{ "paper_id": "O12-1004", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T08:03:02.564095Z" }, "title": "Domain Dependent Word Polarity Analysis for Sentiment Classification", "authors": [ { "first": "Ho-Cheng", "middle": [], "last": "Yu", "suffix": "", "affiliation": { "laboratory": "", "institution": "National Taiwan University", "location": {} }, "email": "" }, { "first": "Ting-Hao", "middle": [], "last": "\u204b\u0df2", "suffix": "", "affiliation": { "laboratory": "", "institution": "National Taiwan University", "location": {} }, "email": "" }, { "first": "Kenneth", "middle": [], "last": "Huang", "suffix": "", "affiliation": { "laboratory": "", "institution": "National Taiwan University", "location": {} }, "email": "" }, { "first": "Hsin-Hsi", "middle": [], "last": "\u1f89\u202b\u06a4\u202c", "suffix": "", "affiliation": { "laboratory": "", "institution": "National Taiwan University", "location": {} }, "email": "" }, { "first": "", "middle": [], "last": "Chen", "suffix": "", "affiliation": { "laboratory": "", "institution": "National Taiwan University", "location": {} }, "email": "hhchen@ntu.edu.tw" } ], "year": "", "venue": null, "identifiers": {}, "abstract": "", "pdf_parse": { "paper_id": "O12-1004", "_pdf_hash": "", "abstract": [], "body_text": [ { "text": "The researches of sentiment analysis aim at exploring the emotional state of writers. The analysis highly depends on the application domains. Analyzing sentiments of the articles in different domains may have different results. In this study, we focus on corpora from three different domains in Traditional and Simplified Chinese, then examine the polarity degrees of vocabularies in these three domains, and propose methods to capture sentiment differences. Finally, we apply the results to sentiment classification with supervised SVM learning. The experiments show that the proposed methods can effectively improve the sentiment classification performance. ", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Abstract", "sec_num": null }, { "text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null } ], "back_matter": [], "bib_entries": { "BIBREF0": { "ref_id": "b0", "title": "Opinion Mining and Sentiment Analysis", "authors": [ { "first": "Bo", "middle": [], "last": "Pang", "suffix": "" }, { "first": "Lillian", "middle": [], "last": "Lee", "suffix": "" } ], "year": 2008, "venue": "Foundations and Trends in Information Retrieval", "volume": "2", "issue": "2", "pages": "1--135", "other_ids": {}, "num": null, "urls": [], "raw_text": "Bo Pang and Lillian Lee, \"Opinion Mining and Sentiment Analysis,\" Foundations and Trends in Information Retrieval, vol. 2, issue 1-2, pp. 1-135, 2008.", "links": null }, "BIBREF1": { "ref_id": "b1", "title": "Mining Opinions from the Web: Beyond Relevance Retrieval", "authors": [ { "first": "Wei", "middle": [], "last": "Lun", "suffix": "" }, { "first": "Hsin-Hsi", "middle": [], "last": "Ku", "suffix": "" }, { "first": "", "middle": [], "last": "Chen", "suffix": "" } ], "year": 2007, "venue": "Journal of American Society for Information Science and Technology", "volume": "58", "issue": "12", "pages": "1838--1850", "other_ids": {}, "num": null, "urls": [], "raw_text": "Lun-Wei Ku and Hsin-Hsi Chen, \"Mining Opinions from the Web: Beyond Relevance Retrieval,\" Journal of American Society for Information Science and Technology, vol. 58, no. 12, pp. 1838-1850, 2007.", "links": null }, "BIBREF2": { "ref_id": "b2", "title": "A Comparative Study on Term Weighting Schemes for Text Categorization", "authors": [ { "first": "Man", "middle": [], "last": "Lan", "suffix": "" }, { "first": "Sam-Yuan", "middle": [], "last": "Sung", "suffix": "" }, { "first": "Hwee-Boon", "middle": [], "last": "Low", "suffix": "" }, { "first": "Chew-Lim", "middle": [], "last": "Tan", "suffix": "" } ], "year": 2005, "venue": "Proceedings of 2005 IEEE International Joint Conference on Neural Networks", "volume": "", "issue": "", "pages": "546--551", "other_ids": {}, "num": null, "urls": [], "raw_text": "Man Lan, Sam-Yuan Sung, Hwee-Boon Low, and Chew-Lim Tan, \"A Comparative Study on Term Weighting Schemes for Text Categorization,\" In Proceedings of 2005 IEEE International Joint Conference on Neural Networks, pp. 546-551, 2005.", "links": null }, "BIBREF3": { "ref_id": "b3", "title": "Delta TFIDF: An Improved Feature Space for Sentiment Analysis", "authors": [ { "first": "Justin", "middle": [], "last": "Martineau", "suffix": "" }, { "first": "Tim", "middle": [], "last": "Finin", "suffix": "" } ], "year": 2009, "venue": "Proceedings of the Third AAAI International Conference on Weblogs and Social Media", "volume": "", "issue": "", "pages": "258--261", "other_ids": {}, "num": null, "urls": [], "raw_text": "Justin Martineau and Tim Finin, \"Delta TFIDF: An Improved Feature Space for Sentiment Analysis,\" In Proceedings of the Third AAAI International Conference on Weblogs and Social Media, pp. 258-261, 2009.", "links": null } }, "ref_entries": { "TABREF1": { "num": null, "type_str": "table", "content": "
\u1764\u14fd\u0be6\u22a9\u0e1f\u1e9e\u095d\u266a\u21ae\u19e6\u02e3\u0be6\u07f1\u120d\u21ae\u1028\u02e3\u12f7\u2610\u0410\u015a
Keywords: Document Sentiment Classification, Word Polarity Analysis, Machine Learning
\u047e\u1bdf\u25e8\u1034
\u1db3\u09f0\u0c39\u1dc0\u2556\u1da8\u0be6\u07f1\u1db5\u23b4\u0be6\u07f1\u13a2\u1355\u02e3\u26d0\u1db1\u22c6\u1db5\u23b4\u19a0w\u0e1f\u1e9e\u1f1c\u095d\u266a\u21ae\u19e6\u25e8\u1034\u229b\u1ed8\u1f1c\u172e
\u172e\u2152\u1c1f\u02e4\u1f27\u1dc0\u2556\u1da8\u1df3 TFSO \u0aae \u1e7e\u0e51\u156d\u02e4(\u22a9TF: \u0be6\u07f1\u19c3\u1c1f\u229bIDF: \u118e\u23b9\u0e1f\u1e9e\u19c3\u1c1f\u229bSO: \u095d\u09b7\u07cf\u1960\u22a3\u073e\u229bSD: \u095d\u266a\u0be6\u2120)
\u0c26\u0e31TFIDFTFRFDeltaTFSO TFSOIDF TFSDIDF TFSSIDF
\u26d8\u1dba0.8480.8490.8530.8470.8540.8520.863
\u1ab00.9160.9060.9140.9150.9240.9180.923
\u1a98\u202b\u078b\u202c0.8610.8390.8490.8540.8710.8690.875
\u236b\u018b\u0e1f\u1c13
", "text": "TFIDF \u1f1c\u1034\u0820\u0c3d\u1159\u229b\u1eee\u049f IDF \u038f SO \u1f90\u1e00\u229b\u1e07 \u04c9 TFSOIDF\u229b\u211e\u1034\u0f8c\u0215\u229bTFSOIDF \u20d2\u0e54\u211e\u1e7e\u2111\u22c6\u02e4\u046d\u25e8\u23b0\u095d\u09b7\u1135\u2120\u229b\u2397\u049f\u21ae\u19e6 \u1034\u0f8c\u11ba\u1da8\u13fd\u0c68\u0e9f\u02e4\u09f0\u1dd5\u23f0\u1c96 TFSSIDF \u20d2\u0e54 TFSOIDF\u229bTFSDIDF \u20d2\u0e54 TFIDF\u02e4\u26d5\u25e8\u229b Unigram \u1f1c\u25e8\u1034\u1e8d TFSSIDF \u1952\u1f1b\u229bTFSOIDF \u038f TFSDIDF \u13b9\u1df3\u229b\u0c3d\u202b\u05df\u202c TFIDF\u229b\u038f\u211e", "html": null } } } }