{ "paper_id": "O00-1011", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T07:59:12.678572Z" }, "title": "", "authors": [], "year": "", "venue": null, "identifiers": {}, "abstract": "", "pdf_parse": { "paper_id": "O00-1011", "_pdf_hash": "", "abstract": [], "body_text": [ { "text": "\u5047\u8a2d\u6709\u4e00\u5305\u542b M \u500b \u7684 \u9663\u5217\uff0c\u6bcf\u4e00\u7d44\u76f8\u9130\u7684 \u7684\u8ddd \u70ba d\uff0c \u6709\u4e00\u8a9e\u97f3 \u8a0a (\u5047\u8a2d\u70ba\u5e73\u9762\u6ce2)\u5f9e\u6211\u5011 \u51fa\u7684\u6700\u4f73\u65b9\u5411 s \u50b3 \u904e\u4f86\uff0c \u7684\u8f38\u51fa\u70ba i t x \uff0c M i 1 \uff0c \u5247\u5728\u6642\u9593 t \u7684\u6642\u5019\uff0c\u7576\u7b2c i \u5230\u5e73\u9762\u6ce2\u7684\u8a0a \uff0c\u7b2c i+1 \u5247\u9700\u7b49\u5230 \u6ce2\u518d\u524d\u9032 \u8ddd R ( s d R cos = )\u65b9\u53ef \u5230\u8a0a \uff0c\u5982\u5716\u4e8c\u6240\u793a\u3002 \u82e5 \u6ce2\u7684\u901f\u5ea6\u70ba C\uff0c\u5247\u7b2c i+1 \u500b \u7684\u6642\u9593 C d C R s cos = = (1) 1 + + = i t i t x x \uff0c\u56e0\u6b64\u6211\u5011\u53ef\u4ee5\u4f30\u7b97\u7b2c i \u500b \u8207\u7b2c 1 \u500b \u7684\u95dc\u4fc2\u5982\u4e0b\uff1a 1 ) 1 ( \u2212 + = i t i t x x (2)", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Delay-and-Sum Beamformer", "sec_num": "2.1" }, { "text": "\u800c\u6574\u500b Delay-and-Sum Beamformer \u7684\u8f38\u51fa t", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Delay-and-Sum Beamformer", "sec_num": "2.1" }, { "text": "x \uff0c\u5982\u5716\u4e09\u6240\u793a\uff0c\u5c31\u662f\u5c07\u6bcf\u500b \u9593\u7684\u6642\u9593", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Delay-and-Sum Beamformer", "sec_num": "2.1" }, { "text": "\u4f5c\u88dc \u5f8c\u5408\u6210\u518d\u53d6\u5e73\u5747\u800c\u5f97 \u2211 = \u2212 + = M i i i t t M 1 ) 1 ( 1 x x (3)", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Delay-and-Sum Beamformer", "sec_num": "2.1" }, { "text": "\u5716\u4e8c\u3001\u76f8\u9130 \u7684\u6642\u9593 \u5716\u4e09\u3001Delay-and-Sum Beamformer \u6d41\u7a0b\u5716 ", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Delay-and-Sum Beamformer", "sec_num": "2.1" }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": "\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5\u7684\u4e3b\u8981\u76ee\u7684\u5728\u65bc\u4f30 \u51fa\u8a9e\u8005\u767c \u7684\u65b9\u5411\uff0c\u5176\u7cfb\u7d71\u6d41\u7a0b\u5716\u5982\u5716\u56db\u6240\u793a\uff0c\u6211 \u5011\u5c07\u5206\u6210\u4e0b\u5217\u4e09\u90e8\u4efd\u505a\u8aaa\u660e\u3002 \u5716\u56db\u3001\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5(SLA)\u6d41\u7a0b\u5716 \u9996\u5148\uff0c\u6211\u5011\u5c07 M \u500b \u5728\u6642\u57df\u4e0a\u7684\u8a9e\u97f3\u8a0a M i i t ,..., 1 , = x \u7d93\u904e\u5feb\u901f \u5229\u8449\u8f49\u63db\u5f8c\u5f97\u5230 \u7684 \u5728\u983b\u7387\u4e0a\u7684\u8a0a 1 ,..., 0 , ,..., 1 ), ( \u2212 = = K k M i k i t X \uff0c\u5176\u4e2d i \u8868\u793a \u7684 \u6578\uff0ck \u8868\u793a \u983b\u7387\u7684 \u6578\uff0ct \u8868\u793a\u97f3 \u7684 \u6578\u3002 \u7b2c\u4e8c\u90e8\u5206\uff0c\u6211\u5011\u8a08\u7b97\u4e0d\u540c \u97f3\u65b9\u5411\u89d2\u5ea6 180 ,..., 1 = \u7684 \u9593\u529f\u7387\u983b \u2211 \u2212 = = 1 0 ) , ( ) ( K k t t k P P \uff0c 180 , , 1 L = (4) \u5176\u4e2d 2 1 } cos ) 1 ( 2 exp{ ) ( ) , ( \u2211 = \u2212 = M i k i t t c d i f j k k P \u03c0 X", "eq_num": "(5)" } ], "section": "\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5(Speaker Localization Algorithm, SLA)", "sec_num": "2.2" }, { "text": "\u6642\u9593 \u3002\u5176\u57fa\u672c\u60f3\u6cd5\u662f\u5047\u8a2d\u7b2c i \u500b \u548c\u5176\u6240\u76f8\u9130\u7684\u7b2c i+1 \u500b \u5728\u7b2c L \u500b\u6578\u4f4d\u9ede\u5f8c \u7684\u8a9e\u97f3\u8a0a \u5206\u5225\u8868\u793a\u5982\u4e0b\uff1a i N L i L i L + + x x x ,..., , 1 \u548c 1 1 1 1", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5(Speaker Localization Algorithm, SLA)", "sec_num": "2.2" }, { "text": ",..., , ", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5(Speaker Localization Algorithm, SLA)", "sec_num": "2.2" }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": "+ + + + + + + + i N L i L i L x x x \u5176\u4e2d\u6211\u5011\u53d6\u51fa N \u500b\u6578\u4f4d\u9ede\uff0c\u5982\u5716\u4e94\u6240\u793a\u3002 \u5728\u4e0d\u8003\u616e \u97f3\u4ee5\u53ca\u8a0a \u6e1b\u7684\u60c5\u5f62\u4e0b\uff0c\u82e5 \u70ba i \u548c i+1 \u9593\u7684\u6642\u9593 \uff0c\u5247 i t x \u548c 1 + + i t x \u4e4b\u9593\u5177\u6709\u6700\u5927\u7684\u76f8\u95dc\u6027\u4e14 \u2211 + = + + N L L t i t i t 1 x x \u9ede \u548c\u70ba\u6700\u5927\uff0c\u6b64\u4e00 \u548c\u53ef\u7a31\u4e4b\u70ba Time Domain Cross Correlation\u3002 \u5716\u4e94\u3001TDCC\u793a\u610f\u5716 \u7d93\u7531\u4ee5\u4e0a\u7684\u60f3\u6cd5\u6211\u5011\u767c\u5c55\u51fa TDCC \u7684\u6f14\u7b97\u6cd5\uff1a\u82e5\u73fe\u6709\u4e00 \u9663\u5217\u5305\u542b\u6709 M \u500b \uff0c i \u65bc\u6642\u9593 t \u6240 \u5230\u7684\u8a0a \u7a31\u70ba i t x \uff0c\u5247\u5c0d\u8a9e\u97f3\u8a0a \u4e2d\u4efb\u4e00\u97f3 m \u7684 TDCC \u5b9a\u7fa9\u5982\u4e0b \u2211\u2211 = = + \u2212 + \u2212 = M i N j i j p m j p m m C 2 1 ) 1 ( 1 ) 1 ( ) ( x x", "eq_num": "(" } ], "section": "\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5(Speaker Localization Algorithm, SLA)", "sec_num": "2.2" }, { "text": "\u5176\u4e2d \u2211\u2211 = = \u2212 + + \u2212 + \u2212 = M i N j i i j p m j p m m C 2 1 ) 1 ( ) 1 ( 1 ) 1 ( ) , ( x x (9) \u9019\u88e1\u6211\u5011\u662f\u4ee5\u8a9e\u53e5\u4e2d\u80fd\u91cf\u6700\u9ad8\u7684\u97f3 \u70ba\u57fa\u6e96\u4f86\u8a08\u7b97\u6642\u9593 \uff0c\u53e6\u5916\u82e5\u5c07\u8a9e\u53e5 \u5168\u90e8\u97f3 \u7684 TDCC \u52a0\u8d77\u4f86\uff0c\u6839\u64da\u6b64 \u52a0\u503c\u5247\u76f8\u9130 \u9593\u7684\u6642\u9593 A \u02c6\u70ba \u2211 = m A ) C(m, max", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5(Speaker Localization Algorithm, SLA)", "sec_num": "2.2" }, { "text": ") ( ) ( 2 / 1 2 / 1 2 / 1 ) 2 ( 1 ) , | ( s t s s t o o s n s s t e o P \u00b5 \u00b5 \u03c0 \u00b5 \u2212 \u03a3 \u2212 \u2212 \u2212 \u03a3 = \u03a3 (11) \u5176\u4e2d s \u00b5 \u8868\u793a\u5e73\u5747\u503c\u5411\u91cf\uff0c s \u03a3 \u8868\u793a\u8b8a\u7570\u6578\u77e9\u9663\uff0c t o \u70ba\u89c0 \u5230\u7684\u7279\u5fb5\u5411\u91cf\uff0cn \u70ba\u5411\u91cf\u7684 \u5ea6\u3002 \u5b9a\u7fa9\u4e00\u500b\u5927\u5c0f\u70ba ) 1 ( + \u00d7 n n \u7684\u8f49 \u77e9\u9663 s W \uff0c \u53ef\u5c07 \u5c55\u5f8c\u7684\u5e73\u5747\u503c\u5411\u91cf s \u8abf\u6574\u800c\u5f97\u5230\u65b0\u7684 \u5e73\u5747\u503c\u5411\u91cf s s s W \u00b5 = (12) \u5176\u4e2d = n s \u00b5 \u00b5 \u00b5 ,..., , , 2 1 \uff0c \u662f\u5728\u9032\u884c\u56de\u6b78\u8a08\u7b97\u6642\u8003\u616e\u662f\u5426\u4f7f\u7528 \u5dee\u91cf(\u4f7f\u7528\u5247 \u70ba 1\uff0c\u4e0d\u4f7f \u7528\u5247\u70ba 0)\u3002\u56e0\u6b64\u8abf\u6574\u904e\u5f8c\u7684\u9ad8\u65af\u6a5f\u7387\u5206\u4f48\u5982\u4e0b\u6240\u793a ) ( ) ( 2 / 1 2 / 1 2 / 1 ) 2 ( 1 ) , ,", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5(Speaker Localization Algorithm, SLA)", "sec_num": "2.2" } ], "back_matter": [], "bib_entries": { "BIBREF0": { "ref_id": "b0", "title": "Maximum Likelihood from Incomplete Data via the EM Algorithm", "authors": [ { "first": "A", "middle": [ "P" ], "last": "Dempster", "suffix": "" }, { "first": "N", "middle": [ "M" ], "last": "Laird", "suffix": "" }, { "first": "D", "middle": [ "B" ], "last": "Rubin", "suffix": "" } ], "year": 1977, "venue": "J. Roy. Stat. Soc", "volume": "39", "issue": "1", "pages": "1--38", "other_ids": {}, "num": null, "urls": [], "raw_text": "A. P. Dempster and N. M. Laird, D. B. Rubin. \"Maximum Likelihood from Incomplete Data via the EM Algorithm\", J. Roy. Stat. Soc., 39(1) : 1-38, 1977.", "links": null }, "BIBREF1": { "ref_id": "b1", "title": "Maximum a Posterior Estimation for Multivariate Gaussian Mixture Observations of Markov Chains", "authors": [ { "first": "J.-L", "middle": [], "last": "Gauvain", "suffix": "" }, { "first": "C.-H", "middle": [], "last": "Lee", "suffix": "" } ], "year": 1994, "venue": "IEEE Trans. Speech, Audio Processing", "volume": "2", "issue": "", "pages": "291--298", "other_ids": {}, "num": null, "urls": [], "raw_text": "J.-L. Gauvain and C.-H. Lee, \"Maximum a Posterior Estimation for Multivariate Gaussian Mixture Observations of Markov Chains\", IEEE Trans. Speech, Audio Processing, Volume 2, pages 291-298, April 1994.", "links": null }, "BIBREF2": { "ref_id": "b2", "title": "Experiments of Speech Recognition In a Noisy and Reverberant Environment Using a Microphone Array and HMM Adaptation", "authors": [ { "first": "D", "middle": [], "last": "Giuliani", "suffix": "" }, { "first": "M", "middle": [], "last": "Omologo", "suffix": "" }, { "first": "P", "middle": [], "last": "Svaizer", "suffix": "" } ], "year": 1996, "venue": "Proc. of ICSLP '96", "volume": "", "issue": "", "pages": "1329--1332", "other_ids": {}, "num": null, "urls": [], "raw_text": "D. Giuliani, M. Omologo and P. Svaizer, \"Experiments of Speech Recognition In a Noisy and Reverberant Environment Using a Microphone Array and HMM Adaptation\", In Proc. of ICSLP '96, pages 1329-1332, October 1996.", "links": null }, "BIBREF3": { "ref_id": "b3", "title": "Microphone Array Design Measures for Hands-Free Speech Recognition", "authors": [ { "first": "M", "middle": [], "last": "Inoue", "suffix": "" }, { "first": "S", "middle": [], "last": "Nakamura", "suffix": "" }, { "first": "T", "middle": [], "last": "Yamada", "suffix": "" }, { "first": "K", "middle": [], "last": "Shikano", "suffix": "" } ], "year": 1997, "venue": "Proc. of Eurospeech '97", "volume": "1", "issue": "", "pages": "331--334", "other_ids": {}, "num": null, "urls": [], "raw_text": "M. Inoue, S. NAKAMURA, T. YAMADA and K. SHIKANO, \"Microphone Array Design Measures for Hands-Free Speech Recognition\", In Proc. of Eurospeech '97, Volume 1, pages 331-334, September 1997.", "links": null }, "BIBREF4": { "ref_id": "b4", "title": "Maximun Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden Markov Models", "authors": [ { "first": "C", "middle": [ "J" ], "last": "Leggetter", "suffix": "" }, { "first": "P", "middle": [ "C" ], "last": "Woodland", "suffix": "" } ], "year": 1995, "venue": "Computer Speech and Language", "volume": "9", "issue": "", "pages": "171--185", "other_ids": {}, "num": null, "urls": [], "raw_text": "C. J. Leggetter and P. C. Woodland, \"Maximun Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden Markov Models\", Computer Speech and Language, Volume 9, pages 171-185, September 1995.", "links": null }, "BIBREF5": { "ref_id": "b5", "title": "Combined Wiener and Coherence Filtering in Wavelet Domain For Microphone Array Speech Enhancement", "authors": [ { "first": "D", "middle": [], "last": "Mahmoudi", "suffix": "" } ], "year": 1998, "venue": "Proc. of ICASSP '98", "volume": "", "issue": "", "pages": "385--388", "other_ids": {}, "num": null, "urls": [], "raw_text": "D. Mahmoudi, \"Combined Wiener and Coherence Filtering in Wavelet Domain For Microphone Array Speech Enhancement\", In Proc. of ICASSP '98, pages 385-388, May 1998.", "links": null }, "BIBREF6": { "ref_id": "b6", "title": "Acoustic Event Localization Using a Crosspower-Spectrum Phase Based Technique", "authors": [ { "first": "M", "middle": [], "last": "Omologo", "suffix": "" }, { "first": "P", "middle": [], "last": "Svaizer", "suffix": "" } ], "year": 1994, "venue": "Proc. of ICASSP '94", "volume": "2", "issue": "", "pages": "273--276", "other_ids": {}, "num": null, "urls": [], "raw_text": "M. Omologo and P. Svaizer, \"Acoustic Event Localization Using a Crosspower-Spectrum Phase Based Technique\", In Proc. of ICASSP '94, Volume 2, pages 273-276, 1994.", "links": null }, "BIBREF7": { "ref_id": "b7", "title": "Acoustic Source Location in Noisy and Reverberant Environment Using CSP Analysis", "authors": [ { "first": "M", "middle": [], "last": "Omologo", "suffix": "" }, { "first": "P", "middle": [], "last": "Svaizer", "suffix": "" } ], "year": 1996, "venue": "Proc. of ICASSP '96", "volume": "", "issue": "", "pages": "921--924", "other_ids": {}, "num": null, "urls": [], "raw_text": "M. Omologo and P. Svaizer, \"Acoustic Source Location in Noisy and Reverberant Environment Using CSP Analysis\", In Proc. of ICASSP '96, pages 921-924, 1996.", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "Robust Speech Recognition with Speaker Localization by a Microphone Array", "authors": [ { "first": "T", "middle": [], "last": "Yamada", "suffix": "" }, { "first": "S", "middle": [], "last": "Nakamura", "suffix": "" }, { "first": "K", "middle": [], "last": "Shikano", "suffix": "" } ], "year": 1996, "venue": "Proc. of ICSLP '96", "volume": "", "issue": "", "pages": "1317--1320", "other_ids": {}, "num": null, "urls": [], "raw_text": "T. YAMADA, S. Nakamura and K. Shikano, \"Robust Speech Recognition with Speaker Localization by a Microphone Array\", In Proc. of ICSLP '96, pages 1317-1320, October 1996.", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "Hands-Free Speech Recognition Based on a 3-D Viterbi Search Using a Microphone Array", "authors": [ { "first": "T", "middle": [], "last": "Yamada", "suffix": "" }, { "first": "S", "middle": [], "last": "Nakamura", "suffix": "" }, { "first": "K", "middle": [], "last": "Shikano", "suffix": "" } ], "year": 1998, "venue": "Proc. of ICASSP '98", "volume": "", "issue": "", "pages": "245--248", "other_ids": {}, "num": null, "urls": [], "raw_text": "T. YAMADA, S. Nakamura and K. Shikano, \"Hands-Free Speech Recognition Based on a 3-D Viterbi Search Using a Microphone Array\", In Proc. of ICASSP '98, pages 245-248, May 1998a.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "An Effect of Adaptive Beamforming on 3-D Viterbi Search", "authors": [ { "first": "T", "middle": [], "last": "Yamada", "suffix": "" }, { "first": "S", "middle": [], "last": "Nakamura", "suffix": "" }, { "first": "K", "middle": [], "last": "Shikano", "suffix": "" } ], "year": 1998, "venue": "Proc. of ICSLP '98", "volume": "", "issue": "", "pages": "381--384", "other_ids": {}, "num": null, "urls": [], "raw_text": "T. YAMADA, S. Nakamura and K. Shikano, \"An Effect of Adaptive Beamforming on 3-D Viterbi Search\", In Proc. of ICSLP '98, pages 381-384, December 1998b.", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "Simultaneous Recognition of Multiple Sound Sources Based on 3-D N-Best Search Using Microphone Array", "authors": [ { "first": "T", "middle": [], "last": "Yamada", "suffix": "" }, { "first": "S", "middle": [], "last": "Nakamura", "suffix": "" }, { "first": "K", "middle": [], "last": "Shikano", "suffix": "" } ], "year": 1999, "venue": "Proc. of Eurospeech '99", "volume": "1", "issue": "", "pages": "69--72", "other_ids": {}, "num": null, "urls": [], "raw_text": "T. YAMADA, S. Nakamura and K. Shikano, \"Simultaneous Recognition of Multiple Sound Sources Based on 3-D N-Best Search Using Microphone Array\". In Proc. of Eurospeech '99, Volume 1, Page 69-72, September 1999.", "links": null } }, "ref_entries": { "TABREF0": { "content": "
\u4e00\u822c\u7684\u8a9e\u97f3\u8fa8\u8a8d\u7686\u4f7f\u7528\u55ae\u4e00\u505a\u70ba\u8a9e\u97f3\u8a0a \u7684\u8f38\u5165\uff0c\u5728\u7684\u4e0b\u5df2\u6709\u4e0d\u932f\u7684\u8fa8
\u8b58\u6210\u679c\uff0c\u7136\u800c\uff0c\u7576\u61c9\u7528\u5728 \u97f3\u5f88\u5927\u7684\u88e1\uff0c\u8a9e\u97f3\u8fa8\u8b58\u7684\u6548\u679c\u5c07\u5927\uff0c\u56e0\u6b64\uff0c\u5982\u4f55 \u5236
\u97f3\u4e26\u52a0 \u8a9e\u97f3\u8a0a \u5df2\u6210\u70ba\u8a9e\u97f3\u8fa8\u8b58\u7684\u95dc \u6027\u6280\u8853\u3002\u56e0\u6b64\u672c\u8ad6\u6587\u4e2d\u6211\u5011\u4f7f\u7528\u4e00\u7d44\u9060\u8ddd
\u9663\u5217\u505a\u8a9e\u97f3\u8a0a \u8f38\u5165\uff0c\u7136\u5f8c\u4f7f\u7528 TDCC \u5c07\u6bcf\u500b\u4e4b\u9593\u7684\u6642\u9593\u8a08\u7b97\u51fa\u4f86\uff0c\u518d\u5229
\u5efa \u7528 Delay-and-Sum Beamformer \u7684\u65b9\u5f0f\uff0c\u5f97\u5230\u4e00\u7d44\u5177 \u7c21\u6027\u4e14\u52a0 \u904e\u5f8c\u7684\u8a9e\u97f3\u8a0a \u3002\u70ba\u4e86\u4f7f\u52a0
\u570b\u7acb\u6210\u529f\u5927\u5b78\u8cc7\u8a0a\u5de5\u7a0b\u5b78\u7cfb \u904e\u7684\u8a9e\u97f3\u8a0a \u5728\u9032\u884c\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b(Hidden Markov Model, HMM)\u70ba\u4e3b\u8a9e\u97f3\u8fa8\u8b58\u6642\u6709\u66f4
Email\uff1ajtchien@mail.ncku.edu.tw \u4f73\u7684\u8fa8\u8b58\u6548\u679c\uff0c\u6211\u5011\u4f7f\u7528\u6700\u4f73\u76f8 \u5ea6\u7dda\u6027\u56de\u6b78\u7406\u8ad6(maximum likelihood linear regression,
MLLR) (Leggetter and Woodland, 1995)\u5c07\u539f \u8a9e\u97f3\u8a13\u7df4\u51fa\u4f86\u7684\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b\u53c3\u6578\u505a\u8abf
\u6574\uff0c\u4ee5\u88dc\u6458\u8981 \u8a9e\u97f3\u8207\u6a21\u578b\u53c3\u6578\u4e4b\u9593\u7684\u4e0d \u914d\u3002
\u672c\u7bc7\u8ad6\u6587\u63d0\u51fa\u4e00\u7a2e\u53ef\u61c9\u7528\u65bc \u97f3 \u76ee\u524d \u7684\u5b78\u8853\u7814\u7a76\u6a5f\u69cb\u5c0d\u65bc\u67b6\u69cb\u65bc\u4e0b\u9663\u5217(Microphone Array)\u7684\u8a9e\u97f3\u8fa8\u8b58\u6f14\u7b97 \u9663\u5217\u4e0a\u7684\u8a9e\u97f3\u8655\u7406\u6280\u8853\u5c1a\u5c6c\u8d77\u6b65\u968e\u6bb5\uff0c\u5728\u4e2d
\u6cd5\uff0c\u5176\u4e3b\u8981\u7684\u76ee\u7684\u5728\u65bc \u6587\u8a9e\u97f3\u8fa8\u8b58\u4e0a\u7684\u61c9\u7528\u767c\u8868\u5728\u76f8\u95dc\u5b78\u8853\u6703 \u53ca \u50b3\u7d71\u96fb \u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u9700\u8981\u4f7f\u7528\u8005\u982d \u6216 \u8ad6\u6587\u5c1a\u4e0d\u591a\u898b\uff0c\u7136\u800c\uff0c\u570b\u5916\u7684\u7814\u7a76\u6a5f\u69cb\u5247 \u7684\u4e0d\u65b9 \u3002
\u70ba\u4e86 \u9664\u9060\u8ddd \u5df2 \u5165\u6b64\u4e00 \u57df\uff0c\u4e26\u4e14\u7372\u5f97\u4e0d\u932f\u7684\u6210\u679c\uff0c\u6bd4\u8f03\u6709\u540d\u7684\u5305\u62ec\u4e09\u5927\u985e\u7684\u65b9\u6cd5\uff0c\u7b2c\u4e00\u985e\u662f\u8457\u91cd\u5728\u4e0d \u7684 \u97f3 \uff0c\u6211\u5011\u7684\u65b9\u6cd5\u662f\u5148\u5c07\u6bcf\u500b \u96c6\u5230\u7684\u8a9e\u97f3\uff0c\u5229\u7528\u8a9e\u97f3
\u5230 \u6bcf\u500b \u540c\u89d2\u5ea6\u7684\u4e0d\u540c\uff0c\u4f7f\u7528 Time Domain Cross Correlation (TDCC)\u6f14\u7b97\u6cd5 \u51fa\u8a9e\u8005\u767c \u9593\u6642\u9593 \u7684\u8a08\u7b97\uff0c \u4e3b\u8981\u662f\u5229\u7528\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5\u4f86\u8a08\u7b97\u4e0d\u540c \u9593\u7684\u6642\u9593
\u97f3\u7684\u65b9\u5411\u53ca\u8a9e\u97f3\u5230 \u6bcf\u500b \u53ef \u7684\u6642\u9593\uff0c\u518d\u61c9\u7528 Delay-and-Sum Beamformer \u9663\u5217\u8a0a \u8655
\u7406\u6280\u8853\u5c07\u8a9e\u97f3\u8a0a \u52a0 \uff0c\u6700\u5f8c\u6211\u5011\u518d\u5c07\u52a0 \u904e\u7684\u8a9e\u97f3\u8a0a \u548c\u8a9e\u97f3\u6a21\u578b\u53c3\u6578\u9593\u7684\u4e0d \u914d\u7528\u6700\u4f73
\u76f8 \u5ea6\u7dda\u6027\u56de\u6b78(MLLR)\u7684\u6a21\u578b\u8abf\u6574\u6f14\u7b97\u6cd5\u4f86 \u9593\u6642\u9593 \u4f75\u5165\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b\u7684\u53c3\u6578\uff0c \u7684\u89c0 \u662f \u3002\u5728 \u97f3\u4e0b\u4f7f\u7528 \u50b3\u7d71\u8a9e\u97f3\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b\u7684\u53c3 \u9663\u5217\u4e4b\u9023\u7e8c\u6578\u5b57
\u8fa8\u8b58\u5be6\u9a57\u4e2d\uff0c\u6211\u5011\u63d0\u51fa\u4f86\u7684\u65b9\u6cd5\u5c0d\u65bc\u63d0\u5347\u8fa8\u8b58\u7387\u6709 \u597d\u7684\u6548\u679c\u3002 \u6578\uff0c\u52a0\u5165\u5404\u7a2e\u4e0d\u540c\u7684\u8a9e\u8005\u89d2\u5ea6\uff0c\u4e26\u4f7f\u7528\u4e00\u7a2e\u4e09 \u7684 \u7279\u6bd4\u6f14\u7b97\u6cd5(Three-Dimensional Viterbi
Search)\u4f5c\u8a9e\u97f3\u8fa8\u8b58
1. \u5c0e\u8ad6
\u73fe\u5be6\u751f\u4e2d\uff0c\u4e86\u5404\u5f0f\u5404\u6a23\u7684 \u97f3\u548c\u56de\u97f3\uff0c\u9019\u4e9b\u6703 \u91cd\u7684 \u4f4e\u8a9e\u97f3\u8fa8\u8a8d\u7cfb\u7d71
\u7684\u6548\u80fd\uff0c\u5176\u4e2d\u4e4b\u4e00\u7684\u89e3\u6c7a\u65b9\u5f0f\u662f\u4f7f\u7528\u982d \u5f0f(Head-Mounted Microphone)\uff0c\u4f7f\u5f97 \u97f3
\u548c\u76e1\u53ef\u80fd\u7684 \u8fd1\uff0c\u4f86 \u4f4e\u97f3\u548c\u56de\u97f3\u7684\u5f71\u97ff\u3002\u7136\u800c\u4f7f\u7528\u982d \u5f0f\u8a2d \u6703\u9020\u6210
\u4f7f\u7528\u8005\u7684\u4e0d \uff0c\u56e0\u6b64\u5982\u4f55\u767c\u5c55\u4ee5\u514d \u5f0f(Hands-Free Microphone)\u70ba\u4e3b\u7684\u8a9e\u97f3\u8fa8\u8a8d\u7cfb\u7d71\u5df2
\u6210\u70ba\u4e00\u500b\u76f8\u7576\u91cd\u8981\u7684\u7814\u7a76 \u984c\u3002
\u57fa\u672c\u4e0a\uff0c\u4f7f\u7528\u9663\u5217\u53ef\u4ee5\u9032\u884c\u9060\u8ddd\u97f3\uff0c\u56e0\u6b64\u53ef\u4ee5\u89e3\u6c7a\u982d \u5f0f\u9020\u6210\u4f7f\u7528\u8005
\u4e0d \u7684\u554f\u984c\uff0c\u800c\u6211\u5011\u5e38\u7528\u7684\u9663\u5217\u8a0a \u8655\u7406\u6280\u8853\u662f \u7528 Delay-and-Sum Beamformer\uff0c
\u53ef\u4ee5\u97f3\u548c\u56de\u97f3\u5c0d\u8a9e\u97f3\u8a0a \u7684\u5f71\u97ff\uff0c\u9084\u539f\u51fa\u7684\u8a9e\u97f3\u3002\u800c\u4e14\u6b64\u4e00\u6280\u8853\u4e26\u975e\u91dd\u5c0d\u7279
\u5b9a \u97f3\uff0c \u53ef\u9069\u7528\u65bc\u4efb\u4f55 \u97f3\u4e0b\uff0c\u5f97\u5230 \u4eba \u610f\u7684\u6548\u679c\u3002\u5728\u672c\u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u5c07
\u9663\u5217\u61c9\u7528\u65bc \u4f4e\u97f3\u7684\uff0c\u4ee5 \u5230\u63d0\u9ad8\u8a9e\u97f3\u8fa8\u8a8d\u7387\u4e4b\u76ee\u7684\u3002
", "text": "", "num": null, "html": null, "type_str": "table" }, "TABREF6": { "content": "
\u591a\u901a \u97f3 SigC31-4 \u63a5\u982d\u7d93\u7531\u5de5\u4f5c\u96fb\u8def\u548c \u76f8\u9023\u63a5\uff0c\u900f\u904e\u6240\u9644\u7684 \u9ad4\u5373\u53ef\u5229\u7528 4 \u500b \u6211\u5011\u4f7f\u7528\u570b \u97f3 \u516c \u6240\u751f\u7522\u7684\u5168\u65b9\u5411\u96fb\u5bb9\u5f0f (Omni-directional Condenser \u540c\u6642 \u97f3\uff0c\u96fb\u5bb9\u5f0f Microphone)\uff0c\u578b \u70ba ECM9D\uff0c\u6240\u5c0d\u61c9\u7684\u983b \u70ba 20~10000Hz\uff0c \u5ea6\u70ba-38 3dB\uff0c\u8a0a \u6bd4 (signal-to-noise ratio, SNR)\u5927\u65bc 60dB\uff0c\u5de5\u4f5c\u96fb\u58d3\u5247\u4ecb\u65bc DC 3V \u81f3 DC 10V \u4e4b\u9593\u3002\u5de5\u4f5c\u96fb\u8def\u4e3b \u524d\u5f8c\u7684 \u97f3\u548c\u6578\u5b57\u9593\u7684 \u97f3\uff0c\u6240\u4ee5\u7e3d\u5171\u7684 \u6578\u76ee\u70ba 73 \u500b\u3002\u6bcf\u4e00\u500b \u5305\u542b 4 \u500b \u5408\u6578\uff0c \u56e0\u6b64\u5171\u6709 292 \u500b \u5408\u6578\u3002 \u8a9e\u6599\u662f\u5728\u5be6\u9a57 \u4e2d\u4f7f\u7528\u9060\u8ddd \u9663\u5217\u6240 \uff0c\u6211\u5011\u6a21 \u4e86\u4e09\u7a2e\u4e0d\u540c \u901f\u7684\u8def \u6cc1\uff0c\u5206\u5225\u70ba 0 km/h\u300150 km/h \u548c 90 km/h\u3002\u5728 0 km/h \u8def\u6cc1\u4e0b\u4e0d\u52a0\u4efb\u4f55 \u97f3\uff0c\u800c 50 km/h \u548c 90 km/h \u8def\u6cc1\u5247\u5229\u7528 \u653e\u51fa \u65bc\u6642\u901f 50 km/h \u548c 90 km/h \u6642\u6240 \u4e0b\u7684 \u97f3\u4f86\u6a21 \u3002 \u97f3\u6642\u8a9e\u8005\u8ddd \u4e2d\u5fc3 120 \u516c\u5206\u548c \u9663\u5217\u7684 \u89d2 \u70ba 60 \u5ea6\uff0c \u97f3 \u5247 \u653e\u65bc\u8ddd \u4e2d\u5fc3 80 \u516c\u5206\u8655\u548c \u7684\u7684 \u89d2 75 \u5ea6\uff0c \u9663\u5217\u662f\u7dda\u6027\u914d \u7684\uff0c\u76f8\u9130 \u7684\u9593\u8ddd\u70ba 10 \u516c Delay-and-Sum Beamformer \u8655\u7406\u5f8c\u7684\u8a9e\u97f3\u8a0a \u5206\u5225\u8a08\u7b97\u5176\u8fa8\u8a8d\u7d50\u679c\uff0c\u8fa8\u8a8d\u7d50\u679c\u5982\u8868\u4e8c\u6240\u793a\u3002 \u89c0\u5bdf\u5be6\u9a57\u7d50\u679c\u6211\u5011\u53ef\u4ee5\u767c\u73fe\u5728\u4e0d\u540c\u8def\u6cc1\u4e0b\u6700\u4f73\u8fa8\u8a8d\u7387\u90fd\u51fa\u73fe\u5728 60 \uff0c\u6b64\u4e00\u7d50\u679c\u548c\u6211\u5011\u5be6 \u4e0a \u8a9e\u97f3\u6642\u7684\u65b9\u5411\u662f\u5341\u5206 \u5408\u7684\u3002 Digit Error Rate (%) \u8def\u6cc1 0 km/h 50 km/h 90 km/h Mic 1 47.0 52.1 55.1 Mic 2 42.0 48.3 3.4 \u53d6\u6a23\u983b\u7387\u5c0dSLA\u548cTDCC\u7684\u5f71\u97ff \u7d93\u7531\u4ee5\u4e0a\u7684\u5be6\u9a57\u7d50\u679c\uff0c\u6211\u5011\u767c\u73fe\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5\u7684\u6548\u80fd\u8f03\u5dee\u3002 \u7814\u7a76\u5176\u539f\u56e0\u5f8c\u767c\u73fe\uff0c \u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5\u662f\u5148\u6c42\u51fa\u8a9e\u8005\u7684\u65b9\u5411 s \uff0c\u518d\u5229\u7528\u516c\u5f0f C d b s cos Rate) (Sampling Rate) Sampling ( = = 3.5 \u52a0\u5165\u8a9e\u97f3\u6a21\u578b\u8abf\u6574\u7684\u5be6\u9a57\u7d50\u679c \u63a5\u4e0b\u4f86\u7684\u5be6\u9a57\u8457\u91cd\u65bc \u89e3\u8a9e\u97f3\u6a21\u578b\u8abf\u6574\u5c0d \u9663\u5217\u8a9e\u97f3\u8fa8\u8a8d\u7cfb\u7d71\u7684\u5f71\u97ff\u3002\u57fa\u672c\u7cfb\u7d71\u7d93 \u518d\u5e73\u5747\u3002 \u884c \u7684\u96fb \u914d \u70ba B a s e l i n e S L A T D C C H T D C C A \u7531 Digit Error Rate (%) \u8def\u6cc1 0 km/h 50 km/h Without MLLR 0.28 0.58 0.41 0.56 90 km/h (19) Mic 1 + MLLR 29.0 31.7 33.4 With MLLR 0.50 0.79 0.63 0.77 53.4 Mic 3 51.0 54.8 58.7 \u4f86\u6c42\u51fa\u53d6\u6a23\u9ede\u4e0a\u7684\u4f4d b \u3002\u56e0\u70ba \u97f3\u7684\u901f\u5ea6 C \u548c \u7684\u9593\u8ddd d \u90fd\u662f\u56fa\u5b9a\u7684\uff0c\u56e0\u6b64\u6211\u5011\u8a2d\u8a08 Mic 2 + MLLR 25.5 29.9 33.1 \u8868\u4e5d\u3001SLA \u8207 TDCC \u884c\u901f\u5ea6\u4e4b\u6bd4\u8f03 (\u901f\u5ea6\u8a08\u7b97\u55ae\u4f4d\u70ba \u53e5)
\u8981\u7684\u4f5c\u7528\u662f\u5c07\u96fb \u4f9b\u61c9\u5668\u6240\u63d0\u4f9b\u7684\u96fb\u529b\u9032\u884c \u58d3\uff0c\u4e4b\u5f8c\u518d \u81f3 \u529b\uff0c\u4e26\u4fdd \u97f3\u6642\u8a0a \u7684 \u5b9a\uff0c\u4e26\u5c07\u8a0a \u81f3\u591a\u901a \u97f3 SigC31-4\u3002\u6b64\u5de5\u4f5c\u96fb\u8def\u662f \u63d0\u4f9b \u97f3\u6642\u6240\u9700\u7684\u96fb \u5206\u3002\u8a9e\u8005\u548c \u9663\u5217\u4ee5\u53ca \u97f3\u7684\u76f8\u5c0d\u4f4d \u5982\u5716\u4e03\u6240\u793a\u3002\u7e3d\u5171\u6709 15 \u4eba\u53c3\u8207 \u97f3\uff0c\u5305\u542b 12 \u4f4d Mic 4 46.5 53.0 57.2 Mic \u5e73\u5747 46.6 52.1 56.1 Mic 3 + MLLR 31.6 33.4 36.2 \u4e86\u4e00\u4e9b\u5be6\u9a57\u4f86 \u89e3\u53d6\u6a23\u983b\u7387\u5c0d SLA \u548c TDCC \u5169\u7a2e\u6f14\u7b97\u6cd5\u7684\u5f71\u97ff\u3002 Mic 4 + MLLR 28.3 31.4 34.5 \u751f\u548c 3 \u4f4d \u751f\uff0c\u6bcf\u4e00\u7a2e\u8def\u6cc1\u6709 30 \u53e5\u4e0d\u540c\u7684\u4e2d\u6587\u9023\u7e8c\u6578\u5b57\u3002\u6bcf\u7a2e\u8def\u6cc1\u7e3d\u5171 \u5f97 450 \u53e5\u97f3 \u3002 \u8868\u4e00\u3001\u57fa\u672c\u7cfb\u7d71\u7684\u8fa8\u8a8d\u7d50\u679c \u5be6\u9a57\u6642\u6211\u5011\u5148\u5c0d \u8a9e\u6599\u5229\u7528 \u5dee\u6cd5\u63d0\u9ad8\u53d6\u6a23\u983b\u7387\uff0c\u7d93\u7531 Delay-and-Sum Beamformer \u6c42 (Mic + MLLR)\u5e73\u5747 28.6 31.6 34.4 4. \u7d50\u8ad6
\u4f9d\u64da\u97f3 \u516c \u91dd\u5c0d\u96fb\u5bb9\u5f0f \u9023\u7e8c\u8a9e\u97f3\u8fa8\u8a8d\u6240\u4f7f\u7528\u7684\u6f14\u7b97\u6cd5\u70ba\u4e00\u968e\u6bb5\u6f14\u7b97\u6cd5\u3002\u5be6\u9a57\u7d50\u679c\u6211\u5011\u4ee5\u6578\u5b57\u932f\u8aa4\u7387(Digit Error Rate) \u7684\u5efa \u96fb\u8def \u52a0\u4fee\u6539\u5f8c\u7531\u6211\u5011\u81ea\u884c \u63a5 \u4f5c\u7684\u3002 \u4f86\u8868\u793a\u3002 \u51fa\u589e \u904e\u7684\u8a9e\u97f3\u8a0a \u5f8c\uff0c\u518d\u5c07\u53d6\u6a23\u983b\u7387 \u70ba 8KHz\u3002\u7136\u5f8c\u518d\u9032\u884c\u8fa8\u8b58\uff0c\u8fa8\u8a8d\u7d50\u679c\u5982\u8868\u56db(8KHz)\u3001 Mic \u5e73\u5747 46.6 52.1 56.1 \u672c\u8ad6\u6587\u4e2d\u6211\u5011\u5efa\u7acb\u4e00\u500b\u61c9\u7528 \u9663\u5217\u7684\u8a9e\u97f3\u8fa8\u8a8d\u7cfb\u7d71\uff0c\u6b64\u4e00\u7cfb\u7d71\u5229\u7528 Delay-and-Sum \u8def\u6cc1\uff0fDigit Error Rate (%)\uff0f\u89d2\u5ea6 30 60 90 120 150 0 km/h 35.2 31.9 60.6 58.6 55.4 \u8868\u4e03\u3001\u57fa\u672c\u7cfb\u7d71\u7d93\u7531MLLR\u8abf\u6574\u5f8c\u7684\u5be6\u9a57\u7d50\u679c \u8868\u4e94(16KHz)\u548c\u8868\u516d(24KHz)\u6240\u793a\u3002 Beamformer \u4f86 \u4f4e \u97f3\u5c0d\u65bc\u8a9e\u97f3\u8a0a \u7684\u5f71\u97ff\u3002\u540c\u6642\u6211\u5011\u4e5f\u63d0\u51fa\u4e86\u4e00\u500b\u61c9\u7528\u65bc \u9663\u5217
50 km/h \u6211\u5011\u53ef\u4ee5\u767c\u73fe SLA \u7684\u8fa8\u8a8d\u932f\u8aa4\u7387\u6709\u660e\u986f\u7684\u6539\u8b8a\uff0c\u53d6\u6a23\u983b\u7387\u7531 8KHz \u63d0\u9ad8\u81f3 16KHz \u548c 40.9 38.1 66.9 68.3 62.6 \u6f14\u7b97\u6cd5 Digit Error Rate (%) \u8def\u6cc1 0 km/h 50 km/h 90 km/h \u4e0a\u8a08\u7b97\u6642\u9593 \u7684\u6f14\u7b97\u6cd5 TDCC\u3002\u5be6\u9a57\u7684\u90e8\u5206\u6211\u5011\u9032\u884c\u4e86\u57fa\u672c\u7cfb\u7d71\u7684\u5be6\u9a57\u3001 \u5b9a\u5404\u7a2e\u4e0d\u540c\u89d2
90 km/h 24KHz \u6642\u932f\u8aa4\u7387\u5728 3 \u7a2e\u4e0d\u540c\u8def\u6cc1\u90fd\u6709\u986f\u8457\u7684\u4e0b \u3002\u800c\u63d0\u9ad8\u81f3 16KHz \u548c\u63d0\u9ad8\u81f3 24KHz \u76f8\u6bd4\u6642 42.8 40.4 70.0 69.6 65.7 (Mic + MLLR)\u5e73\u5747 28.6 31.6 34.4 \u5ea6\u7684\u5be6\u9a57\u3001\u53d6\u6a23\u983b\u7387\u6539\u8b8a\u7684\u5be6\u9a57\u3001\u4f7f\u7528 SLA \u6f14\u7b97\u6cd5\u3001\u4f7f\u7528\u6700\u5927\u80fd\u91cf\u97f3 \u7684 TDCC \u6f14\u7b97\u6cd5\u548c\u4f7f \u8868\u4e8c\u3001\u4e0d\u540c \u97f3 \u89d2\u5ea6\u4e0bDelay-and-Sum Beamformer\u7684\u8fa8\u8a8d\u7d50\u679c \u6f14\u7b97\u6cd5 Digit Error Rate (%) \u8def\u6cc1 0 km/h 50 km/h 90 km/h Mic \u5e73\u5747 46.7 52.1 56.1 \u56fa\u5b9a\u89d2\u5ea6 60 31.9 38.1 40.4 SLA 43.8 48.6 52.1 TDCC H 37.5 43.6 SLA + MLLR 29.9 31.5 35.1 \u5247\u5728 3 \u7a2e\u4e0d\u540c\u8def\u6cc1\u4e0a\u932f\u8aa4\u7387 \u6709\u4e9b\u8a31\u7684\u6539\u8b8a\u3002\u81f3\u65bc TDCC \u5247\u56e0\u70ba\u5176 \u7b97\u7684\u5c0d\u8c61\u5c31\u662f\u6642\u57df\u4e0a\u7684 \u53d6\u6a23\u9ede\uff0c\u56e0\u6b64\u8fa8\u8a8d\u932f\u8aa4\u7387\u4e26\u7121\u660e\u986f\u6539\u8b8a\u3002\u6b64\u4e00\u7d50\u679c\u986f\u793a\u7531\u65bc TDCC \u4e0d\u9700\u8981\u8a08\u7b97\u8a9e\u8005\u65b9\u5411\uff0c\u56e0 \u6b64\u53ef\u4ee5\u9069\u7528\u65bc\u5404\u7a2e\u53d6\u6a23\u983b\u7387\uff0c\u80fd \u4e00\u5b9a\u7684\u8fa8\u8a8d\u6548\u679c\u3002 \u6f14\u7b97\u6cd5 Digit Error Rate (%) \u8def\u6cc1 0 km/h 50 km/h TDCC H + MLLR 25.2 28.8 31.4 TDCC A + MLLR 21.1 24.9 28.2 \u8868\u516b\u3001SLA\u548cTDCC\u7d93\u7531MLLR\u8abf\u6574\u5f8c\u7684\u8fa8\u8a8d\u7d50\u679c\u6bd4\u8f03\u5716 \u7d93\u7531\u8868\u4e03\u7684\u5be6\u9a57\u7d50\u679c\u6211\u5011\u53ef\u4ee5\u767c\u73fe\uff0c\u57fa\u672c\u7cfb\u7d71\u4f7f\u7528 MLLR \u7684\u8a9e\u97f3\u6a21\u578b\u8abf\u6574\u6280\u8853\u5f8c\uff0c\u4e0d\u7ba1 \u7528\u5168\u90e8\u97f3 \u7684 \u672c\u8ad6\u6587\u4e2d\u4ea6\u7d50\u5408\u4e86\u8a9e\u97f3\u6a21\u578b\u8abf\u6574\u7684\u6280\u8853\u3002\u7d93\u7531\u5be6\u9a57\u6211\u5011\u53ef\u4ee5\u767c\u73fe\uff0c\u55ae\u7d14\u53ea\u4f7f\u7528 MLLR \u4f86 90 km/h 47.0 TDCC A 31.7 38.4 40.9 SLA H 43.79 48.64 52.12 TDCC H 37.50 43.58 47.03 \u8abf\u6574\u8a9e\u97f3\u6a21\u578b\u5373\u53ef\u7372\u5f97\u4e0d\u932f\u7684\u6548\u679c\u3002\u7136\u800c\u82e5\u5c07 \u9663\u5217\u548c\u8a9e\u97f3\u6a21\u578b\u8abf\u6574\u7684\u6280\u8853\u76f8\u7d50\u5408\uff0c\u5c0d \u5728 \u4e00\u7a2e\u8def\u6cc1\u90fd\u53ef\u6709\u6548\u7684 \u4f4e\u8fa8\u8a8d\u932f\u8aa4\u7387(0 \u65bc \u4e0b\u6240 \u65bc \u4f4e\u8fa8\u8a8d\u932f\u8aa4\u7387(\u5728\u4e0d\u540c\u8def\u6cc1\u4e0b\u5e73\u5747 \u53ef \u4f4e 25%\u7684\u8fa8\u8a8d\u932f\u8aa4\u7387)\u6703\u7522\u751f\u66f4\u986f\u8457\u7684\u6548\u679c\u3002\u5f9e \u8868\u4e09\u3001SLA\u548cTDCC\u8fa8\u8a8d\u7d50\u679c\u6bd4\u8f03\u5716 \u8868\u56db\u3001\u53d6\u6a23\u983b\u7387 8KHz \u6642 SLA \u548c TDCC \u7684\u8fa8\u8a8d\u7d50\u679c \u7684\u8a13\u7df4\u8a9e\u6599\u548c\u5229\u7528 \u9663\u5217\u65bc \u97f3 \u4e0b\u6240 \u7684 \u8a9e\u6599\u9593\u7684\u4e0d \u914d\u73fe\u8c61\u76f8\u7576 \u91cd\u3002 \u6211\u5011\u7814\u7a76\u7684\u7d50\u679c\uff0c\u53ef\u4ee5\u767c\u73fe\u4ecd\u7136\u9084\u6709\u8a31\u591a\u503c\u5f97\u7814\u7a76\u7684 \u984c\uff0c\u5982\u66f4 \u78ba\u8a9e\u8005\u65b9\u5411\u7684\u5b9a\u4f4d\u3001
\u7b2c\u4e8c\u7d44\u5be6\u9a57\u662f\u5c07\u6240 \u5f97\u7684 \u6f14\u7b97\u6cd5 Digit Error Rate (%) \u8def\u6cc1 \u8a9e\u6599\u5206\u5225\u7d93\u7531\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5\u548c TDCC \u6c42\u53d6\u4e0d\u540c 0 km/h 50 km/h 90 km/h \u5206\u6790\u8868\u516b\u7684\u7d50\u679c\uff0c\u6211\u5011\u767c\u73fe\u52a0\u5165\u8a9e\u97f3\u6a21\u578b\u8abf\u6574\u7684 SLA \u548c TDCC \u5728 \u4f4e\u8fa8\u8a8d\u932f\u8aa4\u7387\u4e0a\u4ea6\u6709 \u9593 \u4f4d \u7684\u8003\u91cf\u2026\u7b49\u3002\u672a\u4f86\u6211\u5011\u5c07\u4e3b\u8981\u81f4\u529b\u65bc\u7814\u7a76 \u9663\u5217\u4e2d \u7684 \u653e\u4f4d \u548c\u8fa8\u8a8d\u7387\u9593
\u5716\u4e03\u3001 \u97f3\u6642 \uff0c\u7d93\u904e\u88dc \u5f8c\u7522\u751f\u52a0 \u904e\u5f8c\u7684\u8a9e\u97f3\u8a0a \uff0c\u518d\u5206\u5225\u9032\u884c\u8fa8\u8a8d\uff0c\u5be6\u9a57\u7d50\u679c\u5982\u8868\u4e09\u6240\u793a\u3002 \u9663\u5217\u548c\u8a9e\u8005\u4ee5\u53ca \u97f3\u9593\u7684\u76f8\u5c0d\u4f4d \u5716 SLA H 34.94 39.97 42.00 \u986f\u8457\u7684\u6548\u679c\uff0c\u5728\u4e09\u7a2e\u4e0d\u540c\u8def\u6cc1\u4e0a TDCC \u7684\u6548\u80fd\u4ecd\u7136\u512a\u65bc SLA\u3002\u6700\u4f4e\u7684\u8fa8\u8a8d\u932f\u8aa4\u7387(21.10%)\u70ba \u7684\u6642\u9593 \u7684\u95dc\u4fc2\uff0c\u4ee5\u53ca\u5be6 \u5c07 \u9663\u5217\u7684\u6f14\u7b97\u6cd5\u61c9\u7528\u5728 \u6216\u6709\u56de\u97f3\u3001 \u97f3\u7684\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u4e0a\u3002
\u5716\u516d\u3001 3.3 Delay-and-Sum Beamformer\u5be6\u9a57\u7d50\u679c \u9663\u5217 \u97f3\u8a2d \u9023\u63a5\u5716 \u5176\u4e2d TDCC \u6709\u5169\u7a2e\u4e0d\u540c\u7684\u8a08\u7b97\u65b9\u6cd5\uff0cTDCC H \u8868\u793a\u6bcf\u4e00\u500b\u8a9e\u53e5 \u4f7f\u7528\u6700\u9ad8\u80fd\u91cf\u7684\u97f3 \u4f86\u8a08\u7b97 \u6642\u9593 \uff0c\u800c TDCC A \u5247\u8868\u793a\u6bcf\u4e00\u500b\u8a9e\u53e5\u7684\u6240\u6709\u97f3 \u7686\u88ab\u8003\u616e\u4f86\u8a08\u7b97\u6642\u9593 \u3002\u6b64\u5916\u8868\u4e09\u4ea6 TDCC H 36.90 42.69 47.09 \u8868\u4e94\u3001\u53d6\u6a23\u983b\u7387 16KHz \u6642 SLA \u548c TDCC \u7684\u8fa8\u8a8d\u7d50\u679c \u8def\u6cc1 0 km/h \u4e0b\u4f7f\u7528\u5168\u90e8\u97f3 \u4f86\u8a08\u7b97\u7684 TDCC \u6f14\u7b97\u6cd5\u3002
3. \u5be6\u9a57\u7d50\u679c 3.1 3.2 \u8a9e\u6599\u5eab \u5c0d\u65bc\u6bcf\u4e00\u500b \u5217\u51fa \u9663\u5217\u7684\u5e73\u5747\u8fa8\u8b58\u7387\u548c\u56fa\u5b9a\u89d2\u5ea6 60 \u6642\u7684\u8fa8\u8a8d\u932f\u8aa4\u7387\u4ee5\u65b9 \u6bd4\u8f03\u3002 (Mic1, Mic2, Mic3, Mic4)\u6240 \u96c6\u7684\u8a9e\u97f3\u8a0a \u5176\u500b\u5225\u7684\u5b57\u5143\u932f\u8aa4\u7387\u4ee5\u53ca \u6f14\u7b97\u6cd5 Digit Error Rate (%) \u8def\u6cc1 0 km/h 50 km/h 90 km/h 3.6 \u8fa8\u8a8d\u6642\u9593\u7684\u6bd4\u8f03 \u932f\u8aa4\u7387\u7684\u5e73\u5747\u503c\u5982\u8868\u4e00\u6240\u793a\uff0c\u6b64\u7d50\u679c\u53ef\u8996\u70ba\u57fa\u672c\u7cfb\u7d71(Baseline)\u7684\u932f\u8aa4\u7387\u3002\u5728\u6b64\u6211\u5011\u4f7f\u7528\u6240\u6709 \u89c0\u5bdf\u8868\u4e09\u7684\u8fa8\u8a8d\u7d50\u679c\u6bd4\u8f03\uff0c\u6211\u5011\u53ef\u4ee5\u767c\u73fe\u4f7f\u7528 Delay-and-Sum Beamformer \u7684 SLA \u548c SLA H 34.17 39.52 42.79 \u8fa8\u8a8d\u6642\u9593\u7684\u8a08\u7b97\u662f\u7d71\u8a08\u6240\u6709 \u8a9e\u6599(\u5171 1350 \u53e5\uff0c\u5e73\u5747\u4e00\u53e5\u5305\u542b 6 \u500b\u4e2d\u6587\u9023\u7e8c\u6578\u5b57)\u7d93\u7531 \u9663\u5217 \u97f3\u8a2d \u9663\u5217 \u97f3\u8a2d \u5982\u5716\u516d\u6240\u793a\uff0c\u4e3b\u8981\u7684\u90e8\u5206\u5305\u542b\u591a\u901a \u97f3 SigC31-4\u3001\u56db\u500b\u5168\u65b9\u5411 \u99ac\u53ef\u592b\u6a21\u578b\u4f86\u8868\u793a\uff0c\u6bcf\u4e00\u500b\u4e2d\u6587\u6578\u5b57\u4f7f\u7528 7 \u500b \uff0c \u97f3\u5247\u4f7f\u7528 3 \u500b \uff0c\u5206\u5225\u8868\u793a\u97f3 \u8fa8\u8a8d\u932f\u8aa4\u7387\u7684\u5e73\u5747\u503c\u4f5c\u70ba \u9663\u5217\u7684\u6574\u9ad4\u932f\u8aa4\u7387\u3002 TDCC \u78ba\u5be6\u80fd \u6709\u6548 \u4f4e\u932f\u8aa4\u7387\uff0c\u800c TDCC \u548c\u50b3\u7d71\u7684\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5 SLA \u76f8\u6bd4\uff0cTDCC \u66f4\u80fd TDCC H 38.27 44.08 49.07 \u8868\u516d\u3001\u53d6\u6a23\u983b\u7387 24KHz \u6642 SLA \u548c TDCC \u7684\u8fa8\u8a8d\u7d50\u679c \u6642\u9593 \u7684\u8a08\u7b97\u3001Delay-and-Sum Beamformer \u7684\u8655\u7406\u3001\u8a9e\u97f3\u7279\u5fb5\u53c3\u6578\u7684\u6c42\u53d6\u548c\u8a9e\u97f3\u8fa8\u8a8d\u7684\u6240 \u6211\u5011\u6240\u9032\u884c\u7684\u7b2c\u4e00\u7d44\u5be6\u9a57\u662f\u4e8b\u5148\u9810\u8a2d\u4e00\u4e9b \u97f3 \u89d2\u5ea6\u503c\u4f86\u9032\u884c\u5be6\u9a57\u4ee5 \u51fa\u6700\u4f73\u6548\u679c\u7684\u89d2 \u5ea6 \uff0c \u9019 \u88e1 \u6211 \u5011 \u5c07 \u97f3 \u7684 \u65b9 \u5411 \u56fa \u5b9a \u5f9e 30 \u5230 150 \u6bcf \u9593 \u9694 30 \u505a \u4e00 \u6b21 \u5be6 \u9a57 \uff0c \u518d \u5c0d \u7d93 \u7531 \u6709\u6548 \u4f4e\u8fa8\u8a8d\u932f\u8aa4\u7387\uff0c\u4e14 TDCC \u4f7f\u7528\u6240\u6709\u7684\u97f3 \u7684\u6548\u679c\u4e0d\u4f46\u6bd4\u4f7f\u7528\u4e00\u500b\u97f3 \u6548\u679c\u9084\u597d\uff0c\u800c\u4e14 \u6709\u6642\u9593\u518d\u505a\u5e73\u5747\u800c\u5f97\uff0c\u5be6\u9a57\u7d50\u679c\u5982\u8868\u4e5d\u6240\u793a\u3002\u57fa\u672c\u7cfb\u7d71\u5247 \u8a08\u7b97\u7279\u5fb5\u53c3\u6578\u548c\u8a9e\u97f3\u8fa8\u8a8d\u7684\u6642\u9593
", "text": "\u662f\u7531 \u570b Signalogic \u516c \u6240\u751f\u7522\u7684\uff0c\u70ba\u4e00 4 \u500b\u901a \u7684 \u97f3 \uff0c\u4f7f \u7528\u7684\u6578\u4f4d\u8a0a \u8655\u7406 \u7247(DSP processor)\u70ba \u5668\u516c (TI)\u6240\u751f\u7522\u7684 TM8320C31\uff0c\u53ef\u540c\u6642\u63d0\u4f9b 4 \u500b\u901a \u9032\u884c \u97f3\u7684\u52d5\u4f5c\uff0c\u6b64 \u97f3 \u7684\u4ecb\u9762\u70ba ISA \u4ecb\u9762\u53ef \u65bc\u500b\u4eba\u96fb \u4e0a\uff0c\u4e26\u6709\u63d0\u4f9b D37 \u578b MLLR \u8abf\u6574\u5f8c\u7684\u5be6\u9a57\u7d50\u679c\u5982\u8868\u4e03\u6240\u793a\u3002\u6b64\u5916\uff0cSLA \u548c TDCC \u5206\u5225\u52a0\u4e0a MLLR \u7684\u5be6\u9a57\u7d50\u679c \u5982\u8868\u516b\u6240\u793a\u3002 km/h \u7531 46.64% \u81f3 28.61%\uff0c50 km/h \u7531 52.07% \u81f3 31.60%\uff0c90 km/h \u7531 56.12% \u81f3 34.42%)\uff0c\u5176\u539f\u56e0\u70ba\u4f7f\u7528\u50b3\u7d71 Pentium II 350 \u8655\u7406\u5668\u548c 128MB \u8a18 \u9ad4\u7684\u500b\u4eba\u96fb \uff0c\u4f5c\u696d\u7cfb \u7d71\u5247\u70ba Windows 98\u3002\u89c0\u5bdf\u5be6\u9a57\u7d50\u679c\uff0c\u6211\u5011\u767c\u73fe\u4e0d\u7ba1\u662f \u4f7f\u7528\u6700\u5927\u80fd\u91cf\u7684\u97f3 \u6216\u662f\u5168\u90e8\u97f3 \u7684 TDCC \u6f14\u7b97\u6cd5\u5728 \u884c\u901f\u5ea6\u4e0a\u7686\u512a\u65bc\u50b3\u7d71\u7684 SLA \u6f14\u7b97\u6cd5\u3002 TDCC \u6f14\u7b97\u6cd5\u4ee5\u53ca \u884c\u901f\u5ea6\u6bd4\u8f03\u3002\u7d93\u7531\u5be6\u9a57\u7d50\u679c\u6211\u5011\u53ef\u4ee5\u8b49\u660e TDCC \u7684\u6709\u6548\u6027 (\u5728\u4e0d\u540c\u8def\u6cc1\u4e0b\u5e73\u5747 \u53ef \u4f4e 15%\u7684\u8fa8\u8a8d\u932f\u8aa4\u7387)\u3002\u548c\u50b3\u7d71\u7684\u8a9e\u8005\u5b9a\u4f4d\u6f14\u7b97\u6cd5 SLA \u76f8\u6bd4\u8f03\uff0c TDCC \u4e0d\u8ad6\u662f\u5728\u8fa8\u8a8d\u932f\u8aa4\u7387 \u4f4e\u7684 \u5ea6\u4e0a\u6216 \u884c\u901f\u5ea6\u4e0a\u7686\u512a\u65bc SLA\u3002", "num": null, "html": null, "type_str": "table" } } } }