{ "paper_id": "O03-1015", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T08:02:00.479462Z" }, "title": "", "authors": [], "year": "", "venue": null, "identifiers": {}, "abstract": "", "pdf_parse": { "paper_id": "O03-1015", "_pdf_hash": "", "abstract": [], "body_text": [ { "text": "\u53ef", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "\u7dd2\u8ad6 \u8a9e \u97f3 \u53ca \u8a9e \u8a00 \u8655 \u7406 \u6280 \u8853 \u7684 \u65e5 \u8da8 \u6210 \u719f \uff0c \u4f7f \u5f97 \u5c0d \u8a71 \u7cfb \u7d71 \u7684 \u5be6 \u73fe \u6210 \u70ba", "sec_num": "1." }, { "text": "\uff0c\u5de5\u7814\u9662\u6709\u667a\u6167\u578b\u7e3d\u6a5f\u3001\u6c23\u8c61\u67e5\u8a62\u7cfb\u7d71 [11] \u7b49 \u591a \u9805 \u6210 \u679c \uff0c \u6210 \u5927 \u5728 \u5c0d \u8a71 \u7cfb \u7d71 \u7684 \u7814 \u7a76 \u4e0a \u4e5f \u6295 \u5165 \u76f8 \u7576 \u591a \u4e4b \u7814 \u7a76 \u4eba \u529b [12] ", "cite_spans": [ { "start": 18, "end": 22, "text": "[11]", "ref_id": "BIBREF10" }, { "start": 79, "end": 83, "text": "[12]", "ref_id": "BIBREF11" } ], "ref_spans": [], "eq_spans": [], "section": "\u7dd2\u8ad6 \u8a9e \u97f3 \u53ca \u8a9e \u8a00 \u8655 \u7406 \u6280 \u8853 \u7684 \u65e5 \u8da8 \u6210 \u719f \uff0c \u4f7f \u5f97 \u5c0d \u8a71 \u7cfb \u7d71 \u7684 \u5be6 \u73fe \u6210 \u70ba", "sec_num": "1." }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": "\u4f86 \u64f7 \u53d6 \u4f7f \u7528 \u8005 \u7684 \u610f \u5716 (Intention) \uff0c \u518d \u7531 \u4f7f \u7528 \u8005 \u7684 \u610f \u5716 \u642d \u914d \u76f8 \u95dc \u4e4b \u8a9e \u610f \u6846 \u67b6 (", "eq_num": "Semantic Frame" } ], "section": "\u7dd2\u8ad6 \u8a9e \u97f3 \u53ca \u8a9e \u8a00 \u8655 \u7406 \u6280 \u8853 \u7684 \u65e5 \u8da8 \u6210 \u719f \uff0c \u4f7f \u5f97 \u5c0d \u8a71 \u7cfb \u7d71 \u7684 \u5be6 \u73fe \u6210 \u70ba", "sec_num": "1." }, { "text": "= = = \u2211 = \u00d7 \u2211 (1) \u5176\u4e2d ( ) ( ) ( ) , , Pr | , , , k k j j i k k j i l k j j i l N synset EW CW synset EW CW N synset EW CW = \u2211 (2) \u5982\u4e0a\u5f0f\u6240\u793a\uff0c ( ) , , k k j j i N synset EW CW \u70ba i CW \u3001 k j EW \u548c k j synset \u5171\u540c\u51fa\u73fe\u7684\u6b21\u6578\u3002\u5728 \u5b9a\u7fa9\u65bc HowNet \u4e2d\u4e4b\u4e2d\u6587\u8a5e\uff0c\u81f3\u5c11\u6709\u4e00\u4e3b\u8981\u7279\u5fb5 ( ) l i i PF CW \u548c\u5b9a\u7fa9\u65bc WordNet \u4e2d\u82f1 \u6587\u8a5e\u4e4b\u4e0a\u4f4d\u8a5e\u4e2d\u5b58\u5728\u6709\u4e00\u500b\u540c\u7fa9\u8a5e\u96c6\u5408\uff0c ( ) k j j synset EW \uff0c\u6709\u4e00\u81f4\u4e4b\u6982\u5ff5\u6642\uff0c\u5176\u6a5f \u7387 ( ) Pr | j i EW CW \u70ba 1\uff0c\u5426\u5247\u70ba 0\u3002 ( ) ( ) ( ) ( ) 1 ( ( )) Pr | 0 l k i i j j l k j i if", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "\u7dd2\u8ad6 \u8a9e \u97f3 \u53ca \u8a9e \u8a00 \u8655 \u7406 \u6280 \u8853 \u7684 \u65e5 \u8da8 \u6210 \u719f \uff0c \u4f7f \u5f97 \u5c0d \u8a71 \u7cfb \u7d71 \u7684 \u5be6 \u73fe \u6210 \u70ba", "sec_num": "1." }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": "\u2212 > \u2212 \uf8f1 = \uf8f2 \uf8f3 (4) \u5176\u4e2d , ,", "eq_num": ", , , , ( ) log" } ], "section": "\u7dd2\u8ad6 \u8a9e \u97f3 \u53ca \u8a9e \u8a00 \u8655 \u7406 \u6280 \u8853 \u7684 \u65e5 \u8da8 \u6210 \u719f \uff0c \u4f7f \u5f97 \u5c0d \u8a71 \u7cfb \u7d71 \u7684 \u5be6 \u73fe \u6210 \u70ba", "sec_num": "1." }, { "text": "i i i i NA NB i NB i i NB i i i FP FP SP FP FP FP S + \u22c5 \u22c5 \u22c5 \u22c5 \u22c5 \u22c5 = + , , , , , , , 1 2 1 (5) \u5728\u5f0f\u5b50(5)\u4e2d i SP \u4ee3\u8868\u4e3b\u8981\u8a9e\u610f\u8a5e\uff0c\u800c i j FP \u4ee3\u8868\u7b2c j \u5404\u529f\u80fd\u6027\u8a5e\u5f59 NBi \u548c NAi \u70ba\u5728\u4e3b\u8981\u8a9e\u610f\u8a5e\u524d\u548c\u5728\u4e3b\u8981\u8a9e\u610f\u8a5e\u4e4b\u5f8c\u7684\u529f\u80fd\u6027\u8a5e\u5f59\u6578\u3002\u6839\u64da\u4e0a\u8ff0\u5b9a\u7fa9\uff0c\u90e8\u5206\u6a23 \u672c\u53e5\u70ba\u5305\u542b\u4e3b\u8981\u8a9e\u610f\u8a5e i SP \u7684\u5b50\u5e8f\u5217\uff0c\u6240\u4ee5\u6700\u5e38\u7684\u90e8\u5206\u6a23\u672c\u53e5\u5373\u70ba\u53e5\u5b50\u672c\u8eab\uff0c \u800c\u6700\u77ed\u7684\u90e8\u5206\u6a23\u672c\u53e5\u5247\u53ea\u6709\u4e3b\u8981\u8a9e\u610f\u8a5e\u4e00\u500b\u8a5e\u5f59\uff0c\u800c\u6bcf\u4e00\u500b\u529f\u80fd\u6027\u8a5e\u5f59\u90fd\u6709\u53ef\u80fd \u88ab\u7701\u7565\uff0c\u6240\u4ee5\u5c0d\u5f0f\u5b50(5)\u5b9a\u7fa9\u7684\u53e5\u5b50\u5171\u6709 i i NB NA + 2 \u53e5\u90e8\u5206\u6a23\u672c\u53e5\u3002\u8209\u4f8b\u8aaa\u660e\uff0c\u82e5 \u6709\u4e00\u53e5\u5b50\u70ba\u301dABC\u301e\u4e14 A\uff0cC \u70ba\u529f\u80fd\u6027\u8a5e\u5f59\u800c B \u70ba\u4e3b\u8981\u8a9e\u610f\u8fad\u5f59\uff0c\u5247\u6709\u56db\u53e5\u90e8 \u4efd\u6a23\u672c\u53e5\u301dABC\u301e \uff0c \u301dAB\u301e \uff0c \u301dBC\u301e\u4ee5\u53ca\u301dB\u301e \u3002 \u90e8\u5206\u6a23\u672c\u6a39\u662f\u5229\u7528\u8a9e\u6599\u5eab\u4e2d\u7684\u53e5\u5b50\uff0c\u5c07\u5176\u5206\u89e3\u6210\u90e8\u5206\u6a23\u672c\u53e5\u5f8c\uff0c\u6240\u5efa\u7acb\u7684\u6a21 \u7d44\uff0c\u5b83\u6709\u5169\u9ede\u7279\u9ede\uff0c\u7b2c\u4e00\u9ede\u70ba\u5177\u81ea\u52d5\u5b78\u7fd2\u4e4b\u80fd\u529b\uff0c\u7531\u8a13\u7df4\u8a9e\u6599\u6240\u5f97\u4e4b\u7684\u90e8\u5206\u6a23\u672c \u53e5\u6587\u6cd5\uff0c\u7b2c\u4e8c\u9ede\u70ba\u53ef\u8655\u7406\u8d05\u8a5e\u53ca\u90e8\u5206\u8a5e\u5f59\u932f\u8aa4\u7684\u60c5\u5f62\u3002\u56e0\u6b64\u6839\u64da\u6536\u96c6\u5230\u7684\u8a13\u7df4\u8a9e \u6599\u9996\u5148\u5c07\u8a13\u7df4\u7684\u53e5\u5b50\u5206\u89e3\u6210\u6240\u6709\u7684\u90e8\u5206\u6a23\u672c\u53e5\uff0c\u7136\u5f8c\u4ee5\u6a39\u72c0\u7d50\u69cb\u5c07\u6240\u6709\u7684\u90e8\u5206\u6a23 \u672c\u53e5\u7684\u53e5\u578b\u8cc7\u8a0a\u5132\u5b58\u8d77\u4f86\u5373\u70ba\u90e8\u5206\u6a23\u672c\u6a39\u3002 \u5728\u5be6\u969b\u5efa\u7acb\u90e8\u5206\u6a23\u672c\u6a39\u7684\u904e\u7a0b\u4e2d\uff0c\u6bcf\u4e00\u500b\u5167\u90e8\u7bc0\u9ede\u4ee3\u8868\u90e8\u5206\u6a23\u672c\u6a39\u4e0a\u7684\u4e00\u500b \u7368\u7acb\u8a5e\u5f59\uff0c\u56e0\u6b64\u5c0d\u65bc\u6bcf\u4e00\u500b\u5167\u90e8\u7bc0\u9ede\u672c\u8ad6\u6587\u53ef\u4ee5\u8868\u793a\u6210 { } i i i i i Son Ns FR PH IN , , , = \u5305\u542b\u7684\u53c3\u6578\u63cf\u8ff0\u5982\u4e0b\uff1a i PH :\u6b64\u7bc0\u9ede\u5728\u90e8\u5206\u6a23\u672c\u53e5\u4e0a\u6240\u4ee3\u8868\u7684\u8fad\u5f59 i FR :\u6b64\u7bc0\u9ede\u5728\u8a13\u7df4\u8a9e\u6599\u51fa\u73fe\u7684\u983b\u7387 i Ns :\u5176\u4e0b\u6240\u63a5\u7684\u5167\u90e8\u7bc0\u9ede\u500b\u6578 i Son :\u8a18\u9304\u6240\u6709\u5230\u5b50\u7bc0\u9ede\u7684\u9023\u7d50 \u5728\u90e8\u5206\u6a23\u672c\u6a39\u4e2d\uff0c\u5916\u90e8\u7bc0\u9ede\u4ee3\u8868\u8457\u4f9d\u64da\u90e8\u5206\u6a23\u672c\u53e5\u7684\u7d50\u5c3e\uff0c\u56e0\u6b64\u53ef\u4ee5\u5229\u7528\u5916\u90e8\u7bc0 \u9ede\u5f88\u5bb9\u6613\u7684\u56de\u6eaf\u627e\u5230\u5176\u6240\u4ee3\u8868\u7684\u90e8\u5206\u6a23\u672c\u53e5. \u6240\u4ee5\u5728\u6b64\u5c07\u5916\u90e8\u7bc0\u9ede\u8868\u793a\u70ba { } i i i i IT Ptr PP EN , , = \u5176\u4e2d i PP :\u4ee3\u8868\u6b64\u5916\u90e8\u7bc0\u9ede\u6240\u8868\u793a\u7684\u90e8\u5206\u6a23\u672c\u53e5 i Ptr :\u7d00\u9304\u6b64\u90e8\u5206\u6a23\u672c\u53e5\u662f\u5f9e\u54ea\u4e9b\u8f03\u5b8c\u6574\u7684\u90e8\u5206\u6a23\u672c\u53e5\u4e2d\u56e0\u90e8\u5206\u529f\u80fd\u6027\u8a5e\u5f59 \u88ab\u7701\u7565\u800c\u4f86 i IT :\u8a18\u9304\u9019\u689d\u8def\u5f91\u6240\u4ee3\u8868\u7684\u610f\u5716 \u6574\u500b\u8a13\u7df4\u904e\u7a0b\uff0c\u7e3d\u5171\u6709\u4e09\u500b\u6b65\u9a5f\u4f86\u5efa\u7acb\u90e8\u5206\u6a23\u672c\u6a39\uff1a (1) \u5c07\u8a13\u7df4\u7684\u53e5\u5b50\u65b7\u8a5e\u6210\u70ba\u4e00\u9023\u4e32\u7684\u8a5e\u5f59\u5e8f\u5217\uff0c\u5c0d\u65bc\u6bcf\u4e00\u5177\u8a13\u7df4\u8a9e\u6599\u4e2d\u7684\u4e3b \u8981\u8a9e\u610f\u8a5e\u5728\u9019\u500b\u6b65\u9a5f\u90fd\u5c07\u5176\u6a19\u8a18\u552f\u4e00\u7279\u6b8a\u8a5e\u5f59\u300cSemantic word\u300d \uff0c\u4e5f\u5c31 \u662f\u8aaa\u5728\u8a13\u7df4\u904e\u7a0b\u4e2d\uff0c\u5c07\u6240\u6709\u4e3b\u8981\u8a9e\u610f\u8a5e\u90fd\u770b\u6210\u540c\u4e00\u500b\u8a5e\u5f59\u3002 (2) \u5c07\u65b7\u597d\u8a5e\u7684\u53e5\u5b50\u62c6\u89e3\u6210\u90e8\u5206\u6a23\u672c\u53e5\u3002 (3) \u5229\u7528\u63a5\u4e0b\u4f86\u4ecb\u7d39\u7684\u6f14\u7b97\u6cd5\u4f86\u5efa\u7acb\u90e8\u5206\u6a23\u672c\u53e5\u3002 \u90e8\u5206\u6a23\u672c\u6a39\u5efa\u7acb\u6f14\u7b97\u6cd5\uff1a \u6b65\u9a5f\u4e00: Initialization \u8a2d\u5b9a\u90e8\u5206\u6a23\u672c\u6a39\u7684\u6839\u7bc0\u9ede\uff0cR \u6b65\u9a5f\u4e8c\uff1a Recursion \u5c0d\u6240\u6709\u7684\u90e8\u5206\u6a23\u672c\u53e5\uff0c { } i N i i i i Ph Ph Ph PP ... 2 1 = \uff0c i N \u70ba\u90e8\u5206\u6a23\u672c\u53e5 i PP \u7684\u8a5e\u5f59\u500b\u6578\uff0c\u57f7\u884c\u6b65\u9a5f 2.1", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "\u7dd2\u8ad6 \u8a9e \u97f3 \u53ca \u8a9e \u8a00 \u8655 \u7406 \u6280 \u8853 \u7684 \u65e5 \u8da8 \u6210 \u719f \uff0c \u4f7f \u5f97 \u5c0d \u8a71 \u7cfb \u7d71 \u7684 \u5be6 \u73fe \u6210 \u70ba", "sec_num": "1." }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": "= \uf8f1 \uf8f4 \uf8eb \uf8f6 \uf8f4 \uf8ec \uf8f7 \uf8f4 \uf8f4\uf8ed \uf8f8 = \uf8f2 \uf8eb \uf8f6 \uf8f4 \u2212 \uf8ec \uf8f7 \uf8f4 \uf8ed \uf8f8 \uf8f4 \uf8f4 \uf8f3 (7) \u5728\u5f0f(7)\u4e2d l \u662f\u6307\u5169\u500b\u5177\u6709\u4e0a\u4e0b\u4f4d\u95dc\u4fc2\u4e4b\u6982\u5ff5\u5728\u6982\u5ff5\u6a21\u578b\u4e2d\u8ddd\u96e2\u591a\u5c11\u5c64\uff0cn \u662f \u5169\u500b\u540c\u7fa9\u8a5e\u9593\u5c07\u5176\u6240\u6709\u540c\u610f\u8a5e\u5c55\u958b\u5f8c\uff0c\u6709\u591a\u5c11\u500b\u5171\u540c\u4e4b\u540c\u7fa9\u8a5e\u3002 \u5728\u8003\u616e\u5230\u6587\u6cd5\u7d50\u69cb\u548c\u8a9e\u610f\u7684\u76f8\u4f3c\u5ea6\u5f8c\uff0c\u5c07\u9019\u5169\u9805\u56e0\u7d20\u5217\u5165\u8003\u616e\u4f86\u8a08\u7b97\u4f7f\u7528\u8005 \u7684\u8f38\u5165\u53e5\u548c\u90e8\u5206\u6a23\u672c\u53e5\u4e4b\u9593\u7684\u76f8\u4f3c\u5ea6\u3002\u63a1\u7528\u985e\u4f3c\u52d5\u614b\u898f\u5283\u7684\u65b9\u6cd5\u5982\u5f0f\u5b50(8) ( ) ( ) ( ) 1 1 1 1 1 1 1 1 (0, 0) 0 ( 1, 1) ( , ) ( , ) ( , ) max ( 1, )) ( , ) ( , ) ( , 1) ( , )", "eq_num": "( , ) ( Int" } ], "section": "\u7dd2\u8ad6 \u8a9e \u97f3 \u53ca \u8a9e \u8a00 \u8655 \u7406 \u6280 \u8853 \u7684 \u65e5 \u8da8 \u6210 \u719f \uff0c \u4f7f \u5f97 \u5c0d \u8a71 \u7cfb \u7d71 \u7684 \u5be6 \u73fe \u6210 \u70ba", "sec_num": "1." } ], "back_matter": [], "bib_entries": { "BIBREF0": { "ref_id": "b0", "title": "Spoken Dialogue Technology: Enabling the Conversational User Interface", "authors": [ { "first": "F", "middle": [], "last": "Michael", "suffix": "" }, { "first": "", "middle": [], "last": "Mctear", "suffix": "" } ], "year": 2002, "venue": "ACM Computer Surveys", "volume": "34", "issue": "1", "pages": "90--169", "other_ids": {}, "num": null, "urls": [], "raw_text": "Michael F. McTEAR, \"Spoken Dialogue Technology: Enabling the Conversational User Interface,\" ACM Computer Surveys, Vol 34, No. 1, March 2002, pp.90-169.", "links": null }, "BIBREF1": { "ref_id": "b1", "title": "Towards Conversational Human-Computer Interaction", "authors": [ { "first": "James", "middle": [ "F" ], "last": "Allen", "suffix": "" }, { "first": "Donna", "middle": [ "K" ], "last": "Byron", "suffix": "" }, { "first": "Myroslava", "middle": [], "last": "Dzikovska", "suffix": "" }, { "first": "George", "middle": [], "last": "Ferguson", "suffix": "" }, { "first": "Lucian", "middle": [], "last": "Galescu", "suffix": "" }, { "first": "Amanda", "middle": [], "last": "Stent", "suffix": "" } ], "year": 2001, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "James F. Allen, Donna K. Byron, Myroslava Dzikovska, George Ferguson, Lucian Galescu, Amanda Stent, \"Towards Conversational Human-Computer Interaction,\" AI Magazine, 2001.", "links": null }, "BIBREF2": { "ref_id": "b2", "title": "Spoken Language Processing", "authors": [ { "first": "Xuedong", "middle": [], "last": "Huang", "suffix": "" }, { "first": "Alex", "middle": [], "last": "Acero", "suffix": "" }, { "first": "Hsiao-Wuen", "middle": [], "last": "Hon", "suffix": "" } ], "year": 2001, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, \"Spoken Language Processing\", Prentice-Hall Inc, 2001.", "links": null }, "BIBREF3": { "ref_id": "b3", "title": "Natural Language Understanding", "authors": [ { "first": "James", "middle": [], "last": "Allen", "suffix": "" } ], "year": 1994, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "James Allen, \"Natural Language Understanding\", The Benjamin/Cummings Publishing Company. 1994.", "links": null }, "BIBREF4": { "ref_id": "b4", "title": "JUPITER: A telephone-based conversational interface for weather information", "authors": [ { "first": "Stephanie", "middle": [], "last": "Victor Zue", "suffix": "" }, { "first": "James", "middle": [], "last": "Seneff", "suffix": "" }, { "first": "Joseph", "middle": [], "last": "Glass", "suffix": "" }, { "first": "Christine", "middle": [], "last": "Polifroni", "suffix": "" }, { "first": "Timothy", "middle": [ "J" ], "last": "Pao", "suffix": "" }, { "first": "Lee", "middle": [], "last": "Hazen", "suffix": "" }, { "first": "", "middle": [], "last": "Hetherington", "suffix": "" } ], "year": 2000, "venue": "IEEE Trans. on Speech and Audio Processing", "volume": "8", "issue": "1", "pages": "85--96", "other_ids": {}, "num": null, "urls": [], "raw_text": "Victor Zue, Stephanie Seneff, James Glass, Joseph Polifroni, Christine Pao, Timothy J. Hazen, Lee Hetherington, \"JUPITER: A telephone-based conversational interface for weather information,\" IEEE Trans. on Speech and Audio Processing, vol. 8, no. 1, January 2000, pp.85-96.", "links": null }, "BIBREF5": { "ref_id": "b5", "title": "How may I help you", "authors": [], "year": null, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "AT&T, \"How may I help you?\" http://www.research.att.com/~algot/hmihy/", "links": null }, "BIBREF6": { "ref_id": "b6", "title": "Dialogue in the RAILTEL Telephone-Based System", "authors": [ { "first": "S", "middle": [], "last": "Bennacef", "suffix": "" }, { "first": "L", "middle": [], "last": "Lamel", "suffix": "" } ], "year": null, "venue": "ICSLP'96", "volume": "1", "issue": "", "pages": "550--553", "other_ids": {}, "num": null, "urls": [], "raw_text": "S. Bennacef and L.Lamel et al., \"Dialogue in the RAILTEL Telephone-Based System,\" ICSLP'96 Vol. 1. pp. 550-553", "links": null }, "BIBREF7": { "ref_id": "b7", "title": "The LIMSI Arise System", "authors": [ { "first": "L", "middle": [], "last": "Lamel", "suffix": "" }, { "first": "S", "middle": [], "last": "Rosset", "suffix": "" }, { "first": "J", "middle": [], "last": "Gauvain", "suffix": "" }, { "first": "S", "middle": [], "last": "Bennacef", "suffix": "" }, { "first": "M", "middle": [], "last": "Garnier-Rizet", "suffix": "" }, { "first": "B", "middle": [], "last": "Prouts", "suffix": "" } ], "year": 2000, "venue": "Speech Communication", "volume": "31", "issue": "4", "pages": "339--353", "other_ids": {}, "num": null, "urls": [], "raw_text": "L. Lamel, S. Rosset, J. Gauvain, S. Bennacef, M. Garnier-Rizet , and B. Prouts, \"The LIMSI Arise System,\" Speech Communication, 31(4), 2000, pp. 339-353.", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "Master thesis of department of computer science and information engineering", "authors": [ { "first": "Kuei-Kuang", "middle": [], "last": "Lin", "suffix": "" }, { "first": "Hsin-Hsi", "middle": [], "last": "Chen", "suffix": "" } ], "year": 2002, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Kuei-Kuang Lin, Hsin-Hsi Chen,\" A Semiautomatic Knowledge Extraction Model for Dialogue Management\", Master thesis of department of computer science and information engineering, National Taiwan University, 2002", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "A Distributed Agent Architecture for Intelligent Multi-Domain Spoken Dialogue Systems", "authors": [ { "first": "Hsin-Min", "middle": [], "last": "Bor-Shen Lin", "suffix": "" }, { "first": "Lin-Shan", "middle": [], "last": "Wang", "suffix": "" }, { "first": "", "middle": [], "last": "Lee", "suffix": "" } ], "year": 2001, "venue": "IEICE Trans. on Information and Systems", "volume": "", "issue": "9", "pages": "1217--1230", "other_ids": {}, "num": null, "urls": [], "raw_text": "Bor-shen Lin, Hsin-min Wang, and Lin-shan Lee, \"A Distributed Agent Architecture for Intelligent Multi-Domain Spoken Dialogue Systems,\" IEICE Trans. on Information and Systems, E84-D(9), pp. 1217-1230, Sept. 2001.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "The Design of a Mandarin Chinese Spoken Dialogue System", "authors": [ { "first": "Tung-Hui", "middle": [], "last": "Chiang", "suffix": "" }, { "first": "Chung-Ming", "middle": [], "last": "Peng", "suffix": "" }, { "first": "Yi-Chung", "middle": [], "last": "Lin", "suffix": "" }, { "first": "Huei", "middle": [], "last": "", "suffix": "" }, { "first": "Ming", "middle": [], "last": "Wang", "suffix": "" }, { "first": "Shih Chieh", "middle": [], "last": "Chien", "suffix": "" } ], "year": 1998, "venue": "Proceedings of COTEC'98", "volume": "", "issue": "", "pages": "2--5", "other_ids": {}, "num": null, "urls": [], "raw_text": "Tung-Hui Chiang, Chung-Ming Peng, Yi-Chung Lin,Huei Ming Wang and Shih Chieh Chien, \"The Design of a Mandarin Chinese Spoken Dialogue System,\" in Proceedings of COTEC'98, Taipei 1998, pp. E2-5.1~E2-5.7", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "Speech act modeling in a spoken dialogue system using a fuzzy fragment-class Markov model", "authors": [ { "first": "Chung-Hsien", "middle": [], "last": "Wu", "suffix": "" }, { "first": "Gwo-Lang", "middle": [], "last": "Yan", "suffix": "" }, { "first": "Chien-Liang", "middle": [], "last": "Lin", "suffix": "" } ], "year": 2002, "venue": "Speech Communication", "volume": "38", "issue": "", "pages": "183--199", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chung-Hsien Wu, Gwo-Lang Yan, and Chien-Liang Lin, \"Speech act modeling in a spoken dialogue system using a fuzzy fragment-class Markov model,\" Speech Communication, Vol. 38, 2002, pp183~199.", "links": null }, "BIBREF12": { "ref_id": "b12", "title": "A Portable Auto Attendant System with Sophisticated Dailogue Structure", "authors": [ { "first": "Jhing-Fa", "middle": [], "last": "Wang", "suffix": "" }, { "first": "Hsien-Chang", "middle": [], "last": "Wang", "suffix": "" } ], "year": 2002, "venue": "Journal of Information Science Engineering", "volume": "18", "issue": "4", "pages": "627--636", "other_ids": {}, "num": null, "urls": [], "raw_text": "Jhing-Fa Wang and Hsien-Chang Wang, \"A Portable Auto Attendant System with Sophisticated Dailogue Structure\", Journal of Information Science Engineering, Vol.18, No.4, July. 2002, pp627-636", "links": null }, "BIBREF13": { "ref_id": "b13", "title": "Experiences of Multi-Speaker Dialogue System for Mobile Information Retrieval", "authors": [ { "first": "Jhing-Fa", "middle": [], "last": "Wang", "suffix": "" }, { "first": "Hsien-Chang", "middle": [], "last": "Wang", "suffix": "" } ], "year": 2003, "venue": "Workshop on DSP in Mobile and Vehicular Systems", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Jhing-Fa Wang and Hsien-Chang Wang\" Experiences of Multi-Speaker Dialogue System for Mobile Information Retrieval,\" Workshop on DSP in Mobile and Vehicular Systems, April 3-4, 2003,Nagoya, Japan", "links": null }, "BIBREF14": { "ref_id": "b14", "title": "Multi-Speaker Dialogue for Mobile Information Retrieval", "authors": [ { "first": "Jhing-Fa", "middle": [], "last": "Wang", "suffix": "" }, { "first": "Hsien-Chang", "middle": [], "last": "Wang", "suffix": "" }, { "first": "Chieh-Yi", "middle": [], "last": "Huang", "suffix": "" }, { "first": "Chung-Hsien", "middle": [], "last": "Yang", "suffix": "" } ], "year": 2002, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Jhing-Fa Wang and Hsien-Chang Wang, Chieh-Yi Huang, Chung-Hsien Yang\" Multi-Speaker Dialogue for Mobile Information Retrieval,\" ISCSLP 2002, August 23-24, 2002, Taipei", "links": null }, "BIBREF15": { "ref_id": "b15", "title": "Knowledge Processes and Ontologies", "authors": [ { "first": "Steffen", "middle": [], "last": "Staab", "suffix": "" }, { "first": "Rudi", "middle": [], "last": "Studer", "suffix": "" }, { "first": "Hans-Peter", "middle": [], "last": "Schnurr", "suffix": "" }, { "first": "York", "middle": [], "last": "Sure", "suffix": "" } ], "year": 2001, "venue": "IEEE Intelligent Systems", "volume": "16", "issue": "1", "pages": "26--34", "other_ids": {}, "num": null, "urls": [], "raw_text": "Steffen Staab, Rudi Studer, Hans-Peter Schnurr, York Sure, \"Knowledge Processes and Ontologies,\" IEEE Intelligent Systems 16 (1) January February 2001 ,pp. 26-34", "links": null }, "BIBREF16": { "ref_id": "b16", "title": "Knowledge Representation: Logical, Philosophical and Computational Foundations", "authors": [ { "first": "J", "middle": [ "F" ], "last": "Sowa", "suffix": "" } ], "year": 1999, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "J. F. Sowa, Knowledge Representation: Logical, Philosophical and Computational Foundations, Brooks Cole Publishing Co.1999.", "links": null }, "BIBREF17": { "ref_id": "b17", "title": "MIMIC\" An adaptive mixed initiative spoken dialogue system for information queries", "authors": [ { "first": "J", "middle": [], "last": "Chu-Carrol", "suffix": "" } ], "year": null, "venue": "Proceedings of the 6th ACL article on Applied Language Processing", "volume": "", "issue": "", "pages": "97--104", "other_ids": {}, "num": null, "urls": [], "raw_text": "J.l, Chu-Carrol, \"MIMIC\" An adaptive mixed initiative spoken dialogue system for information queries,\" Proceedings of the 6th ACL article on Applied Language Processing, pp. 97-104", "links": null }, "BIBREF18": { "ref_id": "b18", "title": "On-line Cursive Script Recognition using an Island-Driven Search Technique", "authors": [ { "first": "S", "middle": [ "H" ], "last": "Lee", "suffix": "" }, { "first": "H", "middle": [], "last": "Lee", "suffix": "" }, { "first": "J", "middle": [ "H" ], "last": "Kim", "suffix": "" } ], "year": 1995, "venue": "Proceedings of the Third International Conference on Document Analysis and Recognition", "volume": "", "issue": "", "pages": "886--889", "other_ids": {}, "num": null, "urls": [], "raw_text": "Lee, S.H., Lee H. and Kim, J.H. 1995 On-line Cursive Script Recognition using an Island-Driven Search Technique, Proceedings of the Third International Conference on Document Analysis and Recognition, Volume: 2 , 14-16 Aug. 1995. 886 -889.", "links": null }, "BIBREF19": { "ref_id": "b19", "title": "Error Recovery and Sentence Verification Using Statistical Partial Pattern Tree for Conversational Speech", "authors": [ { "first": "Chung-Hsien", "middle": [], "last": "Wu", "suffix": "" }, { "first": "Yeou-Jiunn", "middle": [], "last": "Chen", "suffix": "" }, { "first": "Cher-Yao", "middle": [], "last": "Yang", "suffix": "" } ], "year": 2000, "venue": "Proceedings of ICSLP2000", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chung-Hsien Wu, Yeou-Jiunn Chen, and Cher-Yao Yang, \"Error Recovery and Sentence Verification Using Statistical Partial Pattern Tree for Conversational Speech,\" in Proceedings of ICSLP2000, Beijing, China, 2000.", "links": null }, "BIBREF20": { "ref_id": "b20", "title": "WordNet: An On-Line Lexical Resource", "authors": [ { "first": "A", "middle": [], "last": "Miller", "suffix": "" } ], "year": 1990, "venue": "J. Lexicography", "volume": "3", "issue": "4", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "A. Miller, \"WordNet: An On-Line Lexical Resource,\" J. Lexicography, vol.3, no.4, Dec.1990.", "links": null }, "BIBREF22": { "ref_id": "b22", "title": "Simulating speech system", "authors": [ { "first": "N", "middle": [], "last": "Fraser", "suffix": "" }, { "first": "G", "middle": [ "N" ], "last": "Gilbert", "suffix": "" } ], "year": 1991, "venue": "Computer Speech and Language", "volume": "5", "issue": "", "pages": "81--99", "other_ids": {}, "num": null, "urls": [], "raw_text": "N. Fraser and G. N. Gilbert, \"Simulating speech system,\" Computer Speech and Language 5, 1991 pp.81-99.", "links": null }, "BIBREF23": { "ref_id": "b23", "title": "PARADISE: a general framework for evaluating spoken dialogue agents", "authors": [ { "first": "M", "middle": [ "A" ], "last": "Walker", "suffix": "" }, { "first": "D", "middle": [], "last": "Litman", "suffix": "" }, { "first": "C", "middle": [], "last": "Kamm", "suffix": "" }, { "first": "A", "middle": [], "last": "Abella", "suffix": "" } ], "year": 1997, "venue": "Proceedings of the 35th Annual General Meeting of the Association for Computational Linguistics, ACL/EACL", "volume": "", "issue": "", "pages": "271--280", "other_ids": {}, "num": null, "urls": [], "raw_text": "M. A. Walker, D. Litman, C. Kamm, and A. Abella, PARADISE: a general framework for evaluating spoken dialogue agents. In Proceedings of the 35th Annual General Meeting of the Association for Computational Linguistics, ACL/EACL (Madrid, Spain). ACL, 1997, pp.271-280.", "links": null } }, "ref_entries": { "TABREF0": { "content": "", "html": null, "type_str": "table", "num": null, "text": "[1][2][3][4]\u3002\u5c0d\u8a71\u7cfb\u7d71\u7684\u7814\u7a76\uff0c\u5728\u570b\u5916\u65b9\u9762\u6709 MIT \u7684 JUPITER [5] \u3001AT\uff06T \u7684 \u7dda\u4e0a\u670d\u52d9\u7cfb\u7d71[6]\u3001Philips \u7684 Automatic Train Timetable Information System[7]\u3001\u82f1 \u570b\u7684 Nuance Automatic Banking System \u4ee5\u53ca\u6cd5\u570b\u7684 LIMSI Arise system \u65c5\u904a\u8cc7\u8a0a \u5c0e\u89bd\u7cfb\u7d71[8]\u7b49\u3002\u5728\u570b\u5167\u65b9\u9762\uff0c\u53f0\u5927\u5247\u63d0\u51fa\u5728\u8a9e\u610f\u8207\u77e5\u8b58\u4e4b\u64f7\u53d6[9]\u4ee5\u53ca\u5728\u5206\u6563\u5f0f \u7db2\u8def\u74b0\u5883\u4e2d\u5c0d\u8a71\u7cfb\u7d71\u4ee3\u7406\u4eba\u4e4b\u67b6\u69cb" }, "TABREF6": { "content": "
Int sim i Int Int Int sim i sim i j j sim (P ,P ) sim I Int Int I J sim sim i j = \uf8f1 \u2212 \uf8f4 \uf8f4 = \u2212 \uf8f2 \uf8f4 \uf8f4 \uf8f3 = , ) J {Register:}-j \u2212 + + \u2212 + 12 5.1.3. \u5be6\u969b\u7cfb\u7d71\u8a9e\u6599 \u6b21\u5c0d\u8a71\uff0c\u5728 WOZ \u6536\u96c6\u6642\u56e0\u70ba\u76ee\u6a19\u660e\u78ba\u4e14\u7531\u4eba\u4f86\u56de\u7b54\uff0c\u4f7f\u7528\u8005\u53ef\u4ee5\u5feb\u901f\u9054\u5230\u76ee\u6a19 sem i j syn i j sem i j syn i j sem i j syn i j sim a b sim a b sim a b sim a b sim a b sim a b \u2212 \u2212 \u2212 \u2212 \u2212 \u2212 \u2212 \u2212 + + + \u56e0\u6b64\u5e73\u5747\u5c0d\u8a71\u9577\u5ea6\u70ba 6.882 \u6b21\uff0c\u7cfb\u7d71\u6e2c\u8a66\u6642\uff0c\u56e0\u70ba\u5be6\u969b\u5c0d\u8a71\u6d41\u66a2\u5ea6\u4e0d\u5982\u4eba\u985e\u4e4b\u9593 Evaluation Parameters Task Average Contextual 6. \u7d50\u8ad6\u8207\u672a\u4f86\u5c55\u671b Intention detection Success Number Appropriate-Rate(%) Rate(%) of Turns ness(%) \u5728\u672c\u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u5efa\u7acb\u4e00\u5957\u6574\u5408\u591a\u9805\u670d\u52d9\u7684\u91ab\u7642\u67e5\u8a62\u5c0d\u8a71\u7cfb\u7d71\uff0c\u6240\u6574\u5408\u7684\u670d (8) \u5728\u5f0f(8)\u4e2d { } i I a a a P \uff0c \uff0c \uff0c ... 2 1 = \u4ee3\u8868\u8f38\u5165\u7684\u53e5\u5b50\uff0c t P \u662f\u90e8\u5206\u6a23\u672c\u6a39\u7684\u5176\u4e2d\u4e00\u689d\u8def \u5f91\u53ef\u4ee5\u88ab\u8868\u793a\u6210 { } j T b b b P \uff0c \uff0c \uff0c ... 2 1 = \uff0c ) ,P (P sim T I I \u4ee3\u8868\u5b83\u5011\u4e4b\u9593\u7684\u76f8\u4f3c\u5ea6\uff0c\u4e00\u958b\u59cb \u5148\u5c07\u5176\u9593\u7684\u76f8\u4f3c\u5ea6\u8a2d\u5b9a\u70ba\u96f6\uff0c\u7136\u5f8c\u5f9e\u5169\u500b\u53e5\u5b50\u7684\u7b2c\u4e00\u500b\u8a5e\u958b\u59cb\u905e\u8ff4\u627e\u5c0b\u6700\u5927\u76f8\u4f3c \u5ea6\uff0c ) , ( j i sem b a sim \u662f\u8a9e\u610f\u76f8\u4f3c\u5ea6\uff0c ) , ( j i syn b a sim \u5247\u662f\u53e5\u6cd5\u7d50\u69cb\u76f8\u4f3c\u5ea6\u3002 \u4ee5\u5be6\u4f8b\u4f86\u8aaa\uff0c\u7cfb\u7d71\u8f38\u5165\u53e5\u70ba\u300c\u6211\u6709\u9ede\u611f\u5192\u300d\u800c\u6a23\u672c\u53e5\u6709\u300c\u6211\u3001\u6709\u3001\u767c\u71d2\u300d \uff0c \u8f38\u5165\u53e5\u7d93\u904e\u65b7\u8a5e\u5f8c\uff0c\u6703\u5f97\u5230\u300c\u6211\u3001\u6709\u3001\u9ede\u3001\u611f\u5192\u300d \uff0c\u9996\u5148\u7b2c\u4e00\u500b\u8a5e\u300c\u6211\u300d\u5c0d\u5230\u300c\u6211\u300d \uff0c \u76f8\u4f3c\u5ea6\u52a0\u4e8c\uff0c\u7b2c\u4e8c\u500b\u8a5e\u300c\u6709\u300d\u5c0d\u5230\u300c\u6709\u300d \u76f8\u4f3c\u5ea6\u5728\u52a0\u4e8c\u8b8a\u6210\u56db\uff0c\u7b2c\u4e09\u500b\u8a5e\u8f38\u5165 \u53e5\u662f\u300c\u9ede\u300d \uff0c\u548c\u6a23\u672c\u53e5\u6c92\u6709\u76f8\u540c\u7684\u8a5e\uff0c\u56e0\u6b64\u672c\u8ad6\u6587\u8003\u616e\u300c\u6709\u300d\u548c\u300c\u767c\u71d2\u300d\u5169\u500b\u8a5e\uff0c \u300c\u9ede\u300d\u548c\u300c\u6709\u300d\u7684\u76f8\u4f3c\u5ea6\u70ba\u96f6\uff0c\u548c\u300c\u767c\u71d2\u300d\u7684\u76f8\u4f3c\u5ea6\u4e5f\u70ba\u96f6\uff0c\u56e0\u6b64\u5c0d\u5230\u54ea\u4e00\u500b\u8a5e \u5206\u6578\u90fd\u4e00\u6a23\uff0c\u56e0\u6b64\u672c\u8ad6\u6587\u628a\u300c\u9ede\u300d\u5c0d\u5230\u300c\u6709\u300d \uff0c\u7136\u5f8c\u628a\u76f8\u4f3c\u5ea6\u4e0d\u8b8a\u70ba\u56db\uff0c\u518d\u8003\u616e \u4e0b\u4e00\u500b\u8a5e\u300c\u611f\u5192\u300d \uff0c\u540c\u6a23\u7684\u300c\u611f\u5192\u300d\u548c\u6a23\u672c\u53e5\u4e5f\u6c92\u6709\u76f8\u540c\u7684\u8a5e\uff0c\u56e0\u6b64\u672c\u8ad6\u6587\u8003\u616e \u300c\u6709\u300d\u548c\u300c\u767c\u71d2\u300d\u5169\u500b\u8a5e\uff0c \u300c\u611f\u5192\u300d\u548c\u300c\u6709\u300d\u7684\u76f8\u4f3c\u5ea6\u70ba\u96f6\uff0c\u548c\u300c\u767c\u71d2\u300d\u7684\u76f8\u4f3c \u5ea6\u70ba 1/2 \u56e0\u70ba\u300c\u767c\u71d2\u300d\u662f\u300c\u611f\u5192\u300d\u7684\u4e0b\u4f4d\u8a5e\u5b83\u5011\u4e4b\u9593\u76f8\u5dee\u4e00\u5c64\uff0c\u6240\u4ee5\u672c\u8ad6\u6587\u5c31\u628a \u300c\u611f\u5192\u300d\u5c0d\u5230\u300c\u767c\u71d2\u300d \uff0c\u76f8\u4f3c\u5ea6\u52a0 1/2 \u8b8a\u6210 4 \u53c8 1/2 \u9019\u5c31\u662f\u6b64\u8f38\u5165\u548c\u9019\u53e5\u6a23\u672c\u53e5 \u7684\u76f8\u4f3c\u5ea6\u4e86\uff0c\u4f9d\u6b64\u65b9\u6cd5\u6bd4\u5c0d\u6bcf\u53e5\u6a23\u672c\u53e5\uff0c\u627e\u51fa\u6700\u76f8\u8fd1\u7684\u6a23\u672c\u53e5\u5f8c\uff0c\u5c31\u53ef\u4ee5\u77e5\u9053\u4f7f \u7528\u8005\u9019\u53e5\u8a71\u7684\u610f\u5716\u3002 4. \u5c0d\u8a71\u63a7\u5236\u6a21\u7d44 \u672c\u7bc0\u8aaa\u660e\u5982\u4f55\u6574\u5408\u5404\u9805\u670d\u52d9\uff0c\u53ca\u500b\u5225\u6a21\u7d44\u4e4b\u529f\u80fd\u8aaa\u660e\uff0c\u5728\u524d\u9762\u5df2\u7d93\u89e3\u91cb\u5982 \u4f55\u5f9e\u4f7f\u7528\u8005\u7684\u8f38\u5165\u64f7\u53d6\u51fa\u4f7f\u7528\u8005\u7684\u610f\u5716\uff0c\u5728\u6709\u4e86\u4f7f\u7528\u8005\u7684\u610f\u5716\u4e4b\u5f8c\uff0c\u7cfb\u7d71\u4fbf\u53ef\u5075 \u6e2c\u4f7f\u7528\u8005\u662f\u8981\u4f7f\u7528\u90a3\u6a23\u6a21\u7d44\uff0c\u518d\u914d\u5408\u5404\u9805\u6a21\u7d44\u5167\u7684 Semantic Frame \u7522\u751f\u76f8\u95dc\u7684\u5c0d \u61c9\u7684\u56de\u61c9\u3002 \u5728\u5404\u500b\u6a21\u7d44\u4f7f\u7528\u76f8\u5c0d\u61c9\u4e4b\u8a9e\u610f\u6846\u67b6(Semantic Frame)\u76f8\u914d\u5408\u4e4b\u4f86\u63a7\u5236\u5c0d\u8a71\u6d41 \u7a0b[23]\uff0c\u4ee5\u5be6\u4f8b\u4f86\u8aaa\u660e\uff0c\u5728\u639b\u865f\u8aee\u8a62\u6a21\u7d44\u4e2d\u7684\u8a9e\u610f\u6846\u67b6\u5982\u5716\u4e03\u6240\u793a\uff1a \u5716\u4e03\u3001 \u8a9e\u610f\u6846\u67b6 (1)\u639b\u865f\u8aee\u8a62\u6a21\u7d44\uff0c\u4e3b\u8981\u529f\u80fd\u662f\u8b93\u70ba\u5354\u52a9\u4f7f\u7528\u8005\u5b8c\u6210\u7dda\u4e0a\u639b\u865f\uff0c\u56e0\u6b64\u9700\u8981\u4e00\u500b \u53ef\u63d0\u4f9b\u67e5\u8a62\u7684\u7dda\u4e0a\u8cc7\u6599\u5eab\uff0c\u672c\u6587\u662f\u4ee5\u6210\u5927\u91ab\u9662\u8cc7\u8a0a\u505a\u70ba\u7cfb\u7d71\u7684\u7dda\u4e0a\u639b\u865f\u8cc7\u6599\u5eab\uff0c \u63d0\u4f9b\u639b\u865f\u6240\u9700\u7684\u5404\u9805\u8cc7\u8a0a\u3002 (2)\u6b64\u6a21\u7d44\u63d0\u4f9b\u79d1\u5225\u8aee\u8a62\u529f\u80fd\uff0c\u6240\u8b02\u7684\u79d1\u5225\u8aee\u8a62\u529f\u80fd\u5373\u662f\u5f15\u5c0e\u4f7f\u7528\u8005\u4f86\u639b\u865f\u9069 \u7576\u7684\u79d1\u5225\uff0c\u6709\u75c5\u75db\u6642\uff0c\u4e26\u4e0d\u662f\u6bcf\u6b21\u90fd\u77e5\u9053\u8a72\u53bb\u627e\u5c0b\u4ec0\u9ebc\u6a23\u5b50\u7684\u91ab\u751f\u6216\u639b\u4ec0\u9ebc\u79d1 \u5225\uff0c\u672c\u6a21\u7d44\u63d0\u4f9b\u4e4b\u524d\u5efa\u7acb\u597d\u7684\u63a8\u8ad6\u539f\u5247\uff0c\u4f86\u627e\u51fa\u6700\u9069\u5408\u7684\u79d1\u5225\uff0c\u4f86\u7bc0\u7701\u4f7f\u7528\u8005\u7684 \u6642\u9593\u548c\u91ab\u7642\u8cc7\u6e90\u3002 \u75c5\u540d \u75c5\u540d \u4e3b\u8981\u75c7\u72c0 \u4e3b\u8981\u75c7\u72c0 \u6b21\u8981\u75c7\u72c0 \u6b21\u8981\u75c7\u72c0 \u5176\u4ed6\u75c7\u72c0 \u5176\u4ed6\u75c7\u72c0 \u7dca\u6025\u7a0b\u5ea6 \u7dca\u6025\u7a0b\u5ea6 \u767c\u751f\u983b\u7387 \u767c\u751f\u983b\u7387 \u2022 A \u6d41\u884c\u6027\u611f\u5192 1\u767c\u71d2 2\u982d\u75db 3\u95dc\u7bc0\u75db 3\u60e1\u5bd2 3\u9ad8\u71d2 3\u808c\u8089\u75db \u5167\u79d1 c \u5716\u516b\u3001\u63a8\u8ad6\u898f\u5247\u8a73\u7d30\u8aaa\u660e \u75be\u75c5\u767c\u751f\u983b\u7387\u672c\u8ad6\u6587\u7e3d\u5171\u5206\u70ba A\uff0cB\uff0cC \u4e09\u500b\u7b49\u7d1a\u5206\u5225\u4ee3\u8868\u5e38\u767c\u751f\u3001\u53ef\u80fd\u767c \u751f\u4ee5\u53ca\u5c11\u767c\u751f\uff0c\u4e3b\u8981\u75c7\u72c0\u53ea\u6709\u4e00\u500b\u4ee3\u8868\u6b64\u75be\u75c5\u6700\u4e3b\u8981\u4e4b\u75c7\u72c0\uff0c\u6b21\u8981\u75c7\u72c0\u5247\u662f\u4f34\u96a8 \u75be\u75c5\u767c\u751f\u7684\u6a5f\u6703\u6b21\u4e4b\uff0c\u5176\u4ed6\u75c7\u72c0\u5247\u4ee3\u8868\u53ef\u80fd\u4f46\u96a8\u500b\u4eba\u9ad4\u8cea\u4e0d\u540c\u800c\u4f34\u96a8\u7684\u75c7\u72c0\uff0c\u770b \u8a3a\u79d1\u5225\u5247\u662f\u6b64\u75be\u75c5\u61c9\u7576\u770b\u54ea\u4e00\u7a2e\u79d1\u5225\uff0c\u6700\u5f8c\u4e00\u500b\u6b04\u4f4d\u7684\u75be\u75c5\u7dca\u6025\u7a0b\u5ea6\u5206\u70ba a\uff0cb\uff0c \u5728 6~14 \u4e4b\u9593\uff0c\u5e73\u5747\u5c0d\u8a71\u9577\u5ea6\u62c9\u9577\u7684\u539f\u56e0\u662f\u6709\u4e0d\u5c11\u7279\u5225\u9577\u7684\u5c0d\u8a71\u3002 \u56e0\u70ba\u4f7f\u7528\u8005\u6253\u96fb\u8a71\u9032\u4f86\u5f8c\uff0c\u5e38\u5e38\u6709\u4e9b\u8d05\u8a5e\uff0c\u5982\uff1a\u6069\u3001\u5582\u3001\u563f\u2026\u7b49\u7b49\uff0c\u5c31\u6703\u5f62\u6210\u4e00 \u9ede\u75db\u300d \u3001 \u300c\u6211\u5de6\u908a\u7684\u592a\u967d\u7a74\u9644\u8fd1\u6703\u75db\u300d\u7b49\u7b49\uff0c\u56e0\u6b64\u5c0e\u81f4\u8655\u7406\u8907\u96dc\u5ea6\u63d0\u9ad8\u3002\u800c\u6574\u9ad4\u7cfb \u8def\u4e0a\u6536\u96c6\u4e0b\u4f86\uff0c\u5176\u7cfb\u7d71\u754c\u9762\u5982\u5716\u4e5d\u6240\u793a: \u6b21\u6578\u70ba 11.235 \u6b21\uff0c\u5176\u6700\u9577\u7684\u4e00\u56de\u5c0d\u8a71\u70ba 47 \u56de\u5408\uff0c\u5f9e\u5716\u5341\u53ef\u4ee5\u770b\u51fa\u4f86\u5c0d\u8a71\u9577\u5ea6\u7d04 \u770b\u51fa\u4f86\u5927\u591a\u5c0d\u8a71\u6b21\u6578\u7d04\u5728 6~8 \u4e4b\u9593\u3002 \u5c07\u4e09\u7a2e\u8a9e\u6599\u6bd4\u8f03\u4e4b\u5f8c\uff0c\u6211\u5011\u53ef\u6b78\u7d0d\u51fa\u5728\u96fb\u8a71\u8a9e\u6599\u7684\u5c0d\u8a71\u5ea6\u6700\u9577\u70ba 11.235 \u6b21\uff0c \u4f7f\u7528\u8005\u63d0\u4f9b\u75c7\u72c0\uff0c\u800c\u75c7\u72c0\u7684\u63cf\u8ff0\u65b9\u5f0f\u6709\u975e\u5e38\u591a\u7a2e\u5982\u300c\u982d\u75db\u300d\u53ef\u4ee5\u63cf\u8ff0\u6210\u300c\u982d\u6709\u4e00 (3)FAQ \u8aee\u8a62\u6a21\u7d44\uff1a\u672c\u8ad6\u6587\u4e5f\u63d0\u4f9b\u76f8\u95dc\u91ab\u7642\u8cc7\u8a0a\u7d66\u4f7f\u7528\u8005\u67e5\u8a62\uff0c\u8a9e\u6599\u662f\u5f9e\u7db2 \u5206\u5171\u6536\u96c6\u4e86 4089 \u6bd4\u5c0d\u8a71\u8cc7\u6599(turns)\u3001\u70ba 364 \u4eba\u6b21\u7d2f\u8a08\u51fa\u4f86\u7684\uff0c\u6bcf\u4eba\u5e73\u5747\u7684\u5c0d\u8a71 \u6bcf\u4eba\u5e73\u5747\u7684\u5c0d\u8a71\u6b21\u6578\u70ba 6.882 \u6b21\uff0c\u5176\u6700\u9577\u7684\u4e00\u56de\u5c0d\u8a71\u70ba 10 \u56de\u5408\uff0c\u5f9e\u5716\u5341\u4e00\u53ef\u4ee5 \u554f\u7b54\u96c6\u6a21\u7d44\u7684\u72c0\u6cc1\uff0c\u7b2c\u4e8c\u500b\u9ad8\u5cf0\u5247\u662f\u4f7f\u7528\u5176\u4ed6\u6a21\u7d44\u6216\u8005\u6df7\u5408\u7684\u72c0\u6cc1\u3002 \u7387\u90e8\u5206\uff0c\u5728\u79d1\u5225\u5efa\u8b70\u6a21\u7d44\u8207\u6574\u9ad4\u7cfb\u7d71\u7684\u6210\u529f\u7387\u8f03\u4f4e\uff0c\u5176\u539f\u56e0\u70ba\u5728\u79d1\u5225\u5efa\u8b70\u6642\u9700\u8981 \u8868\u4e09\u3001\u7cfb\u7d71\u6548\u80fd\u8868 Evaluation2 c \u4e09\u500b\u7b49\u7d1a\uff0ca \u4ee3\u8868\u5f88\u7dca\u6025\u61c9\u7576\u6025\u8a3a\uff0cb \u4ee3\u8868\u7dca\u6025\u61c9\u8a72\u8d95\u7dca\u5c31\u91ab\uff0cc \u5247\u4ee3\u8868\u666e\u901a\u3002 [Clinics]->() [Month]->() [date]->() [doctor's name]->() [doctor's professional skill]->() \u5716\u4e5d\u3001 FAQ \u7cfb\u7d71\u4ecb\u9762\u5716 5. \u5be6\u9a57\u8207\u8a0e\u8ad6 \u5be6\u9a57\u6240\u4f7f\u7528\u7684\u6a5f\u5668\u70ba Pentium \u2163 2G \u7684\u500b\u4eba\u96fb\u8166 512MB RAM\uff0c\u958b\u767c\u7684\u5de5\u5177 \u662f Microsoft Visual C++ 6.0\uff0cASP \u548c IIS5.0 \u7248\uff0c\u5728 Windows2000 \u7684\u4f5c\u696d\u7cfb\u7d71\u4e0b\u9032 \u884c\u958b\u767c\u8207\u5be6\u9a57 \u3002 5.1 \u5c0d\u8a71\u8a9e\u6599\u5206\u6790 \u5728\u672c\u7bc0\u5c07\u5c0d\u6240\u6536\u96c6\u7684\u8a9e\u6599\u9032\u884c\u5206\u6790\uff0c\u672c\u8ad6\u6587\u7684\u8a9e\u6599\u5171\u5206\u70ba\u4e09\u985e\uff0c\u4e00\u662f\u5be6\u969b\u5c0d \u8a71\u8a9e\u6599\uff0c\u4e8c\u662f WOZ \u6536\u96c6\u4f86\u7684\u8a9e\u6599\uff0c\u4e09\u662f\u7cfb\u7d71\u5be6\u969b\u6e2c\u8a66\u6642\u6240\u6536\u96c6\u56de\u4f86\u7684\u8a9e\u6599\uff0c\u9996 \u5148\u5206\u5225\u5c0d\u5404\u500b\u8a9e\u6599\u5c0d\u4f7f\u7528\u8005\u4e00\u6b21\u5c0d\u8a71\u7684\u9577\u5ea6\u4f5c\u5206\u6790\uff0c\u5373\u662f\u4e00\u6b21\u5c0d\u8a71\u9700\u8981\u4f86\u56de\u591a\u5c11 \u6b21(turns)\uff0c\u5176\u7d50\u679c\u5982\u4e0b\uff1a 5.1.1. \u96fb\u8a71\u8a9e\u6599 \u5716\u5341\u4e2d\u6a6b\u8ef8\u662f\u4e00\u6b21\u5c0d\u8a71\u7684\u5c0d\u8a71\u9577\u5ea6\uff0c\u7e31\u8ef8\u662f\u9577\u5ea6\u6240\u4f54\u8a9e\u6599\u7684\u6bd4\u4f8b\uff0c\u5728\u96fb\u8a71\u8a9e\u6599\u90e8 0 2 4 6 8 10 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 Turns \u5728\u7cfb\u7d71\u6e2c\u8a66\u8a9e\u6599\u90e8\u5206\u5171\u6536\u96c6\u4e86 500 \u7b46\u5c0d\u8a71\u8cc7\u6599(turns)\u3001\u70ba 56 \u4eba\u6b21\u7d2f\u8a08\u51fa\u4f86 \u7684\uff0c\u6bcf\u4eba\u5e73\u5747\u7684\u5c0d\u8a71\u6b21\u6578\u70ba 8.928 \u6b21\uff0c\u5176\u6700\u9577\u7684\u4e00\u56de\u5c0d\u8a71\u70ba 16 \u56de\u5408\uff0c\u5f9e\u5716\u5341\u4e8c \u53ef\u4ee5\u770b\u51fa\u4f86\u5927\u591a\u5c0d\u8a71\u6b21\u6578\u7d04\u5728 5~8 \u4e4b\u9593\uff0c\u4f46\u8207\u5716\u5341\u8207\u5716\u5341\u4e00\u4e0d\u540c\u7684\u662f\uff0c\u5716\u5341\u4e8c\u6709 \u7684\u5c0d\u8a71\uff0c\u56e0\u6b64\u9700\u8981\u8f03\u591a\u6b21\u7684\u5617\u8a66\u5f8c\uff0c\u4f7f\u7528\u8005\u624d\u80fd\u9054\u6210\u76ee\u6a19\uff0c\u5e73\u5747\u5c0d\u8a71\u9577\u5ea6\u70ba 8.928 Registration 87.3% 92% 8.40 82.% \u52d9\u6709\u639b\u865f\u8cc7\u8a0a\u8aee\u8a62\u3001\u79d1\u5225\u8cc7\u8a0a\u8aee\u8a62\u4ee5\u53ca\u5e38\u898b\u554f\u7b54\u96c6\u8aee\u8a62\u4e09\u9805\u5927\u670d\u52d9\u3002\u4f7f\u7528\u610f\u5716\u5075 Module \u6b21\uff0c\u5176\u4e09\u7a2e\u8a9e\u6599\u7684\u5206\u4f48\u5716\uff0c\u5982\u5716\u5341\u4e09\u6240\u793a\uff1a Clinic Query Module 84.6% 80% 9.27 75.1% \u6e2c\u4f86\u6574\u5408\u670d\u52d9\uff0c\u5728\u610f\u5716\u5075\u6e2c\u90e8\u5206\u5247\u4f7f\u7528\u90e8\u5206\u6a23\u672c\u6a39\u4f5c\u70ba\u5224\u65b7\u610f\u5716\u4e4b\u4f9d\u64da\uff0c\u5efa\u7acb\u90e8 \u5206\u6a23\u672c\u6a39\u8207\u5e6b\u52a9\u8a9e\u8a00\u7406\u89e3\u5fc5\u9808\u501f\u91cd\u91ab\u7642\u6982\u5ff5\u6a21\u578b\u4e4b\u63a8\u8ad6\u8207\u6982\u5ff5\u7684\u63cf\u8ff0\uff0c\u900f\u904e\u5be6\u9a57 \u5728\u8a9e\u6599\u4e2d\u6240\u4f54\u6bd4\u4f8b(%) \u5716\u5341\u3001\u96fb\u8a71\u8a9e\u6599\u9577\u5ea6\u5206\u4f48 5.1.2. WOZ \u8a9e\u6599 0 5 10 15 20 25 30 1 2 3 4 5 6 7 8 9 Turns \u5169\u500b\u9ad8\u5cf0\u9ede\u5206\u5225\u5728\u5c0d\u8a71\u9577\u5ea6\u70ba 5 \u548c 8 \u6642\uff0c\u6e2c\u8a66\u8a9e\u6599\u6703\u6709\u9019\u6a23\u72c0\u6cc1\u7684\u539f\u56e0\u662f\u7cfb\u7d71\u63d0 30 FAQ 92.4% 88% 4.80 \u8b49\u660e\uff0c\u7cfb\u7d71\u670d\u52d9\u6210\u529f\u7387\u70ba 77%\uff0c\u5145\u5206\u8aaa\u660e\u4e86\u672c\u6587\u6240\u63d0\u4e4b\u65b9\u6cd5\u662f\u5177\u9ad4\u53ef\u884c\u7684\uff0c\u4f46\u4ecd 85.2% Module \u4f9b\u4e09\u9805\u670d\u52d9\uff0c\u56e0\u6b64\u4f7f\u7528\u8005\u4f7f\u7528\u4e0d\u540c\u670d\u52d9\u6642\u5c0d\u8a71\u7684\u9577\u5ea6\u4e5f\u5c31\u4e0d\u4e00\u6a23\uff0c\u5176\u529f\u80fd\u8207\u5c0d\u8a71 \u9577\u5ea6\u7684\u95dc\u4fc2\u5982\u8868\u4e00\u6240\u793a\uff1a 0 2 4 6 8 10 12 14 16 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Turns 0 5 10 15 20 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Turns Integrated System 80.6% 68% 9.80 74.3% \u6709\u4e0b\u5217\u554f\u984c\u6709\u5f85\u6539\u9032\uff1a 1.\u5728\u91ab\u7642\u6982\u5ff5\u6a21\u578b\u62bd\u53d6\u90e8\u5206\uff0c\u672c\u8ad6\u6587\u4f7f\u7528\u91ab\u7642\u9818\u57df\u7684\u8a9e\u6599\u4f86\u627e\u51fa\u5728\u6574\u500b\u6982\u5ff5\u6a21 \u5728\u8a9e\u6599\u4e2d\u6240\u4f54\u6bd4\u4f8b(%) \u96fb\u8a71\u8a9e\u6599 \u578b\u7d50\u69cb\u4e0a\u5c6c\u65bc\u91ab\u7642\u9818\u57df\u7684\u7bc0\u9ede\uff0c\u4f46\u662f\u524d\u7aef\u7684\u65b7\u8a5e\u7cfb\u7d71\uff0c\u4e26\u4e0d\u80fd\u5c0d\u53e5\u5b50\u65b7\u51fa\u5c08 \u8868 \u4e8c\u3001 \u7cfb\u7d71\u6548\u80fd\u8868 WOZ\u8a9e\u6599 \u6709\u540d\u8a5e\u53ca\u65b0\u8a5e\u5c24\u5176\u662f\u5c6c\u65bc\u9818\u57df\u5167\u4e4b\u6982\u5ff5\u8a5e\uff0c\u56e0\u6b64\u9020\u6210\u589e\u52a0\u96dc\u8a0a\u4ee5\u53ca\u5c6c\u65bc\u91ab\u7642 \u7cfb\u7d71\u6e2c\u8a66\u8a9e\u6599 \u7d71\u8655\u7406\u6642\u6210\u529f\u7387\u4e0b\u964d\u70ba 68%\u7684\u539f\u56e0\u6709\u4e8c\uff1a\u4e00\u70ba\u81ea\u7136\u8a9e\u8a00\u7684\u6df7\u6dc6\u5ea6\u800c\u5c0e\u81f4\uff0c\u4e8c\u70ba\u610f \u5716\u5075\u6e2c\u932f\u8aa4\uff0c\u4f46\u9019\u6240\u4f54\u7684\u5f71\u97ff\u5ea6\u8f03\u5c0f\u3002\u56e0\u6b64\u6211\u5011\u53ef\u91dd\u5c0d\u6bcf\u6b21\u5c0d\u8a71\u6536\u96c6\u7684\u8a9e\u6599\u518d\u6b21 \u9032\u884c\u7cfb\u7d71\u6539\u9032\u800c\u6539\u9032\u6574\u9ad4\u6548\u80fd\uff0c\u5982\u8868\u4e09\u5373\u70ba\u7b2c\u4e8c\u6b21\u6539\u9032\u5f8c\u7684\u5be6\u9a57\u7d50\u679c\uff1a \u7531\u8868\u4e09\u53ef\u660e\u986f\u770b\u51fa\u6574\u9ad4\u7cfb\u7d71\u610f\u5716\u5075\u6e2c\u6b63\u78ba\u7387\u7531 80.6%\u63d0\u5347\u5230 86.2%\uff0c\u5c0d\u8a71\u9577 \u9818\u57df\u7684\u7bc0\u9ede\u6c92\u6709\u88ab\u627e\u51fa\uff0c\u56e0\u6b64\u5982\u80fd\u5728\u9019\u90e8\u5206\u7d71\u8a08\u5c6c\u65bc\u91ab\u7642\u9818\u57df\u7684\u7bc0\u9ede\u6642\uff0c\u5148 \u505a\u65b0\u8a5e\u5075\u6e2c\u518d\u65b7\u8a5e\uff0c\u6703\u6709\u6548\u63d0\u5347\u91ab\u7642\u6982\u5ff5\u6a21\u578b\u7684\u62bd\u53d6\u7d50\u679c\u3002 2.\u5c0d\u65bc\u79d1\u5225\u5efa\u8b70\u6a21\u7d44\u90e8\u5206\uff0c\u5728\u75c7\u72c0\u7684\u63cf\u8ff0\u4e0a\u96a8\u8457\u4f7f\u7528\u8005\u7684\u53e3\u8a9e\u5316\u800c\u96e3\u4ee5\u8b93\u7cfb\u7d71 \u7406\u89e3\uff0c\u56e0\u6b64\u9700\u8981\u63d0\u51fa\u4e00\u5957\u80fd\u6f38\u9032\u5f0f\u7684\u627e\u51fa\u4f7f\u7528\u8005\u53ef\u80fd\u75c7\u72c0\u7684\u65b9\u6cd5\uff0c\u5982\u6b64\u624d\u80fd \u5728\u8a9e\u6599\u4e2d\u6240\u4f54\u6bd4\u4f8b(%) \u5716\u5341\u4e8c\u3001\u7cfb\u7d71\u6e2c\u8a66\u8a9e\u6599\u9577\u5ea6\u5206\u4f48 \u5716\u5341\u4e09\u3001\u5c0d\u8a71\u9577\u5ea6\u5206\u4f48 4.2. \u5c0d\u8a71\u7cfb\u7d71\u8a55\u4f30 \u5728\u8a55\u4f30\u6574\u500b\u5c0d\u8a71\u7cfb\u7d71\u65b9\u9762\uff0c\u6211\u5011\u8acb\u4e94\u5341\u500b\u672a\u53c3\u8207\u672c\u7814\u7a76\u4e4b\u5927\u5c08\u751f\u4f86\u6e2c\u8a66\u7cfb \u6709\u6548\u63d0\u5347\u79d1\u5225\u5efa\u8b70\u6a21\u7d44\u7684\u6548\u80fd\u3002 3.\u5c0d\u65bc\u6574\u500b\u5c0d\u8a71\u7cfb\u7d71\u6f14\u9032\u7684\u90e8\u5206\uff0c\u76ee\u524d\u672c\u8ad6\u6587\u7684\u7cfb\u7d71\u518d\u505a\u904e\u5be6\u9a57\u5f8c\uff0c\u9664\u4e86\u610f\u5716 \u5ea6\u7531 9.8 Evaluation Parameters Intention detection Rate(%) Task Success Rate(%) Average Number of Turns Contextual Appropriate-ness(%) \u5075\u6e2c\u90a3\u4e00\u90e8\u4efd\uff0c\u5176\u4ed6\u90e8\u5206\u7684\u6548\u80fd\u6539\u9032\u4ecd\u7136\u9700\u8981\u4e0d\u5c11\u4eba\u529b\u7684\u4ecb\u5165\uff0c\u4f46\u5c0d\u65bc\u5c0d\u8a71 \u7cfb\u7d71\u800c\u8a00\u4e0d\u65b7\u7684\u6f14\u9032\u662f\u5fc5\u8981\u7684\uff0c\u56e0\u6b64\u5982\u4f55\u5c07\u6f14\u9032\u6240\u9700\u8981\u4ecb\u5165\u7684\u4eba\u529b\u964d\u4f4e\u5c31\u662f \u53e6\u4e00\u500b\u91cd\u8981\u7684\u8ab2\u984c\u3002 \u5728\u8a9e\u6599\u4e2d\u6240\u4f54\u6bd4\u4f8b(%) \u5716\u5341\u4e00\u3001 WOZ \u8a9e\u6599\u9577\u5ea6\u5206\u4f48 \u5728 WOZ \u8a9e\u6599\u90e8\u5206\u5171\u6536\u96c6\u4e86 234 \u6bd4\u5c0d\u8a71\u8cc7\u6599(turns)\u3001\u70ba 34 \u4eba\u6b21\u7d2f\u8a08\u51fa\u4f86\u7684\uff0c Module Registration Module Clinic Query Module FAQ Module Integrated \u7d71\uff0c\u4e26\u53c3\u8003[1][24]\u7684\u65b9\u6cd5\u4f86\u8a55\u4f30\u6574\u500b\u5c0d\u8a71\u7cfb\u7d71\uff0c\u5206\u5225\u5c0d\u5404\u500b\u6a21\u7d44\u8a08\u7b97\u5c0d\u8a71\u6210\u529f\u7387 (Task Success Rate)\u3001\u5e73\u5747\u5c0d\u8a71\u9577\u5ea6(Average Number of Turns)\u4ee5\u53ca\u7b54\u53e5\u9069\u5207\u5ea6 Registration 92.4% 95% 7.30 85% Module \u81f4\u8b1d System (Contextual Appropriateness)\uff0c\u70ba\u4e86\u8a55\u4f30\u670d\u52d9\u7684\u6574\u5408\uff0c\u52a0\u4e0a\u4e00\u500b\u610f\u5716\u5075\u6e2c\u7684\u6b63\u78ba\u7387 Clinic Query 90.4% 82% 8.20 79.4% \u672c\u7814\u7a76\u627f\u8499\u6210\u529f\u5927\u5b78\u738b\u737b\u7ae0\u5148\u751f\u63d0\u4f9b\u65bc\u6210\u5927\u91ab\u9662\u5be6\u969b\u8490\u96c6\u4e4b\u8a9e\u6599\u4ee5\u53ca\u7d93\u6fdf Module Average Number of Turns 8.40 9.27 4.80 9.80 \u8868\u4e00\u3001\u5404\u529f\u80fd\u6a21\u7d44\u5e73\u5747\u5c0d\u8a71\u9577\u5ea6 \u5f9e\u8868\u4e00\uff0c\u6211\u5011\u53ef\u770b\u51fa\u5e38\u898b\u554f\u7b54\u96c6\u6a21\u7d44\u7684\u5e73\u5747\u5c0d\u8a71\u9577\u5ea6\u70ba 4.80\uff0c\u800c\u639b\u865f\u8aee\u8a62\u6a21\u7d44\u7684 \u5e73\u5747\u5c0d\u8a71\u9577\u5ea6\u70ba 8.4\uff0c\u56e0\u6b64\u6211\u5011\u53ef\u63a8\u65b7\u5716\u5341\u4e8c\u4e2d\uff0c\u7b2c\u4e00\u500b\u9ad8\u5cf0\u662f\u4f7f\u7528\u8005\u4f7f\u7528\u5e38\u898b \u90e8\u5de5\u7814\u9662\u96fb\u901a\u6240\u524d\u77bb\u6280\u8853\u4e2d\u5fc3\u8a08\u756b\u7d93\u8cbb\u88dc\u52a9\u7279\u6b64\u81f4\u8b1d\u3002 (Intention detection Rate)\u4f5c\u70ba\u5176\u6307\u6a19\uff0c\u5176\u7d50\u679c\u5982\u8868\u4e8c\u6240\u793a\u3002 FAQ Module 94.1% 92% 4.70 88.8% \u5f9e\u8868\u4e8c\u4e2d\u53ef\u5f97\u77e5\uff0c\u5f9e\u5c0d\u8a71\u6b21\u6578\u4f86\u5206\u6790\uff0c\u5728\u4f7f\u7528 FAQ \u6a21\u7d44\u6642\u6240\u9700\u5c0d\u8a71\u6b21\u6578\u6700 \u7d44\u610f\u5716\u5247\u8f03\u5bb9\u6613\u6df7\u6dc6\uff0c\u56e0\u6b64\u5075\u6e2c\u6b63\u78ba\u7387\u8f03\u4f4e\u3002\u800c\u6574\u9ad4\u7cfb\u7d71\u6574\u5408\u6642\u4ea6\u7136\uff0c\u5c0d\u8a71\u6210\u529f System 86.2% 77% 9.20 78.5% Integrated \u5c11\uff0c\u800c\u6df7\u5408\u4f7f\u7528\u6642\u5c0d\u8a71\u6b21\u6578\u6700\u591a\u3002\u610f\u5716\u5075\u6e2c\u90e8\u5206\u7531\u65bc\u639b\u865f\u8aee\u8a62\u6a21\u7d44\u8207\u79d1\u5225\u5efa\u8b70\u6a21 \u53c3\u8003\u6587\u737b
", "html": null, "type_str": "table", "num": null, "text": "\u6b21\u964d\u70ba 9.2 \u6b21\uff0c\u7cfb\u7d71\u6210\u529f\u7387\u4e5f\u7531 68%\u63d0\u5347\u70ba 77%\uff0c\u9019\u4e3b\u8981\u7684\u6548\u80fd\u63d0\u5347\uff0c \u662f\u7531\u610f\u5716\u6b63\u78ba\u7387\u7684\u63d0\u5347\u4ee5\u53ca\u81ea\u7136\u8a9e\u8a00\u8655\u7406\u80fd\u529b\u7684\u589e\u5f37\u6240\u63d0\u5347\u3002" } } } }