{ "paper_id": "O13-1010", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T08:03:34.943667Z" }, "title": "", "authors": [], "year": "", "venue": null, "identifiers": {}, "abstract": "", "pdf_parse": { "paper_id": "O13-1010", "_pdf_hash": "", "abstract": [], "body_text": [ { "text": "\u6bd4\u50b3\u7d71 GMM \u5c0d\u6620\u7684\u7a0d\u597d\u4e00\u4e9b\u3002\u4e0d\u904e\uff0c\u6574\u9ad4\u800c\u8a00\u97f3\u6bb5\u5f0f LMR \u5c0d\u6620\u6a5f\u5236\u6240\u8f49\u63db\u51fa\u7684\u983b\u8b5c \u5305\u7d61\uff0c\u4ecd\u7136\u5b58\u5728\u6709\u904e\u65bc\u5e73\u6ed1\u7684\u73fe\u8c61\uff0c\u800c\u4f7f\u5f97\u8f49\u63db\u51fa\u7684\u8a9e\u97f3\u4ecd\u7136\u4ee4\u4eba\u89ba\u5f97\u6709\u4e00\u4e9b\u60b6\u60b6\u7684\uff0c \u800c\u4e0d\u50cf\u771f\u4eba\u767c\u97f3\u90a3\u6a23\u6e05\u6670\u3002\u524d\u9762\u63d0\u5230\u7684\"\u97f3\u6bb5\u5f0f\" LMR\uff0c\u662f\u6307\u6211\u5011\u5c0d\u65bc\u8a13\u7df4\u8a9e\u6599\u4e2d\u4e0d\u540c \u7684\u97fb\u6bcd\u3001\u6709\u8072\u8072\u6bcd(\u5982/m, n, l, r/)\u7684\u8a9e\u97f3\u8981\u5206\u5225\u53bb\u5efa\u7acb\u5404\u81ea\u7684 LMR \u77e9\u9663\uff0c\u9019\u662f\u70ba\u4e86\u907f\u514d \u767c\u751f\u4e00\u5c0d\u591a(one to many)\u5c0d\u6620\u7684\u554f\u984c [5] ", "cite_spans": [ { "start": 197, "end": 200, "text": "[5]", "ref_id": "BIBREF4" } ], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": "=[ , , ..., ] M \u0393 \u0393 \u0393 \u0393 \uff0c\u5176\u4e2d L \u8868\u793a DCC \u4fc2\u6578\u7684\u968e\u6578\uff0cM \u7684\u503c \u5927\u65bc L\u3002 (b) \u63a5\u8457\u6c42\u51fa\u9019 M \u500b\u97f3\u6846\u4e4b DCC \u5411\u91cf\u7684\u5e73\u5747\u5411\u91cf \u03a8\uff0c\u03a8 \u4ee3\u8868\u8457\u9019 M \u500b\u97f3\u6846\u5171\u6709\u7684 DCC \u5411\u91cf\u6210\u5206\u3002 (c) \u5c07\u7b2c i \u500b\u97f3\u6846\u7684 DCC \u5411\u91cf\u4f5c\u6a19\u6e96\u5316\uff0c\u5373\u6e1b\u53bb\u5e73\u5747\u5411\u91cf \u03a8\uff0c\u800c\u5f97\u5230\u4e00\u500b\u5dee\u503c\u5411\u91cf i \u03a6 \u3002 (d) \u4f7f\u7528\u6240\u6709\u7684\u5dee\u503c\u5411\u91cf i \u03a6 \uff0c\u4f86\u8a08\u7b97\u51fa\u4e00\u500b\u5171\u8b8a\u7570\u77e9\u9663 \u039b \u3002 1 M i i i \u03a4 = \u039b = \u03a6 \u03a6 \uf0e5 (1) (e) \u5c0d\u77e9\u9663 \u039b \u6c42\u5176\u7279\u5fb5\u503c(eigen value) i \u03bb \u8207\u7279\u5fb5\u5411\u91cf(eigen vector) i \u03b3 \u3002 , 1, 2,..., i i i i L \u03b3 \u03bb \u03b3 \u039b \u22c5 = \u22c5 = (2) (f) \u6c42\u5f97\u7279\u5fb5\u5411\u91cf i \u03b3 \u5f8c\uff0c\u9032\u4e00\u6b65\u5c0d i \u03b3 \u4f5c\u6b63\u898f\u5316\uff0c\u4ee5\u53d6\u5f97 L \u500b\u4e3b\u6210\u5206\u57fa\u5e95\u5411\u91cf i \u03bc \u3002 1 2 2 2 2 1 2 ( ) ( ) ( ) , 1, 2,..., , , , 1, 2,..., i i iL i i i i i i i L i i L i L \u03b3 \u03b3 \u03b3 \u03c5 \u03c5 \u03c5 \u03c5 \u03b3 \u03b3 \u03b3 \u03bc \u03a4 = + +\u22c5\u22c5\u22c5+ = \uf0e9 \uf0f9 = \u22c5\u22c5\u22c5 = \uf0ea \uf0fa \uf0eb \uf0fb (3) 2\u3001\u4e3b\u6210\u5206\u4fc2\u6578\u8f49\u63db \u7576\u6211\u5011\u5c0d\u67d0\u4e00\u500b\u97f3\u6bb5\u985e\u5225\u505a\u5b8c\u4e3b\u6210\u5206\u5206\u6790\u5f8c\uff0c\u5c31\u53ef\u5f97\u5230\u8a72\u985e\u5225\u7684 DCC \u5e73\u5747\u5411\u91cf \u03a8 \u3001L \u500b\u4e3b\u6210\u5206\u57fa\u5e95\u5411\u91cf i \u03bc \u3002\u63a5\u8457\uff0c\u8981\u628a\u5404\u500b\u97f3\u6846\u7684 DCC \u4fc2\u6578\u8f49\u63db\u6210 PCA \u4fc2\u6578\uff0c\u9996\u5148\u628a\u4e00 \u500b\u97f3\u6846\u7684 DCC \u5411\u91cf i \u0393 \u6e1b\u53bb DCC \u5e73\u5747\u5411\u91cf \u03a8 \u800c\u5f97\u5230\u5dee\u503c\u5411\u91cf i \u03a6 \uff0c\u518d\u5c07 i \u03a6 \u5206\u5225\u6295\u5f71\u5230\u5404 \u500b\u4e3b\u6210\u5206\u57fa\u5e95\u5411\u91cf i \u03bc \uff0c\u6295\u5f71\u516c\u5f0f\u70ba: , 1, 2,..., ij j i j L \u03c9 \u03bc \u03a4 = \u22c5\u03a6 = (4) \u5982\u6b64\u5c31\u53ef\u5f97\u5230 DCC \u5411\u91cf i \u0393 \u7684 L \u500b\u4e3b\u6210\u5206\u4fc2\u6578(\u4ea6\u7a31\u70ba PCA \u4fc2\u6578)\uff0c\u518d\u7528\u4ee5\u5f62\u6210 L \u7dad\u5ea6\u7684 \u4e3b\u6210\u5206\u4fc2\u6578(PCA \u4fc2\u6578)\u4e4b\u5411\u91cf\uff1a 1 2 [ , , ..., ] i i i iL \u03c9 \u03c9 \u03c9 \u03a4 \u03a9 = (5) 3\u3001\u4e3b\u6210\u5206\u4fc2\u6578\u53cd\u8f49\u63db \u5728\u5716\u4e8c\u7684\u8655\u7406\u6d41\u7a0b\u4e2d\uff0c\"PCA \u53cd\u8f49\u63db\"\u65b9\u584a\u5c31\u662f\u8981\u5c07\u8f49\u63db\u5f8c\u7684 PCA \u4fc2\u6578\u9084\u539f\u5230 DCC \u4fc2\u6578 \u7684\u5411\u91cf\u7a7a\u9593\uff0c\u4ee5\u5f97\u5230\u8f49\u63db\u5f8c\u7684 DCC \u4fc2\u6578\u3002\u5047\u8a2d\u6211\u5011\u53d6\u5f97\u4e00\u5e8f\u5217\u97f3\u6846\u7684 PCA \u4fc2\u6578\u4e4b\u5411\u91cf\uff0c \u5247\u9996\u5148\u8981\u77e5\u9053\u5404\u500b\u97f3\u6846\u5206\u5225\u6240\u5c6c\u7684\u97f3\u6bb5\u985e\u5225\uff0c\u5982\u6b64\u624d\u80fd\u5c0d\u5404\u500b\u97f3\u6846\u5206\u5225\u53bb\u4f5c\u9084\u539f\uff0c\u4ee4\u7b2c i \u500b\u97f3\u6846\u6240\u5c6c\u7684\u97f3\u6bb5\u985e\u5225\u4e4b\u7de8\u865f\u70ba k\uff0c\u5247\u6211\u5011\u5c31\u8981\u53d6\u51fa\u8a13\u7df4\u968e\u6bb5\u76ee\u6a19\u8a9e\u8005\u5728\u7b2c k \u985e\u97f3\u6bb5 \u6240\u8a08\u7b97\u51fa\u7684 DCC \u5e73\u5747\u5411\u91cf \u03a8\u3001\u53ca L \u500b\u4e3b\u6210\u5206\u57fa\u5e95\u5411\u91cf j \u03bc \uff0c\u4f86\u628a\u8f49\u63db\u5f8c\u7684 PCA \u5411\u91cf i \u03a9 \u9084\u539f\u6210\u8f49\u63db\u5f8c\u7684 DCC \u5411\u91cf i \u0393 \uff0c\u5982\u516c\u5f0f(6)\u6240\u793a: 1 L i j i j j \u03bc \u03c9 = \u0393 = \u03a8 + \u22c5 \uf0e5 (6)", "eq_num": "(\u4e8c)" } ], "section": "", "sec_num": null }, { "text": "(a) \u4ee4\u5340\u9593\u6578\u70ba N\uff0c\u4e26\u4e14\u5c0d\u5404\u500b\u7dad\u5ea6 i\uff0ci=1, 2, \u2026, L\uff0c\u5206\u5225\u4f5c\u4e0b\u5217\u6b65\u9a5f\u7684\u8655\u7406\u3002 (b) \u5c07 M \u500b\u97f3\u6846\u4e2d\u6240\u6709\u4f4d\u65bc\u7b2c i \u7dad\u5ea6\u7684 PCA \u4fc2\u6578\u6311\u51fa\uff0c\u7136\u5f8c\u4f9d\u4fc2\u6578\u503c\u4f5c\u7531\u5c0f\u5230\u5927\u4e4b\u6392 \u5e8f\uff0c\u6392\u5e8f\u5f8c\u5247\u628a M \u500b PCA \u4fc2\u6578\u4f9d\u9806\u5e8f\u4e14\u5e73\u5747\u5730\u5206\u914d\u5230 N \u500b\u5340\u9593\u3002 (c) \u5340\u9593\u7de8\u865f j \u5f9e 1 \u8b8a\u5230 N\uff0c\u5c0d\u65bc\u7b2c j \u500b\u5340\u9593\u5167\u7684 PCA \u4fc2\u6578\uff0c\u6311\u9078\u6392\u5e8f\u4f4d\u65bc\u4e2d\u9593(median) \u7684 PCA \u4fc2\u6578\u6578\u503c\uff0c\u7136\u5f8c\u8a18\u9304\u8a72 PCA \u4fc2\u6578\u503c\u70ba j i Fp \uff0c\u4e26\u4e14\u8a18\u9304\u5176\u5c0d\u61c9\u7684 CDF \u503c\u70ba j i Fc \uff0cCDF \u503c\u5c31\u662f\u8a72 PCA \u4fc2\u6578\u5728\u5168\u9ad4(M \u500b)\u4fc2\u6578\u6392\u5e8f\u4e2d\u7684\u9806\u5e8f\u503c\u9664\u4ee5 M\u3002 (d) \u8a18\u9304\u7b2c i \u7dad\u5ea6 PCA \u4fc2\u6578\u7684\u6700\u5927\u503c\u70ba 1 N i Fp + \uff0c\u4e14\u8a18\u9304\u5176\u5c0d\u61c9\u7684 CDF \u503c\u70ba 1 1 N i Fc + = \uff1b \u6b64\u5916\uff0c\u8a18\u9304\u7b2c i \u7dad\u5ea6 PCA \u4fc2\u6578\u7684\u6700\u5c0f\u503c\u70ba 0 i Fp \uff0c\u4e14\u8a18\u9304\u5176\u5c0d\u61c9\u7684 CDF \u503c\u70ba 0 1 i M Fc = \u3002 \u7576\u6240\u6709\u7dad\u5ea6\u90fd\u5b8c\u6210\u4e0a\u8ff0\u6b65\u9a5f\uff0c\u5247\u8a72\u97f3\u6bb5\u985e\u5225\u7684 HEQ \u8868\u683c\u5c31\u5efa\u7acb\u5b8c\u6210\u4e86\u3002\u5c0d\u65bc\u5340\u9593 \u6578 N \u7684\u9078\u64c7\uff0c\u6211\u5011\u5728\u8a55\u4f30\u5be6\u9a57\u88e1\u5617\u8a66\u4e86", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": "j i i j j i i P Fp j j j i i i i Fp Fp Q Fc Fc Fc i L + \u2212 + \u2212 \uf0e9 \uf0f9 = + \u2212 \u22c5 = \uf0ea \uf0fa \uf0ea \uf0fa \uf0eb \uf0fb (7) \u516c\u5f0f(7)\u4e2d i \u8868\u793a\u7dad\u5ea6\u7de8\u865f\uff0c j i Fp \u3001 j i Fc \u5206\u5225\u70ba HEQ \u8868\u683c\u88e1\u6240\u8a18\u9304\u7684\u7b2c j \u5340\u9593\u7684 PCA \u4fc2 \u6578\u503c\u3001CDF \u503c\uff0c\u4e26\u4e14\u5047\u8a2d\u6211\u5011\u5df2\u4f5c\u904e\u641c\u5c0b\u800c\u5f97\u77e5 i P \u7684\u503c\u843d\u65bc j i Fp \u8207 1 j i Fp + \u4e4b\u9593\u3002 3\u3001CDF \u53cd\u8f49\u63db \u5047\u8a2d\u6709\u4e00\u500b\u97f3\u6846\u7684 CDF \u5411\u91cf 1 2 [ , , , ] L Q Q Q Q = \u22c5\u22c5 \u22c5 \u8981\u88ab\u53cd\u8f49\u63db\u6210 PCA \u4fc2\u6578\u5411\u91cf\uff0c\u800c\u8a72\u97f3 \u6846\u6240\u5c6c\u7684\u97f3\u6bb5\u985e\u5225\u8cc7\u8a0a\uff0c\u5df2\u7d93\u5728\u5716\u4e8c\u7684\"\u97f3\u6bb5\u5075\u6e2c\"\u65b9\u584a\u6c7a\u5b9a\u51fa\u4f86\uff0c\u6240\u4ee5\u6211\u5011\u53ef\u4ee5\u53d6\u51fa\u8a72 \u97f3\u6bb5\u985e\u5225\u7684\u76ee\u6a19\u97f3\u6846\u6240\u8a13\u7df4\u51fa\u7684 HEQ \u8868\u683c\uff0c\u7136\u5f8c\u4ee5\u7dda\u6027\u5167\u63d2\u7684\u65b9\u5f0f\u4f86\u8a08\u7b97\u51fa\u8a72\u97f3\u6846\u7684 PCA \u4fc2\u6578\u5411\u91cf 1 2 [ , , , ] L P P P P = \u22c5\u22c5\u22c5 \uff0c\u7dda\u6027\u5167\u63d2\u4e4b\u516c\u5f0f\u5982\u4e0b\uff1a 1 ( ) 1 ( ) ( ) , 1, 2, ..., . j i i j j i i Q Fc j j j i i i i Fc Fc P Fp Fp Fp i L + \u2212 + \u2212 \uf0e9 \uf0f9 = + \u2212 \u22c5 = \uf0ea \uf0fa \uf0ea \uf0fa \uf0eb \uf0fb (8) \u516c\u5f0f(8)\u4e2d i \u8868\u793a\u7dad\u5ea6\u7de8\u865f\uff0c j i Fp \u3001 j i Fc \u5206\u5225\u70ba HEQ \u8868\u683c\u88e1\u6240\u8a18\u9304\u7684\u7b2c j \u5340\u9593\u7684 PCA \u4fc2 \u6578\u503c\u3001CDF \u503c\uff0c\u4e26\u4e14\u5047\u8a2d\u6211\u5011\u5df2\u4f5c\u904e\u641c\u5c0b\u800c\u5f97\u77e5 i Q \u7684\u503c\u843d\u65bc j i Fc \u8207 1 j i Fc + \u4e4b\u9593\u3002 \u4e09\u3001\u76ee\u6a19\u97f3\u6846\u6311\u9078 \u5728\u8a13\u7df4\u968e\u6bb5\uff0c\u6211\u5011\u53ef\u9810\u5148\u628a\u76ee\u6a19\u8a9e\u8005\u7684\u8a13\u7df4\u8a9e\u97f3\u4f9d\u64da\u6a19\u793a\u6a94\u7684\u8cc7\u8a0a\u62ff\u53bb\u4f5c\u97f3\u6bb5\u5206\u985e\u3001\u53ca \u5c0d\u5404\u7a2e\u97f3\u6bb5\u5206\u5225\u4f5c\u97f3\u6846\u7684\u6536\u96c6\uff0c\u4e4b\u5f8c\u5728\u8f49\u63db\u968e\u6bb5\uff0c\u5c31\u53ef\u4f9d\u64da\u6240\u5075\u6e2c\u51fa\u7684\u97f3\u6bb5\u4ee3\u865f\u53bb\u53d6\u51fa \u5c0d\u61c9\u7684\u97f3\u6846\u96c6\uff0c\u518d\u4f9d\u64da\u6240\u8f49\u63db\u51fa\u7684 DCC \u5411\u91cf\u53bb\u4f5c\u771f\u5be6\u97f3\u6846\u7684\u641c\u5c0b\u8207\u6311\u9078\u3002 \u4ee4 Y 1 , Y 2 , \u2026, Y T \u662f\u4e00\u5e8f\u5217 T \u500b\u88ab\u8f49\u63db\u51fa\u7684 DCC \u5411\u91cf\uff0c\u8f49\u63db\u53ef\u4ee5\u662f\u76f4\u63a5\u7d93\u7531\u5716\u4e09 \"LMR \u5c0d\u6620\"\u65b9\u584a\u5f97\u5230\uff0c\u6216\u662f LMR \u5c0d\u6620\u5f8c\u518d\u4f5c CDF \u53cd\u8f49\u63db\u8207 PCA \u53cd\u8f49\u63db\u800c\u5f97\u5230(\u5716\u4e8c \u7684\u6d41\u7a0b)\u3002\u70ba\u4e86\u6539\u9032\u8f49\u63db\u51fa\u7684\u8a9e\u97f3\u7684\u54c1\u8cea\uff0c\u6240\u4ee5\u5728\u6b64\u8981\u4f9d\u64da Y t \u53ca\u5176\u5c0d\u61c9\u7684\u97f3\u6bb5\u985e\u5225\u4ee3\u865f I(t)\uff0c\u5f9e\u76ee\u6a19\u8a9e\u8005\u7684 I(t)\u97f3\u6bb5\u7684\u97f3\u6846\u96c6\u53bb\u6311\u9078\u51fa\u4e00\u500b\u975e\u5e38\u9760\u8fd1 Y t \u7684\u771f\u5be6\u97f3\u6846\u7684 DCC \u5411\u91cf Z t \u3002\u7136\u800c\u6311\u9078 Z t \u7684\u6e96\u5247\uff0c\u4e0d\u50c5\u53ea\u662f\u8003\u616e Y t \u8207 Z t \u7684\u5339\u914d\u8ddd\u96e2 dist(Y t , Z t )\uff0c\u4e5f\u8981\u8003\u616e\u76f8\u9130\u97f3 \u6846\u4e4b\u9593\u7684\u9023\u63a5\u8ddd\u96e2 dist(Z t-1 , Z t )\uff0c\u4ee5\u907f\u514d\u767c\u751f\u983b\u8b5c\u4e4b\u4e0d\u9023\u7e8c\uff0c\u800c\u5c0e\u81f4\u602a\u97f3\u88ab\u5408\u6210\u51fa\u4f86\u3002\u5728 \u672c\u8ad6\u6587\u88e1\uff0c\u8ddd\u96e2\u51fd\u6578 dist(\u2022, \u2022)\u662f\u91cf\u6e2c\u5e7e\u4f55\u8ddd\u96e2\u3002\u9664\u4e86\u4f9d\u5faa Dutoit \u7b49\u4eba\u7684\u8ad6\u6587[16]\u53bb\u8003\u616e\u97f3 \u6846\u9023\u63a5\u7684\u8ddd\u96e2\uff0c\u6211\u5011\u9084\u66f4\u52a0\u8003\u616e\u4e86\u53e6\u5916\u4e00\u7a2e\u8ddd\u96e2\u91cf\u6e2c\uff0c\u5373\u52d5\u614b\u983b\u8b5c(dynamic spectral)\u8ddd \u96e2\uff0c\u4ee5\u628a\u8f49\u63db\u51fa\u7684\u76f8\u9130\u5169 DCC \u5411\u91cf\u4e4b\u9593\u7684\u983b\u8b5c\u6539\u8b8a\u0394Y t = Y t -Y t-1 \u7d0d\u5165\u8003\u616e\u3002\u5728\u6b64\uff0c\u52d5 \u614b\u983b\u8b5c\u8ddd\u96e2\u662f\u91cf\u6e2c dist(\u0394Y t , \u0394Z t )\uff0c\u800c\u0394Z t = Z t -Z t-1 \u8868\u793a\u76f8\u9130\u5169\u500b\u6311\u9078\u51fa\u7684 DCC \u5411\u91cf\u4e4b \u9593\u7684\u983b\u8b5c\u6539\u8b8a\u3002 \u4f9d\u64da\u524d\u8ff0\u7684\u4e09\u7a2e\u8ddd\u96e2\uff0c\u5373\u5339\u914d\u8ddd\u96e2\u3001\u9023\u63a5\u8ddd\u96e2\u8207\u52d5\u614b\u983b\u8b5c\u8ddd\u96e2\uff0c\u6211\u5011\u767c\u5c55\u4e86\u4e00\u7a2e\u57fa \u65bc\u52d5\u614b\u898f\u5283\u7684\u6f14\u7b97\u6cd5\u4f86\u4f5c\u76ee\u6a19\u97f3\u6846\u7684\u6311\u9078\u3002\u9996\u5148\uff0c\u5c0d\u65bc\u5404\u500b\u8f49\u63db\u51fa\u7684 DCC \u5411\u91cf Y t \uff0c\u6211 \u5011\u4f9d\u5176\u97f3\u6bb5\u7de8\u865f I(t)\uff0c\u5f9e\u7b2c I(t)\u500b\u97f3\u6846\u96c6\u53bb\u5c0b\u627e\u51fa K \u500b\u6700\u9760\u8fd1 Y t (\u5373\u96e2 Y t \u7684\u8ddd\u96e2\u6700\u5c0f)\u7684 \u771f\u5be6\u97f3\u6846\u7684 DCC \u5411\u91cf\uff0c\u5728\u6b64 K \u7684\u503c\u8a2d\u70ba 16\u3002\u63a5\u8457\uff0c\u4ee4 U(t, i)\u8868\u793a\u5f9e\u6642\u523b 1 \u5230\u6642\u523b t \u7684 \u6700\u5c0f\u7684\u7d2f\u7a4d\u8ddd\u96e2\uff0c\u800c\u689d\u4ef6\u662f\u5728\u6642\u523b t \u6642\u6240\u6311\u9078\u5230\u7684\u76ee\u6a19\u97f3\u6846\u5fc5\u9808\u662f K \u500b\u4e2d\u7684\u7b2c i \u500b\u3002\u5982 \u6b64\uff0c\u6211\u5011\u5c31\u53ef\u5f97\u5230\u5982\u4e0b\u7684\u905e\u8ff4\u516c\u5f0f: ( ) ( ) ( ) 1 1 1 0 ( , ) min ( 1, ) , + , , , j i i j i t t t t t t t t j K U t i U t j dist Z Z dist Y Y Z Z dist Y Z \u03b1 \u03b1 \u2212 \u2212 \u2212 \u2264 < \uf0e9 \uf0f9 = \u2212 + \u22c5 \u22c5 \u2212 \u2212 + \uf0eb \uf0fb (9) \u5176\u4e2d \u03b1 \u662f\u52a0\u6b0a\u5e38\u6578\uff0c\u6211\u5011\u7d93\u904e\u8a66\u9a57\u5f8c\u5c07\u5b83\u7684\u503c\u8a2d\u70ba 0.5\uff0c i t Z \u8868\u793a\u6642\u523b t \u6642\u6240\u5c0b\u627e\u51fa\u7684 K \u500b\u97f3\u6846\u4e2d\u7684\u7b2c i \u500b\u97f3\u6846 DCC \u5411\u91cf\u3002\u53e6\u5916\uff0c\u524d\u4eba\u8ad6\u6587[16]\u4e2d\u66fe\u63d0\u5230\u4e00\u500b\u6280\u5de7\uff0c\u7576 i t Z \u548c 1 j t Z \u2212 \u88ab\u6aa2\u67e5\u51fa\u662f\u4f86\u81ea\u540c\u4e00\u6b21\u767c\u97f3\u7684\u76f8\u9130\u97f3\u6846\u6642\uff0c\u5c31\u6a5f\u52d5\u5730\u628a\u516c\u5f0f(9)\u4e2d \u03b1 \u7684\u503c\u6539\u8a2d\u70ba 0\uff0c\u4ee5\u4fbf \u512a\u5148\u9078\u53d6\u76f8\u9130\u7684\u76ee\u6a19\u97f3\u6846\u4f86\u63d0\u5347\u983b\u8b5c\u9023\u63a5\u7684\u81ea\u7136\u6027\u3002\u5728\u6b64\u6211\u5011\u4e5f\u61c9\u7528\u4e86\u9019\u500b\u6280\u5de7\uff0c\u4e26\u4e14 \u628a\u689d\u4ef6\u653e\u5bec\uff0c\u5c31\u662f\u7576 i t Z \u548c 1 j t Z \u2212 \u4e0d\u662f\u76f4\u63a5\u76f8\u9130\u800c\u662f\u5b58\u5728\u53e6\u4e00\u500b\u97f3\u6846\u5728\u5b83\u5011\u4e4b\u9593\uff0c\u6211\u5011\u4e5f \u63a5\u53d7\u6b64\u4e00\u60c5\u6cc1\u800c\u6703\u628a \u03b1 \u7684\u503c\u6a5f\u52d5\u5730\u6539\u8a2d\u70ba 0\u3002 \u7576\u5230\u9054\u6700\u5f8c\u6642\u523b T \u6642\uff0c\u5168\u90e8\u8def\u5f91\u4e2d\u7684\u6700\u5c0f\u7d2f\u7a4d\u8ddd\u96e2 A(T)\u53ef\u4ee5\u4e0b\u5217\u516c\u5f0f\u4f86\u8a08\u7b97\uff0c [ ] 0 ( ) min ( , ) , j K A T U T j \u2264 < =", "eq_num": "(10" } ], "section": "", "sec_num": null }, { "text": "\u4f5c DTW \u5339\u914d\uff0c\u4ee5\u4fbf\u70ba\u4f86\u6e90\u8a9e\u8005\u97f3\u6bb5\u6240\u5207\u51fa\u7684\u5404\u500b\u97f3\u6846\uff0c\u53bb\u76ee\u6a19\u8a9e\u8005\u4e4b\u5e73\u884c\u97f3\u6bb5\u5167\u627e\u51fa \u6b63\u78ba\u7684\u97f3\u6846\u4f86\u5c0d\u61c9\u3002\u7136\u5f8c\uff0c\u628a\u5404\u500b\u5e73\u884c\u97f3\u6bb5\u7684\u97f3\u6846\u5e8f\u5217\u4e32\u63a5\u8d77\u4f86\uff0c\u5c31\u53ef\u70ba\u4e00\u500b\u8072\u3001\u97fb\u6bcd \u985e\u5225\u6e96\u5099\u597d\u4e00\u5e8f\u5217\u7684\u4f86\u6e90\u97f3\u6846\u548c\u76ee\u6a19\u97f3\u6846\u7684 DCC \u5411\u91cf\u5c0d\u61c9\u7d44\u5408\uff0c(S i , R i )\uff0ci=1, 2, \u2026, Nr\uff0c \u5176\u4e2d S i \u8868\u793a\u7b2c i \u500b\u4f86\u6e90\u97f3\u6846\u7684 DCC \u5411\u91cf\uff0cR i \u8868\u793a\u7b2c i \u500b\u7d93 DTW \u914d\u5c0d\u5230\u7684\u76ee\u6a19\u97f3\u6846\u7684 DCC \u5411\u91cf\uff0cNr \u8868\u793a\u6b64\u4e00\u5e8f\u5217\u7684\u97f3\u6846\u7e3d\u6578\u3002\u518d\u4f86\uff0c\u4f9d\u7167\u6240\u5efa\u69cb\u7cfb\u7d71\u7684\u7d50\u69cb\uff0c\u82e5\u662f\u5982\u5716\u4e09 \u7684\u6d41\u7a0b\uff0c\u5247\u5404\u500b\u8072\u3001\u97fb\u6bcd\u985e\u5225\u7684\u4e00\u5e8f\u5217\u7684\u4f86\u6e90\u8207\u76ee\u6a19\u97f3\u6846\u5c0d\u61c9\u7684 DCC \u5411\u91cf\u7d44\u5408\uff0c\u5c31\u53ef \u76f4\u63a5\u62ff\u53bb\u8a13\u7df4\u8a08\u7b97 LMR \u5c0d\u6620\u6240\u9700\u7684\u5c0d\u6620\u77e9\u9663[4]\uff1b\u7136\u800c\u7576\u7cfb\u7d71\u7684\u7d50\u69cb\u662f\u5982\u5716\u4e8c\u6240\u793a\u7684\u6d41 \u7a0b\u6642\uff0c\u5247\u5404\u500b\u8072\u3001\u97fb\u6bcd\u985e\u5225\u7684 DCC \u5411\u91cf\u7d44\u5408\u5e8f\u5217\uff0c(S i , R i )\uff0ci=1, 2, \u2026, Nr\uff0c\u5176\u4e2d\u5404\u500b\u7d44 \u5408\u7684 S i \u8207 R i \u5c31\u5fc5\u9808\u5148\u4f5c PCA \u4fc2\u6578\u8f49\u63db\u548c CDF \u4fc2\u6578\u8f49\u63db\uff0c\u4ee5\u5f62\u6210 CDF \u4fc2\u6578\u7684\u5411\u91cf\u7d44\u5408\uff0c \u7136\u5f8c\u624d\u62ff\u53bb\u8a13\u7df4 LMR \u5c0d\u6620\u4e4b\u6620\u77e9\u9663\u3002 \u8a2d S \uf025 \u3001 R \uf025 \u77e9\u9663\u7684\u5b9a\u7fa9\u5982\u4e0b\u6240\u5217\uff0c 1 2 1 2 1, 1, 1 1, 1, 1 ... ... , , ... ... Nr N r S S S R R R S R \uf0e9 \uf0f9 \uf0e9 \uf0f9 = = \uf0ea \uf0fa \uf0ea \uf0fa \uf0eb \uf0fb \uf0eb \uf0fb \uf025 \uf025 (11) \u5176\u4e2d\u5404\u884c\u7684 S i \u8207 R i \u90fd\u88ab\u9644\u52a0\u4e00\u5217\u7684\u5e38\u6578 1\uff0c\u4ee5\u589e\u52a0\u4e00\u500b\u5e38\u6578\u9805\u81f3\u591a\u8b8a\u91cf\u7dda\u6027\u8ff4\u6b78\u7684\u5404\u500b \u7dad\u5ea6\u88e1\uff0c\u5982\u6b64\uff0cLMR \u5c0d\u6620\u6240\u9700\u7684\u6700\u4f73(least squared error)\u5c0d\u6620\u77e9\u9663 M \uf025 \uff0c\u5c31\u53ef\u4ee5\u4e0b\u5217\u516c\u5f0f [4]\u4f86\u6c42\u5f97\uff0c t t 1 ( ) . M R S S S \u2212 = \u22c5 \u22c5 \u22c5 \uf025 \uf025 \uf025 \uf025 \uf025 (12) \u7136\u5f8c\uff0c\u6211\u5011\u5c31\u53ef\u7528\u77e9\u9663 M \uf025 \u4f86\u4f5c LMR \u5c0d\u6620\uff0c\u5373\u4ee4[Y t , 1] t = M \uf025 \uff0e[X t , 1] t \uff0c\u5176\u4e2d", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing(ROCLING 2013)", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null } ], "back_matter": [], "bib_entries": { "BIBREF0": { "ref_id": "b0", "title": "Voice Conversion through Vector Quantization", "authors": [ { "first": "M", "middle": [], "last": "Abe", "suffix": "" }, { "first": "S", "middle": [], "last": "Nakamura", "suffix": "" }, { "first": "K", "middle": [], "last": "Shikano", "suffix": "" }, { "first": "H", "middle": [], "last": "Kuwabara", "suffix": "" } ], "year": 1988, "venue": "Int. Conf. Acoustics, Speech, and Signal Processing", "volume": "1", "issue": "", "pages": "655--658", "other_ids": {}, "num": null, "urls": [], "raw_text": "M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, \"Voice Conversion through Vector Quantization,\" Int. Conf. Acoustics, Speech, and Signal Processing, New York, Vol. 1, pp. 655-658, 1988.", "links": null }, "BIBREF1": { "ref_id": "b1", "title": "Voice Transformation Using PSOLA Technique", "authors": [ { "first": "H", "middle": [], "last": "Valbret", "suffix": "" }, { "first": "E", "middle": [], "last": "Moulines", "suffix": "" }, { "first": "J", "middle": [ "P" ], "last": "Tubach", "suffix": "" } ], "year": 1992, "venue": "Speech Communication", "volume": "11", "issue": "2-3", "pages": "175--187", "other_ids": {}, "num": null, "urls": [], "raw_text": "H. Valbret, E. Moulines, J. P. Tubach, \"Voice Transformation Using PSOLA Technique,\" Speech Communication, Vol. 11, No. 2-3, pp. 175-187, 1992.", "links": null }, "BIBREF2": { "ref_id": "b2", "title": "Continuous Probabilistic Transform for Voice Conversion", "authors": [ { "first": "Y", "middle": [], "last": "Stylianou", "suffix": "" }, { "first": "O", "middle": [], "last": "Cappe", "suffix": "" }, { "first": "E", "middle": [], "last": "Moulines", "suffix": "" } ], "year": 1998, "venue": "IEEE Trans. Speech and Audio Processing", "volume": "6", "issue": "2", "pages": "131--142", "other_ids": {}, "num": null, "urls": [], "raw_text": "Y. Stylianou, O. Cappe, and E. Moulines, \"Continuous Probabilistic Transform for Voice Conversion,\" IEEE Trans. Speech and Audio Processing, Vol. 6, No. 2, pp.131-142, 1998.", "links": null }, "BIBREF4": { "ref_id": "b4", "title": "Alleviating the One-to-many Mapping Problem in Voice Conversion with Context-dependent Modeling", "authors": [ { "first": "E", "middle": [], "last": "Godoy", "suffix": "" }, { "first": "O", "middle": [], "last": "Rosec", "suffix": "" }, { "first": "T", "middle": [], "last": "Chonavel", "suffix": "" } ], "year": 2009, "venue": "Proc. INTERSPEECH", "volume": "", "issue": "", "pages": "1627--1630", "other_ids": {}, "num": null, "urls": [], "raw_text": "E. Godoy, O. Rosec, and T. Chonavel, \"Alleviating the One-to-many Mapping Problem in Voice Conversion with Context-dependent Modeling,\" Proc. INTERSPEECH, pp. 1627-1630, Brighton, UK, 2009.", "links": null }, "BIBREF5": { "ref_id": "b5", "title": "Regularization Techniques for Discrete Cepstrum Estimation", "authors": [ { "first": "O", "middle": [], "last": "Capp\u00e9", "suffix": "" }, { "first": "E", "middle": [], "last": "Moulines", "suffix": "" } ], "year": 1996, "venue": "IEEE Signal Processing Letters", "volume": "3", "issue": "4", "pages": "100--102", "other_ids": {}, "num": null, "urls": [], "raw_text": "O. Capp\u00e9 and E. Moulines, \"Regularization Techniques for Discrete Cepstrum Estimation,\" IEEE Signal Processing Letters, Vol. 3, No. 4, pp. 100-102, 1996.", "links": null }, "BIBREF6": { "ref_id": "b6", "title": "A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Example Application of Voice Transformation", "authors": [ { "first": "H", "middle": [ "Y" ], "last": "Gu", "suffix": "" }, { "first": "S", "middle": [ "F" ], "last": "Tsai", "suffix": "" } ], "year": 2009, "venue": "International Journal of Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) Computational Linguistics and Chinese Language Processing", "volume": "14", "issue": "", "pages": "363--382", "other_ids": {}, "num": null, "urls": [], "raw_text": "H. Y. Gu and S. F. Tsai, \"A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Example Application of Voice Transformation,\" International Journal of Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) Computational Linguistics and Chinese Language Processing, Vol. 14, No. 4, pp. 363-382, 2009.", "links": null }, "BIBREF7": { "ref_id": "b7", "title": "An Improved Voice Conversion Method Using Segmental GMMs and Automatic GMM Selection", "authors": [ { "first": "H", "middle": [ "Y" ], "last": "Gu", "suffix": "" }, { "first": "S", "middle": [ "F" ], "last": "Tsai", "suffix": "" } ], "year": 2011, "venue": "Int. Congress on Image and Signal Processing", "volume": "", "issue": "", "pages": "2395--2399", "other_ids": {}, "num": null, "urls": [], "raw_text": "H. Y. Gu and S. F. Tsai, \"An Improved Voice Conversion Method Using Segmental GMMs and Automatic GMM Selection,\" Int. Congress on Image and Signal Processing, pp. 2395-2399, Shanghai, China, 2011.", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "Harmonic plus noise models for speech, combined with statistical methods, for speech and speaker modification", "authors": [ { "first": "Y", "middle": [], "last": "Stylianou", "suffix": "" } ], "year": 1996, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Y. Stylianou, Harmonic plus noise models for speech, combined with statistical methods, for speech and speaker modification, Ph.D. thesis, Ecole Nationale Sup\u00e8rieure des T\u00e9l\u00e9communications, Paris, France, 1996.", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "Histogram Equalization of Speech Representation for Robust Speech Recognition", "authors": [ { "first": "A", "middle": [], "last": "Torre", "suffix": "" }, { "first": "A", "middle": [ "M" ], "last": "Peinado", "suffix": "" }, { "first": "J", "middle": [ "C" ], "last": "Segura", "suffix": "" }, { "first": "J", "middle": [ "L" ], "last": "Perez-Cordoba", "suffix": "" }, { "first": "M", "middle": [ "C" ], "last": "Bentez", "suffix": "" }, { "first": "A", "middle": [ "J" ], "last": "Rubio", "suffix": "" } ], "year": 2005, "venue": "IEEE trans. Speech and Audio Processing", "volume": "13", "issue": "3", "pages": "355--366", "other_ids": {}, "num": null, "urls": [], "raw_text": "A. Torre, A. M. Peinado, J. C. Segura, J. L. Perez-Cordoba, M. C. Bentez and A. J. Rubio, \"Histogram Equalization of Speech Representation for Robust Speech Recognition,\" IEEE trans. Speech and Audio Processing, Vol. 13, No. 3, pp. 355-366, 2005.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "A Comparative Study of Histogram Equalization (HEQ) for Robust Speech Recognition", "authors": [ { "first": "S", "middle": [ "H" ], "last": "Lin", "suffix": "" }, { "first": "Y", "middle": [ "M" ], "last": "Yeh", "suffix": "" }, { "first": "B", "middle": [], "last": "Chen", "suffix": "" } ], "year": 2007, "venue": "Computational Linguistics and Chinese Language Processing", "volume": "12", "issue": "", "pages": "217--238", "other_ids": {}, "num": null, "urls": [], "raw_text": "S. H. Lin, Y. M. Yeh, and B. Chen, \"A Comparative Study of Histogram Equalization (HEQ) for Robust Speech Recognition,\" Computational Linguistics and Chinese Language Processing, Vol. 12, No. 2, pp. 217-238, 2007.", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "Principal Component Analysis", "authors": [ { "first": "I", "middle": [ "T" ], "last": "Jolliffe", "suffix": "" } ], "year": 2002, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "I. T. Jolliffe, Principal Component Analysis, second edition, New York: Springer-Verlag, 2002.", "links": null }, "BIBREF12": { "ref_id": "b12", "title": "Voice Conversion Based on Maximum-likelihood Estimation of Spectral Parameter Trajectory", "authors": [ { "first": "T", "middle": [], "last": "Toda", "suffix": "" }, { "first": "A", "middle": [ "W" ], "last": "Black", "suffix": "" }, { "first": "K", "middle": [], "last": "Tokuda", "suffix": "" } ], "year": 2007, "venue": "IEEE trans. Audio, Speech, and Language Processing", "volume": "15", "issue": "", "pages": "2222--2235", "other_ids": {}, "num": null, "urls": [], "raw_text": "T. Toda, A. W. Black, and K. Tokuda, \"Voice Conversion Based on Maximum-likelihood Estimation of Spectral Parameter Trajectory,\" IEEE trans. Audio, Speech, and Language Processing, Vol. 15, pp. 2222-2235, 2007.", "links": null }, "BIBREF13": { "ref_id": "b13", "title": "Voice Conversion Based on Weighted Frequency Warping", "authors": [ { "first": "D", "middle": [], "last": "Erro", "suffix": "" }, { "first": "A", "middle": [], "last": "Moreno", "suffix": "" }, { "first": "A", "middle": [], "last": "Bonafonte", "suffix": "" } ], "year": 2010, "venue": "Speech, and Language Processing", "volume": "18", "issue": "", "pages": "922--931", "other_ids": {}, "num": null, "urls": [], "raw_text": "D. Erro, A. Moreno, and A. Bonafonte, \"Voice Conversion Based on Weighted Frequency Warping,\" IEEE trans. Audio, Speech, and Language Processing, Vol. 18, pp. 922-931, 2010.", "links": null }, "BIBREF14": { "ref_id": "b14", "title": "Voice Conversion Using Dynamic Frequency Warping with Amplitude Scaling, for Parallel or Nonparallel Corpora", "authors": [ { "first": "E", "middle": [], "last": "Godoy", "suffix": "" }, { "first": "O", "middle": [], "last": "Rosec", "suffix": "" }, { "first": "T", "middle": [], "last": "Chonavel", "suffix": "" } ], "year": 2012, "venue": "IEEE trans. Audio, Speech, and Language Processing", "volume": "20", "issue": "", "pages": "1313--1323", "other_ids": {}, "num": null, "urls": [], "raw_text": "E. Godoy, O. Rosec, and T. Chonavel, \"Voice Conversion Using Dynamic Frequency Warping with Amplitude Scaling, for Parallel or Nonparallel Corpora,\" IEEE trans. Audio, Speech, and Language Processing, Vol. 20, pp. 1313-1323, 2012.", "links": null }, "BIBREF15": { "ref_id": "b15", "title": "Towards a Voice Conversion System Based on Frame Selection", "authors": [ { "first": "T", "middle": [], "last": "Dutoit", "suffix": "" }, { "first": "A", "middle": [], "last": "Holzapfel", "suffix": "" }, { "first": "M", "middle": [], "last": "Jottrand", "suffix": "" }, { "first": "A", "middle": [], "last": "Moinet", "suffix": "" }, { "first": "J", "middle": [], "last": "Perez", "suffix": "" }, { "first": "Y", "middle": [], "last": "Stylianou", "suffix": "" } ], "year": 2007, "venue": "Int. Conf. Acoustics, Speech, and signal Processing", "volume": "", "issue": "", "pages": "513--516", "other_ids": {}, "num": null, "urls": [], "raw_text": "T. Dutoit, A. Holzapfel, M. Jottrand, A. Moinet, J. Perez, and Y. Stylianou, \"Towards a Voice Conversion System Based on Frame Selection,\" Int. Conf. Acoustics, Speech, and signal Processing, Honolulu, Hawaii, pp. 513-516, 2007.", "links": null }, "BIBREF16": { "ref_id": "b16", "title": "Analysis of a Complex of Statistical Variables into Principal Components", "authors": [ { "first": "H", "middle": [], "last": "Hotelling", "suffix": "" } ], "year": 1933, "venue": "Journal of Educational Psychology", "volume": "24", "issue": "6", "pages": "417--441", "other_ids": {}, "num": null, "urls": [], "raw_text": "H. Hotelling, \"Analysis of a Complex of Statistical Variables into Principal Components,\" Journal of Educational Psychology, Vol. 24, No. 6, pp. 417-441, 1933.", "links": null }, "BIBREF17": { "ref_id": "b17", "title": "Pitch detection with average magnitude difference function using adaptive threshold algorithm for estimating shimmer and jitter", "authors": [ { "first": "H", "middle": [ "Y" ], "last": "Kim", "suffix": "" } ], "year": 1998, "venue": "20-th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "H. Y. Kim, et al., \"Pitch detection with average magnitude difference function using adaptive threshold algorithm for estimating shimmer and jitter,\" 20-th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 1998.", "links": null } }, "ref_entries": { "TABREF0": { "html": null, "type_str": "table", "text": "\uff0c\u800c\u9020\u6210\u67d0\u4e9b\u76f8\u9130\u7684\u97f3\u6846\u4e4b\u9593\uff0c\u76f8\u9130\u97f3\u6846\u6240\u8f49\u63db \u51fa\u7684\u983b\u8b5c\u537b\u51fa\u73fe\u5287\u70c8\u7684\u983b\u8b5c\u5f62\u72c0\u5dee\u7570(\u5373\u983b\u8b5c\u4e0d\u9023\u7e8c)\uff0c\u800c\u4e0d\u9023\u7e8c\u7684\u983b\u8b5c\u5f88\u53ef\u80fd\u5c0e\u81f4\u602a\u97f3 (artifact sound)\u88ab\u5408\u6210\u51fa\u4f86\u3002 \u53bb\u5e74\u6211\u5011\u7814\u7a76\u7684\u57fa\u65bc LMR \u983b\u8b5c\u5c0d\u6620\u4e4b\u8a9e\u97f3\u8f49\u63db\u7cfb\u7d71\uff0c\u5176\u4e3b\u8981\u7684\u8655\u7406\u6d41\u7a0b\u5982\u5716\u4e00\u6240 \u5716\u4e00\u3001\u57fa\u65bc LMR \u983b\u8b5c\u5c0d\u6620\u4e4b\u8a9e\u97f3\u8f49\u63db\u7684\u4e3b\u8981\u8655\u7406\u6d41\u7a0b \u793a\uff0c\u4f86\u6e90\u8a9e\u8005\u767c\u51fa\u7684\u8a9e\u97f3\u5148\u5206\u5272\u6210\u4e00\u5e8f\u5217\u7684\u97f3\u6846\uff0c\u7136\u5f8c\u5c0d\u5404\u500b\u97f3\u6846\u53bb\u4f30\u8a08\u5b83\u7684 40 \u968e DCC (discrete cepstral coefficients) \u5012\u983b\u8b5c\u4fc2\u6578[6, 7]\u53ca\u5075\u6e2c\u51fa\u57fa\u983b\u503c\uff1b\u63a5\u8457\uff0c\u4f9d\u64da\u5404\u97f3\u6846\u7684 DCC \u4fc2\u6578\uff0c\u53ef\u4f5c\u6709\u8072\u8072\u6bcd\u8207\u97fb\u6bcd\u7684\u97f3\u6bb5(segment)\u5075\u6e2c\uff0c\u5148\u524d\u6211\u5011\u66fe\u63d0\u51fa\u4e00\u7a2e\u57fa\u65bc\u97f3\u6bb5 \u5f0f GMM \u8207\u6700\u5927\u4f3c\u7136\u7387(maximum likelihood)\u7684\u97f3\u6bb5\u81ea\u52d5\u5075\u6e2c\u65b9\u6cd5[8]\uff0c\u5be6\u9a57\u986f\u793a\u5373\u4f7f\u6311 \u9078\u5230\u932f\u8aa4\u4f46\u8fd1\u4f3c\u7684\u97f3\u6bb5\uff0c\u4e5f\u4ecd\u53ef\u8f49\u63db\u51fa\u6b63\u78ba\u7684\u8a9e\u97f3\uff0c\u7531\u65bc\u5728\u6b64\u6211\u5011\u628a\u7126\u9ede\u653e\u5728 LMR \u5c0d \u6620\u65b9\u584a\uff0c\u6240\u4ee5\u97f3\u6bb5\u5075\u6e2c\u65b9\u584a\u66ab\u6642\u4ee5\u8b80\u53d6\u6a19\u8a18(label)\u6a94\u6848\u7684\u65b9\u5f0f\u4f86\u9032\u884c\uff1bLMR \u5c0d\u6620\u5c31\u662f\u628a LMR \u77e9\u9663\u4e58\u4ee5\u8f38\u5165\u7684 DCC \u5411\u91cf\u800c\u6c42\u5f97\u8f38\u51fa\u7684 DCC \u5411\u91cf\uff0c\u81f3\u65bc LMR \u77e9\u9663\u7684\u8a13\u7df4\u65b9\u6cd5\uff0c \u5247\u53ef\u53c3\u8003\u6211\u5011\u53bb\u5e74\u767c\u8868\u7684\u8ad6\u6587[4]\uff1b\u4e4b\u5f8c\uff0cLMR \u5c0d\u6620\u51fa\u7684 DCC \u5411\u91cf\uff0c\u4ee5\u5e73\u5747\u503c\u8207\u6a19\u6e96 \u5dee\u8f49\u63db\u51fa\u7684\u57fa\u983b\u503c\uff0c\u5169\u8005\u5c31\u53ef\u9001\u7d66 HNM (harmonic plus noise model)\u8a9e\u97f3\u518d\u5408\u6210\u65b9\u584a\uff0c \u4ee5\u5408\u6210\u51fa\u8f49\u63db\u5f8c\u7684\u8a9e\u97f3\u4fe1\u865f\uff0c\u95dc\u65bc\u4f7f\u7528\u8ae7\u6ce2\u52a0\u96dc\u97f3\u6a21\u578b(HNM)\u4f5c\u8a9e\u97f3\u4fe1\u865f\u5408\u6210\u7684\u7d30\u7bc0\uff0c \u53ef\u53c3\u8003\u524d\u4eba\u7684\u8ad6\u6587[9, 7]\u3002 \u70ba\u4e86\u63d0\u5347\u8f49\u63db\u51fa\u7684\u8a9e\u97f3\u7684\u97f3\u8cea\uff0c\u6211\u5011\u958b\u59cb\u601d\u8003\u5728 GMM \u5c0d\u6620\u8207 LMR \u5c0d\u6620\u4e4b\u5916\uff0c\u662f \u5426\u9084\u6709\u5176\u5b83\u7a2e\u985e\u7684\u5c0d\u6620\u65b9\u6cd5\uff1f\u5f8c\u4f86\u6211\u5011\u60f3\u5230\u4e00\u7a2e\u4f3c\u4e4e\u53ef\u884c\u7684\u983b\u8b5c\u5c0d\u6620\u65b9\u6cd5\uff0c\u5c31\u662f\u4ee5\u76f4\u65b9 \u5716\u7b49\u5316(histogram equalization, HEQ)\u4f86\u53d6\u4ee3 LMR \u5c0d\u6620\u3002\u76f4\u65b9\u5716\u7b49\u5316\u96d6\u7136\u8d77\u6e90\u65bc\u5f71\u50cf\u8655\u7406 \u9818\u57df\uff0c\u4f46\u662f\u8fd1\u5e74\u4f86\u88ab\u61c9\u7528\u65bc\u8a9e\u97f3\u8fa8\u8b58\u9818\u57df[10, 11]\uff0c\u7528\u4ee5\u964d\u4f4e\u74b0\u5883\u566a\u97f3\u9020\u6210\u7684\u8a13\u7df4\u8a9e\u97f3 \u548c\u6e2c\u8a66\u8a9e\u97f3\u4e4b\u9593\u7684\u983b\u8b5c\u4e0d\u5339\u914d(mismatch)\u554f\u984c\uff0c\u800c\u4f7f\u5f97\u8fa8\u8b58\u7387\u7372\u5f97\u4e86\u660e\u986f\u7684\u6539\u9032\u3002\u6709\u9451 \u65bc\u6b64\uff0c\u6211\u5011\u89ba\u5f97\u5728\u8a9e\u97f3\u8f49\u63db\u7684\u554f\u984c\u4e0a\uff0c\u4f86\u6e90\u8207\u76ee\u6a19\u8a9e\u8005\u4e4b\u9593\u6709\u8457\u5dee\u7570\u7684\u983b\u8b5c\u5f62\u72c0\u800c\u5448\u73fe \u51fa\u5dee\u7570\u7684\u97f3\u8272\uff0c\u9019\u53ef\u60f3\u50cf\u662f\u56e0\u70ba\u4f86\u6e90\u8a9e\u97f3\u901a\u904e\u4e86\u67d0\u4e00\u7a2e\u7279\u6b8a\u7684\u901a\u8a0a\u901a\u9053\u800c\u4f7f\u5f97\u5176\u983b\u8b5c\u5f62 \u72c0\u88ab\u8f49\u63db\u6210\u76ee\u6a19\u8a9e\u97f3\u7684\u5f62\u72c0\uff0c\u4ee5\u81f4\u65bc\u9020\u6210\u4f86\u6e90\u8207\u76ee\u6a19\u8a9e\u97f3\u4e4b\u9593\u7684\u983b\u8b5c\u4e0d\u5339\u914d\u3002\u56e0\u6b64\u5728\u89c0 \u5ff5\u4e0a\u61c9\u53ef\u61c9\u7528\u76f4\u65b9\u5716\u7b49\u5316\u7684\u8655\u7406\uff0c\u4f86\u6a21\u4eff\u524d\u8ff0\u7684\u901a\u8a0a\u901a\u9053\u4e4b\u7279\u6027\uff0c\u4ee5\u628a\u4f86\u6e90\u8a9e\u97f3\u7684\u983b\u8b5c \u8f49\u8b8a\u6210\u76ee\u6a19\u8a9e\u97f3\u7684\u983b\u8b5c\uff0c\u6240\u4ee5\u6211\u5011\u69cb\u60f3\u4e86\u5982\u5716\u4e8c\u6240\u793a\u7684\u57fa\u65bc\u76f4\u65b9\u5716\u7b49\u5316\u4e4b\u8a9e\u97f3\u8f49\u63db\u7684\u8655 \u7406\u6d41\u7a0b\u3002 \u5728\u5716\u4e8c\u7684\u8655\u7406\u6d41\u7a0b\u4e2d\uff0c\u6211\u5011\u4e0d\u76f4\u63a5\u62ff DCC \u4fc2\u6578\u53bb\u4f5c\u76f4\u65b9\u5716\u7b49\u5316\uff0c\u5373\u8a08\u7b97 CDF (cumulative density function)\u4fc2\u6578\uff0c\u6211\u5011\u7684\u89c0\u9ede\u662f\uff0c\u4e00\u500b\u97f3\u6846\u5404\u7dad\u5ea6\u7684 DCC \u4fc2\u6578\u4e4b\u9593\u6709 Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) \u4e09\u88e1\u90fd\u51fa\u73fe\u7684 DCC \u4f30\u8a08\u4e4b\u65b9\u584a\uff0c\u8868\u793a\u6211\u5011\u4ecd\u7136\u63a1\u7528\u96e2\u6563\u5012\u983b\u8b5c\u4fc2\u6578(DCC)[6, 7]\u4f5c\u70ba\u983b \u8b5c\u7279\u5fb5\u53c3\u6578\uff0c\u4e26\u4e14\u968e\u6578\u8a2d\u70ba 40 \u968e\uff0c\u5373\u4e00\u500b\u97f3\u6846\u8981\u8a08\u7b97\u51fa c 0 , c 1 , c 2 , \u2026, c 40 \u7b49 41 \u500b\u4fc2\u6578\uff0c \u4f46\u662f\u53ea\u62ff c 1 , c 2 , \u2026, c 40 \u53bb\u4f5c\u983b\u8b5c\u8f49\u63db\u7684\u8655\u7406\u3002\u7576\u8f49\u63db\u51fa\u5404\u500b\u97f3\u6846\u7684 DCC \u4fc2\u6578\u4e4b\u5f8c\uff0c\u6211 \u5011\u5c31\u53ef\u4f9d\u64da\u5404\u97f3\u6846\u7684 DCC \u4fc2\u6578\u53bb\u8a08\u7b97\u51fa\u983b\u8b5c\u5305\u7d61[6, 7]\uff0c\u7136\u5f8c\u518d\u4f9d\u64da\u983b\u8b5c\u5305\u7d61\u3001\u8f49\u63db\u51fa \u7684\u57fa\u983b\u503c\uff0c\u53bb\u8a2d\u5b9a\u8a72\u97f3\u6846\u7684 HNM \u6a21\u578b\u4e4b\u8ae7\u6ce2\u53c3\u6578\u548c\u96dc\u97f3\u53c3\u6578[7, 9]\uff0c\u4e4b\u5f8c\u5c31\u53ef\u62ff\u9019\u4e9b\u53c3", "num": null, "content": "
DCC\u97f3\u6bb5PCA \u4fc2CDF \u4fc2LMRCDF \u53cdPCA \u53cd
\u4f30\u8a08 \u57fa\u983b \u6578\u53bb\u5408\u6210\u51fa\u8a9e\u97f3\u4fe1\u865f [7, 9]\u3002 \u5075\u6e2c \u6578\u8f49\u63db \u4f86\u6e90 \u8a9e\u97f3\u6578\u8f49\u63db\u5c0d\u6620\u8f49\u63db\u8f49\u63db \u57fa\u983bHNM \u8a9e\u97f3 \u518d\u5408\u6210\u8f49\u63db \u8a9e\u97f3
\u5075\u6e2c\u8f49\u63db
\u5716\u4e8c\u3001\u57fa\u65bc\u76f4\u65b9\u5716\u7b49\u5316\u4e4b\u8a9e\u97f3\u8f49\u63db\u7684\u8655\u7406\u6d41\u7a0b \u4e8c\u3001PCA \u4fc2\u6578\u8f49\u63db\u8207\u76f4\u65b9\u5716\u7b49\u5316
\u660e\u986f\u7684\u76f8\u95dc\u6027\u5b58\u5728\uff0c\u800c\u76f4\u65b9\u5716\u7b49\u5316\u537b\u662f\u5c0d\u7279\u5fb5\u7684\u5404\u7dad\u5ea6\u7368\u7acb\u53bb\u9032\u884c\uff0c\u9019\u6050\u5c07\u964d\u4f4e\u76f4\u65b9\u5716
\u97f3\u6846 DCC \u7b49\u5316\u7684\u529f\u7528\uff0c\u56e0\u6b64\u6211\u5011\u6c7a\u5b9a\u5c0d\u5404\u500b\u97f3\u6bb5\u985e\u5225\u6240\u5c6c\u7684\u97f3\u6846 DCC \u5411\u91cf\u5148\u9032\u884c\u4e3b\u6210\u5206\u5206\u6790 \u97f3\u6bb5 \u97f3\u6bb5\u5f0f \u82e5\u8981\u4f9d\u64da\u5716\u4e8c\u7684\u8655\u7406\u6d41\u7a0b\u4f86\u9032\u884c\u8a9e\u97f3\u8f49\u63db\u7684\u8655\u7406\uff0c\u5247\u5404\u97f3\u6846\u5728\u6c42\u53d6 DCC \u4fc2\u6578\u4e4b\u5f8c\uff0c\u63a5
\u4f86\u6e90 \u8a9e\u97f3 (principle component analysis, PCA) [12]\uff0c\u518d\u4f9d\u64da\u4e3b\u6210\u5206\u5411\u91cf\u628a DCC \u4fc2\u6578\u8f49\u63db\u6210 PCA \u4fc2 \u4f30\u8a08 \u5075\u6e2c LMR \u5c0d\u6620 \u57fa\u983b \u5075\u6e2c HNM \u8a9e\u97f3 \u518d\u5408\u6210 \u8457\u5c31\u8981\u4f5c PCA \u4fc2\u6578\u8f49\u63db\u548c CDF \u4fc2\u6578\u8f49\u63db\u7684\u52d5\u4f5c\uff0c\u7136\u5f8c\u5728 LMR \u5c0d\u6620\u4e4b\u5f8c\uff0c\u9084\u8981\u4f5c PCA \u8f49\u63db\u5f8c \u6578\uff0c\u5982\u6b64\u5c07\u53ef\u8b93\u4e00\u500b\u97f3\u6846\u5404\u7dad\u5ea6\u7684 PCA \u4fc2\u6578\u4e4b\u9593\u8b8a\u6210\u662f\u7368\u7acb\u7684\u3002\u6b64\u5916\uff0c\u5716\u4e8c\u4e2d\u7684 LMR \u53cd\u8f49\u63db\u548c CDF \u53cd\u8f49\u63db\u7684\u52d5\u4f5c\uff0c\u4ee5\u5c07\u983b\u8b5c\u7279\u5fb5\u9084\u539f\u6210 DCC \u4fc2\u6578\u3002\u56e0\u6b64\uff0c\u5728\u9019\u4e00\u7bc0\u5c31\u8aaa\u660e \u8a9e\u97f3 \u5c0d\u6620\u65b9\u584a\uff0c\u4e00\u958b\u59cb\u6642\u662f\u672a\u88ab\u52a0\u5165\u7684\uff0c\u4e0d\u904e\u7d93\u7531\u521d\u6b65\u7684\u6e2c\u8a66\u5be6\u9a57\u767c\u73fe\uff0c\u7576\u6c92\u6709\u4f5c LMR \u5c0d PCA \u4fc2\u6578\u8f49\u63db\u548c CDF \u4fc2\u6578\u8f49\u63db\u7684\u7d30\u7bc0\u3002 \u57fa\u983b \u6620\u7684\u8655\u7406\u6642\uff0c\u8f49\u63db\u51fa\u8a9e\u97f3\u7684\u97f3\u8272\u96d6\u53ef\u9054\u5230\u90e8\u5206\u8fd1\u4f3c\u76ee\u6a19\u8a9e\u8005\u7684\u97f3\u8272\uff0c\u4f46\u662f\u4ecd\u5b58\u5728\u660e\u986f\u7684 \u8f49\u63db \u97f3\u8272\u843d\u5dee\uff0c\u56e0\u6b64\u6211\u5011\u9042\u6c7a\u5b9a\u628a LMR \u5c0d\u6620\u65b9\u584a\u52a0\u4e0a\u53bb\uff0c\u4ee5\u63d0\u5347\u97f3\u8272\u76f8\u4f3c\u5ea6\u3002 (\u4e00)\u3001PCA \u4fc2\u6578\u8f49\u63db
\u5c0d\u65bc\u5716\u4e00\u8655\u7406\u6d41\u7a0b\u6703\u9047\u5230\u7684\u983b\u8b5c\u5305\u7d61\u904e\u65bc\u5e73\u6ed1\u7684\u60c5\u6cc1\uff0c\u96d6\u7136\u524d\u4eba\u66fe\u7d93\u63d0\u51fa\u81f3\u5c11\u5169\u7a2e \u8981\u80fd\u5920\u628a\u4e00\u500b\u4f86\u6e90\u97f3\u6846\u7684 DCC \u4fc2\u6578\u8f49\u63db\u6210 PCA \u4fc2\u6578\uff0c\u5247\u5728\u8a13\u7df4\u968e\u6bb5\u5c31\u8981\u5148\u5c0d\u4f86\u6e90\u8a9e\u8005
\u7684\u6539\u9032\u65b9\u6cd5\uff0c\u5373\u5168\u57df\u8b8a\u7570\u6578(global variance, GV)\u4e4b\u8b8a\u7570\u6578\u8abf\u6574\u65b9\u6cd5[13]\u3001\u548c\u983b\u7387\u8ef8\u6821\u6b63 \u5404\u500b\u97f3\u6bb5\u985e\u5225\u6240\u6536\u96c6\u5230\u7684 DCC \u5411\u91cf\u4f5c PCA \u5206\u6790\uff0c\u4ee5\u6c42\u53d6\u4f86\u6e90\u8a9e\u8005\u5404\u500b\u97f3\u6bb5\u985e\u5225\u7684\u4e3b\u6210
\u5206\u5411\u91cf\u3002\u76f8\u5c0d\u5730\uff0c\u8981\u80fd\u5920\u628a\u4e00\u500b LMR \u5c0d\u6620\u5f8c\u97f3\u6846\u7684 PCA \u4fc2\u6578\u53cd\u8f49\u63db\u6210 DCC \u4fc2\u6578\uff0c\u5247
\u5728\u8a13\u7df4\u968e\u6bb5\u4e5f\u8981\u5148\u5c0d\u76ee\u6a19\u8a9e\u8005\u5404\u500b\u97f3\u6bb5\u985e\u5225\u6240\u6536\u96c6\u5230\u7684 DCC \u5411\u91cf\u4f5c PCA \u5206\u6790\uff0c\u4ee5\u6c42\u53d6
\u5c0d\u6620\u6240\u8a2d\u8a08\u7684\u3002\u56e0\u6b64\u6211\u5011\u5c31\u5f9e\u53e6\u5916\u4e00\u500b\u65b9\u5411\u53bb\u601d\u8003\u5716\u4e00\u6d41\u7a0b\u7684\u6539\u9032\u4f5c\u6cd5\uff0c\u5728\u53c3\u8003 Dutoit \u76ee\u6a19\u8a9e\u8005\u5404\u500b\u97f3\u6bb5\u985e\u5225\u7684\u4e3b\u6210\u5206\u5411\u91cf\u3002\u7136\u800c\u95dc\u65bc PCA \u5206\u6790\u7684\u4f5c\u6cd5\uff0c\u6211\u5011\u66fe\u7d93\u601d\u7d22\u7684\u4e00
\u7b49\u4eba\u7684\u8ad6\u6587[16]\u4e4b\u5f8c\uff0c\u6211\u5011\u60f3\u5230\u7684\u4e00\u500b\u4f5c\u6cd5\u662f\uff0c\u5728\u5716\u4e00\"LMR \u5c0d\u6620\"\u65b9\u584a\u4e4b\u5f8c\u63d2\u5165\"\u76ee\u6a19 \u500b\u7591\u554f\u662f\uff0c\u96d6\u7136\u76f4\u89ba\u4e0a\u6211\u5011\u6703\u8a8d\u70ba\u4f86\u6e90\u97f3\u6846\u548c\u76ee\u6a19\u97f3\u6846\u61c9\u8a72\u8981\u5206\u958b\u53bb\u6536\u96c6\uff0c\u4e26\u4e14\u5206\u958b\u53bb
\u97f3\u6846\u6311\u9078\"\u7684\u65b9\u584a\u3002\u65e2\u7136\u7d93\u904e GMM \u6216 LMR \u5c0d\u6620\u5f97\u5230\u7684\u983b\u8b5c\u5305\u7d61\u6703\u767c\u751f\u904e\u5ea6\u5e73\u6ed1\u7684\u73fe \u4f5c PCA \u5206\u6790\u4ee5\u6c42\u53d6\u5404\u81ea\u7684\u4e3b\u6210\u5206\u5411\u91cf\uff0c\u4f46\u662f\uff0c\u70ba\u4ec0\u9ebc\u4e0d\u80fd\u5920\u628a\u540c\u4e00\u97f3\u6bb5\u985e\u5225\u7684\u4f86\u6e90\u97f3
\u8c61\uff0c\u90a3\u9ebc\u5c31\u4e0d\u8981\u76f4\u63a5\u62ff LMR \u5c0d\u6620\u5f97\u5230\u7684\u983b\u8b5c\u4fc2\u6578\u53bb\u4f5c\u8a9e\u97f3\u518d\u5408\u6210\u8655\u7406\uff0c\u800c\u8981\u6539\u8b8a\u6210\u4f9d \u6846\u548c\u76ee\u6a19\u97f3\u6846\u653e\u5728\u4e00\u8d77\u53bb\u4f5c PCA \u5206\u6790\uff1f\u53c8\u70ba\u4ec0\u9ebc\u4e0d\u8b93\u4f86\u6e90\u97f3\u6846\u548c\u76ee\u6a19\u97f3\u6846\u5171\u7528\u4e00\u7d44\u4e3b
\u64da\u4f86\u6e90\u97f3\u6846(\u4f86\u6e90\u8a9e\u8005\u97f3\u6846)\u7684\u97f3\u6bb5\u985e\u5225\u3001\u53ca\u5c0d\u6620\u51fa\u7684\u983b\u8b5c\u7279\u5fb5\u4fc2\u6578(\u5982 DCC)\uff0c\u53bb\u5c0d\u540c\u4e00 \u6210\u5206\u5411\u91cf\u5462\uff1f\u56e0\u6b64\uff0c\u6211\u5011\u5c07\u4ee5\u5be6\u9a57\u8a55\u4f30\u7684\u65b9\u5f0f\u4f86\u63a2\u8a0e\u6b64\u4e00\u7591\u554f\u3002
\u97f3\u6bb5\u985e\u5225\u7684\u76ee\u6a19\u97f3\u6846(\u76ee\u6a19\u8a9e\u8005\u97f3\u6846)\u7fa4\u4f5c\u641c\u5c0b\uff0c\u4ee5\u627e\u51fa\u983b\u8b5c\u7279\u5fb5\u6700\u76f8\u4f3c(\u6216\u8ddd\u96e2\u6700\u5c0f)\u7684 PCA \u5206\u6790\u662f\u7531 K. Pearson \u65bc 1901 \u5e74\u63d0\u51fa\uff0c\u5728 1933 \u5e74\u6642\u518d\u7531 H. Hotelling \u52a0\u4ee5\u767c\u5c55 \u76ee\u6a19\u97f3\u6846\uff0c\u7136\u5f8c\u628a\u627e\u51fa\u7684\u76ee\u6a19\u97f3\u6846\u7684\u983b\u8b5c\u4fc2\u6578\u62ff\u53bb\u53d6\u4ee3\u5c0d\u6620\u51fa\u7684\u983b\u8b5c\u4fc2\u6578\uff0c\u5982\u6b64\u5c31\u53ef\u514d [17]\u3002PCA \u8f49\u63db\u662f\u4e00\u7a2e\u6b63\u4ea4\u8b8a\u63db\uff0c\u5b83\u53ef\u4ee5\u5c07\u539f\u672c\u7dad\u5ea6\u9593\u76f8\u95dc\u7684\u539f\u59cb\u6578\u64da\u8f49\u63db\u6210\u5404\u7dad\u5ea6\u7368 \u9664\u767c\u751f\u983b\u8b5c\u5305\u7d61\u904e\u5ea6\u5e73\u6ed1\u7684\u554f\u984c\u3002\u7531\u65bc\u88ab\u627e\u51fa\u7684\u76ee\u6a19\u97f3\u6846\u4e0d\u662f\u7d93\u7531\u983b\u8b5c\u5c0d\u6620\u800c\u5f97\u5230\uff0c\u6240 \u7acb\u7684\u65b0\u6578\u64da\uff0c\u518d\u8005\u4f5c PCA \u8f49\u63db\u5f8c\u7684\u65b0\u6578\u64da\uff0c\u5b83\u5011\u7684\u7e3d\u8b8a\u7570\u6578(variance)\u8207\u539f\u59cb\u6578\u64da\u96c6\u7684 \u4ee5\u5728\u6b64\u4e5f\u7a31\u5b83\u70ba\u771f\u5be6\u97f3\u6846(\u771f\u5be6\u8a9e\u97f3\u7684\u97f3\u6846)\uff0c\u6b64\u5916\uff0c\u76ee\u6a19\u97f3\u6846\u7684\u97f3\u6bb5\u5206\u985e\u8207\u6536\u96c6\u662f\u5728\u8a13 \u7df4\u968e\u6bb5\u9032\u884c\uff0c\u6240\u4ee5\u8f49\u63db\u968e\u6bb5\u5c31\u53ef\u76f4\u63a5\u53bb\u4f5c\u641c\u5c0b\u8207\u6311\u9078\u3002\u7576\u5716\u4e00\u63d2\u5165\"\u76ee\u6a19\u97f3\u6846\u6311\u9078\"\u7684\u65b9 \u7e3d\u8b8a\u7570\u6578\u76f8\u7b49\uff0c\u4e5f\u5c31\u662f\u8aaa PCA \u8f49\u63db\u80fd\u4fdd\u7559\u539f\u59cb\u6578\u64da\u7684\u8a0a\u606f\u3002
\u584a\u4e4b\u5f8c\uff0c\u4e00\u7a2e\u57fa\u65bc LMR \u5c0d\u6620\u53ca\u76ee\u6a19\u97f3\u6846\u6311\u9078\u4e4b\u6539\u9032\u7684\u8a9e\u97f3\u8f49\u63db\u8655\u7406\u6d41\u7a0b\u5c31\u5982\u5716\u4e09\u6240\u793a\u3002 1\u3001\u4e3b\u6210\u5206\u5206\u6790
\u5c0d\u65bc\u67d0\u4e00\u97f3\u6bb5\u985e\u5225\u7684\u6240\u6709\u8a13\u7df4\u8a9e\u97f3\u4f5c\u97f3\u6846\u5207\u5272\u53ca\u6c42\u53d6 DCC \u4fc2\u6578\uff0c\u4ee5\u5efa\u7acb\u4e00\u500b 40 \u7dad DCC
DCC \u4fc2\u6578\u7684\u6578\u64da\u96c6\uff0c\u63a5\u8457\u518d\u5c0d\u9019\u500b\u6578\u64da\u96c6\u4f5c PCA \u5206\u6790\u4ee5\u5f97\u5230\u8a72\u7a2e\u97f3\u6bb5\u7684\u4e3b\u6210\u5206\u5411\u91cf\uff0c\u8a73\u7d30 \u97f3\u6bb5 \u97f3\u6bb5\u5f0f \u76ee\u6a19\u97f3
\u4f86\u6e90 \u8a9e\u97f3 \u7684\u5206\u6790\u6d41\u7a0b\u5982\u4e0b: (a) \u5047\u8a2d\u67d0\u4e00\u97f3\u6bb5\u985e\u5225\u7684\u8a13\u7df4\u8a9e\u97f3\u7e3d\u5171\u53ef\u5207\u6210 M \u500b\u97f3\u6846\uff0c\u800c\u6bcf\u500b\u97f3\u6846\u7d93\u7531\u8a08\u7b97\u53ef\u5f97\u5230\u4e00 \u4f30\u8a08 \u5075\u6e2c LMR \u5c0d\u6620 \u57fa\u983b \u57fa\u983b HNM \u8a9e\u97f3 \u518d\u5408\u6210 \u6846\u6311\u9078 \u8f49\u63db \u8a9e\u97f3 \u500b DCC \u4fc2\u6578\u7684\u5411\u91cf\uff0c\u7136\u5f8c\u628a\u5168\u90e8\u97f3\u6846\u7684 DCC \u5411\u91cf\u4e26\u5217\u6210\u5404\u6b04(column)\u7684\u65b9\u5f0f\uff0c\u8868
\u5075\u6e2c \u793a\u6210\u5927\u5c0f\u70ba L\u00d7M \u7684\u77e9\u966312\u8f49\u63db
\u5716\u4e09\u3001\u57fa\u65bc LMR \u5c0d\u6620\u53ca\u76ee\u6a19\u97f3\u6846\u6311\u9078\u4e4b\u8a9e\u97f3\u8f49\u63db\u7684\u8655\u7406\u6d41\u7a0b
\u9664\u4e86\u5206\u5225\u53bb\u52a0\u5165\u76f4\u65b9\u5716\u7b49\u5316\u548c\u76ee\u6a19\u97f3\u6846\u6311\u9078\u7684\u8655\u7406\u52d5\u4f5c\uff0c\u6211\u5011\u4e5f\u8003\u616e\u4e86\u53e6\u5916\u4e00\u7a2e\u8655
\u7406\u6d41\u7a0b\uff0c\u5c31\u662f\u540c\u6642\u628a\u9019\u5169\u7a2e\u8655\u7406\u52d5\u4f5c\u52a0\u5165\u5716\u4e00\u7684\u8655\u7406\u6d41\u7a0b\u4e2d\uff0c\u5982\u6b64\u8f49\u63db\u51fa\u7684\u8a9e\u97f3\u662f\u5426\u53ef
\u4ee5\u7372\u5f97\u6700\u597d\u7684\u97f3\u8272\u76f8\u4f3c\u5ea6\u53ca\u8a9e\u97f3\u54c1\u8cea\uff1f\u9019\u5c07\u6703\u7b2c\u56db\u7bc0\u4e2d\u4f5c\u5be6\u9a57\u63a2\u8a0e\u3002\u6b64\u5916\uff0c\u5728\u5716\u4e00\u3001\u4e8c\u3001
" }, "TABREF2": { "html": null, "type_str": "table", "text": "32, 64, 128 \u7b49\u4e09\u7a2e\u3002HEQ \u8868\u683c\u5efa\u9020\u5f8c\u7684\u5916\u89c0\u70ba \u4f55\uff1f\u5728\u6b64\u8209\u4e00\u500b\u7c21\u5316\u7684\u4f8b\u5b50\uff0c\u8a2d\u6709 20 \u500b\u97f3\u6846\uff0cPCA \u4fc2\u6578\u5411\u91cf\u7dad\u5ea6\u70ba 1 \u7dad\uff0c\u4e14 PCA \u4fc2 \u6578\u5e8f\u5217\u6392\u5e8f\u5f8c\u70ba 1, 2, \u2026, 20\uff0c\u82e5\u8a2d\u5b9a\u7684\u5340\u9593\u6578\u70ba N=4\uff0c\u5247\u5efa\u9020\u51fa\u7684 HEQ \u8868\u683c\u5982\u4e0b\u6240\u5217\u3002", "num": null, "content": "
\u8868\u4e00\u3001\u4e00\u500b\u7c21\u5316\u7684 HEQ \u8868\u683c\u4f8b\u5b50
\u5340\u9593 j012345
1 j Fp1(min)38131820(max)
1 j Fc0.050.150.40.650.91
2\u3001CDF \u4fc2\u6578\u8f49\u63db
\u5047\u8a2d\u6709\u4e00\u500b\u97f3\u6846\u7684 PCA \u4fc2\u6578\u5411\u91cf1 2 [ , , , ] L P P P P = \u22c5\u22c5\u22c5\u8981\u88ab\u8f49\u63db\uff0c\u800c\u8a72\u97f3\u6846\u6240\u5c6c\u7684\u97f3\u6bb5\u985e
\u5225\u8cc7\u8a0a\uff0c\u5df2\u7d93\u5728\u5716\u4e8c\u7684\"\u97f3\u6bb5\u5075\u6e2c\"\u65b9\u584a\u6c7a\u5b9a\u51fa\u4f86\uff0c\u6240\u4ee5\u6211\u5011\u53ef\u4ee5\u53d6\u51fa\u8a72\u97f3\u6bb5\u985e\u5225\u7684\u4f86\u6e90
\u97f3\u6846\u6240\u8a13\u7df4\u51fa\u7684 HEQ \u8868\u683c\uff0c\u7136\u5f8c\u4ee5\u7dda\u6027\u5167\u63d2\u7684\u65b9\u5f0f\u4f86\u8a08\u7b97\u51fa\u8a72\u97f3\u6846\u7684 CDF \u4fc2\u6578\u5411\u91cf
1 2 [ , , , ] L Q Q Q Q = \u22c5\u22c5 \u22c5\uff0c\u7dda\u6027\u5167\u63d2\u4e4b\u516c\u5f0f\u5982\u4e0b\uff1a
(1)((1)),1, 2, ..., .
" }, "TABREF3": { "html": null, "type_str": "table", "text": "Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing(ROCLING 2013)", "num": null, "content": "
(\u4e00)\u3001\u8a9e\u97f3\u8f49\u63db\u7cfb\u7d71\u4e4b\u8a13\u7df4
\u9996\u5148\uff0c\u6211\u5011\u64cd\u4f5c HTK (HMM tool kit)\u8edf\u9ad4\uff0c\u7d93\u7531\u5f37\u5236\u5c0d\u9f4a(forced alignment)\u4f86\u4f5c\u81ea\u52d5\u6a19
\u97f3\uff0c\u628a\u4e00\u500b\u8a9e\u53e5\u7684\u5404\u500b\u8072\u6bcd\u3001\u97fb\u6bcd\u7684\u908a\u754c\u6a19\u793a\u51fa\u4f86\uff0c\u7136\u5f8c\u64cd\u4f5c WaveSurfer \u8edf\u9ad4\uff0c\u4ee5\u6aa2
\u67e5\u81ea\u52d5\u6a19\u8a18\u7684\u908a\u754c\u662f\u5426\u6709\u932f\uff0c\u6709\u932f\u5247\u4f5c\u4eba\u5de5\u66f4\u6b63\u3002\u63a5\u8457\uff0c\u4f9d\u64da\u5404\u500b\u8072\u3001\u97fb\u6bcd\u7684\u62fc\u97f3\u7b26\u865f
\u6a19\u8a18\u548c\u908a\u754c\u4f4d\u7f6e\uff0c\u5c31\u53ef\u4f5c\u97f3\u6bb5\u5207\u5272\u548c\u5206\u985e\u7684\u52d5\u4f5c\uff0c\u6211\u5011\u4e00\u5171\u5206\u6210 57 \u985e\uff0c\u5373 21 \u985e\u8072\u6bcd\u548c
36 \u985e\u97fb\u6bcd\u3002
\u5c0d\u65bc\u5404\u500b\u8a9e\u97f3\u97f3\u6846\uff0c\u6211\u5011\u5148\u8a08\u7b97\u96f6\u4ea4\u8d8a\u7387(ZCR)\uff0c\u4ee5\u628a ZCR \u5f88\u9ad8\u7684\u7121\u8072(unvoiced)
\u97f3\u6846\u5075\u6e2c\u51fa\u4f86\uff1b\u518d\u4f7f\u7528\u4e00\u7a2e\u57fa\u65bc\u81ea\u76f8\u95dc\u51fd\u6578\u53ca AMDF \u7684\u57fa\u9031\u5075\u6e2c\u65b9\u6cd5[18]\uff0c\u4f86\u5075\u6e2c\u5269\u9918
\u97f3\u6846\u7684\u97f3\u9ad8\u983b\u7387\u3002\u4e4b\u5f8c\uff0c\u628a\u4e00\u500b\u8a9e\u8005\u767c\u97f3\u4e2d\u6709\u8072(voiced)\u97f3\u6846\u5075\u6e2c\u51fa\u7684\u97f3\u9ad8\u983b\u7387\u503c\u6536\u96c6
\u8d77\u4f86\uff0c\u64da\u4ee5\u7b97\u51fa\u8a72\u8a9e\u8005\u97f3\u9ad8\u7684\u5e73\u5747\u503c\u53ca\u6a19\u6e96\u5dee\uff0c\u800c\u5e73\u5747\u503c\u53ca\u6a19\u6e96\u5dee\u5c31\u662f\u672c\u8ad6\u6587\u6240\u4f7f\u7528\u7684
\u97f3\u9ad8\u53c3\u6578\u3002\u5728\u6b64\u4e00\u500b\u97f3\u6846\u7684\u9577\u5ea6\u8a2d\u70ba 512 \u500b\u6a23\u672c\u9ede(23.2ms)\uff0c\u800c\u97f3\u6846\u4f4d\u79fb\u5247\u8a2d\u70ba 128 \u500b
\u6a23\u672c\u9ede(5.8ms)\u3002\u6b64\u5916\uff0c\u5c0d\u65bc\u4e00\u500b\u97f3\u6846\u7684\u983b\u8b5c\u4fc2\u6578\uff0c\u6211\u5011\u4f7f\u7528\u5148\u524d\u767c\u5c55\u7684 DCC \u4f30\u8a08\u7a0b\u5f0f
[7]\u4f86\u8a08\u7b97\u51fa 41 \u7dad\u7684 DCC \u4fc2\u6578\u3002
\u5728\u8a13\u7df4 LMR \u5c0d\u6620\u77e9\u9663\u4e4b\u524d\uff0c\u6211\u5011\u9010\u4e00\u5c0d\u5404\u500b\u8072\u3001\u97fb\u6bcd\u985e\u5225\u6240\u6536\u96c6\u7684\u5e73\u884c\u767c\u97f3\u97f3\u6bb5
" }, "TABREF4": { "html": null, "type_str": "table", "text": "VH \u4e2d\u7684 V \u8868\u793a\u672a\u4f5c\u76ee\u6a19\u97f3\u6846\u6311\u9078\uff0c\u800c WD \u8207 WH \u4e2d\u7684 W \u5247\u8868\u793a\u6709\u4f5c \u76ee\u6a19\u97f3\u6846\u6311\u9078\uff1b\u6b64\u5916\uff0cVD \u8207 WD \u4e2d\u7684 D \u8868\u793a\u76f4\u63a5\u62ff DCC \u5411\u91cf\u53bb\u4f5c LMR \u5c0d\u6620\uff0c\u5c31\u5982 \u5716\u4e00\u4e4b\u8655\u7406\u6d41\u7a0b\uff0c\u800c VH \u8207 WH \u4e2d\u7684 H \u8868\u793a DCC \u5411\u91cf\u8981\u5148\u4f5c PCA \u4fc2\u6578\u8f49\u63db\u53ca CDF \u4fc2 \u6578\u8f49\u63db\uff0c\u7136\u5f8c\u624d\u4f5c LMR \u5c0d\u6620\uff0c\u5c31\u5982\u5716\u4e8c\u4e4b\u8655\u7406\u6d41\u7a0b\u3002\u9019 4 \u7d44\u97f3\u6a94\u53ef\u5f9e\u5982\u4e0b\u7db2\u9801\u53bb\u4e0b\u8f09 \u8a66\u807d: http://guhy.csie.ntust.edu.tw/vcHeqLmr/\u3002 \u4f7f\u7528\u9019 4 \u7d44\u97f3\u6a94\uff0c\u6211\u5011\u5148\u7de8\u6392\u6210\u4e8c\u9805\u7684\u807d\u6e2c\u5be6\u9a57\uff0c\u7b2c\u4e00\u9805\u807d\u6e2c\u5be6\u9a57\u88e1\uff0c\u53d7\u6e2c\u8005\u5148\u3001 DCC \u4f30\u8a08\u8207 LMR \u5c0d\u6620\u4e4b\u9593\u63d2\u5165\"\u76f4\u65b9\u5716\u7b49\u5316\"\u8655\u7406(\u5305\u542b PCA \u4fc2\u6578\u8f49\u63db\u8207 CDF \u4fc2\u6578\u8f49\u63db)\u4e4b\u5f8c\uff0c\u96d6\u7136\u8a9e\u97f3\u8f49\u63db\u7684\u5e73\u5747\u8aa4\u5dee\u8ddd\u96e2\u6703\u7531 0.5382 [4]\u8b8a\u5927\u6210\u70ba 0.5414\uff0c\u4f46\u662f\u4e3b \u89c0\u807d\u6e2c\u5be6\u9a57\u7684\u7d50\u679c\u986f\u793a\uff0c\u8f49\u63db\u51fa\u8a9e\u97f3\u7684\u54c1\u8cea\u537b\u662f\u6bd4\u672a\u52a0\u76f4\u65b9\u5716\u7b49\u5316\u6642\u7684\u597d\uff0c\u6240\u4ee5\u76f4\u65b9\u5716 \u7b49\u5316\u8655\u7406\u53ef\u7528\u4ee5\u7d13\u89e3 LMR \u5c0d\u6620\u6240\u9020\u6210\u7684\u983b\u8b5c\u904e\u5ea6\u5e73\u6ed1\u4e4b\u554f\u984c\u3002\u6b64\u5916\uff0c\u95dc\u65bc\u4f86\u6e90\u8a9e\u8005\u548c \u76ee\u6a19\u8a9e\u8005\u662f\u5426\u61c9\u5171\u7528\u4e3b\u6210\u5206\u5411\u91cf\u7684\u7591\u554f\uff0c\u5be6\u9a57\u7684\u7d50\u679c\u986f\u793a\uff0c\u8b93\u5169\u8a9e\u8005\u5171\u7528\u4e3b\u6210\u5206\u5411\u91cf\u662f \u6bd4\u8f03\u597d\u7684\u4f5c\u6cd5\uff0c\u53ef\u8b93\u8a9e\u97f3\u8f49\u63db\u7684\u5e73\u5747\u8aa4\u5dee\u5f9e 0.5447 \u6e1b\u5c0f\u6210 0.5414\u3002 \u53e6\u4e00\u7a2e\u6539\u9032\u8a9e\u97f3\u54c1\u8cea\u7684\u65b9\u6cd5\u662f\uff0c\u5728\u5716\u4e00\u6d41\u7a0b\u7684 LMR \u5c0d\u6620\u8207 HNM \u8a9e\u97f3\u518d\u5408\u6210\u4e4b\u9593 \u63d2\u5165\"\u76ee\u6a19\u97f3\u6846\u6311\u9078\"\u4e4b\u8655\u7406\uff0c\u96d6\u7136\u8a9e\u97f3\u8f49\u63db\u7684\u5e73\u5747\u8aa4\u5dee\u8ddd\u96e2\u6703\u7531 0.5382 \u8b8a\u5927\u6210\u70ba 0.6029\uff0c\u4f46\u662f\u5ba2\u89c0 VR \u503c\u7684\u91cf\u6e2c\u53ca\u4e3b\u89c0\u807d\u6e2c\u5be6\u9a57\u7684\u7d50\u679c\u90fd\u986f\u793a\uff0c\u8f49\u63db\u51fa\u8a9e\u97f3\u7684\u54c1\u8cea\u78ba\u5be6 \u662f\u660e\u986f\u5730\u63d0\u5347\u4e86\uff0c\u4e0d\u8ad6 LMR \u983b\u8b5c\u5c0d\u6620\u65b9\u584a\u4e4b\u524d\u6709\u5426\u4f5c\u904e\u76f4\u65b9\u5716\u7b49\u5316\u7684\u8655\u7406\uff0c\u6240\u4ee5\"\u76ee \u6a19\u97f3\u6846\u6311\u9078\"\u6bd4\u8d77\"\u76f4\u65b9\u5716\u7b49\u5316\"\uff0c\u5c0d\u65bc\u8f49\u63db\u51fa\u8a9e\u97f3\u4e4b\u54c1\u8cea\u63d0\u5347\u66f4\u70ba\u6709\u529f\u6548\uff0c\u4e26\u4e14 VR \u503c \u5927\u9ad4\u4e0a\u53ef\u53cd\u61c9\u51fa\u8a9e\u97f3\u7684\u54c1\u8cea\u3002\u53e6\u5916\uff0c\u5c0d\u65bc\u5e73\u5747\u8aa4\u5dee\u8ddd\u96e2\u6108\u5927\u53cd\u800c\u5f97\u5230\u6108\u597d\u7684\u8a9e\u97f3\u54c1\u8cea\uff0c \u9019\u7a2e\u4e0d\u4e00\u81f4\u6027\u7684\u60c5\u6cc1\uff0c\u6211\u5011\u89c0\u5bdf\u4e00\u4e9b\u97f3\u6846\u7684\u983b\u8b5c\u5305\u7d61\u66f2\u7dda\u5f8c\u767c\u73fe\uff0c\u8f49\u63db\u51fa\u4e4b\u8a9e\u97f3\u807d\u8d77\u4f86 \u6bd4\u8f03\u6a21\u7cca\u8005\uff0c\u901a\u5e38\u5176\u983b\u8b5c\u5305\u7d61\u5728 2,500 Hz \u81f3 4,500 Hz \u4e4b\u983b\u7387\u7bc4\u570d\uff0c\u6703\u986f\u73fe\u904e\u5ea6\u5e73\u6ed1\u7684 \u60c5\u5f62\uff0c\u4e26\u4e14\u6bd4\u8d77\u6e05\u6670\u8005\u8f03\u70ba\u9060\u96e2\u76ee\u6a19\u983b\u8b5c\u5305\u7d61\u66f2\u7dda\uff1b\u7136\u800c\u5728 5,000 Hz \u4e4b\u5f8c\u7684\u983b\u7387\u7bc4\u570d\uff0c \u96d6\u7136\u6a21\u7cca\u8005\u7684\u983b\u8b5c\u5305\u7d61\u4e5f\u662f\u986f\u73fe\u904e\u5ea6\u5e73\u6ed1\u7684\u60c5\u5f62\uff0c\u4f46\u662f\u6bd4\u8d77\u6e05\u6670\u8005\u537b\u8f03\u70ba\u63a5\u8fd1\u76ee\u6a19\u983b\u8b5c \u5305\u7d61\u66f2\u7dda\uff0c\u6240\u4ee5\u6703\u8a08\u7b97\u51fa\u6bd4\u8f03\u5c0f\u7684\u8aa4\u5dee\u8ddd\u96e2\u3002 \u81f4\u8b1d \u611f\u8b1d\u570b\u79d1\u6703\u8a08\u756b\u4e4b\u7d93\u8cbb\u652f\u63f4\uff0c\u570b\u79d1\u6703\u8a08\u756b\u7de8\u865f 101-2221-E-011-144\u3002 \u53c3\u8003\u6587\u737b", "num": null, "content": "
(\u4e8c)\u3001\u5171\u7528\u4e3b\u6210\u5206\u5411\u91cf\u4e4b\u6e2c\u8a66 \u5716\u4e8c\u7684\u8655\u7406\u6d41\u7a0b\u88e1\uff0cPCA \u4fc2\u6578\u8f49\u63db\u8207 PCA \u53cd\u8f49\u63db\u5169\u500b\u8655\u7406\u65b9\u584a\uff0c\u82e5\u8b93\u5169\u8005\u5171\u7528\u4e00\u7d44\u4e3b \u6210\u5206\u5411\u91cf\u662f\u5426\u6703\u6bd4\u8f03\u597d\uff1f\u539f\u5148\u4e0d\u5171\u7528\u4e3b\u6210\u5206\u5411\u91cf\u7684\u60c5\u6cc1\uff0c\u8868\u793a\"PCA \u4fc2\u6578\u8f49\u63db\"\u65b9\u584a\u4f7f\u7528 \u7684\u4e3b\u6210\u5206\u662f\u7531\u4f86\u6e90\u97f3\u6846\u4f5c\u5b8c\u97f3\u6bb5\u5206\u985e\u5f8c\u518d\u4f5c PCA \u5206\u6790\u5f97\u5230\uff0c\u800c\"PCA \u53cd\u8f49\u63db\"\u65b9\u584a\u4f7f\u7528 \u7684\u4e3b\u6210\u5206\u5247\u662f\u7531\u76ee\u6a19\u97f3\u6846\u4f5c\u5b8c\u97f3\u6bb5\u5206\u985e\u5f8c\u518d\u4f5c PCA \u5206\u6790\u5f97\u5230\uff1b\u82e5\u662f\u5171\u7528\u4e3b\u6210\u5206\u5411\u91cf\uff0c \u5c31\u8868\u793a\u540c\u4e00\u97f3\u6bb5\u985e\u5225\u7684\u4f86\u6e90\u97f3\u6846\u548c\u76ee\u6a19\u97f3\u6846\u8981\u653e\u5728\u4e00\u8d77\u53bb\u4f5c PCA \u5206\u6790\uff0c\u4ee5\u6c42\u5f97\u5171\u7528\u7684 \u4e00\u7d44\u4e3b\u6210\u5206\u5411\u91cf\u3002 \u6211\u5011\u4ee5\u91cf\u6e2c\u8a9e\u97f3\u8f49\u63db\u7684\u5e73\u5747\u8f49\u63db\u8aa4\u5dee\u7684\u65b9\u5f0f\uff0c\u4f86\u6bd4\u8f03\u5171\u7528\u8207\u4e0d\u5171\u7528\u4e3b\u6210\u5206\u5411\u91cf\u4e4b\u512a \u52a3\u3002\u5728\u6b64\uff0c\u6211\u5011\u53ea\u62ff\u5e73\u884c\u8a9e\u6599\u6700\u5f8c\u7684 25 \u53e5\u4f86\u4f5c\u8a9e\u97f3\u8f49\u63db\u4e4b\u5916\u90e8\u6e2c\u8a66\uff0c\u7576\u4e00\u500b\u4f86\u6e90\u97f3\u6846 \u7d93\u904e\u8f49\u63db\u800c\u5f97\u5230 DCC \u5411\u91cf\u4e4b\u5f8c\uff0c\u6211\u5011\u5c31\u53ef\u91cf\u6e2c\u6b64 DCC \u5411\u91cf\u8207\u5c0d\u61c9\u7684\u76ee\u6a19\u97f3\u6846 DCC \u5411 \u91cf\u4e4b\u9593\u7684\u5e7e\u4f55\u8ddd\u96e2\uff0c\u9019\u6a23\u7684\u8ddd\u96e2\u4e5f\u7a31\u70ba\u8f49\u63db\u8aa4\u5dee\uff0c\u7576\u628a\u5168\u90e8\u97f3\u6846\u7684\u8f49\u63db\u8aa4\u5dee\u52a0\u7e3d\u53ca\u53d6\u5e73 \u5747\uff0c\u5c31\u53ef\u7b97\u51fa\u5e73\u5747\u7684\u8f49\u63db\u8aa4\u5dee\u3002\u6b64\u5916\uff0c\u6211\u5011\u4e5f\u628a\u5716\u4e8c\u6d41\u7a0b\u88e1\u7684\u76f4\u65b9\u5716\u7b49\u5316(\u5373 CDF \u4fc2\u6578 \u8f49\u63db\u8207\u53cd\u8f49\u63db)\u5206\u6210\u4e09\u7a2e\u60c5\u6cc1\u4f86\u4f5c\u5be6\u9a57\uff0c\u5c31\u662f\u5206\u5225\u8a2d\u5b9a\u5340\u9593\u7684\u6578\u91cf N \u70ba 32\u300164\u3001\u8207 128\uff0c \u7d93\u904e\u5be6\u9a57\u91cf\u6e2c\u5f8c\uff0c\u6211\u5011\u5f97\u5230\u5982\u8868\u4e8c\u6240\u793a\u7684\u5e73\u5747\u8f49\u63db\u8aa4\u5dee\u503c\u3002 \u5f9e\u8868\u4e8c\u7684\u8f49\u63db\u8aa4\u5dee\u5e73\u5747\u503c\u53ef\u4ee5\u770b\u51fa\uff0c\u5716\u4e8c\u4e2d\u7684 PCA \u4fc2\u6578\u8f49\u63db\u8207\u53cd\u8f49\u63db\u65b9\u584a\u82e5\u662f\u4f7f \u8868\u4e8c\u3001\u5171\u7528\u8207\u4e0d\u5171\u7528\u4e3b\u6210\u5206\u5411\u91cf\u4e4b\u5e73\u5747\u8f49\u63db\u8aa4\u5dee \u4e0d\u5171\u7528 PCA \u5411\u91cf \u5171\u7528 PCA \u5411\u91cf \u8aa4\u5dee \u914d\u5c0d 32 \u5340\u9593 64 \u5340\u9593 128 \u5340\u9593 32 \u5340\u9593 64 \u5340\u9593 128 \u5340\u9593 MA=> MB 0.5442 0.5438 0.5442 0.5389 0.5389 0.5389 MA=> FA 0.5159 0.5158 0.5156 0.5155 0.5154 0.5154 FA => MA 0.5387 0.5386 0.5384 0.5369 0.5344 0.5344 FA => FB 0.5807 0.5806 0.5805 0.5773 0.5768 0.5768 \u5e73\u5747 0.5449 0.5447 0.5447 0.5422 0.5414 0.5414 (\u4e09)\u3001PCA \u8f49\u63db\u4e4b\u5fc5\u8981\u6027\u6e2c\u8a66 \u5c0d\u65bc\u5716\u4e8c\u7684\u6d41\u7a0b\u88e1\uff0c\u52a0\u5165\"PCA \u4fc2\u6578\u8f49\u63db\"\u8207\"PCA \u53cd\u8f49\u63db\"\u65b9\u584a\u662f\u5426\u70ba\u5fc5\u8981\u7684\uff1f\u5728\u6b64\u6211 \u5011\u4ee5\u91cf\u6e2c\u8a9e\u97f3\u8f49\u63db\u7684\u5e73\u5747\u8f49\u63db\u8aa4\u5dee\u7684\u65b9\u5f0f\uff0c\u4f86\u6bd4\u8f03 PCA \u4fc2\u6578\u8f49\u63db\u52a0\u5165\u8207\u4e0d\u52a0\u5165\u7684\u512a \u52a3\uff0c\u6240\u7528\u7684\u6e2c\u8a66\u8a9e\u6599\u548c\u8aa4\u5dee\u7684\u91cf\u6e2c\u65b9\u5f0f\uff0c\u548c 4.2 \u7bc0\u88e1\u6558\u8ff0\u7684\u4e00\u6a23\uff0c\u4ea6\u5373\u4f7f\u7528\u5e73\u884c\u8a9e\u6599\u6700 \u5f8c 25 \u53e5\u4f86\u4f5c\u5916\u90e8\u6e2c\u8a66\uff0c\u4e26\u4e14\u91cf\u6e2c\u8f49\u63db\u5f97\u5230\u7684 DCC \u5411\u91cf\u8207\u5c0d\u61c9\u7684\u76ee\u6a19\u97f3\u6846 DCC \u5411\u91cf\u4e4b \u9593\u7684\u5e7e\u4f55\u8ddd\u96e2\uff0c\u518d\u8a08\u7b97\u5168\u90e8\u97f3\u6846\u7684\u5e73\u5747\u8aa4\u5dee\u3002\u6b64\u5916\uff0c\u76f4\u65b9\u5716\u7b49\u5316\u4e5f\u5206\u6210\u4e09\u7a2e\u5340\u9593\u6578\u4f86\u4f5c \u5be6\u9a57\uff0c\u5373 32\u300164\u3001\u8207 128 \u500b\u5340\u9593\u3002\u7d93\u904e\u5be6\u9a57\u91cf\u6e2c\u5f8c\uff0c\u6211\u5011\u5f97\u5230\u5982\u8868\u4e09\u6240\u793a\u7684\u5e73\u5747\u8f49\u63db \u8aa4\u5dee\u503c\uff0c\u5176\u4e2d\u53f3\u908a\u4e09\u6b04\u7684\u6578\u503c\u662f\u53d6\u81ea\u8868\u4e8c\u7684\u53f3\u908a\u4e09\u6b04\u3002 \u8868\u4e09\u3001\u4f5c\u8207\u4e0d\u4f5c PCA \u4fc2\u6578\u8f49\u63db\u4e4b\u5e73\u5747\u8f49\u63db\u8aa4\u5dee \u4e0d\u4f5c PCA \u4fc2\u6578\u8f49\u63db \u4f5c PCA \u4fc2\u6578\u8f49\u63db \u8aa4\u5dee \u914d\u5c0d 32 \u5340\u9593 64 \u5340\u9593 128 \u5340\u9593 32 \u5340\u9593 64 \u5340\u9593 128 \u5340\u9593 MA=> MB 0.5454 0.5450 0.5446 0.5389 0.5389 0.5389 MA=> FA 0.5177 0.5172 0.5171 0.5155 0.5154 0.5154 FA => MA 0.5410 0.5402 0.5399 0.5369 0.5344 0.5344 FA => FB 0.5826 0.5825 0.5823 0.5773 0.5768 0.5768 \u5e73\u5747 0.5467 0.5462 0.5460 0.5422 0.5414 0.5414 \u5f9e\u8868\u4e09\u7684\u6578\u503c\u53ef\u4ee5\u770b\u51fa\uff0c\u4f5c PCA \u4fc2\u6578\u8f49\u63db\u7684\u78ba\u53ef\u4f7f\u5f97\u8a9e\u97f3\u8f49\u63db\u7684\u8aa4\u5dee\u5e73\u5747\u503c\u4e0b \u964d\uff0c\u5728 64 \u5340\u9593\u76f4\u65b9\u5716\u7b49\u5316\u7684\u60c5\u6cc1\u4e0b\uff0c\u5e73\u5747\u8f49\u63db\u8aa4\u5dee\u53ef\u5f9e 0.5462 \u964d\u5230 0.5414\uff0c\u9019\u8aaa\u660e\u4e86 \u76f4\u65b9\u5716\u7b49\u5316\u4e4b\u524d\u5148\u4f5c PCA \u4fc2\u6578\u8f49\u63db\u662f\u6709\u7528\u7684\u3001\u9700\u8981\u7684\u3002 (\u56db)\u3001\u76ee\u6a19\u97f3\u6846\u6311\u9078\u4e4b\u8f49\u63db\u8aa4\u5dee \u76ee\u6a19\u97f3\u6846\u6311\u9078\u53ef\u7528\u4ee5\u907f\u514d\u767c\u751f\u983b\u8b5c\u904e\u5ea6\u5e73\u6ed1\u7684\u554f\u984c\uff0c\u5176\u8a73\u7d30\u7684\u4f5c\u6cd5\u5df2\u5728\u7b2c\u4e09\u7bc0\u8aaa\u660e\u3002\u5728 \u6b64\u6211\u5011\u4f9d\u64da\u5716\u4e09\u4e4b\u8655\u7406\u6d41\u7a0b\uff0c\u6e2c\u8a66\u76ee\u6a19\u97f3\u6846\u6311\u9078\u662f\u5426\u53ef\u4ee5\u8b93\u8a9e\u97f3\u8f49\u63db\u7684\u5e73\u5747\u8aa4\u5dee\u6e1b\u5c11\uff1f \u662f\u5426\u53ef\u4ee5\u6bd4\u5716\u4e8c\u8655\u7406\u6d41\u7a0b\u7684\u597d\uff1f\u5716\u4e09\u6d41\u7a0b\u7684\u8a9e\u97f3\u8f49\u63db\u65b9\u6cd5\uff0c\u6211\u5011\u7a31\u70ba\u57fa\u672c\u578b\u76ee\u6a19\u97f3\u6846\u6311 \u9078\u6cd5\uff0c\u6b64\u5916\uff0c\u6211\u5011\u4e5f\u6e2c\u8a66\u4e86\u53e6\u5916\u4e00\u7a2e\u8a9e\u97f3\u8f49\u63db\u65b9\u6cd5\uff0c\u7a31\u70ba\u8907\u5408\u578b\u76ee\u6a19\u97f3\u6846\u6311\u9078\u6cd5\uff0c\u5c31\u662f \u578b\u76ee\u6a19\u97f3\u6846\u6311\u9078\u7684\u8f49\u63db\u8aa4\u5dee\u5e73\u5747\u503c\u6703\u8b8a\u5927\u6210\u70ba 0.6029\uff0c\u9019\u660e\u986f\u6bd4\u8868\u4e09\u7684 0.5414 \u589e\u52a0\u4e86 \u8a31\u591a\uff1b\u518d\u8005\uff0c\u8907\u5408\u578b\u76ee\u6a19\u97f3\u6846\u6311\u9078\u7684\u8f49\u63db\u8aa4\u5dee\u5e73\u5747\u503c\u4e5f\u8b8a\u5f97\u66f4\u5927\uff0c0.6121\u3002\u6839\u64da\u9019\u4e8c\u500b \u8b8a\u5927\u5f88\u591a\u7684\u8aa4\u5dee\u5e73\u5747\u503c\uff0c\u76f4\u89ba\u4e0a\u6703\u8b93\u4eba\u8a8d\u70ba\u57fa\u672c\u578b\u8207\u8907\u5408\u578b\u76ee\u6a19\u97f3\u6846\u6311\u9078\u6cd5\uff0c\u6240\u8f49\u63db\u51fa \u7684\u8a9e\u97f3\u61c9\u6703\u5728\u97f3\u8272\u76f8\u4f3c\u5ea6\u548c\u8a9e\u97f3\u54c1\u8cea\u4e0a\u8870\u6e1b\u5f88\u591a\uff0c\u7136\u800c\u5be6\u969b\u4e0a\u7576\u6211\u5011\u53bb\u807d\u8f49\u63db\u51fa\u7684\u8a9e\u97f3 \u6642\uff0c\u767c\u73fe\u7d93\u7531\u57fa\u672c\u578b\u6216\u8907\u5408\u578b\u76ee\u6a19\u97f3\u6846\u6311\u9078\u6240\u8f49\u63db\u51fa\u7684\u8a9e\u97f3\uff0c\u8a9e\u97f3\u54c1\u8cea\u537b\u662f\u6703\u8b8a\u5f97\u66f4\u70ba \u6e05\u6670(\u61c9\u662f\u4f7f\u7528\u771f\u5be6\u97f3\u6846 DCC \u7684\u7de3\u6545)\uff0c\u4e26\u4e14\u97f3\u8272\u76f8\u4f3c\u5ea6\u4e5f\u6c92\u6709\u8870\u6e1b\u3002\u6240\u4ee5\uff0c\u57fa\u65bc\u91cf\u6e2c \u5169 DCC \u5411\u91cf\u4e4b\u9593\u5e7e\u4f55\u8ddd\u96e2\u7684\u8f49\u63db\u8aa4\u5dee\u5e73\u5747\u503c\uff0c\u5176\u6578\u503c\u5927\u5c0f\u548c\u8a9e\u97f3\u54c1\u8cea\u4e4b\u9593\u4f3c\u4e4e\u4e0d\u662f\u6b63 \u6bd4\u4f8b\u7684\u95dc\u4fc2\u3002 \u8868\u56db\u3001\u76ee\u6a19\u97f3\u6846\u6311\u9078\u4e4b\u5e73\u5747\u8f49\u63db\u8aa4\u5dee \u8aa4\u5dee \u914d\u5c0d \u57fa\u672c\u578b \u8907\u5408\u578b MA=> MB 0.5990 0.6087 MA=> FA 0.5706 0.5791 FA => MA 0.5925 0.6032 FA => FB 0.6493 0.6574 \u5e73\u5747 0.6029 0.6121 \u524d\u8ff0\u7684\u4e0d\u4e00\u81f4\u6027\u60c5\u6cc1\uff0c\u5373\u8aa4\u5dee\u8ddd\u96e2\u8b8a\u5927\u53cd\u800c\u5f97\u5230\u66f4\u597d\u7684\u8a9e\u97f3\u54c1\u8cea\uff0c\u662f\u4ec0\u9ebc\u539f\u56e0\u9020\u6210 \u7684\uff1f\u70ba\u4e86\u77ad\u89e3\u5176\u539f\u56e0\uff0c\u6211\u5011\u5c31\u627e\u4e00\u4e9b\u76ee\u6a19\u97f3\u6846\u4f86\u89c0\u5bdf\u5b83\u5011\u7684\u983b\u8b5c\u5305\u7d61\u66f2\u7dda\u3002\u5c0d\u65bc\u5404\u500b\u76ee \u6a19\u97f3\u6846\uff0c\u6211\u5011\u628a LMR \u5c0d\u6620\u51fa\u7684 DCC \u5411\u91cf\u3001\u7d93\u76ee\u6a19\u97f3\u6846\u6311\u9078\u5f97\u5230\u7684 DCC \u5411\u91cf\u3001\u53ca\u8a72\u76ee \u6a19\u97f3\u6846\u7684 DCC \u5411\u91cf\uff0c\u8a08\u7b97\u51fa\u4e09\u8005\u7684\u983b\u8b5c\u5305\u7d61\u66f2\u7dda\u4e26\u4e14\u756b\u51fa\u4f86\u4f5c\u6bd4\u8f03\uff0c\u7d50\u679c\u6211\u5011\u767c\u73fe\u4e86 \u4e00\u500b\u73fe\u8c61\u53ef\u7528\u4ee5\u89e3\u91cb\u524d\u8ff0\u7684\u4e0d\u4e00\u81f4\u6027\u3002\u4e00\u500b\u4f8b\u5b50\u5982\u5716\u56db\u6240\u793a\uff0c\u5716\u56db\u4e2d\u7684\u865b\u7dda\u4ee3\u8868/song/ \u97f3\u7bc0\u7684\u4e00\u500b\u76ee\u6a19\u97f3\u6846\u7684\u983b\u8b5c\u5305\u7d61\u7dda\uff0c\u6dfa\u7070\u8272\u5be6\u7dda\u4ee3\u8868 LMR \u5c0d\u6620\u5f97\u5230\u7684 DCC \u5411\u91cf\u6240\u7b97 \u51fa\u7684\u983b\u8b5c\u5305\u7d61\u7dda\uff0c\u6df1\u9ed1\u8272\u5be6\u7dda\u5247\u4ee3\u8868\u76ee\u6a19\u97f3\u6846\u6311\u9078\u5f97\u5230\u7684 DCC \u5411\u91cf\u6240\u7b97\u51fa\u7684\u983b\u8b5c\u5305\u7d61 \u7dda\uff0c\u6bd4\u8f03\u9019\u4e09\u689d\u5305\u7d61\u7dda\uff0c\u6211\u5011\u53ef\u767c\u73fe\u5728\u6a6b\u8ef8\u983b\u7387\u7bc4\u570d 2,500 Hz \u81f3 4,500 Hz \u4e4b\u9593\uff0c\u6df1\u9ed1 \u8272\u5be6\u7dda\u7684\u5f62\u72c0\u6bd4\u8d77\u6dfa\u7070\u8272\u5be6\u7dda\u7684\u5f62\u72c0\u8f03\u70ba\u63a5\u8fd1\u865b\u7dda\u66f2\u7dda\u7684\u5171\u632f\u5cf0\u8d77\u4f0f\uff0c\u6240\u4ee5\u9019\u53ef\u4ee5\u89e3\u91cb \u70ba\u4ec0\u9ebc\u76ee\u6a19\u97f3\u6846\u6311\u9078\u80fd\u5920\u6539\u9032\u8f49\u63db\u51fa\u8a9e\u97f3\u7684\u54c1\u8cea\uff1b\u6b64\u5916\uff0c\u5728\u6a6b\u8ef8\u983b\u7387\u7bc4\u570d 5,500 Hz \u81f3 11,000 Hz \u4e4b\u9593\uff0c\u6dfa\u7070\u8272\u5be6\u7dda\u6703\u6bd4\u6df1\u9ed1\u8272\u5be6\u7dda\u66f4\u70ba\u9760\u8fd1\u865b\u7dda\u66f2\u7dda\uff0c\u6240\u4ee5\u9019\u53ef\u4ee5\u89e3\u91cb\u70ba\u4ec0 \u9ebc LMR \u5c0d\u6620\u6240\u5c0e\u5165\u7684\u8f49\u63db\u8aa4\u5dee\uff0c\u6703\u6bd4\u76ee\u6a19\u97f3\u6846\u6311\u9078\u6240\u5c0e\u5165\u7684\u8f49\u63db\u8aa4\u5dee\u4f86\u5f97\u5c0f\u3002 \u8f49\u63db\u5f8c\u97f3\u6846\u8207\u76ee\u6a19\u97f3\u6846\u7684\u983b\u8b5c\u5411\u91cf\u4e4b\u9593\uff0c\u8aa4\u5dee\u8ddd\u96e2\u5e73\u5747\u503c\u7684\u5927\u5c0f\u4e26\u4e0d\u80fd\u5920\u4ee3\u8868\u8a9e\u97f3 \u54c1\u8cea\u7684\u597d\u58de\uff0c\u9019\u6a23\u7684\u60c5\u5f62\u5728\u524d\u4eba\u7684\u7814\u7a76\u4e2d\u5df2\u7d93\u6ce8\u610f\u5230\u4e86\uff0c\u6240\u4ee5 Godoy \u7b49\u4eba[15]\u63a1\u7528\u4ee5\u8b8a \u7570\u6578\u6bd4\u503c(variance ratio, VR)\u4f86\u91cf\u6e2c\u8f49\u63db\u5f8c\u8a9e\u97f3\u7684\u54c1\u8cea\uff0c\u8b8a\u7570\u6578\u6bd4\u503c\u7684\u91cf\u6e2c\u516c\u5f0f\u70ba: 1 1 1 1 , k i k i C L C L i k VR \u03c3 \u03c3 = = = \u22c5 \uf0e5 \uf0e5 (13) \u5176\u4e2d C \u8868\u793a\u97f3\u6bb5\u7684\u985e\u5225\u6578\uff0cL \u8868\u793a\u983b\u8b5c\u5411\u91cf\u7684\u7dad\u5ea6\uff0c\u02c6k i \u03c3 \u8868\u793a\u8f49\u63db\u5f8c\u97f3\u6846\u4e2d\u7b2c i \u985e\u97f3\u6bb5 -20 -10 0 10 20 30 40 50 60 70 80 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 Frequency (Hz) Magnitude (dB) . Target ConvLMR RealFrm \u5716\u56db\u3001\u97f3\u7bc0/song/\u4e00\u500b\u97f3\u6846\u7684\u4e09\u689d\u983b\u8b5c\u5305\u7d61\u66f2\u7dda \u4ee5\u4e0a\uff0c\u6240\u4ee5\u5ba2\u89c0\u4e0a\u4f86\u770b\uff0c\u76ee\u6a19\u97f3\u6846\u6311\u9078\u4e4b\u8655\u7406\u61c9\u53ef\u4ee5\u8b93\u8a9e\u97f3\u54c1\u8cea\u7372\u5f97\u660e\u986f\u7684\u63d0\u5347\u3002\u81f3\u65bc \u76f4\u65b9\u5716\u7b49\u5316\uff0c\u505a\u4e86\u6b64\u7a2e\u8655\u7406\u53cd\u800c\u8b93 VR \u503c\u4e0b\u964d\u4e00\u4e9b\uff0c\u800c VR \u503c\u4e0b\u964d\u4e00\u4e9b\u662f\u5426\u5728\u4e3b\u89c0\u807d\u6e2c \u4e0a\u5c31\u6703\u611f\u89ba\u5230\u8a9e\u97f3\u54c1\u8cea\u7684\u8870\u9000? \u9019\u5c1a\u9700\u9032\u884c\u807d\u6e2c\u5be6\u9a57\u4f86\u9a57\u8b49\u3002 \u8868\u4e94\u3001\u8b8a\u7570\u6578\u6bd4\u503c\u4e4b\u6bd4\u8f03 \u7121 \u76ee\u6a19\u97f3\u6846\u6311\u9078 \u6709 \u76ee\u6a19\u97f3\u6846\u6311\u9078 \u914d\u5c0d DCC+LMR HEQ+LMR DCC+LMR HEQ+LMR MA=> MB 0.2463 0.1671 0.5893 0.5245 MA=> FA 0.1994 0.1290 0.5182 0.4485 FA => MA 0.2367 0.1775 0.5814 0.5383 FA => FB 0.2063 0.1375 0.5648 0.5303 \u5e73\u5747 0.2222 0.1528 0.5634 0.5104 (\u4e94)\u3001\u8a9e\u97f3\u54c1\u8cea\u4e3b\u89c0\u807d\u6e2c \u6211\u5011\u4f7f\u7528\u672a\u53c3\u52a0\u6a21\u578b\u8a13\u7df4\u7684\u4f86\u6e90\u8a9e\u53e5\uff0c\u4f86\u6e96\u5099 4 \u7d44\u4f5c\u8a9e\u97f3\u54c1\u8cea\u807d\u6e2c\u7684\u97f3\u6a94\uff0c\u9019 4 \u7d44\u97f3\u6a94 \u7684\u4ee3\u865f\u662f VD\u3001VH\u3001WD\u3001WH\uff0c\u4e26\u4e14\u6bcf\u4e00\u7d44\u4e2d\u542b\u6709\u5169\u500b\u97f3\u6a94\uff0c\u5206\u5225\u662f\u4f7f\u7528 MA=>MB \u8207 MA=>FA \u4e4b\u8a9e\u8005\u914d\u5c0d\u4f86\u4f5c\u8a9e\u97f3\u8f49\u63db\u800c\u7522\u751f\u51fa\u7684\u97f3\u6a94\uff0c\u5728\u6b64\u4ee5_1 \u8207_2 \u4e4b\u4ee3\u865f\u4f86\u4f5c\u5340 \u5f8c\u9ede\u64ad(VD_1, VH_1)\u8207(VD_2, VH_2)\u5169\u5c0d\u97f3\u6a94\u4f86\u8a66\u807d\uff0c\u7136\u5f8c\u53d7\u6e2c\u8005\u5206\u5225\u7d66\u6bcf\u4e00\u5c0d\u97f3\u6a94\u4e00 \u500b\u8a55\u5206\uff0c\u4ee5\u986f\u793a\u5de6\u908a\u97f3\u6a94\u7684\u8a9e\u97f3\u54c1\u8cea\u6bd4\u8d77\u53f3\u908a\u97f3\u6a94\u7684\u54c1\u8cea\u662f\u597d\u6216\u58de\uff1b\u7b2c\u4e8c\u9805\u807d\u6e2c\u5be6\u9a57 \u88e1\uff0c\u53d7\u6e2c\u8005\u5148\u5f8c\u9ede\u64ad(WD_1, WH_1)\u8207(WD_2, WH_2)\u5169\u5c0d\u97f3\u6a94\u4f86\u8a66\u807d\uff0c\u7136\u5f8c\u53d7\u6e2c\u8005\u5206\u5225 \u7d66\u6bcf\u4e00\u5c0d\u97f3\u6a94\u4e00\u500b\u8a55\u5206\uff0c\u4ee5\u986f\u793a\u5de6\u908a\u97f3\u6a94\u7684\u8a9e\u97f3\u54c1\u8cea\u6bd4\u8d77\u53f3\u908a\u97f3\u6a94\u7684\u54c1\u8cea\u662f\u597d\u6216\u58de\u3002\u5728 \u4e8c\u9805\u807d\u6e2c\u5be6\u9a57\u88e1\uff0c\u53d7\u6e2c\u8005\u90fd\u662f\u540c\u6a23\u7684 12 \u4f4d\u5b78\u751f\uff0c\u4ed6\u5011\u5927\u90e8\u5206\u90fd\u4e0d\u719f\u6089\u8a9e\u97f3\u8f49\u63db\u4e4b\u7814\u7a76 \u9818\u57df\uff0c\u81f3\u65bc\u8a55\u5206\u7684\u6a19\u6e96\u662f\uff0c2 (-2)\u5206\u8868\u793a\u53f3(\u5de6)\u908a\u97f3\u6a94\u7684\u8a9e\u97f3\u54c1\u8cea\u6bd4\u5de6(\u53f3)\u908a\u97f3\u6a94\u7684\u660e\u986f \u5730\u597d\uff0c1 (-1)\u5206\u8868\u793a\u53f3(\u5de6)\u908a\u97f3\u6a94\u7684\u8a9e\u97f3\u54c1\u8cea\u6bd4\u5de6(\u53f3)\u908a\u97f3\u6a94\u7684\u7a0d\u70ba\u597d\u4e00\u9ede\uff0c0 \u5206\u8868\u793a\u5206 \u8fa8\u4e0d\u51fa\u5de6\u3001\u53f3\u5169\u97f3\u6a94\u7684\u8a9e\u97f3\u54c1\u8cea\u3002\u5728\u4e8c\u9805\u807d\u6e2c\u5be6\u9a57\u4e4b\u5f8c\uff0c\u6211\u5011\u5c07\u53d7\u6e2c\u8005\u6240\u7d66\u7684\u8a55\u5206\u4f5c\u6574 \u7406\uff0c\u7d50\u679c\u5f97\u5230\u5982\u8868\u516d\u6240\u793a\u7684\u5e73\u5747\u8a55\u5206\u3002\u5f9e\u8868\u516d\u7684\u4e8c\u9805\u5e73\u5747\u8a55\u5206(\u5373 0.583 \u8207 0.375)\u53ef\u5f97\u77e5\uff0c \u8a55\u5206\u5206\u6578\u90fd\u662f\u6b63\u503c\uff0c\u8868\u793a\u5148\u4f5c\u76f4\u65b9\u5716\u7b49\u5316\u518d\u4f5c LMR \u5c0d\u6620\uff0c\u6bd4\u8d77 DCC \u5411\u91cf\u76f4\u63a5\u4f5c LMR \u5c0d\u6620\u6703\u5f97\u5230\u66f4\u597d\u4e00\u4e9b\u7684\u8a9e\u97f3\u54c1\u8cea\uff1b\u6b64\u5916\uff0c\u7b2c\u4e8c\u9805\u807d\u6e2c\u7684\u5e73\u5747\u8a55\u5206(0.375)\uff0c\u6bd4\u8d77\u7b2c\u4e00\u9805\u807d \u6e2c\u7684\u5e73\u5747\u8a55\u5206(0.583)\u8981\u7a0d\u5fae\u4f4e\u4e00\u9ede\uff0c\u8868\u793a\u5728\u4f5c\u904e\u76ee\u6a19\u97f3\u6846\u6311\u9078\u7684\u8655\u7406\u4e4b\u5f8c\uff0c\u76f4\u65b9\u5716\u7b49\u5316 \u6240\u5e36\u4f86\u7684\u8a9e\u97f3\u54c1\u8cea\u6539\u9032\uff0c\u5c31\u6703\u8b8a\u5f97\u8f03\u4e0d\u660e\u986f\u3002 \u8868\u516d\u3001\u8a9e\u97f3\u54c1\u8cea\u807d\u6e2c--\u6bd4\u8f03 DCC \u8207 HEQ DCC vs. HEQ (\u7121 \u76ee\u6a19\u97f3\u6846\u6311\u9078) DCC vs. HEQ (\u6709 \u76ee\u6a19\u97f3\u6846\u6311\u9078) \u5e73\u5747\u8a55\u5206 AVG (STD) 0.583 (0.776) 0.375 (0.824) \u63a5\u8457\uff0c\u6211\u5011\u518d\u5c07\u524d\u8ff0\u7684 4 \u7d44\u97f3\u6a94\u4f5c\u7de8\u6392\u4ee5\u9032\u884c\u53e6\u4e8c\u9805\u807d\u6e2c\u5be6\u9a57\uff0c\u5728\u7b2c\u4e09\u9805\u807d\u6e2c\u5be6\u9a57 \u88e1\uff0c\u53d7\u6e2c\u8005\u5148\u3001\u5f8c\u9ede\u64ad(VD_1, WD_1)\u8207(VD_2, WD_2)\u5169\u5c0d\u97f3\u6a94\u4f86\u8a66\u807d\uff0c\u7136\u5f8c\u53d7\u6e2c\u8005\u5206 \u5225\u7d66\u6bcf\u4e00\u5c0d\u97f3\u6a94\u4e00\u500b\u8a55\u5206\uff0c\u4ee5\u986f\u793a\u5de6\u908a\u97f3\u6a94\u7684\u8a9e\u97f3\u54c1\u8cea\u6bd4\u8d77\u53f3\u908a\u97f3\u6a94\u7684\u54c1\u8cea\u662f\u597d\u6216\u58de\uff1b \u5728\u7b2c\u56db\u9805\u807d\u6e2c\u5be6\u9a57\u88e1\uff0c\u53d7\u6e2c\u8005\u5148\u5f8c\u9ede\u64ad(VH_1, WH_1)\u8207(VH_2, WH_2)\u5169\u5c0d\u97f3\u6a94\u4f86\u8a66 \u807d\uff0c\u7136\u5f8c\u53d7\u6e2c\u8005\u5206\u5225\u7d66\u6bcf\u4e00\u5c0d\u97f3\u6a94\u4e00\u500b\u8a55\u5206\uff0c\u4ee5\u986f\u793a\u5de6\u908a\u97f3\u6a94\u7684\u8a9e\u97f3\u54c1\u8cea\u6bd4\u8d77\u53f3\u908a\u97f3\u6a94 \u7684\u54c1\u8cea\u662f\u597d\u6216\u58de\u3002\u5728\u7b2c\u4e09\u3001\u7b2c\u56db\u9805\u807d\u6e2c\u5be6\u9a57\u88e1\uff0c\u53d7\u6e2c\u8005\u4e5f\u5171\u6709 12 \u4f4d\u5b78\u751f\uff0c\u4ed6\u5011\u5927\u90e8\u5206 \u4e0d\u719f\u6089\u8a9e\u97f3\u8f49\u63db\u4e4b\u7814\u7a76\u9818\u57df\uff0c\u81f3\u65bc\u8a55\u5206\u7684\u6a19\u6e96\u8207\u5206\u6578\u7bc4\u570d\u5247\u548c\u524d\u4e00\u6bb5\u6240\u8aaa\u7684\u4e00\u6a23\u3002\u5728\u9019 \u4e8c\u9805\u807d\u6e2c\u5be6\u9a57\u4e4b\u5f8c\uff0c\u6211\u5011\u5c07\u53d7\u6e2c\u8005\u6240\u7d66\u7684\u8a55\u5206\u4f5c\u6574\u7406\uff0c\u7d50\u679c\u5f97\u5230\u5982\u8868\u4e03\u6240\u793a\u7684\u5e73\u5747\u8a55 \u5206\u3002\u5f9e\u8868\u4e03\u7684\u4e8c\u9805\u5e73\u5747\u8a55\u5206 0.917 \u8207 1.125 \u53ef\u5f97\u77e5\uff0c\u53ea\u8981\u52a0\u5165\u76ee\u6a19\u97f3\u6846\u6311\u9078\u7684\u8655\u7406\uff0c\u5c31 \u53ef\u8b93\u8f49\u63db\u51fa\u8a9e\u97f3\u7684\u54c1\u8cea\u7372\u5f97\u660e\u986f\u7684\u63d0\u5347\uff0c\u4e26\u4e14\u9019\u6a23\u7684\u63d0\u5347\u8981\u6bd4\u8868\u516d\u88e1\u7684\u66f4\u660e\u986f\u5f88\u591a\uff0c\u6240 \u4ee5\u9019\u4e8c\u9805\u807d\u6e2c\u5be6\u9a57\u7684\u7d50\u679c\uff0c\u548c\u8868\u4e94\u88e1\u91cf\u6e2c\u51fa\u7684 VR \u503c\u662f\u76f8\u4e92\u547c\u61c9\u7684\u3002 \u8868\u4e03\u3001\u8a9e\u97f3\u54c1\u8cea\u807d\u6e2c--\u6bd4\u8f03\u6709\u3001\u7121\u76ee\u6a19\u97f3\u6846\u6311\u9078\u4e4b\u5dee\u7570 TFS (Target Frame Selection) TFS_no vs. TFS_yes (DCC+LMR) TFS_no vs. TFS_yes (HEQ + LMR) \u5e73\u5747\u8a55\u5206 AVG (STD) 0.917 (0.584) 1.125 (0.680) \u5206\u3002\u4ee3\u865f VD \u8207 Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) \u5728\u5716\u4e8c\u6d41\u7a0b\u4e2d\"PCA \u53cd\u8f49\u63db\"\u8207\"HNM \u8a9e\u97f3\u518d\u5408\u6210\"\u5169\u65b9\u584a\u4e4b\u9593\u63d2\u5165\"\u76ee\u6a19\u97f3\u6846\u6311\u9078\"\u4e4b\u65b9 \u584a\uff0c\u81f3\u65bc\u76f4\u65b9\u5716\u7b49\u5316(CDF \u8f49\u63db\u8207\u53cd\u8f49\u63db)\u6240\u7528\u7684\u5340\u9593\u6578\uff0c\u9019\u88e1\u5c31\u8a2d\u70ba 64\u3002 \u7b2c k \u7dad\u983b\u8b5c\u4fc2\u6578\u7684\u8b8a\u7570\u6578\uff0c k i \u03c3 \u5247\u8868\u793a\u76ee\u6a19\u97f3\u6846\u7b2c i \u985e\u7b2c k \u7dad\u983b\u8b5c\u4fc2\u6578\u7684\u8b8a\u7570\u6578\u3002 \u4e94\u3001\u7d50\u8ad6
\u7528\u5171\u7528\u7684 PCA \u4e3b\u6210\u5206\u5411\u91cf\uff0c\u5247\u5e73\u5747\u8f49\u63db\u8aa4\u5dee\u53ef\u5f9e 0.5447 \u964d\u5230 0.5414\uff0c\u9019\u8aaa\u660e\u4e86\u4f7f\u7528\u5171 \u7528\u7684 PCA \u4e3b\u6210\u5206\u5411\u91cf\uff0c\u53ef\u4ee5\u7565\u5fae\u63d0\u5347\u4f86\u6e90\u8207\u76ee\u6a19\u97f3\u6846\u4e4b\u9593 PCA \u4fc2\u6578\u7684\u76f8\u95dc\u6027\uff0c\u800c\u7a0d\u5fae \u6e1b\u5c0f LMR \u5c0d\u6620\u7684\u8aa4\u5dee\u3002\u6b64\u5916\uff0c\u95dc\u65bc\u76f4\u65b9\u5716\u7b49\u5316\u7684\u5340\u9593\u6578\u7684\u8a2d\u5b9a\uff0c\u4f9d\u64da\u8868\u4e8c\u7684\u8f49\u63db\u8aa4\u5dee \u5e73\u5747\u503c\u53ef\u77e5\uff0c\u8a2d\u70ba 64 \u5340\u9593\u6216 128 \u5340\u9593\u662f\u6c92\u6709\u5dee\u7570\u7684\u3002 \u5c0d\u65bc\u524d\u8ff0\u7684\u57fa\u672c\u578b\u8207\u8907\u5408\u578b\u76ee\u6a19\u97f3\u6846\u6311\u9078\u6cd5\uff0c\u6211\u5011\u4f7f\u7528\u7684\u6e2c\u8a66\u8a9e\u6599\u548c\u8aa4\u5dee\u7684\u91cf\u6e2c\u65b9 \u5f0f\uff0c\u548c 4.2 \u7bc0\u88e1\u6558\u8ff0\u7684\u4e00\u6a23\uff0c\u4ea6\u5373\u4f7f\u7528\u5e73\u884c\u8a9e\u6599\u6700\u5f8c 25 \u53e5\u4f86\u4f5c\u5916\u90e8\u6e2c\u8a66\uff0c\u4e26\u4e14\u91cf\u6e2c\u8f49 \u63db\u5f97\u5230\u7684 DCC \u5411\u91cf\u8207\u5c0d\u61c9\u7684\u76ee\u6a19\u97f3\u6846 DCC \u5411\u91cf\u4e4b\u9593\u7684\u5e7e\u4f55\u8ddd\u96e2\uff0c\u518d\u8a08\u7b97\u5168\u90e8\u97f3\u6846\u7684 \u5e73\u5747\u8aa4\u5dee\u3002\u7d93\u904e\u5be6\u9a57\u91cf\u6e2c\u5f8c\uff0c\u6211\u5011\u5f97\u5230\u5982\u8868\u56db\u6240\u793a\u7684\u5e73\u5747\u8f49\u63db\u8aa4\u5dee\u503c\uff0c\u7531\u8868\u56db\u53ef\u77e5\u57fa\u672c \u5c0d\u65bc\u524d\u9762\u63d0\u5230\u7684\u56db\u7a2e\u8655\u7406\u6d41\u7a0b\uff0c\u5373\u4f5c\u8207\u4e0d\u4f5c\u76f4\u65b9\u5716\u7b49\u5316(\u542b PCA)\u3001\u4f5c\u8207\u4e0d\u4f5c\u76ee\u6a19\u97f3 \u6211\u5011\u7814\u7a76\u6539\u9032\u4e86\u7dda\u6027\u591a\u8b8a\u91cf\u8ff4\u6b78(LMR)\u983b\u8b5c\u5c0d\u6620\u70ba\u57fa\u790e\u7684\u8a9e\u97f3\u8f49\u63db\u65b9\u6cd5\uff0c\u5728\u8655\u7406\u6d41\u7a0b\u4e2d \u6846\u6311\u9078\u4e4b\u56db\u7a2e\u7d44\u5408\uff0c\u6211\u5011\u4f9d\u64da\u516c\u5f0f(13)\u53bb\u91cf\u6e2c\u8f49\u63db\u5f8c\u97f3\u6846\u8207\u76ee\u6a19\u97f3\u6846\u4e4b\u9593\u7684\u8b8a\u7570\u6578\u6bd4 \u52a0\u5165\u76f4\u65b9\u5716\u7b49\u5316\u53ca\u76ee\u6a19\u97f3\u6846\u6311\u9078\u4e4b\u8655\u7406\u6b65\u9a5f\uff0c\u7528\u4ee5\u63d0\u5347\u8f49\u63db\u51fa\u8a9e\u97f3\u7684\u54c1\u8cea\u3002\u7576\u6211\u5011\u5728\u5716 \u503c\uff0c\u7d50\u679c\u5f97\u5230\u5982\u8868\u4e94\u6240\u793a VR \u503c\u3002\u7531\u8868\u4e94\u7684 VR \u503c\u53ef\u767c\u73fe\uff0c\u82e5\u4e0d\u4f5c\u76ee\u6a19\u97f3\u6846\u6311\u9078\uff0c\u5247\u5e73 \u5747 VR \u503c\u53ea\u6709 0.2 \u5de6\u53f3\uff0c\u4f46\u662f\u7576\u52a0\u5165\u76ee\u6a19\u97f3\u6846\u6311\u9078\u4e4b\u5f8c\uff0c\u5c31\u53ef\u8b93\u5e73\u5747 VR \u503c\u63d0\u5347\u5230 0.5 \u4e00\u6d41\u7a0b\u7684
" } } } }