\u671b\u80fd\u5229\u7528\u81ea\u7136\u8a9e\u8a00\u67e5 \u8a62\u4f86\u505a\u70ba FAQ \u6aa2 \u7684\u65b9\u5f0f\u3002 1-3. \u7814\u7a76\u65b9\u6cd5\u7c21\u4ecb \u4e00\u500b\u5b8c\u6574\u7684 FAQ \u6a23\u672c\u5fc5\u5b9a\u542b\u6709\u4e00\u500b\u554f\u984c\u8207\u8a72\u554f\u984c\u7684 \u3002\u85c9\u7531\u6bd4\u8f03\u4f7f\u7528\u8005\u7684\u8a62\u554f\u53e5\u4ee5\u53ca FAQ \u6a23\u672c\u7684\u554f\u53e5\uff0c\u5982\u679c\u5169\u8005\u7684\u8a9e\u610f\u76f8\u7576\u63a5\u8fd1\uff0c\u5247\u8a72 FAQ \u6a23\u672c\u7684 \u4e5f\u5c31\u53ef\u80fd\u5305\u542b\u4f7f\u7528\u8005\u60f3\u8981 \u7684\u8cc7\u8a0a\u3002\u6b64\u5916\uff0c\u4e00\u500b FAQ \u6a23\u672c\u7684 \u4e5f\u53ef\u80fd\u5305\u542b\u5176\u4ed6 \u5916\u7684\u8cc7\u8a0a\u3002\u56e0\u6b64\uff0c\u9664\u4e86\u5169\u500b\u7591\u554f\u53e5\u7684 \u6bd4\u5c0d\u4e4b\u5916\uff0c\u4f7f\u7528\u8005\u6240\u9700\u7684\u8cc7\u8a0a\u4e5f\u53ef\u4ee5\u900f\u904e\u6bd4\u5c0d\u8a62\u554f\u53e5\u8207 FAQ \u6a23\u672c\u7684 \u800c\u5f97\u5230\u3002 FAQ Finder \u7cfb\u7d71\u5229\u7528 Word-Net \u4f86\u8861\u91cf\u82f1\u6587\u8a5e\u8207\u8a5e\u7684\u8a9e\u610f\u76f8 \u5ea6\uff0c\u70ba\u6574\u500b\u7cfb\u7d71\u767c\u5c55\u8a9e\u610f\u76f8 \u5ea6\u7684\u57fa\u790e\u3002\u4f46\u662f\u5728\u554f\u53e5\u7684\u76f8 \u5ea6\u90e8\u5206\uff0c\u5247\u662f\u55ae\u7d14\u5730\u6bd4\u5c0d\u5169\u500b\u554f\u53e5\u4e2d\u6240\u5305\u542b\u7684\u8a5e\u7d44\uff0c\u6211\u5011\u8a8d \u70ba \u662f\u6bd4\u8f03\u8a5e\u7d44\u4e26\u4e0d \u4ee5\u4ee3\u8868\u6574\u500b\u53e5\u610f\u3001\u6709 \uff0c\u800c\u4e14\u4e5f\u6709\u660e\u986f\u7684\u7f3a \u3002\u4f8b\u5982\uff1a \u6703 \u4e0d\u6703\u5c0e\u81f4 \u5316 \u3001 \u5316\u6703\u4e0d\u6703\u5c0e\u81f4 \uff0c\u6b64\u4e8c\u53e5\u6709\u5b8c\u5168\u76f8\u540c\u7684\u8a5e\u7d44\uff0c\u4f46\u662f\u5728\u610f\u7fa9\u4e0a \u537b\u662f\u5b8c\u5168\u4e0d\u540c\u3002 \u6bcf\u500b\u554f\u53e5\u90fd\u6709\u5176\u610f\u5716(intention)\uff0c\u8a72\u610f\u5716 \u4e00\u800c\u4e14\u5728\u53e5\u5b50\u88e1\u626e\u6f14\u76f8\u7576\u91cd\u8981\u7684\u89d2\u8272\u3002\u672c\u7814\u7a76 \u900f\u904e\u8a9e\u610f\u5206\u6790\u5668\uff0c\u6211\u5011\u53ef\u4ee5\u5f9e\u554f\u53e5\u4e2d\u8403\u53d6\u51fa IS \u53ca KS\uff0c\u505a\u70ba\u5f8c\u7e8c\u554f\u53e5\u6bd4\u5c0d\u4ee5\u53ca \u6587\u6bd4\u5c0d \u4e4b\u7528\u3002\u8a9e\u610f\u5206\u6790\u5668\u7531\u4e0b\u9762\u5e7e\u500b\u5b50\u90e8\u5206\u6240\u7d44\u6210\uff1a(1) AutoTag\uff0c\u4e2d\u7814\u9662 CKIP \u5c0f\u7d44\u767c\u5c55\u7684\u8a5e\u6027\u6a19\u8a18 \u7cfb\u7d71\uff0c\u505a\u70ba\u672c\u7cfb\u7d71\u7684\u524d\u8655\u7406\u5668\uff0c\u5c07\u4e00\u500b\u53e5\u5b50\u65b7\u8a5e\u4e26\u6a19\u793a\u8a5e\u6027\u3002(2) \u95dc \u8a5e\u8403\u53d6\uff0c\u7531\u8a5e\u6027\u7684\u5224 \u65b7\u4ee5\u53ca \u7528\u8a5e\u7684\u7be9\u9078\uff0c\u5f9e\u65b7\u8a5e\u5f8c\u7684\u53e5\u5b50\u4e2d \u51fa\u5176 KS\u3002(3) \u610f\u5716\u8403\u53d6\uff0c\u7d93\u7531\u6574\u7406\u6b78 \u7684\u8a9e\u610f\u6587 \u6cd5\uff0c\u5f9e\u554f\u53e5\u4e2d \u51fa\u5176 IS\u3002 2-2. \u554f\u53e5\u6bd4\u5c0d\u5668 \u7684\u95dc \u8a5e\u76f8 \u5ea6\uff0c\u914d\u5408\u4e00\u5c0d\u4e00\u51fd\u6578\u7684\u6700\u4f73\u5316\uff0c\u6c42\u53d6\u5169\u8005\u7684\u6700\u5927\u76f8 \u5ea6\u3002 2-3. \u5716 1 \u7cfb\u7d71\u67b6\u69cb\u5716 3. \u554f\u53e5\u7684\u8a9e\u610f\u5206\u6790\u8207\u8655\u7406 \u5728\u5927\u90e8\u5206\u7684\u60c5\u6cc1\u4e0b\uff0c\u95dc \u8a5e\u6709\u52a9\u65bc\u6aa2 \u51fa\u6211\u5011\u60f3\u8981\u7684 \uff0c\u4f46\u662f\u5728\u7b26\u5408\u95dc \u8a5e\u6bd4\u5c0d\u7684\u7d50 \u679c\u4e2d\uff0c\u5f80\u5f80\u542b\u6709\u5927\u91cf\u4e0d\u662f\u539f\u4f86\u6240 \u671b\u7372\u5f97\u7684 \uff0c\u800c\u5176\u4e3b\u8981\u539f\u56e0\u5728\u65bc\u95dc \u8a5e\u6c92\u6709 \u6cd5\u6b63\u78ba\u5730 \u50b3 \u4f7f\u7528\u8005\u7684\u610f\u5716\u3002\u56e0\u6b64\uff0c\u6211\u5011\u5e0c\u671b\u900f\u904e\u5c0d\u65bc\u554f\u53e5\u7684\u8a9e\u610f\u5206\u6790\uff0c\u80fd\u7522\u751f\u51fa\u554f\u53e5\u7684\u8a9e\u610f\u6587\u6cd5\uff0c \u9032\u800c\u8403\u53d6\u51fa\u5305\u542b\u5728\u554f\u53e5\u4e2d\u7684\u4f7f\u7528\u8005\u610f\u5716\u3002 3-1. \u7591\u554f\u53e5\u5206\u985e \u7684\u5dee\u7570\u3002\u89c0\u5bdf\u4e0b\u9762\u4e09\u500b\u554f\u53e5\uff1a \u3001 \u70ba \u8981 \u3001 \u8981 \u7684\u65b9\u6cd5 \u554f\u53e5 IS \u70ba \u6709\u96dc\u97f3 (Na)\u3001 (VC)\u3001\u96dc\u97f3(Na) \u7684\u65b9\u6cd5 \u6709 \u4e9b \u3002\u5982\u679c\u53ea\u8003\u616e\u95dc \u8a5e\uff0c\u5247 \u548c \u4f60 \u6703(\u80fd/\u53ef\u4ee5) \u958b \u958b\u7684\u539f\u56e0 B \u578b \u5f8c\u6703\u4e0d\u6703\u81ea\u52d5 \u6703\u81ea\u52d5 \u90fd\u70ba\u4ee5\u4e0a\u4e09\u53e5\u7684\u95dc \u8a5e\u3002\u5982\u6b64\u4e00\u4f86\uff0c \u6211\u5011\u5c31\u7121\u6cd5\u5f9e\u95dc \u8a5e\u4f86\u5224\u65b7\u7b2c\u4e00\u548c\u7b2c\u4e09\u53e5\u61c9\u8a72\u8f03\u63a5\u8fd1\uff0c\u56e0\u70ba\u6b64\u4e8c\u53e5\u7686 \u5728\u8a62\u554f \u7684\u65b9 \u6cd5\uff0c\u800c\u7b2c\u4e8c\u53e5\u5247\u662f\u5728\u8a62\u554f\u4e4b\u6240\u4ee5\u8981 3-3-2. \u53e5 \u8a9e\u52a9\u8a5e\u70ba \u7684 \u53ef\u4e0d\u53ef\u4ee5 \u7528 \u53ef\u4ee5 \u7528 4. \u8a5e\u610f\u6bd4\u5c0d \u7684\u554f\u53e5 \u7d93\u7531\u8a9e\u8a00\u5b78\u4e0a\u7684\u4e00\u4e9b\u7814\u7a76\u7d50\u679c\uff0c\u4ee5\u53ca\u5f9e \u96c6\u5230\u7684\u554f\u53e5\u4e2d\u6574\u7406\u6b78 \uff0c\u6211\u5011\u5b9a\u7fa9\u4e00\u5957\u7d50\u5408\u8a9e \u7684\u539f\u56e0\u3002 \u56e0\u6b64\uff0c\u4e00\u500b\u81ea\u7136\u8a9e\u8a00\u554f\u53e5\u4e2d\u7684 \u610f\u5716 \u6bb5 \uff0c\u6211\u5011\u5c07\u5176\u5b9a\u7fa9\u70ba\uff1a \u554f\u53e5\u4e2d\u6240\u50b3 \u6700\u76f4\u63a5\u60f3 \u7372\u5f97\u7684 \uff0c\u4e0d\u9700\u5305\u542b\u524d\u63d0\uff1bIS \u53ef\u4ee5\u662f\u554f\u53e5\u4e4b\u5b50\u53e5\u6216\u7247\u8a9e\uff0c \u81f3\u7d50\u5408\u5176\u4ed6\u7279\u5b9a\u7247\u8a9e\u800c\u6210\u3002 \u53e5 \u8a9e\u52a9\u8a5e\u554f\u53e5\u6307\u53e5\u5b50 \u6709\u4e00\u500b\u8a9e\u52a9\u8a5e\u50cf\u662f \u3001 \u3001 \u3001 \u672c\u8ad6\u6587\u4e2d\uff0c\u8a5e\u610f\u6bd4\u5c0d\u662f\u6240\u6709\u8a9e\u610f\u6bd4\u5c0d\u65b9\u6cd5\u7684\u57fa\u790e\uff0c\u50b3\u7d71\u8a9e\u8a00\u5b78\u8a8d\u70ba\u8a5e\u662f\u69cb\u6210\u8a9e\u610f\u7684\u6700\u5c0f \u7b49\u3002\u7576\u8a9e\u52a9 \u8a5e\u70ba \u6642\uff0c\u8a72\u554f\u53e5\u5c0d\u65bc \u76f8\u7576\u4e0d \u5b9a\uff0c\u800c\u9700\u8981\u8f03\u591a\u7684\u5916\u5728\u8a0a \u4e88\u89e3 \u3002\u9019\u985e\u578b\u7684\u554f \u6cd5\u898f\u5247\u8207\u8a9e\u610f\u7684\u8a9e\u610f\u6587\u6cd5\uff0c\u7576\u554f\u53e5\u7b26\u5408\u8a9e\u610f\u6587\u6cd5\u4e2d\u67d0\u4e00\u5247\u6642\uff0c\u5176\u76f8\u5c0d\u61c9\u7684 IS \u4e4b\u8403\u53d6\u65b9\u5f0f\u4e5f\u6e05 \u55ae\u5143[19]\uff0c\u800c\u76ee\u524d\u8a08\u7b97\u8a9e\u8a00\u5b78\u7684\u8da8\u5411\u662f \u8a5e\u8996\u70ba\u8a31\u591a \u8a9e\u610f\u6210\u5206 (semantic features)\u7684\u7d44\u5408\u3002 \u5716 2 How-net \u4e3b\u8981\u7279\u5fb5\u968e\u5c64\u5716 \u7684\u88ab\u898f\u7bc4\u8457\u3002\u8868 6 \u5217\u8209\u90e8\u5206\u8a9e\u610f\u6587\u6cd5\u53ca\u5176 IS \u8403\u53d6\u65b9\u5f0f\uff0c\u4e26\u8209\u4f8b\u8aaa\u660e\u4e4b\u3002 \u57fa\u65bc\u5f8c\u8005\uff0c\u6211\u5011\u5229\u7528\u77e5\u7db2(How-net)[17]\u4f5c\u70ba\u8a5e\u610f\u6bd4\u5c0d\u7684\u77e5\u8b58\u5eab\u3002 \u53e5\u5728\u53e5\u5b50\u4e2d\u901a\u5e38\u6703\u5305\u542b\u4e00\u500b \u6cd5\u76f8(modality)\u526f\u8a5e [16]\uff0c\u5982 \u6703 \u3001 \u53ef\u80fd \u3001 \u61c9\u8a72 \u3002 \u6cd5\u76f8 \u8868 6 \u90e8\u4efd\u8a9e\u610f\u6587\u6cd5\u53ca\u5176\u4f8b\u53e5 4-2. \u8a5e\u610f\u76f8 \u5ea6\u7684\u91cf \u900f\u904e\u5c0d\u65bc\u554f\u53e5\u7684\u5206\u6790\uff0c\u610f\u7fa9\u76f8\u540c\u537b\u4ee5\u4e0d\u540c\u53e5\u578b\u8868\u73fe\u7684\u554f\u53e5\uff0c\u6240\u8403\u53d6\u51fa\u4f86\u7684 IS \u61c9\u8a72\u80fd \u4fdd \u76f8 \u540c\u3002\u5982\u8868 1 \u6240\u793a\uff0c\u900f\u904e\u7684 KS \u53ca IS \u7684\u8403\u53d6\uff0c\u6211\u5011\u53ef\u4ee5 \u6613\u5730\u5206\u8fa8\u4e0a\u8ff0\u4f8b\u53e5\u7684\u7570\u540c\u3002 \u8868 1 \u4e09\u500b\u76f8 \u554f\u53e5\u6240\u5c0d\u61c9\u4e4b\u95dc \u8a5e \u6bb5(KS)\u53ca\u610f\u5716 \u6bb5(IS) \u554f\u53e5 KS IS \u3001 \u7684\u65b9\u6cd5 \u70ba \u8981 \u3001 \u7684\u539f\u56e0 \u7684\u65b9\u6cd5\u6709 \u4e9b \u3001 \u7684\u65b9\u6cd5 \u7684\u5b9a\u7fa9\u662f \u8aaa \u8005\u7684\u5c0d\u4e00\u500b\u53ef\u80fd\u4e8b\u4ef6\u7684 \u6cd5\u6216 \u5ea6 \uff0c\u6cd5\u76f8\u526f\u8a5e\u7684\u5b9a\u7fa9\u7531\u8a9e\u610f\u898f\u5b9a\uff0c\u5176\u6240\u5305\u542b \u554f\u53e5\u985e\u578b \u554f\u53e5 \u8a9e\u610f\u6587\u6cd5 IS 4-1. \u77e5\u7db2\u6982\u8ff0 \u57fa\u65bc\u5c0d\u77e5\u7db2\u7684\u7814\u7a76\uff0c\u6211\u5011\u5229\u7528\u77e5\u7db2\u5c0d\u65bc\u6bcf\u500b\u8a5e\u5f59\u5b8c\u6574\u7684\u5b9a\u7fa9\uff0c\u91cf \u5169\u500b\u8a5e\u5f59\u5728\u8a9e\u610f\u4e0a\u7684 \u7684\u8a5e\u6027\u542b\u6709\u4ee5\u5f80\u8a9e\u8a00\u5b78\u5206\u985e\u4e2d\u7684\u5927\u591a\u6578\u52a9\u52d5\u8a5e\u3001\u90e8\u5206\u52d5\u8a5e\u53ca\u52d5\u8a5e\uff0c\u4f46\u4ed6\u5011\u537b\u6709\u8a31\u591a\u5171\u540c\u7684\u8a9e \u7591\u554f\u8a5e\u554f\u53e5 \u70ba \u7522\u5f8c\u5fc5\u9808 \u7528\u751f\u5316 QW 1 NP Dba VP IS=VP \u7684\u539f\u56e0 \u7528\u751f\u5316 \u7684\u539f\u56e0 \u77e5\u7db2\u662f\u91dd\u5c0d\u96fb \u8a2d\u8a08\u7684\u96d9\u8a9e\u5e38\u8b58\u77e5\u8b58\u5eab\uff0c\u70ba \u5efa\u4eba \u5148\u751f\u7814\u7a76\u5341\u5e7e\u5e74\u7684\u91cd\u8981\u6210\u679c\uff0c \u76f8 \u5ea6\u3002\u540c\u4e00\u500b\u8a5e\u5f59\u901a\u5e38\u53ef\u8868\u793a\u4e00\u500b\u4ee5\u4e0a\u7684\u6982 \uff0c\u6240\u4ee5\u5169\u500b\u8a5e\u5f59\u7684\u76f8 \u5ea6\u53ef\u4ee5\u7531\u500b\u5225\u7684\u6982 \u6cd5\u7279\u8272\u3002\u800c\u6cd5\u76f8\u526f\u8a5e\u4e4b\u5f8c\u6240\u63a5\u7684\u662f\u52d5\u8a5e\u7247\u8a9e\uff0c\u6211\u5011\u8a8d\u70ba\u6b64\u52d5\u8a5e\u7247\u8a9e\u5373\u70ba\u5176\u610f\u5716\u6240\u5728\u3002\u8868 3 \u4e2d \u5217\u8209\u51fa\u90e8\u5206\u53e5 \u8a9e\u52a9\u8a5e\u70ba \u7684\u554f\u53e5\u53ca\u5176\u5c0d\u61c9\u7684 IS\u3002\u6b64\u5916\uff0c\u5982\u679c\u9019\u985e\u578b\u554f\u53e5\u4e0d\u542b\u6709\u4efb\u4f55\u6cd5 \u76f8\u526f\u8a5e\uff0c\u5247\u4ee5\u4e3b\u8981\u52d5\u8a5e\u7247\u8a9e\u4f5c\u70ba IS\uff0c\u5982\u8868 4 \u6240\u793a\u3002 \u8868 3 \u53e5 \u8a9e\u52a9\u8a5e\u70ba \u7684\u554f\u53e5\u53ca\u5176\u5c0d\u61c9\u7684\u610f\u5716 \u6bb5(IS) \u53e5 \u8a9e\u52a9\u8a5e\u554f\u53e5 \u4eba\u61c9 NP Dba VP \u61c9 \u63d0\u4f9b\u4e86\u8a2d\u8a08\u4eba\u5de5 \u9ad4\u6240\u9700\u7684\u77e5\u8b58\u3002\u77e5\u7db2\u5171 \u4e86 50220 \u500b\u4e2d\u6587\u8a5e\u8a9e\uff0c\u6240\u6db5 \u7684\u6982 \u7e3d\u91cf \u76f8 \u5ea6\u6c42\u5f97\uff0c\u800c\u6982 \u76f8 \u5ea6\u5247\u662f\u900f\u904e\u7279\u5fb5\u7684\u6bd4\u5c0d\u800c\u4f86\u3002\u5982\u516c\u5f0f(1)\u6240\u793a\uff0c\u4efb\u5169\u500b\u8a5e\u7684\u8a9e\u610f\u76f8 IS=VP \u4e2d\u7684 \u53ef\u4e0d\u53ef\u4ee5 P Dba1 not Dba2 VP \u53ef\u4ee5 \u7528 62174 \u500b\uff0c\u76ee\u524d\u4ecd\u5728 \u7576\u4e2d\u3002\u505a\u70ba\u4e00\u500b\u63d0\u4f9b\u4e2d\u6587\u8a08\u7b97\u9700\u6c42\u7684\u77e5\u8b58\u5eab\uff0c\u77e5\u7db2 \u76e1\u5730\u63cf\u8ff0\u4e86 \u5ea6( word Sim )\u88ab\u5b9a\u7fa9\u6210\u9019\u5169\u500b\u8a5e\u6240\u6709\u53ef\u80fd\u6982 \u5b9a\u7fa9\u4e4b\u9593\u76f8 \u5ea6( def Sim )\u7684\u6700\u5927\u503c\u3002 \u662f\u975e\u554f\u53e5 \u7528 IS=Dba2 VP \u6982 \u4e4b\u9593\u7684\u95dc\u4fc2\uff0c\u6982 \u6240\u5177\u6709\u7684\u5c6c\u6027\u4e4b\u9593\u7684\u95dc\u4fc2\uff0c\u4ee5\u53ca\u6982 \u8207\u6240\u5177\u6709\u7684\u5c6c\u6027\u4e4b\u9593\u7684\u95dc\u4fc2\u3002 1 1 2 2 1 2 1 2 ( ), ( ) ( , ) max ( , ) word def d def w d def w Sim w w Sim d d \u2208 = (1) \u2208 \u5c0d\u4e00\u500b\u8a5e\u800c\u8a00\uff0c\u5728\u4e0d\u540c\u60c5\u6cc1\u4e0b\u53ef\u80fd\u4ee3\u8868\u4e0d\u540c\u7684\u6982 \u3002\u77e5\u7db2\u5c07\u4e00\u500b\u6982 \u7684\u5b9a\u7fa9\u8868\u793a\u6210\u7279\u5fb5 \u6587\u6bd4\u5c0d\u5668 \u672c\u8ad6\u6587 \u7528\u5411\u91cf \u9593\u6a21\u578b\uff0c\u900f\u904e\u6bd4\u5c0d KS \u8207 FAQ \uff0c \u51fa\u6700\u9069\u5408\u56de \u8a72\u8a62\u554f\u53e5\u7684 \u3002 \u6839\u64da [3]\u7684\u5206\u6790\uff0c\u5c31\u8a9e\u6cd5\u5f62\u5f0f\u800c\u8a00\uff0c\u7591\u554f\u53e5\u53ef\u5206\u6210\u53e5\u5b50\u548c\u975e\u53e5\u5b50\u5169\u5927\u985e\uff0c\u518d\u6b78\u6210 \u7591 3-3. \u610f\u5716\u7684\u8403\u53d6 \u554f\u53e5 IS \u80fd \u65b7\u51fa\u6240\u6709 3-4. \u95dc \u8a5e\u7684\u8403\u53d6 \u7531\u65bc\u6211\u5011 \u7528 AutoTag \u505a\u70ba\u8a5e\u6027\u6a19\u8a18\u5de5\u5177\uff0c\u6240\u4ee5\u53ef \u9664\u90e8\u4efd\u8a5e\u7fa9 \u7684\u60c5\u5f62\u3002\u4f8b\u5982\uff1a\u7576 1 w \u53ca\u6a19\u8b58\u7b26 \u7684\u7d44\u5408\u3002\u8868 8 \u5217\u8209\u5e7e\u500b\u6982 \u5728\u77e5\u7db2\u4e2d\u4e4b\u5b9a\u7fa9\uff0c\u5176\u4e2d W_C \u70ba\u4e00\u6982 \uff0cG_C \u8868\u793a\u8a72 \u80fd \u65b7\u51fa\u6240\u6709 \u4eba\u61c9 \u61c9 \u76f8\u5c0d\u65bc\u610f\u5716\u7684\u8403\u53d6\uff0c\u95dc \u8a5e\u7684\u8403\u53d6\u4e5f\u662f\u4e00\u500b\u4e0d\u53ef \u7565\u7684\u90e8\u5206\uff0c\u85c9\u7531\u95dc \u8a5e\u8403\u53d6\u6211\u5011\u53ef\u5f9e \u6982 \u7684\u8a5e\u985e\uff0cDEF \u5247\u70ba\u5176\u5b9a\u7fa9\u3002\u5728\u5b9a\u7fa9\u4e2d\uff0c\u7279\u5fb5\u9593\u4ee5 \u540c\u6642\u5305\u542b\u540d\u8a5e\u548c\u52d5\u8a5e\u7684\u6982 \u6642\uff0c\u82e5\u5176\u8a5e\u6027\u6a19\u8a18\u70ba\u52d5\u8a5e\uff0c\u5247\u5176\u4ed6\u540d\u8a5e\u985e\u7684\u6982 \u5c07\u4e0d\u4e88\u8003\u616e\u3002\u7531 \u9694\uff0c\u7b2c\u4e00\u500b\u7279\u5fb5\u7a31\u70ba\u4e3b\u8981\u7279\u5fb5\uff0c \u554f\u8a5e\u554f\u53e5 \u3001 \u9078 \u554f\u53e5 \u3001 \u53e5\u5c3e\u8a9e\u52a9\u8a5e\u554f\u53e5 \u3001 \u7368\u7acb\u8a9e\u52a9\u8a5e\u554f\u53e5 \u3001 \u662f\u975e\u554f\u53e5 \u3001 \u9644\u52a0\u554f\u53e5 \u554f\u53e5 \u51fa\u5176 KS\u3002\u5c0d\u4e2d\u6587\u800c\u8a00\uff0c\u65b7\u8a5e\u4ee5\u53ca\u8a5e\u6027\u6a19\u8a18\u7684\u554f\u984c\u4e00\u76f4 \u570b \u8a08\u7b97\u8a9e\u8a00\u5b78\u7684\u767c\u5c55\u3002\u672c \u65bc\u6982 \u7684\u5b9a\u7fa9\u662f\u7531\u4e3b\u8981\u7279\u5fb5\u53ca\u6b21\u8981\u7279\u5fb5\u6240\u5171\u540c\u63cf\u8ff0\uff0c\u6240\u4ee5\u4efb\u5169\u500b\u6982 \u7684\u76f8 \u5ea6\u53ef\u5b9a\u7fa9\u5982\u4e0b\uff1a \u8868\u793a\u6982 \u7684\u985e\u5225\u5c6c\u6027\uff0c\u5177\u6709\u4e0a\u4e0b\u4f4d\u95dc\u4fc2\uff0c\u5982\u5716 2 \u6240\u793a\uff1b\u5f8c\u9762\u6240\u63a5\u7684\u7279\u5fb5\u5247\u70ba\u6b21\u8981\u7279\u5fb5\uff0c\u7528\u4f86 \u53ca \u76f4\u8ff0\u554f\u53e5 \u7b49\u4e03\u500b\u985e\u578b\u3002\u5c31 \u901a\u529f\u80fd\u800c\u8a00\uff0c\u7591\u554f\u53e5\u53ef\u5206\u70ba\u5916\u5728\u8a0a \u554f\u53e5\u3001\u8a00 \u554f\u53e5\u3001\u95dc \u7814\u7a76\u4ee5 AutoTag \u505a\u70ba\u65b7\u8a5e\u53ca\u8a5e\u6027\u6a19\u8a18\u7684\u5de5\u5177\uff0c\u6b64 \u9ad4\u70ba\u4e2d\u7814\u9662\u8cc7\u8a0a\u6240 CKIP \u5c0f\u7d44\u6240\u7814\u767c\u7684\uff0c \u898f\u7bc4\u6982 \u7684\u5c6c\u6027\u3002 1 2 1 2 1 2 ( , ) ( , ) (1 ) ( , ) def PF SF Sim d d Sim pf pf Sim sf sf = + \u2212 (2)
", "type_str": "table", "num": null, "text": "\u540d\u5f9e\u7b2c 12.04 \u540d\u63d0\u5347\u5230\u7b2c 2.91 \u540d\uff0c\u4e14\u4f7f\u5f97\u524d\u5341\u540d\u7684\u53ec\u56de\u7387\u7531 78.06%\u63d0\u5347\u5230 95.11%\u3002" }, "TABREF3": { "html": null, "content": "
\u8868 9 \u57fa\u7dda\u7cfb\u7d71\u4e4b\u524d N \u540d\u53ec\u56de\u7387 \u4e8c\u3001\u5728\u8a9e\u610f\u76f8 \u5ea6\u65b9\u9762\uff0c\u6211\u5011 \u7528\u77e5\u7db2\u505a\u70ba\u8a5e\u610f\u76f8 \u5ea6\u91cf \u7684\u77e5\u8b58\u5eab\uff0c\u4f46\u662f\u77e5\u7db2\u4e2d\u6c92\u6709 6. \u5be6\u9a57\u7d50\u679c\u8207\u8a0e\u8ad6 Top N 1 2 3 4 5 6 7 8 9 \u8868 10 \u986f\u793a\u4f7f\u7528 Dice coefficient \u4e4b\u7d50\u679c\u70ba\u6700\u4f73\uff0c\u6240\u4ee5\u5728\u63a5\u4e0b\u4f86\u7684\u5be6\u9a57\u90fd \u7528 Dice coefficient \u5b9a\u7fa9\u7684\u8a5e\uff0c\u5247\u7121\u6cd5\u85c9\u7531 \u4f86\u91cf \u8a5e\u610f\u76f8 \u5ea6\u3002\u89e3\u6c7a\u7684\u65b9\u6cd5\u6709\u4e8c\uff1a\u4e00\u662f\u589e\u52a0\u672a\u5b9a\u7fa9\u8a5e 10 \u672c\u7814\u7a76\u4e2d\uff0c\u6211\u5011\u5be6\u9a57\u4f7f\u7528\u7684\u6a5f\u5668\u70ba Pentium III 450 \u500b\u4eba\u96fb \uff0c128 MB RAM\uff0c\u958b\u767c\u7528\u7684 \u4f86\u4f5c\u70ba\u6b21\u8981\u7279\u5fb5\u76f8 \u5ea6\u4e4b\u91cf \u65b9\u6cd5\u3002 \u5230\u77e5\u8b58\u5eab\u4e2d\uff0c\u53e6\u4e00\u500b\u662f \u51fa\u81ea\u52d5\u5efa\u7acb\u77e5\u8b58\u5eab\u7684\u65b9\u6cd5\u3002
\u7a0b\u5f0f\u8a9e\u8a00\u662f Microsoft Visual C++ 6.0\u3002\u9664\u4e86\u5be6\u9a57\u4e4b\u5916\uff0c\u4e5f\u900f\u904e IIS 4.0 \u67b6\u8a2d\u4e86\u4e00\u500b\u7db2 \uff0c
\u958b\u653e \u7db2\u8def\u4e0a\u7684\u4f7f\u7528\u8005\u67e5\u8a62\uff0c\u7db2 \u5728 http://chinese.csie.ncku.edu.tw/faq/\u3002\u5728\u8a9e\u6599\u5eab\u7684 \u96c6\u65b9 \u9762\uff0c\u6211\u5011\u4ee5\u4eba\u5de5\u5728\u7db2\u8def\u4e0a \u96c6\u4e86 1,022 \u5247 FAQ\uff0c \u5bb9\u4e3b\u8981\u5305\u62ec \u4e09\u3001\u5728 \u5efa \u7acb \u610f \u5716 \u6bb5 \u6790 \u6a39 \u65b9 \u9762 \uff0c \u5c0d \u65bc \u6790 \u6642 \u5230 \u8a5e \u6027 \u4e0d \u660e \u78ba \u7684 \u554f \u984c 6-3-3. \u4e3b\u8981\u7279\u5fb5\u8207\u6b21\u8981\u7279\u5fb5\u4e4b\u7d50\u5408\u4fc2\u6578\u5be6\u9a57 6-3. \u8a5e\u610f\u76f8 \u5ea6\u4e4b\u5be6\u9a57 (ambiguity)\uff0c\u4ecd\u6709\u56f0\u96e3\u7121\u6cd5 \u3002\u8003\u616e\u73fe\u6709\u8cc7 \uff0c\u53ef\u4ee5\u5148\u5efa\u7acb\u6a5f\u7387 \u6790\u5668[4][15]\uff0c\u9032 \u6982 \u5b9a\u7fa9\u7684\u76f8 \u5ea6\u7531\u4e3b\u8981\u7279\u5fb5\u76f8 \u5ea6\u53ca\u6b21\u8981\u7279\u5fb5\u76f8 \u5ea6\u7d50\u5408\u800c\u4f86\uff0c\u56e0\u6b64\u672c\u5be6\u9a57\u7684\u5e0c\u671b\u5f97 \u4ee5\u53ca \u8cc7\u7406 \u76f8\u95dc\u4e4b FAQ\u3002 5-1-2. \u95dc \u8a5e \u6bb5\u76f8 \u5ea6 6-3-1. \u4e3b\u8981\u7279\u5fb5\u76f8 \u5ea6\u4e4b \u5ea6\u5f71\u97ff\u4fc2\u6578\u5be6\u9a57 \u5230\u7279\u5fb5\u7d50\u5408\u4fc2\u6578 \u5c0d\u7cfb\u7d71\u6548\u80fd\u7684\u5f71\u97ff\uff0c\u540c\u6a23\u5730\uff0c\u6211\u5011\u56fa\u5b9a\u4fc2\u6578 0 = \u8207 1 \u800c\u5efa\u7acb\u5305\u542b\u8a9e\u610f\u4e4b \u6790\u5668\u3002 = \u3002\u5982\u5716 5 \u6240\u793a\uff0c\u8a72 \u5728\u7cfb\u7d71\u8a55\u4f30\u65b9\u9762\uff0c\u6211\u5011 10 \u4f4d\u975e\u7cfb\u7d71\u958b\u767c\u4eba \uff0c\u4e26 \u77e5\u672c\u7db2 \u6240\u63d0\u4f9b\u8cc7\u8a0a\u7684 \u5bb9\u7bc4\u570d\uff0c \u5728\u91cf \u5169\u500b KS \u7684\u76f8 \u5ea6\u4e0a\uff0c\u6211\u5011\u505a\u4e86\u4e00\u500b\u5047\u8a2d\uff1a\u5c0d\u4efb\u4e00\u500b\u95dc \u8a5e\u800c\u8a00\uff0c\u4e0d\u6703\u6709\u5169\u500b\u6216 \u4ee5\u4eba\u5de5\u7684\u65b9\u5f0f\u5efa\u7acb 185 \u5247\u554f\u53e5\u4e26\u6a19\u8a18\u8207\u5176\u76f8\u95dc\u4e4b FAQ\u3002\u6709\u5225\u65bc\u95dc \u8a5e\u8cc7\u8a0a\u6aa2 \uff0c\u81ea\u7136\u8a9e\u8a00\u554f \u5be6\u9a57\u7d50\u679c\u986f\u793a\uff0c 0.3 = \u4f7f\u5f97\u5e73\u5747\u6b63\u78ba \u540d \u5230 5.89 \u70ba\u6700\u5c0f\u3002 \u56db\u3001\u5728\u81ea\u7136\u8a9e\u8a00\u7406\u89e3\u65b9\u9762\uff0c\u76ee\u524d\u7684\u7cfb\u7d71\u4e26\u672a\u5177 \u7406\u80fd\u529b\uff0c\u5728\u8a31\u591a\u60c5\u6cc1\u4e0b\uff0c\u8a5e\u8a9e\u7684\u7d44\u5408 \u5f9e\u516c\u5f0f(5)\u4e2d\u5f97\u77e5\uff0c\u4fc2\u6578 \u6c7a\u5b9a \u5ea6\u5c0d\u65bc\u4efb\u5169\u76f8\u9130\u7bc0\u9ede\u9593\u8ddd ( Cost )\u7684\u5f71\u97ff\u7a0b\u5ea6\uff0c\u70ba\u4e86 \u5169\u500b\u4ee5\u4e0a\u7684\u95dc \u8a5e\u8207 \u5c0d\u61c9\u3002\u800c\u9019\u7a2e\u5c0d\u61c9\u95dc\u4fc2 \u53ef\u4ee5\u4e00\u5c0d\u4e00\u5c0d\u61c9\u51fd\u6578\u8868\u793a\u4e4b\uff0c\u6240\u4ee5\u6211\u5011\u63d0\u51fa \u516c\u5f0f(12)\u4f86\u91cf \u5169\u500b KSs 1 1 2 { , , , } m K w w w = L \u548c 2 1 2 { , , , } n K t t t = \u7684\u76f8 \u5ea6\u3002 \u53e5\u4e4b\u610f\u5716\u8f03\u660e\u78ba\uff0c\u56e0\u6b64\u6bcf\u5247\u554f\u53e5\u6240\u5c0d\u61c9\u7684 \u76f8\u7576\u5c11\uff0c\u5e73\u5747\u53ea\u6709 1.36 \u5247\u3002\u56e0\u6b64\uff0c\u6211\u5011\u4e0d\u4f7f\u7528 \u51fa \u4e4b\u6700\u4f73\u503c\uff0c\u6211\u5011\u56fa\u5b9a\u516c\u5f0f(2)\u4e2d\u7684\u4fc2\u6578 1 \u53ef\u80fd \u53e6\u5916\u7684\u610f\u7fa9\u3002\u9019\u4e9b\u6703 \u5230\u4f46\u4ecd\u7121\u6cd5\u89e3\u6c7a\u7684\u554f\u984c\uff0c\u6709 \u672a\u4f86 \u7e8c\u5730\u7814\u7a76\u3002 = \uff0c\u4e5f\u5c31\u662f\u5b8c\u5168\u4ee5\u4e3b\u8981\u7279\u5fb5\u76f8 \u5ea6\u505a\u70ba\u8a5e\u610f\u76f8 \u5716 6 \u610f\u5716-\u95dc \u8a5e\u7d50\u5408\u4fc2\u6578 \u4e4b\u65bc\u5e73\u5747\u6b63\u78ba \u540d\u6bd4\u8f03\u5716 L 1 1 2 ( , ( )) ( , ) max A word i i i KS f Sim a f a Sim K K A = = \u2211 (12) \u5176\u4e2d f \u662f\u4e00\u500b\u5f9e A \u5230 B \u7684\u4e00\u5c0d\u4e00\u51fd\u6578\uff0c i a \u662f A \u4e2d\u7684\u4e00\u500b\u5143\u7d20\uff0c ( , ( )) word i i Sim a f a \u8868\u793a\u95dc \u8a5e i a \u8207\u5176\u5c0d\u61c9\u7684\u95dc \u8a5e\u7684\u8a5e\u610f\u76f8 \u5ea6\u3002\u5982\u540c\u524d\u4e00\u5c0f\u7bc0\uff0c\u9700\u7279\u5225 \u610f\uff1a\u82e5 m n \uff0c\u5247\u8a2d\u5b9a 1 A K = \u4e14 2 B K = \uff1b\u53cd\u4e4b\uff0c\u5247\u8a2d\u5b9a 2 A K = \u4e14 1 B K = \u3002 5-2. \u6587\u6bd4\u5c0d \u9664\u4e86\u554f\u53e5\u6bd4\u5c0d\u5916\uff0c\u6211\u5011\u4e5f\u5229\u7528\u554f\u53e5\u8207 FAQ \u7684\u6bd4\u5c0d\u4f86 \u52a9 \u51fa\u6240\u9700\u7684 \uff0c\u4f7f\u7528\u7684\u65b9 \u6cd5\u5247\u662f\u76ee\u524d\u88ab \u4f7f\u7528\u5728\u8cc7\u8a0a\u6aa2 \u61c9\u7528\u7684 vector space model (VSM)\u3002VSM \u4e3b\u8981\u5206\u6210\u5169\u500b\u6b65 \uff1a(1) \u8403\u53d6\u7279\u5fb5\u4e26\u4ee5\u5411\u91cf\u4f86\u63cf\u8ff0\u4e4b\uff0c(2)\u6bd4\u8f03\u5169\u500b\u7279\u5fb5\u5411\u91cf\u5728\u5411\u91cf \u9593\u4e2d\u7684 \u89d2\u3002\u672c\u7814\u7a76\u4e2d\uff0c \u7279\u5fb5\u5411\u91cf\u662f\u7531\u6bcf\u500b\u95dc \u8a5e\u7684 TF\u00d7IDF \u6b0a\u91cd\u6240\u69cb\u6210\u3002\u91dd\u5c0d\u554f\u53e5\u53ca FAQ \u6c42\u53d6\u500b\u5225\u7684\u7279\u5fb5\u5411\u91cf 1 2 { , , , } N u a a a = L \u548c 1 2 { , , , } N v b b b = L \uff1b\u7136\u5f8c\u5229\u7528\u9918 \u516c\u5f0f\u8a08\u7b97\u5176 \u89d2\uff0c \u89d2 \u5c0f\u8868\u793a\u5169\u5411\u91cf \u63a5\u8fd1\uff0c\u4ee5\u6b64\u505a\u70ba\u8a72\u554f\u53e5\u8207 FAQ \u7684\u76f8\u95dc\u7a0b\u5ea6\uff0c\u5982\u516c\u5f0f(13)\u6240\u793a\u3002 1 cos 2 2 1 1 ( , ) ( , ) N i i i content N N i i i i a b Sim u v u v a b = = = = = \u2211 \u2211 \u2211 (13) \u5176\u4e2d N \u8868\u793a\u7279\u5fb5\u5411\u91cf\u7684 \u5ea6\uff0c\u4e5f\u5c31\u662f\u8a5e\u5f59\u91cf\u3002 \u78ba\u7387(precision rate)\u4f86\u8861\u91cf\u7cfb\u7d71\u7684\u6548\u80fd\uff0c\u56e0\u70ba\u5373\u4f7f\u7b2c\u4e00\u540d\u5c31\u662f\u6b63\u78ba \uff0c \u78ba\u7387\u4ecd\u6703 \u8457\u540d \u6b21\u589e\u52a0\u800c\u905e\u6e1b\u3002\u6211\u5011\u63d0\u51fa\u4e00\u500b\u8f03 \u7576\u7684\u8a55\u4f30\u65b9\u5f0f \u5e73\u5747\u6b63\u78ba \u540d\uff0c\u5176\u5b9a\u7fa9\u5982\u4e0b\uff1a \u2211 ) ( AvgRank (14) 6-1. \u610f\u5716 \u6bb5\u8403\u53d6\u5be6\u9a57 \u6839\u64da\u8a9e\u6599\u5eab\u4e2d\u554f\u53e5\u7684\u8a9e\u6cd5\u578b \uff0c\u8a02\u5b9a\u4e86 85 \u689d\u8a9e\u610f\u6587\u6cd5\u3002\u70ba\u4e86 \u6839\u64da\u8a72\u8a9e\u610f\u6587\u6cd5\u6240\u8403\u53d6 \u51fa\u4f86\u7684 IS \u7684\u6b63\u78ba\u6027\uff0c\u4ee5\u4eba\u5de5\u5efa\u7acb 185 \u5247\u554f\u53e5\u4f86\u505a \uff0c\u4e26\u4ee5\u4eba\u5de5\u6aa2\u9a57\u662f\u5426\u7b26\u5408\u539f\u672c\u9810 \u7684\u7d50 \u679c\u3002\u6aa2\u9a57\u6642\uff0c\u82e5\u5176\u8aa4\u5dee\u4e0d\u5f71\u97ff\u610f\u5716\u7684\u8fa8\u5225\uff0c\u5247\u8996\u70ba\u6b63\u78ba\u8403\u53d6\uff0c\u7d93\u7d71\u8a08\u53ef \u5230 91.89%\u7684\u6b63\u78ba\u8403 \u53d6\u7387\uff0c\u5176\u4e2d\u7121\u6cd5\u6b63\u78ba\u8403\u53d6\u7684\u60c5\u6cc1\u53ef\u5206\u70ba\u4ee5\u4e0b\u5e7e\u7a2e\uff1a \u4e00\u3001 \u5c6c\u65bc\u7591\u554f\u8a5e\u554f\u53e5\u3001\u662f\u975e\u8a9e\u53e5\u3001\u53e5 \u8a9e\u52a9\u8a5e\u70ba \u4e4b\u5916\u7684\u554f\u53e5\uff0c\u7531\u65bc\u4e26\u672a\u5728\u8a9e\u610f\u6587 \u6cd5\u4e2d\u5b9a\u7fa9\u5176\u8403\u53d6\u65b9\u5f0f\uff0c\u6240\u4ee5\u5c6c\u65bc \u8d85\u8d8a\u6587\u6cd5\u7bc4\u570d (out-of-grammar) \u800c\u7121\u6cd5\u8403\u53d6\u3002 \u4e8c\u3001 \u554f\u53e5\u7d50\u69cb\u904e\u65bc\u8907\u96dc \u81f3 \u6709\u5169\u500b\u7591\u554f\u5b50\u53e5\uff0c\u5c0d\u65bc\u9019\u985e\u578b\u554f\u53e5\u76ee\u524d\u4ecd\u7121\u6cd5\u8655\u7406\u3002 \u4e09\u3001 \u5728 AutoTag \u65b7\u8a5e\u53ca\u6a19\u793a\u8a5e\u6027\u6642\u5df2\u7d93\u51fa\u932f\uff0c\u5c0e\u81f4\u5f8c\u9762\u610f\u5716\u8403\u53d6\u7121\u6cd5\u6b63\u78ba\u5224\u65b7\u3002 6-2. \u57fa\u6e96\u7cfb\u7d71 \u672c\u5be6\u9a57\u4ee5\u95dc \u8a5e\u67e5\u8a62\u70ba\u57fa\u6e96(baseline)\uff0c\u8207\u81ea\u7136\u8a9e\u8a00\u67e5\u8a62\u505a\u6bd4\u8f03\u3002\u56e0\u6b64\u6211\u5011 \u516c\u5f0f(8)\u4e2d\u7684 \u4fc2\u6578 0 = \uff0c\u4f7f\u5f97 \u7531 \u5bb9\u6bd4\u5c0d\u4f86\u6c7a\u5b9a\u6574\u9ad4\u4e4b\u76f8 \u5ea6\u3002\u7d93\u7531\u7d71\u8a08\u6bcf\u4e00\u689d \u53e5\u4e4b \u540d\uff0c\u7d50 \u679c\u7372\u5f97\u5e73\u5747\u6b63\u78ba \u540d\u70ba 12.04 \u540d\uff0c\u4e26\u5f97\u5230\u524d N \u540d\u7684\u53ec\u56de\u7387(recall rate)\u8868\u5217\u5982\u4e0b\uff1a \u5ea6\uff1b\u516c\u5f0f(9)\u4e2d\u7684\u4fc2\u6578 =0\uff0c\u8868\u793a\u4e0d\u8003\u616e IS \u5c0d\u554f\u53e5\u76f8 \u5ea6\u4e4b\u5f71\u97ff\uff1b\u516c\u5f0f(8)\u4e2d\u7684\u4fc2\u6578 =1\uff0c\u8868 \u793a\u5b8c\u5168\u4ee5\u554f\u53e5\u76f8 \u5ea6\u4f5c\u70ba\u6aa2 \u7684\u4f9d\u64da\uff0c\u7136\u5f8c\u6839\u64da\u5e73\u5747\u6b63\u78ba \u540d\u4f86\u6c7a\u5b9a \u4e4b\u6700\u4f73\u503c\u3002 \u5716 4 \u4fc2\u6578 \u76f8\u5c0d\u65bc\u5e73\u5747\u6b63\u78ba \u540d\u4e4b\u6bd4\u8f03\u5716 \u5982\u5716 4 \u6240\u793a\uff0c\u7576 4.0 = \u6642\uff0c\u5176\u5e73\u5747\u6b63\u78ba \u540d 13.54 \u70ba\u6700\u4f73\u7d50\u679c\uff0c\u6b64\u7d50\u679c\u8207 \u5ea6\u8d8a \u5247\u7bc0\u9ede\u9593\u8ddd \u8d8a\u77ed \u7684\u89c0\u9ede\u76f8\u7b26\u3002 6-3-2. \u6b21\u8981\u7279\u5fb5\u76f8 \u5ea6\u8a08\u7b97\u65b9\u5f0f\u5be6\u9a57 \u672c\u5be6\u9a57\u6bd4\u8f03\u56db\u7a2e\u4e8c\u5143\u5411\u91cf\u76f8 \u5ea6\u91cf \u65b9\u5f0f\u5c0d\u7cfb\u7d71\u6548\u80fd\u7684\u5f71\u97ff\u3002\u6211\u5011\u56fa\u5b9a 0 = \uff0c\u4e5f\u5c31\u662f\u5b8c \u5168\u4ee5\u6b21\u8981\u7279\u5fb5\u76f8 \u5ea6\u70ba\u4e3b\uff0c 0 = \u5373\u4e0d\u8003\u616e IS\uff0c 1 = \u5b8c\u5168\u4ee5\u554f\u53e5\u6bd4\u5c0d\u4f86\u8a55\u4f30\uff0c\u7d50\u679c\u8868\u5217\u5982\u4e0b\uff1a \u8868 10 \u6bd4\u8f03\u5404\u7a2e\u4e8c\u5143\u5411\u91cf\u76f8 \u5ea6\u91cf \u4fc2\u6578\u5c0d\u7cfb\u7d71\u5e73\u5747\u6b63\u78ba \u540d\u4e4b\u5f71\u97ff Dice coefficient Jaccard coefficient Overlap coefficient Cosine \u5716 5 \u7279\u5fb5\u7d50\u5408\u4fc2\u6578\u6b63\u78ba \u540d\u6bd4\u8f03\u5716 6-4. \u53e5\u610f\u76f8 \u5ea6\u5be6\u9a57 \u7531\u516c\u5f0f(9)\uff0c\u672c\u5be6\u9a57\u60f3\u4e86\u89e3\u610f\u5716-\u95dc \u8a5e\u7d50\u5408\u4fc2\u6578 \u5c0d\u7cfb\u7d71\u6548\u80fd\u7684\u5f71\u97ff\uff0c\u56e0\u6b64\u56fa\u5b9a\u5be6\u9a57\u503c 4 = \u8207 0.3 = \u4ee5\u53ca\u5c1a\u672a\u5be6\u9a57\u7684 1 = \u3002\u7531\u5716 6 \u5f97\u77e5\uff0c\u7576 0.3 = \u6642\uff0c\u5176\u5e73\u5747\u6b63\u78ba \u540d 3.59 \u70ba\u6700\u4f73\u7d50\u679c\u3002\u6b64\u5916\uff0c\u7576 \u8f03\u5927\u6642\uff0c\u66f2\u7dda\u8fc5\u901f\u4e0a \uff0c\u8868\u793a\u7576 IS \u76f8 \u5ea6\u7684\u6bd4\u91cd\u904e\u5927\u6642\uff0c\u5176\u7d50\u679c\u4e26 \u4e0d\u7406\u60f3\u3002\u9019\u662f\u56e0\u70ba IS \u5305\u542b\u554f\u984c\u7684\u610f\u5716\uff0c\u4e26\u672a\u5c07\u524d\u63d0\u5305\u542b\u9032\u4f86\uff1b\u56e0\u6b64\uff0cIS \u4e26\u4e0d\u80fd\u5b8c\u5168\u53d6\u4ee3 KS\uff0c\u800c\u662f\u76f8\u8f14\u76f8\u6210\u3002 6-5. \u554f\u53e5\u76f8 \u5ea6\u8207 \u6587\u76f8 \u5ea6\u4e4b\u7d50\u5408\u4fc2\u6578\u5be6\u9a57 \u7531\u516c\u5f0f(8)\uff0c\u554f\u53e5\u8207 FAQ \u6a23\u672c\u7684\u6bd4\u5c0d\u7531\u554f\u53e5\u7684\u76f8 \u5ea6\u8207 \u6587\u76f8 \u5ea6\u5171\u540c\u6c7a\u5b9a\uff0c\u56e0\u6b64\u672c\u5c0f\u7bc0 \u5be6\u9a57\u5176\u4fc2\u6578 \u3002\u5be6\u9a57\u7d50\u679c\u986f\u793a\uff0c 0.5 = \u6642\uff0c\u5176\u5e73\u5747\u6b63\u78ba \u540d\u843d\u5728 2.91 \u70ba\u6700\u4f73\u7d50\u679c\u3002\u89c0\u5bdf \u5716 7\uff0c \u5728\u7bc4\u570d[0.2, 1.0]\u4e2d\u6642\uff0c\u5c0d\u7cfb\u7d71\u6548\u80fd\u7684\u5f71\u97ff\u4e26\u4e0d\u5927\uff1b\u53ef\u5f97\u77e5\uff0c\u76f8\u8f03\u65bc \u6587\u76f8 \u5ea6\uff0c\u554f\u53e5 \u76f8 \u5ea6\u5c0d\u7cfb\u7d71\u6548\u80fd\u7684\u5f71\u97ff\u8f03\u5927\u3002 \u5716 7 \u6bd4\u5c0d\u7d50\u5408\u53c3\u6578 \u4e4b\u65bc\u5e73\u5747\u6b63\u78ba \u540d\u6bd4\u8f03\u5716 6-6. \u5be6\u9a57\u7e3d\u7d50 \u6700\u5f8c\uff0c\u85c9\u7531 \u5236\u53c3\u6578\uff0c\u5c07\u5404\u500b\u65b9\u6cd5\u4ee5\u5e73\u5747\u6b63\u78ba \u540d\u8207\u53ec\u56de\u7387\u505a\u4e00\u500b\u6bd4\u8f03\u3002\u7531\u5716(8)\u548c \u5716(9)\u53ef\u4ee5\u767c\u73fe\uff0c\u7121\u8ad6\u5f9e\u5e73\u5747\u6b63\u78ba \u540d\u6216\u662f\u524d N \u540d\u7684\u53ec\u56de\u7387\u4f86 \uff0c\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u7684\u65b9\u6cd5\u660e \u986f\u5730\u6539 \u4e86\u6548\u80fd\u3002\u76f8\u8f03\u65bc\u57fa\u6e96\u7cfb\u7d71\uff0c\u5e73\u5747\u6b63\u78ba \u554f\u53e5\u7684\u95dc \u8a5e\uff0cIS \u8868\u793a\u53ea\u6bd4\u8f03\u554f\u53e5\u7684\u610f\u5716 \u5716 9 \u7cfb\u7d71\u53ec\u56de\u7387\u6bd4\u8f03\u5716\uff0c\u5176\u4e2d baseline \u8868\u793a\u53ea\u6bd4\u8f03 \u6587\u7684\u95dc \u8a5e\uff0cKS \u8868\u793a\u53ea\u6bd4\u8f03\u554f\u53e5\u7684\u95dc \u8a5e\uff0cIS \u8868\u793a\u53ea\u6bd4\u8f03\u554f\u53e5\u7684\u610f\u5716 7. \u7d50\u8ad6\u8207\u672a\u4f86\u5c55\u671b \u672c\u8ad6\u6587\u63d0\u51fa\u4ee5\u554f\u53e5\u610f\u5716\u8403\u53d6\u4ee5\u53ca\u8a9e\u610f\u6bd4\u5c0d\u7684\u65b9\u6cd5\uff0c\u61c9\u7528\u5230\u81ea\u7136\u8a9e\u8a00 FAQ \u6aa2 \u4e0a\u3002\u7d93\u5be6\u9a57 \u9a57\u8b49\uff0c\u8a72\u65b9\u6cd5\u78ba\u5be6\u6bd4\u55ae\u7d14\u4f7f\u7528\u95dc \u8a5e\u67e5\u8a62\u4f86\u5f97\u6e96\u78ba\uff0c\u4f7f\u5e73\u5747\u6b63\u78ba \u7684 \u540d\u5f9e\u7b2c 12.04 \u540d\u63d0 \u5347\u5230\u7b2c 2.91 \u540d\uff0c\u4e14\u4f7f\u5f97\u524d\u5341\u540d\u7684\u53ec\u56de\u7387\u7531 78.06%\u63d0\u5347\u5230 95.11%\uff0c\u4f46\u662f\u5176\u4e2d\u4ecd\u5b58\u5728\u4e00\u4e9b \u6539 \u9032\u4e4b\u8655\uff1a \u4e00\u3001\u610f\u5716\u8403\u53d6\u65b9\u9762\uff0c\u96d6\u7136\u6211\u5011\u80fd\u8655\u7406 92%\u7684\u8a9e\u6599\uff0c\u4ecd\u6709\u8a31\u591a\u554f\u53e5\u7684\u578b \u4e0d\u5728 \u96c6\u7684\u7bc4\u570d \u540d \u9032\u6b65\u4e86 9 \u5716 8 \u7cfb\u7d71\u5e73\u5747\u6b63\u78ba \u540d\u6bd4\u8f03\u5716\uff0c\u5176\u4e2d baseline \u8868\u793a\u53ea\u6bd4\u8f03 \u6587\u7684\u95dc \u8a5e\uff0cKS \u8868\u793a\u53ea\u6bd4\u8f03 \u53c3\u8003\u6587\u737b
\u5e73\u5747\u6b63\u78ba \uff0c\u4ee5\u53ca\u5c0d\u65bc\u8f03\u8907\u96dc\u8a9e\u6cd5\u554f\u53e5\u7684\u8aa4\u5224\uff0c\u53ef\u4ee5\u85c9\u7531\u6539 \u8a9e\u610f\u6587\u6cd5\u4e0a\u4f86\u89e3\u6c7a\u3002 \u540d 6.28 6.29 7.61 6.51
", "type_str": "table", "num": null, "text": "\u53ec\u56de\u7387 (%) 36.06 48.56 56.00 60.22 63.89 66.56 73.56 73.56 76.72 78.06 \u500b\u540d\u6b21\u3002 \u7b2c\u4e00\u540d\u7684\u53ec\u56de\u7387 \u5f9e 36.06%\u63d0\u5347\u5230 64.67%\uff0c \u63d0 \u4e86 80%\uff1b\u800c\u524d\u5341\u540d\u7684\u53ec\u56de\u7387\u4e5f\u5f9e 78.06%\u63d0\u5347\u5230 95.11%\u3002" } } } }