{ "paper_id": "O15-1024", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T08:10:07.060795Z" }, "title": "Analysis and Prediction of Blogger's Depression Tendency", "authors": [ { "first": "Chia-Ming", "middle": [], "last": "\u8463\u5bb6\u9298", "suffix": "", "affiliation": { "laboratory": "", "institution": "Cheng Kung University", "location": {} }, "email": "" }, { "first": "", "middle": [], "last": "Tung", "suffix": "", "affiliation": { "laboratory": "", "institution": "Cheng Kung University", "location": {} }, "email": "" }, { "first": "Wen-Hsiang", "middle": [], "last": "\u76e7\u6587\u7965", "suffix": "", "affiliation": { "laboratory": "", "institution": "Cheng Kung University", "location": {} }, "email": "" }, { "first": "", "middle": [], "last": "Lu", "suffix": "", "affiliation": { "laboratory": "", "institution": "Cheng Kung University", "location": {} }, "email": "" } ], "year": "", "venue": null, "identifiers": {}, "abstract": "According to the investigation report of the Department of Health, Executive Yuan, R.O.C. in 2007, it is estimated that about 7.3% of Taiwan's population suffer from the major depressive disorder. How to identify patients with depression tendency is one of important health issues. Thus, this project tries to develop a novel technique to automatically identify the depression tendency of bloggers using their blog posts.", "pdf_parse": { "paper_id": "O15-1024", "_pdf_hash": "", "abstract": [ { "text": "According to the investigation report of the Department of Health, Executive Yuan, R.O.C. in 2007, it is estimated that about 7.3% of Taiwan's population suffer from the major depressive disorder. How to identify patients with depression tendency is one of important health issues. Thus, this project tries to develop a novel technique to automatically identify the depression tendency of bloggers using their blog posts.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Abstract", "sec_num": null } ], "body_text": [ { "text": "With the fast growth of social networks, bloggers usually write daily posts with their emotion and events happened in work, home, or life. Although there are lots of research works about emotion analysis and classification, to our knowledge, there is no work focusing on prediction of blogger's depression tendency based on emotion analysis. In this project, we try to analyze key factors affecting major depressive disorder, such as negative event, negative emotion, symptom and negative thought, and then use these four factors to assist bloggers to predict depression tendency. Therefore, we focus on the investigation of the following two research issues (1) analysis of relevant factors of depression on blog posts written by patients with the major depressive disorder, (2) development of event-emotion-driven depression tendency prediction model. \u4e8b\u4ef6\uff0c\u5fc3\u7406\u7522\u751f\u591a\u7a2e\u8ca0\u9762\u60c5\u7dd2\u5982 \"\u5927\u54ed\"\u3001\"\u6050\u614c\"\u3001\"\u7126\u616e\"\u3001\"\u6cae\u55aa\"\u7b49\uff0c\u7d50\u679c\u4e5f\u51fa\u73fe\u4e00\u4e9b \u751f\u7406\u75c7\u72c0 \"\u7761\u4e0d\u597d\"\uff0c\u751a\u81f3\u8ca0\u9762\u60f3\u6cd5 \"\u6490\u4e0d\u4e0b\u53bb\u4e86\"\u3002\u7d93\u7531\u9577\u671f\u8ffd\u8e64\u6587\u7ae0\u8ca0\u9762\u60c5\u7dd2\u8a5e\u7684\u985e ", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "\u56db\u3001 \u5be6\u9a57 ", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "\u578b\u8207\u51fa\u73fe\u983b\u7387\uff0c\u53ef\u4ee5\u4e86\u89e3\u90e8\u843d\u683c\u4f5c\u8005\u6240\u767c\u751f\u7684\u5fc3\u7406\u554f\u984c\u3002\u6240\u4ee5\u672c\u7814\u7a76\u9996\u5148\u5617\u8a66\u5229\u7528\u90e8\u843d", "sec_num": null } ], "back_matter": [], "bib_entries": { "BIBREF0": { "ref_id": "b0", "title": "American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition -Text Revision (DSMIV-TR)", "authors": [], "year": 2000, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition -Text Revision (DSMIV-TR), Amer Psychiatric Pub, 2000.", "links": null }, "BIBREF1": { "ref_id": "b1", "title": "The need for a new medical model: a challenge for biomedical medicine", "authors": [ { "first": "G", "middle": [ "L" ], "last": "Engel", "suffix": "" } ], "year": 1977, "venue": "Science, New Series", "volume": "196", "issue": "4286", "pages": "129--136", "other_ids": {}, "num": null, "urls": [], "raw_text": "G.L. Engel, \"The need for a new medical model: a challenge for biomedical medicine.\" Science, New Series, vol. 196, no. 4286., pp. 129-136, Apr. 8, 1977.", "links": null }, "BIBREF2": { "ref_id": "b2", "title": "A comparison of methods for multi-class support vector machines", "authors": [ { "first": "C", "middle": [ "W" ], "last": "Hsu", "suffix": "" }, { "first": "C", "middle": [ "J" ], "last": "Lin", "suffix": "" } ], "year": 2002, "venue": "IEEE Transactions on Neural Networks", "volume": "13", "issue": "", "pages": "415--425", "other_ids": {}, "num": null, "urls": [], "raw_text": "Hsu, C.W. and Lin, C. J., A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks. 2002, Vol. 13 (2002), p. 415-425.", "links": null }, "BIBREF3": { "ref_id": "b3", "title": "Annotating Lexically Entailed Subevents for Textual Inference Tasks", "authors": [ { "first": "S", "middle": [], "last": "Im", "suffix": "" }, { "first": "J", "middle": [], "last": "Pustejovsky", "suffix": "" } ], "year": 2010, "venue": "Proceedings of FLAIRS Conference", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Im, S. and Pustejovsky, J.. Annotating Lexically Entailed Subevents for Textual Inference Tasks, in Proceedings of FLAIRS Conference. 2010.", "links": null }, "BIBREF4": { "ref_id": "b4", "title": "Annotating event implicatures for textual inference tasks. Generative Approaches to the Lexicon (GL2009)", "authors": [ { "first": "S", "middle": [], "last": "Im", "suffix": "" }, { "first": "J", "middle": [], "last": "Pustejovsky", "suffix": "" } ], "year": 2009, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Im, S. and Pustejovsky, J.. Annotating event implicatures for textual inference tasks. Generative Approaches to the Lexicon (GL2009). 2009.", "links": null }, "BIBREF5": { "ref_id": "b5", "title": "An outsider's view on \"topic-oriented blogging", "authors": [ { "first": "B", "middle": [], "last": "Judit", "suffix": "" } ], "year": 2004, "venue": "Proceedings of the 13th international World Wide Web conference on Alternate track papers", "volume": "", "issue": "", "pages": "28--34", "other_ids": {}, "num": null, "urls": [], "raw_text": "Judit, B. I, An outsider's view on \"topic-oriented blogging\", in Proceedings of the 13th international World Wide Web conference on Alternate track papers. 2004, ACM: New York, NY, USA. pp. 28-34.", "links": null }, "BIBREF6": { "ref_id": "b6", "title": "Text classification and named entities for new event detection", "authors": [ { "first": "G", "middle": [], "last": "Kumaran", "suffix": "" }, { "first": "J", "middle": [], "last": "Allan", "suffix": "" } ], "year": 2004, "venue": "Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval", "volume": "", "issue": "", "pages": "297--304", "other_ids": {}, "num": null, "urls": [], "raw_text": "Kumaran, G. and Allan, J., Text classification and named entities for new event detection, in Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval. 2004, ACM: Sheffield, United Kingdom. p. 297-304.", "links": null }, "BIBREF7": { "ref_id": "b7", "title": "Multidocument Summary Generation: Using Informative and Event Words", "authors": [ { "first": "J", "middle": [ "J" ], "last": "Kuo", "suffix": "" }, { "first": "H", "middle": [ "H" ], "last": "Chen", "suffix": "" } ], "year": 2008, "venue": "ACM Transactions on Asian Language Information Processing (TALIP)", "volume": "7", "issue": "1", "pages": "1--23", "other_ids": {}, "num": null, "urls": [], "raw_text": "Kuo, J.J. and Chen, H.H., Multidocument Summary Generation: Using Informative and Event Words. ACM Transactions on Asian Language Information Processing (TALIP), 2008. 7(1): pp. 1-23.", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "Understanding how bloggers feel: recognizing affect in blog posts", "authors": [ { "first": "G", "middle": [], "last": "Leshed", "suffix": "" }, { "first": "J", "middle": [ "J" ], "last": "Kaye", "suffix": "" } ], "year": 2006, "venue": "CHI '06 extended abstracts on Human factors in computing systems", "volume": "", "issue": "", "pages": "1019--1024", "other_ids": {}, "num": null, "urls": [], "raw_text": "Leshed, G. and Kaye, J.J., Understanding how bloggers feel: recognizing affect in blog posts, in CHI '06 extended abstracts on Human factors in computing systems. 2006, pp. 1019-1024.", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "The Theory of Psychoanalysis. Penguin Books", "authors": [ { "first": "S", "middle": [], "last": "Freud", "suffix": "" }, { "first": "J", "middle": [], "last": "Strachey", "suffix": "" }, { "first": "A", "middle": [], "last": "Richards", "suffix": "" }, { "first": "", "middle": [], "last": "On Metapsychology", "suffix": "" } ], "year": 1984, "venue": "", "volume": "", "issue": "", "pages": "251--268", "other_ids": {}, "num": null, "urls": [], "raw_text": "Freud, S., Strachey, J., Richards, A., On Metapsychology: The Theory of Psychoanalysis. Penguin Books, 1984, pp. 251-268.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "Ranking reader emotions using pairwise loss minimization and emotional distribution regression", "authors": [ { "first": "H", "middle": [ "Y" ], "last": "Lin", "suffix": "" }, { "first": "H", "middle": [ "H" ], "last": "Chen", "suffix": "" } ], "year": 2008, "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing", "volume": "", "issue": "", "pages": "136--144", "other_ids": {}, "num": null, "urls": [], "raw_text": "Lin, H.Y. and Chen, H. H., Ranking reader emotions using pairwise loss minimization and emotional distribution regression, in Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2008, pp. 136-144.", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "The Farther Reaches of Human Nature", "authors": [ { "first": "A", "middle": [], "last": "Maslow", "suffix": "" } ], "year": 1971, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "A. Maslow, The Farther Reaches of Human Nature. New York, NY, USA: Viking Books, 1971, pp.318.", "links": null }, "BIBREF12": { "ref_id": "b12", "title": "Leveraging Lexical Resources for the Detection of Event Relations", "authors": [ { "first": "M", "middle": [], "last": "Palmer", "suffix": "" }, { "first": "J", "middle": [ "D" ], "last": "Hwang", "suffix": "" }, { "first": "S", "middle": [ "W" ], "last": "Brown", "suffix": "" }, { "first": "K", "middle": [ "K" ], "last": "Schuler", "suffix": "" }, { "first": "A", "middle": [], "last": "Lanfranchi", "suffix": "" } ], "year": 2009, "venue": "Proceedings of the AAAI 2009 Spring Symposium on Learning by Reading", "volume": "", "issue": "", "pages": "81--87", "other_ids": {}, "num": null, "urls": [], "raw_text": "Palmer, M., Hwang, J. D., Brown, S. W., Schuler, K. K., Lanfranchi, A., Leveraging Lexical Resources for the Detection of Event Relations, in Proceedings of the AAAI 2009 Spring Symposium on Learning by Reading. 2009, pp. 81-87.", "links": null }, "BIBREF13": { "ref_id": "b13", "title": "The Specification Language TimeML", "authors": [ { "first": "James", "middle": [], "last": "Pustejovsky", "suffix": "" }, { "first": "Robert", "middle": [], "last": "Ingria", "suffix": "" }, { "first": "Roser", "middle": [], "last": "Sauri", "suffix": "" }, { "first": "Jose", "middle": [], "last": "Gastano", "suffix": "" }, { "first": "Jessica", "middle": [], "last": "Littman", "suffix": "" }, { "first": "Rob", "middle": [], "last": "Gaizauskas", "suffix": "" }, { "first": "Andrea", "middle": [], "last": "Setzer", "suffix": "" }, { "first": "Graham", "middle": [], "last": "Katz", "suffix": "" }, { "first": "Christopher", "middle": [], "last": "Habel", "suffix": "" } ], "year": 2005, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Pustejovsky, James, Robert Ingria, Roser Sauri, Jose Gastano, Jessica Littman, Rob Gaizauskas, Andrea Setzer, Graham Katz, and Christopher Habel. The Specification Language TimeML, Oxford University Press. 2005a.", "links": null }, "BIBREF14": { "ref_id": "b14", "title": "ISO-TimeML: An International Standard for Semantic Annotation", "authors": [ { "first": "James", "middle": [], "last": "Pustejovsky", "suffix": "" }, { "first": "Kiyong", "middle": [], "last": "Lee", "suffix": "" }, { "first": "Harry", "middle": [], "last": "Bunt", "suffix": "" }, { "first": "Laurent", "middle": [], "last": "Romary", "suffix": "" }, { "first": ";", "middle": [], "last": "Pieter", "suffix": "" }, { "first": "M", "middle": [ "A" ], "last": "Hekkert", "suffix": "" }, { "first": "P", "middle": [], "last": "", "suffix": "" } ], "year": 2009, "venue": "LREC 2010, Malta", "volume": "3", "issue": "", "pages": "1--6", "other_ids": {}, "num": null, "urls": [], "raw_text": "Pustejovsky, James, Kiyong Lee, Harry Bunt, and Laurent Romary. \"ISO-TimeML: An International Standard for Semantic Annotation.\" LREC 2010, Malta. May 18-21, 2010.Pieter M.A., Hekkert, P., Special Issue Editorial: Design & Emotion, International Journal of Design. 2009, Vol. 3, No. 2, p. 1-6.", "links": null }, "BIBREF15": { "ref_id": "b15", "title": "Temporal and Event Information in Natural Language Text", "authors": [ { "first": "James", "middle": [], "last": "Pustejovsky", "suffix": "" }, { "first": "Robert", "middle": [], "last": "Knippen", "suffix": "" }, { "first": "Jessica", "middle": [], "last": "Littman", "suffix": "" }, { "first": "Roser", "middle": [], "last": "Saur\u00b4\u0131", "suffix": "" } ], "year": 2005, "venue": "Language Resources and Evaluation", "volume": "39", "issue": "", "pages": "123--164", "other_ids": {}, "num": null, "urls": [], "raw_text": "Pustejovsky, James, Robert Knippen, Jessica Littman, and Roser Saur\u00b4\u0131\", \"Temporal and Event Information in Natural Language Text\", Language Resources and Evaluation. 2005b, Vol 39, p.123-164.", "links": null }, "BIBREF16": { "ref_id": "b16", "title": "The International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)", "authors": [], "year": 2007, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "World Health Organization, \"The International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10),\" http://apps.who.int/classifications/apps/icd/icd10online, 2007.", "links": null }, "BIBREF17": { "ref_id": "b17", "title": "World Health Organization", "authors": [], "year": null, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "World Health Organization, \"Depression,\" http://www.who.int/mental_health/management/depression/definition/en.", "links": null }, "BIBREF18": { "ref_id": "b18", "title": "Building emotion lexicon from weblog corpora", "authors": [ { "first": "C", "middle": [ "H" ], "last": "Yang", "suffix": "" }, { "first": "H", "middle": [ "A" ], "last": "Kuo", "suffix": "" }, { "first": "H", "middle": [ "H" ], "last": "Chen", "suffix": "" } ], "year": 2007, "venue": "Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions", "volume": "", "issue": "", "pages": "133--136", "other_ids": {}, "num": null, "urls": [], "raw_text": "Yang, C. H., Kuo, H. A. and Chen, H. H., Building emotion lexicon from weblog corpora, in Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions. 2007, pp. 133-136.", "links": null }, "BIBREF19": { "ref_id": "b19", "title": "Emotion Classification Using Web Blog Corpora", "authors": [ { "first": "C", "middle": [ "H" ], "last": "Yang", "suffix": "" }, { "first": "H", "middle": [ "A" ], "last": "Kuo", "suffix": "" }, { "first": "H", "middle": [ "H" ], "last": "Chen", "suffix": "" } ], "year": 2007, "venue": "Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence", "volume": "", "issue": "", "pages": "275--278", "other_ids": {}, "num": null, "urls": [], "raw_text": "Yang, C. H., Kuo, H. A. and Chen, H. H., Emotion Classification Using Web Blog Corpora, in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. 2007, IEEE Computer Society. p. 275-278.", "links": null }, "BIBREF20": { "ref_id": "b20", "title": "Emotion Trend Analysis Using Blog Corpora", "authors": [ { "first": "C", "middle": [ "H" ], "last": "Yang", "suffix": "" }, { "first": "H", "middle": [ "A" ], "last": "Kuo", "suffix": "" }, { "first": "H", "middle": [ "H" ], "last": "Chen", "suffix": "" } ], "year": 2007, "venue": "Proceedings of the 19th Conference on Computational Linguistics and Speech Processing", "volume": "", "issue": "", "pages": "205--218", "other_ids": {}, "num": null, "urls": [], "raw_text": "Yang, C. H., Kuo, H. A. and Chen, H. H., Emotion Trend Analysis Using Blog Corpora, in Proceedings of the 19th Conference on Computational Linguistics and Speech Processing. 2007. pp. 205-218.", "links": null }, "BIBREF21": { "ref_id": "b21", "title": "Event Detection and Summarization in Weblogs with Temporal Collocations", "authors": [ { "first": "C", "middle": [ "Y" ], "last": "Teng", "suffix": "" }, { "first": "H", "middle": [ "H" ], "last": "Chen", "suffix": "" } ], "year": 2008, "venue": "International Conference on Language Resources and Evaluation", "volume": "", "issue": "", "pages": "197--200", "other_ids": {}, "num": null, "urls": [], "raw_text": "Teng, C. Y., Chen H. H., Event Detection and Summarization in Weblogs with Temporal Collocations, in International Conference on Language Resources and Evaluation. 2008. pp. 197-200.", "links": null }, "BIBREF22": { "ref_id": "b22", "title": "TSCAN: A Content Anatomy Approach to Temporal Topic Summarization", "authors": [ { "first": "M", "middle": [ "C" ], "last": "Chen", "suffix": "" }, { "first": "H", "middle": [ "H" ], "last": "Chen", "suffix": "" } ], "year": 2008, "venue": "IEEE Transactions on Knowledge & Data Engineering", "volume": "", "issue": "", "pages": "170--183", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chen, M. C., Chen H. H., TSCAN: A Content Anatomy Approach to Temporal Topic Summarization, in IEEE Transactions on Knowledge & Data Engineering. 2008. pp. 170-183.", "links": null }, "BIBREF24": { "ref_id": "b24", "title": "Life events and depression : A controlled study", "authors": [ { "first": "E", "middle": [ "S" ], "last": "Paykel", "suffix": "" }, { "first": "J", "middle": [ "K" ], "last": "Meyers", "suffix": "" }, { "first": "M", "middle": [ "N" ], "last": "Dienelt", "suffix": "" }, { "first": "G", "middle": [ "L" ], "last": "Klerman", "suffix": "" }, { "first": "J", "middle": [ "J" ], "last": "Lindenthal", "suffix": "" }, { "first": "M", "middle": [ "P" ], "last": "Pepper", "suffix": "" } ], "year": 1969, "venue": "Archives of General Psychiatry", "volume": "21", "issue": "6", "pages": "753--760", "other_ids": {}, "num": null, "urls": [], "raw_text": "Paykel, E.S., Meyers, J.K., Dienelt, M.N., Klerman, G.L., Lindenthal, J.J., Pepper, M.P., \"Life events and depression : A controlled study,\" Archives of General Psychiatry, vol. 21, no. 6, pp. 753-760, 1969.", "links": null } }, "ref_entries": { "FIGREF0": { "uris": null, "type_str": "figure", "text": "Keywords: Depression Tendency, Event, Negative Emotion, Symptom, Negative Thought. )\u548c\u8fd1\u5e74\u706b\u7d05\u7684\u5fae\u7db2\u8a8c(Micro Blog)\u3002\u75de\u5ba2\u90a6 (PIXNET)\u3001\u96a8\u610f\u7aa9(Xuite)\u3001yam\u5929\u7a7a\u90e8\u843d\u7b49\u90fd\u662f\u570b\u5167\u77e5\u540d\u7684\u90e8\u843d\u683c\u670d\u52d9\u7db2\u7ad9\u3002\u53e6\u5916\u81c9\u66f8 (Facebook) \u3001\u63a8\u7279(Twitter) \u3001\u5657\u6d6a(Plurk) \u7b49\u90fd\u662f\u975e\u5e38\u71b1\u9580\u7684\u570b\u969b\u5fae\u7db2\u8a8c\u670d\u52d9\u7db2\u7ad9\u3002\u90e8 \u843d\u683c\u63d0\u4f9b\u7db2\u8def\u4f7f\u7528\u8005\u96a8\u610f\u64b0\u5beb\u6587\u7ae0\u7d00\u9304\u751f\u6d3b\u4e2d\u906d\u9047\u7684\u9ede\u9ede\u6ef4\u6ef4\uff0c\u4e26\u6292\u767c\u5fc3\u60c5\u611f\u53d7\uff0c\u6709\u9a5a\u3001 \u6709\u6012\u3001\u6709\u559c\u6a02\u4e5f\u6709\u60b2\u50b7\u3002\u6839\u64da\u6211\u5011\u5c0d\u5927\u91cf\u7684\u90e8\u843d\u683c\u548c\u8ad6\u58c7\u6587\u7ae0\u89c0\u5bdf\uff0c\u767c\u73fe\u8a31\u591a\u6587\u7ae0\u5167\u5bb9 \u51fa\u73fe\u4e8b\u4ef6\u3001\u8ca0\u9762\u60c5\u7dd2\u3001\u75c7\u72c0\u53ca\u8ca0\u9762\u60f3\u6cd5\u7b49\u76f8\u95dc\u8a5e\u5f59\uff0c\u5982\u5716\u4e00\u6240\u793a\uff0c\u4f5c\u8005\u9762\u5c0d \"\u91cd\u8003\"", "num": null }, "FIGREF1": { "uris": null, "type_str": "figure", "text": "\u7684\u6182\u9b31\u50be\u5411 D \u8f49\u5316\u6210\u6182\u9b31\u56e0\u7d20 \uff0c\u8b8a\u6210\u516c\u5f0f(2)\uff1a ( | ) = \ufffd \ufffd \ufffd (\u6d88\u6975\u56e0\u7d20 \u6db5\u84cb\u4e86\u4e8b\u4ef6 E\u3001\u8ca0\u9762\u60c5\u7dd2 M\u3001\u75c7\u72c0 S \u53ca\u8ca0\u9762\u60f3\u6cd5 T\uff0c\u56e0\u6b64\u6539\u6210\u516c\u5f0f(3)\uff1a \ufffd \ufffd \ufffd = ( , , , | )(3) \u5728\u56db\u500b\u6d88\u6975\u56e0\u7d20\u4e4b\u4e2d\uff0c\u672c\u7814\u7a76\u540c\u6642\u63d0\u51fa\u6d88\u6975\u56e0\u7d20\u7684\u6839\u6e90\u4f86\u81ea\u65bc\u5f15\u767c\u6182\u9b31\u60c5\u7dd2\u7684\u4e8b\u4ef6\uff0c \u7a31\u70ba\u4e8b\u4ef6(Negative Event)\uff0c\u63a5\u8457\u4e8b\u4ef6\u53ef\u80fd\u5f15\u767c\u8ca0\u9762\u60c5\u7dd2\u3001\u75c7\u72c0\u53ca\u8ca0\u9762\u60f3\u6cd5\u3002\u5c07\u516c\u5f0f(3) \u91dd\u5c0d\u6d88\u6975\u56e0\u7d20\u4e2d\u7684\u4e8b\u4ef6\u8207\u5176\u4ed6\u4e09\u500b\u6d88\u6975\u56e0\u7d20\u5c55\u958b\uff0c\u5373\u70ba\u4e0b\u5217\u516c\u5f0f(4)\uff1a ( | ) = ( | ) ( | ) ( | , ) ( | , ) (4) \u516c \u5f0f (4) \u5373 \u662f \u672c \u7814 \u7a76 \u7684 \u5275 \u65b0 \u6a21 \u578b \uff0c \u7a31 \u505a \u4e8b \u4ef6 \u60c5 \u7dd2 \u9a45 \u52d5 \u7684 \u6182 \u9b31 \u50be \u5411 \u9810 \u6e2c \u6a21 \u578b (Event-Emotion-drivenDepression Tendency Prediction Model)\uff0c\u800c\u6bcf\u7bc7\u90e8\u843d\u683c\u6587\u7ae0\u900f\u904e\u6b64 \u6a21\u578b\u5f97\u5230\u7684\u5206\u6578\u7a31\u4e4b\u70ba\u6182\u9b31\u50be\u5411\u5206\u6578(Depression Tendency Score)\u3002 (3) \u6182\u9b31\u50be\u5411\u5206\u6578\u4f30\u7b97 \u70ba\u4e86\u8a08\u7b97\u5f48\u6027\u65b9\u4fbf\uff0c\u672c\u7814\u7a76\u5229\u7528 Log Linear Model \u627e\u51fa ( | )\u7684\u6700\u5927\u6a5f\u7387\u503c\uff0c\u516c\u5f0f \u5982\u4e0b\uff1a ( \u4e2d\u7684 z \u662f\u6578\u503c\u8f49\u6a5f\u7387\u7684\u6b63\u898f\u56e0\u7d20 (normalization factor)\uff0c \u70ba\u6b0a\u91cd\u4fc2\u6578\uff0c \u70ba\u7279\u5fb5 \u51fd\u6578\uff0cF \u70ba\u7279\u5fb5\u51fd\u6578\u96c6\u5408\uff0c = { , \u2212 , , }\u3002\u6211\u5011\u5c07 ( , )\u7a31\u505a\u4e8b\u4ef6\u7279\u5fb5\u51fd \u6578\uff1b \u2212 ( , , )\u7a31\u505a\u4e8b\u4ef6\u548c\u60c5\u7dd2\u914d\u5c0d\u7279\u5fb5\u51fd\u6578\uff1b ( , , , )\u7a31\u505a\u75c7\u72c0\u7279\u5fb5\u51fd\u6578\uff1b ( , , , )\u7a31\u505a\u8ca0\u9762\u60f3\u6cd5\u7279\u5fb5\u51fd\u6578\u3002 \u5728\u63a5\u4e0b\u4f86\u7684\u5c0f\u7bc0\u6703\u8a73\u7d30\u4ecb\u7d39\u9019\u4e94\u500b\u7279\u5fb5\u51fd\u6578\u7684\u8a08\u7b97\u65b9\u6cd5\u3002 \uf09f \u4e8b\u4ef6\u7279\u5fb5\u51fd\u6578: \u7d93\u7531\u6bd4\u5c0d\u90e8\u843d\u683c\u6587\u7ae0\u5167\u5bb9\u7684\u8a5e\u5f59 E \u8207\u6182\u9b31\u4e8b\u4ef6\u8a5e\u5178 = { 1 , 2 , \u2026 }\uff0c\u82e5\u8a5e\u5f59 E \u51fa \u73fe\u5728\u4e8b\u4ef6\u8a5e\u5178 \u4e2d\u5247\u7d66\u4e88\u4e8b\u4ef6\u8a5e\u5206\u6578\u3002\u6211\u5011\u7531\u53f0\u5927 BBS PTT \u7684 Prozac \u677f(\u6182\u9b31\u677f)\u4e2d 378", "num": null }, "TABREF0": { "text": "The 2015 Conference on Computational Linguistics and Speech Processing ROCLING 2015, pp. 263-276 \uf0d3 The Association for Computational Linguistics and Chinese Language Processing", "content": "
\u683c\u6587\u7ae0\u5167\u5bb9\u4f86\u5206\u6790\u4f5c\u8005\u7684\u8ca0\u9762\u60c5\u7dd2\uff0c\u7136\u5f8c\u5075\u6e2c\u90e8\u843d\u683c\u4f5c\u8005\u662f\u5426\u6709\u5f37\u70c8\u60c5\u7dd2\u4e0d\u7a69\u6216\u6182\u9b31\u50be \u5411\uff0c\u6216\u751a\u81f3\u7522\u751f\u81ea\u6bba\u4f01\u5716\u3002\u6211\u5011\u671f\u5f85\u958b\u767c\u6709\u6548\u7684\u5275\u65b0\u6280\u8853\uff0c\u5f9e\u90e8\u843d\u683c\u6587\u7ae0\u5224\u65b7\u6709\u6182\u9b31\u50be \u5411\u7684\u4f5c\u8005\uff0c\u9032\u800c\u5354\u52a9\u9019\u4e9b\u4f5c\u8005\u9810\u9632\u6216\u6cbb\u7642\u6182\u9b31\u75c7\u3002\u672c\u7814\u7a76\u7279\u5225\u95dc\u6ce8\u5169\u9805\u91cd\u8981\u7814\u7a76\u8b70\u984c\uff0c \u4e26\u958b\u767c\u76f8\u95dc\u8655\u7406\u6280\u8853\uff1a(1)\u6182\u9b31\u75c7\u60a3\u8005\u7db2\u8a8c\u6587\u7ae0\u7684\u6182\u9b31\u50be\u5411\u8207\u76f8\u95dc\u56e0\u7d20\u5206\u6790\uff0c(2)\u767c\u5c55\u90e8 \u843d\u683c\u4f5c\u8005\u7684\u6182\u9b31\u50be\u5411\u9810\u6e2c\u6a21\u578b\u3002\u56e0\u6b64\u6211\u5011\u63d0\u51fa\u4e8b\u4ef6\u60c5\u7dd2\u9a45\u52d5\u7684\u6182\u9b31\u50be\u5411\u9810\u6e2c\u6a21\u578b (Event-Emotion-driven Depression Tendency Prediction Model)\uff0c\u85c9\u7531\u8ca0\u9762\u60c5\u7dd2\u3001\u4e8b\u4ef6\u3001\u75c7 \u72c0\u548c\u8ca0\u9762\u60f3\u6cd5\u7279\u5fb5\u7684\u5206\u6790\uff0c\u7136\u5f8c\u5224\u5225\u51fa\u90e8\u843d\u683c\u4f5c\u8005\u7684\u6182\u9b31\u50be\u5411\u3002 \u5716\u4e00\u3001\u6182\u9b31\u75c7\u60a3\u8005\u767c\u8868\u7db2\u8a8c\u6587\u7ae0 (\u85cd\u8272\u77e9\u5f62\u5be6\u7dda\u4ee3\u8868\u4e8b\u4ef6\uff1b\u7d05\u8272\u77e9\u5f62\u865b\u7dda\u4ee3\u8868\u8ca0\u9762\u60c5\u7dd2\uff1b \u7d2b\u8272\u6a62\u5713\u5be6\u7dda\u4ee3\u8868\u75c7\u72c0\uff1b\u7da0\u8272\u6a62\u5713\u865b\u7dda\u4ee3\u8868\u8ca0\u9762\u60f3\u6cd5) \u4e8c\u3001 \u6587\u737b\u63a2\u8a0e (\u4e00) \u6182\u9b31\u75c7\u7c21\u4ecb\u8207\u81e8\u5e8a\u8a3a\u65b7\u6280\u8853 \u6182\u9b31\u75c7\u901a\u5e38\u662f\u6307\u91cd\u6027\u6182\u9b31\u969c\u7919(major depressive disorder)\uff0c\u5728\u91ab\u5b78\u4e0a\u88ab\u8996\u4f5c\u4e00\u7a2e\u7cbe\u795e \u75be\u75c5\u3002\u6182\u9b31\u75c7\u60a3\u8005\u7684\u5178\u578b\u75c7\u72c0\u662f\u5fc3\u60c5\u4f4e\u843d\uff0c\u901a\u5e38\u6703\u6c89\u6d78\u5728\u6182\u9b31\u7684\u60c5\u7dd2\u72c0\u614b\u4e2d\uff0c\u5c0d\u4e00\u4e9b\u6709 \u8208\u8da3\u7684\u4e8b\u7269\u7686\u611f\u7121\u8da3\uff0c\u7d55\u671b\u6216\u662f\u8a8d\u70ba\u4eba\u751f\u6c92\u6709\u50f9\u503c\uff0c\u66f4\u751a\u8005\u6703\u6709\u81ea\u6bba\u5ff5\u982d\u3002\u5728\u751f\u7406\u4e0a\u4e5f \u6703\u51fa\u73fe\u75c7\u72c0\uff0c\u4f8b\u5982\u5931\u7720\u3001\u6c92\u6709\u98df\u617e\u9020\u6210\u9ad4\u91cd\u4e0b\u964d\u3001\u75b2\u52de\u3001\u7121\u7cbe\u6253\u91c7\u6c92\u6709\u6d3b\u529b\u6216\u662f\u51fa\u73fe\u8178 \u80c3\u554f\u984c\u7b49\u3002 \u6182\u9b31\u75c7\u7684\u75c5\u56e0\u5728\u91ab\u5b78\u4e0a\u76ee\u524d\u5c1a\u672a\u78ba\u8a8d\uff0c\u5f9e\u5fc3\u7406\u5b78\u7684\u7814\u7a76\u8a8d\u70ba\u4e00\u500b\u4eba\u7684\u4eba\u683c\u767c\u5c55\u5728\u8a31 \u591a\u65b9\u9762\u4fc3\u4f7f\u4e86\u6182\u9b31\u75c7\u7684\u767c\u4f5c\uff0c\u5f88\u591a\u5b78\u6d3e\u652f\u6301\u9019\u500b\u8ad6\u9ede\uff0c\u4f8b\u5982\u7cbe\u795e\u5206\u6790\u5b78\u3001\u5b58\u5728\u4e3b\u7fa9\u5fc3\u7406 \u5b78\u7b49[10, 12]\u3002\u800c\u793e\u6703\u5b78\u7684\u7814\u7a76\u89c0\u9ede\u5247\u524d\u77bb\u5730\u6307\u51fa\u8eab\u8655\u7684\u74b0\u5883\u3001\u4eba\u969b\u95dc\u4fc2\u8207\u906d\u9047\u7684\u751f\u6d3b \u4e8b\u4ef6\u662f\u7f79\u60a3\u6182\u9b31\u75c7\u7684\u91cd\u8981\u539f\u56e0[26]\uff0c\u4f8b\u5982\u5bb6\u5ead\u529f\u80fd\u53d7\u640d\u6216\u662f\u8655\u65bc\u60e1\u52a3\u5de5\u4f5c\u74b0\u5883\u4e2d\u3002\u672c\u7814 \u7a76\u8a8d\u70ba\u751f\u7269\u3001\u5fc3\u7406\u3001\u793e\u6703\u9019\u4e09\u500b\u56e0\u7d20\u90fd\u662f\u91cd\u8981\u5f71\u97ff\u56e0\u7d20\uff0c\u53e6\u5916\u5c0d\u65bc\u5f71\u97ff\u90e8\u843d\u683c\u4f5c\u8005\u8ca0\u9762 Analysis Model \u7d66\u5b9a\u4e00\u7bc7\u90e8\u843d\u683c\u6587\u7ae0 b \uff0c\u6211\u5011\u60f3\u8981\u5229\u7528\u6a5f\u7387\u6a21\u578b\u4f86\u4f30\u7b97\u9019\u7bc7\u6587\u7ae0\u900f\u9732\u51fa\u7684\u6182\u9b31\u50be Analysis Factors BPS model Biological Psychological \u5411(Depressive Tendency) D \u7684\u5f37\u5ea6\uff1a Social \u60c5\u7dd2\u7684\u8ca0\u9762\u751f\u6d3b\u4e8b\u4ef6\u5c07\u6df1\u5165\u63a2\u7a76\u3002 \u73fe\u4eca\u91ab\u5b78\u7684\u6182\u9b31\u75c7\u8a3a\u65b7\u6a19\u6e96\u4e3b\u8981\u662f\u6839\u64da\u7f8e\u570b\u7cbe\u795e\u75be\u75c5\u5354\u6703(American Psychiatric Association, APA) \u7684\u7cbe\u795e\u75be\u75c5\u8a3a\u65b7\u8207\u7d71\u8a08\u624b\u518a\u7b2c\u56db\u7248\u4fee\u8a02\u7248(DSM-IV-TR) (2000)[1]\u548c \u4e16\u754c\u885b\u751f\u7d44\u7e54(World Health Organization, WHO) \u7684\u570b\u969b\u75be\u75c5\u8207\u76f8\u95dc\u5065\u5eb7\u554f\u984c\u7d71\u8a08\u5206\u985e (ICD-10) (2007) [17]\uff0c\u53e6\u5916\u8463\u6c0f\u57fa\u91d1\u6703[25]\u4e5f\u6709\u63d0\u4f9b\u6182\u9b31\u75c7\u7684\u81ea\u6211\u8a3a\u65b7\u8a55\u91cf\u8868\u8b93\u4e00\u822c\u6c11 \u773e\u81ea\u6211\u7be9\u6aa2\u3002\u4e0b\u9762\u7c21\u55ae\u8aaa\u660e DSM-IV-TR \u6709\u95dc\u6182\u9b31\u75c7\u7684\u4e5d\u9805\u8a3a\u65b7\u6a19\u6e96\uff1a 1. \u6182\u9b31\u60c5\u7dd2\uff1a\u5feb\u6a02\u4e0d\u8d77\u4f86\u3001\u7169\u8e81\u548c\u9b31\u60b6\u3002 2. \u8208\u8da3\u8207\u559c\u6a02\u6e1b\u5c11\uff1a\u63d0\u4e0d\u8d77\u8208\u8da3\u3002 3. \u7121\u6cd5\u5c08\u6ce8\uff1a\u7121\u6cd5\u6c7a\u65b7\u3001\u77db\u76fe\u7336\u8c6b\u3001\u7121\u6cd5\u5c08\u5fc3\u3002 4. \u9ad4\u91cd\u548c\u98df\u617e\u5931\u5e38\uff1a\u9ad4\u91cd\u4e0b\u964d\u6216\u589e\u52a0\u3001\u98df\u617e\u4e0b\u964d\u6216\u589e\u52a0 5. \u5931\u7720(\u6216\u55dc\u7761)\uff1a\u96e3\u5165\u7761\u6216\u6574\u5929\u60f3\u7761\u3002 6. \u7cbe\u795e\u904b\u52d5\u6027\u9072\u6eef(\u6216\u6fc0\u52d5)\uff1a\u601d\u8003\u52d5\u4f5c\u8b8a\u7de9\u6162\u3001\u8166\u7b4b\u8b8a\u920d\u3002 7. \u75b2\u7d2f\u5931\u53bb\u6d3b\u529b\uff1a\u6574\u5929\u60f3\u8eba\u5e8a\u3001\u9ad4\u529b\u8b8a\u5dee\u3002 8. \u7121\u50f9\u503c\u611f\u6216\u7f6a\u60e1\u611f\uff1a\u89ba\u5f97\u6d3b\u8457\u6c92\u610f\u601d\u3001\u81ea\u8cac\u96e3\u904e\uff0c\u90fd\u662f\u8ca0\u9762\u60f3\u6cd5\u3002 9. \u81ea\u6bba\u610f\u5716\uff1a\u53cd\u8986\u60f3\u5230\u6b7b\u4ea1\uff0c\u751a\u81f3\u6709\u81ea\u6bba\u610f\u5ff5\u3001\u4f01\u5716\u6216\u8a08\u756b\u3002 (\u4e8c) \u90e8\u843d\u683c\u60c5\u7dd2\u5206\u6790 \u8fd1\u5e7e\u5e74\u4f86\u90e8\u843d\u683c\u7684\u670d\u52d9\u5feb\u901f\u5d1b\u8d77\uff0c\u8a31\u591a\u5b78\u8005\u767c\u73fe\u60c5\u7dd2\u662f\u90e8\u843d\u683c\u7db2\u8a8c\u6587\u7ae0\u4e2d\u4e00\u500b\u91cd\u8981 \u7684\u6210\u5206\uff0c\u800c\u570b\u5167\u53f0\u5927\u8cc7\u5de5\u7cfb\u9673\u4fe1\u5e0c\u6559\u6388\u6700\u8fd1\u5e7e\u5e74\u4e5f\u6709\u4e0d\u5c11\u7684\u7814\u7a76\u95dc\u6ce8\u5728\u90e8\u843d\u683c\u7684\u60c5\u7dd2\u5206 \u6790\u4e0a[11, \u9032\u884c\u5927\u898f\u6a21\u6548\u80fd\u8a55\u4f30\u3002\u9019\u4e9b\u60c5\u7dd2\u5075\u6e2c\u548c\u5206\u985e\u7684\u76f8\u95dc\u7814\u7a76\u89f8\u767c\u672c\u7814\u7a76\u5c0d\u65bc\u60c5\u7dd2\u7814\u7a76\u7684\u5ef6\u4f38 \u61c9\u7528\uff0c\u6211\u5011\u5617\u8a66\u5229\u7528\u8ca0\u9762\u60c5\u7dd2\u7279\u5fb5\u63d0\u51fa\u5275\u65b0\u7684\u90e8\u843d\u683c\u4f5c\u8005\u7684\u6182\u9b31\u50be\u5411\u9810\u6e2c\u7814\u7a76\u3002 (\u4e09) \u90e8\u843d\u683c\u4e8b\u4ef6\u64f7\u53d6 \u672c\u7814\u7a76\u662f\u4ee5\u7d00\u9304\u90e8\u843d\u683c\u4f5c\u8005\u500b\u4eba\u65e5\u5e38\u751f\u6d3b\u4e0a\u5f15\u767c\u8ca0\u9762\u60c5\u7dd2\u7684\u8ca0\u9762\u4e8b\u60c5\u4f5c\u70ba\u4e8b\u4ef6\u7684 \u5b9a\u7fa9\uff0c\u5927\u6982\u4ee5\u5bb6\u5ead\u3001\u611f\u60c5\u3001\u5b78\u696d\u3001\u5de5\u4f5c\u56db\u7a2e\u985e\u578b\u70ba\u4e3b\u7684\u751f\u6d3b\u4e8b\u4ef6\u3002\u904e\u53bb\u6709\u95dc\u4e8b\u4ef6\u64f7\u53d6\u7684 \u76f8\u95dc\u7814\u7a76\u4e3b\u8981\u4f86\u81ea\u65bc\u5169\u500b\u7814\u7a76\u9818\u57df\uff0c\u4e00\u500b\u662f\u4e3b\u984c\u5075\u6e2c\u8207\u8ffd\u8e64(Topic Detection and Tracking, TDT)\uff0c\u53e6\u4e00\u500b\u662f\u81ea\u7136\u8a9e\u8a00\u8655\u7406\u3002 Chen \u7b49\u4eba (2008)\u63d0\u51fa\u7684 TSCAN [23]\u548c Kumaran \u7b49\u4eba[7]\u63d0\u51fa\u7684 NED \u7686\u662f TDT \u76f8 \u95dc\u7684\u7814\u7a76\uff0c\u5728\u6b64\u4ed6\u5011\u5c0d\u65bc Topic \u7684\u5b9a\u7fa9\u662f\u4e00\u500b\u6709\u91cd\u5927\u5f71\u97ff\u548c\u610f\u7fa9\u7684\u4e8b\u4ef6\u6216\u6d3b\u52d5\u3002\u5927\u90e8\u4efd \u6709\u95dc\u4e8b\u4ef6\u7684\u76f8\u95dc\u7814\u7a76\u4e3b\u8981\u90fd\u662f\u4ee5\u65b0\u805e\u71b1\u9580\u4e8b\u4ef6\u70ba\u4e3b[8]\u3002Teng and Chen [22]\u63d0\u51fa\u4e86\u5229\u7528 Temporal Collocation \u7684\u65b9\u6cd5\u5c0d\u90e8\u843d\u683c\u7db2\u8a8c\u6587\u7ae0\u505a\u4e8b\u4ef6\u62bd\u53d6\uff0c\u4f46\u662f\u4ed6\u5011\u8457\u91cd\u5728\u71b1\u9580\u4e3b\u984c\u4e8b \u4ef6\u62bd\u53d6\uff0c\u76f8\u5c0d\u4f86\u8aaa\u672c\u7814\u7a76\u5247\u6df1\u5165\u63a2\u7a76\u66f4\u7463\u788e\u7684\u751f\u6d3b\u4e8b\u4ef6\u62bd\u53d6\u70ba\u4e3b\uff0c\u6280\u8853\u4e0a\u61c9\u8a72\u6bd4\u8f03\u56f0 \u96e3\u3002 \u4e09\u3001\u7814\u7a76\u65b9\u6cd5 \u70ba\u4e86\u5f9e\u90e8\u843d\u683c\u4f5c\u8005\u7684\u7db2\u8a8c\u6587\u7ae0\u77ad\u89e3\u548c\u9810\u6e2c\u90e8\u843d\u683c\u4f5c\u8005\u7684\u6182\u9b31\u50be\u5411\uff0c\u672c\u7814\u7a76\u641c\u96c6\u4e86\u5927 \u91cf\u6182\u9b31\u75c7\u60a3\u8005\u7684\u7db2\u8a8c\u6587\u7ae0\u6216 BBS \u8ad6\u58c7\u6587\u7ae0\uff0c\u85c9\u7531\u6df1\u5165\u89c0\u5bdf\u4e8b\u4ef6\u3001\u8ca0\u9762\u60c5\u7dd2\u3001\u75c7\u72c0\u3001\u8ca0 \u9762\u60f3\u6cd5\u7b49\u56db\u9805\u91cd\u8981\u7279\u5fb5\u5c0d\u65bc\u6182\u9b31\u75c7\u7684\u8907\u96dc\u5f71\u97ff\u8207\u95dc\u806f\uff0c\u6211\u5011\u9996\u5148\u5617\u8a66\u63d0\u51fa\u5275\u65b0\u7684\u5206\u6790\u548c \u9810\u6e2c\u6280\u8853\uff1a (\u4e00) \u63d0\u4f9b\u6182\u9b31\u75c7\u60a3\u8005\u7db2\u8a8c\u6587\u7ae0\u7684\u6182\u9b31\u50be\u5411\u8207\u76f8\u95dc\u56e0\u7d20\u5206\u6790\uff0c(\u4e8c) \u5efa\u69cb\u4e00\u500b \u4e8b \u4ef6 \u60c5 \u7dd2 \u9a45 \u52d5 \u7684 \u6182 \u9b31 \u50be \u5411 \u9810 \u6e2c \u6a21 \u578b (Event-Emotion-driven Depression Tendency Prediction Model)\u3002\u9019\u4e9b\u5206\u6790\u5831\u544a\u548c\u5275\u65b0\u6280\u8853\u61c9\u8a72\u80fd\u5920\u6709\u6548\u5730\u63d0\u65e9\u5224\u65b7\u5177\u6709\u6182\u9b31\u50be\u5411\u7684 \u90e8\u843d\u683c\u4f5c\u8005\uff0c\u5efa\u8b70\u4ed6\u5011\u76e1\u901f\u5c0b\u6c42\u5c08\u696d\u91ab\u7642\u7684\u5354\u52a9\u3002\u4e0b\u9762\u6211\u5011\u5c07\u8a73\u7d30\u8aaa\u660e\u672c\u7814\u7a76\u7814\u7a76\u53ca\u767c \u5c55\u7684\u4e3b\u8981\u5206\u6790\u65b9\u6cd5\u8207\u9810\u6e2c\u6280\u8853\u3002 (\u4e00) \u6182\u9b31\u75c7\u60a3\u8005\u7db2\u8a8c\u6587\u7ae0\u7684\u6182\u9b31\u50be\u5411\u8207\u76f8\u95dc\u56e0\u7d20\u5206\u6790 1. \u521d\u6b65\u7684\u89c0\u5bdf\u548c\u5206\u6790 \u6839\u64da\u6211\u5011\u5c0d\u6182\u9b31\u75c7\u60a3\u8005\u7db2\u8a8c\u6587\u7ae0\u7684\u89c0\u5bdf\uff0c\u7576\u6182\u9b31\u75c7\u60a3\u8005\u5728\u64b0\u5beb\u6587\u7ae0\u6642\u7d93\u5e38\u6703\u51fa\u73fe \u5404\u7a2e\u8ca0\u9762\u60c5\u7dd2\u5b57\u773c\u4f8b\u5982\"\u5927\u54ed\"\u3001\"\u6050\u614c\"\u3001\"\u7126\u616e\"\u3001\"\u6cae\u55aa\" (\u5716\u4e00)\uff0c\u800c\u9019\u4e9b\u8ca0\u9762\u60c5\u7dd2\u5927\u90e8 \u5206\u7531\u4e00\u822c\u751f\u6d3b\u4e0a\u7684\u4e8b\u4ef6\u6240\u5f15\u8d77\uff0c\u5982\"\u91cd\u8003\"\u3002\u6bd4\u8f03\u56b4\u91cd\u7684\u6182\u9b31\u75c7\u60a3\u8005\u5728\u64b0\u5beb\u6587\u7ae0\u6642\uff0c\u9664\u4e86 \u6703\u51fa\u73fe\u6bd4\u8f03\u5f37\u70c8\u7684\u8ca0\u9762\u60c5\u7dd2\u5b57\u773c\uff0c\u751a\u81f3\u6703\u51fa\u73fe\u8eab\u9ad4\u75c7\u72c0\u548c\u5f15\u767c\u5fc3\u7406\u56b4\u91cd\u7684\u8ca0\u9762\u60f3\u6cd5\uff0c\u4f8b \u5982\"\u60f3\u6b7b\"\u548c\"\u81ea\u6bba\"\u3002 2. \u4e3b\u8981\u7684\u5206\u6790\u65b9\u6cd5\uff1a \u85c9\u7531\u5927\u91cf\u6182\u9b31\u75c7\u60a3\u8005\u7db2\u8a8c\u6587\u7ae0\u89c0\u5bdf\uff0c\u6211\u5011\u63d0\u51fa\u4ee5\u4e8b\u4ef6\u3001\u8ca0\u9762\u60c5\u7dd2\u3001\u75c7\u72c0\u3001\u8ca0\u9762\u60f3 \u6cd5\u56db\u9805\u91cd\u8981\u7279\u5fb5\u70ba\u4e3b\u7684\u6182\u9b31\u50be\u5411\u5275\u65b0\u5206\u6790\u65b9\u6cd5\uff0c\u7136\u5f8c\u6211\u5011\u6839\u64da\u5169\u500b\u91ab\u5b78\u5206\u6790\u6a21\u578b\u4f86\u63a2\u8a0e \u6211\u5011\u63d0\u51fa\u7684\u5206\u6790\u65b9\u6cd5\u7684\u6709\u6548\u6027\u548c\u512a\u9ede\u3002 (1) \u751f\u7269\u5fc3\u7406\u793e\u6703\u5206\u6790\u6a21\u578b 1977 \u5e74\u5b78\u8005 Engel[2]\u63d0\u51fa\u751f\u7269\u3001\u5fc3\u7406\u3001\u793e\u6703\u4e09\u5408\u4e00\u5206\u6790\u6a21\u578b(Biopsychosocial Model, BPS Model)\u7684\u65b0\u91ab\u5b78\u6982\u5ff5\uff0c\u5c0d\u65bc\u75c5\u60a3\u9762\u5c0d\u75be\u75c5\u7684\u5206\u6790\u56e0\u7d20\u5305\u542b\u4e86\u751f\u7269\u9762(Biological)\u3001\u5fc3 \u7406\u9762(Psychological)\u548c\u793e\u6703\u9762(Social)\u7684\u4e09\u65b9\u56e0\u7d20\u3002\u5176\u4e2d\u751f\u7269\u9762\u5373\u662f\u8eab\u9ad4\u75c7\u72c0(Symptom)\uff0c \u5fc3\u7406\u9762\u5247\u6db5\u84cb\u4e86\u60c5\u7dd2(Emotion)\u3001\u60f3\u6cd5(Thought)\u8207\u884c\u70ba(Behavior)\uff0c\u793e\u6703\u9762\u5373\u662f\u75c5\u60a3\u9762\u5c0d \u7684\u74b0\u5883\u56e0\u7d20\uff0c\u63db\u500b\u89d2\u5ea6\u8b1b\uff0c\u4e5f\u5c31\u662f\u75c5\u60a3\u6240\u767c\u751f\u7684\u751f\u6d3b\u4e8b\u4ef6(Event)\u3002\u900f\u904e\u9032\u4e00\u6b65\u7684\u5206\u6790\u6bd4 \u8f03\u5f8c\uff0c\u6211\u5011\u53ef\u4ee5\u5c07 BPS \u6a21\u578b\u7684\u4e09\u500b\u4e3b\u8981\u56e0\u7d20\u5c0d\u61c9\u5230\u6211\u5011\u63d0\u51fa\u7684\u5275\u65b0\u6182\u9b31\u75c7\u5206\u6790\u65b9\u6cd5\u7684 \u56db\u9805\u56e0\u7d20\uff0c\u5982\u8868\u4e00\u6240\u793a\uff0c\u9019\u6a23\u7684\u76f8\u4f3c\u5c0d\u61c9\u95dc\u4fc2\u986f\u793a\u6211\u5011\u7684\u5206\u6790\u65b9\u6cd5\u61c9\u8a72\u5168\u9762\u6027\u5730\u6db5\u84cb\u6182 \u9b31\u50be\u5411\u7684\u76f8\u95dc\u91cd\u8981\u56e0\u7d20\u3002 \u8868\u4e00\u3001BPS model \u8207\u672c\u7814\u7a76\u5206\u6790\u65b9\u6cd5\u7684\u5c0d\u61c9\u95dc\u4fc2 Correspondence Symptom Emotion Thought Behavior ( | ) (1) Event Our analysis method Symptom Negative Emotion Negative Blogger's posts \u6839\u64da\u672c\u7814\u7a76\u89c0\u5bdf\u5177\u6709\u9ad8\u5ea6\u6182\u9b31\u50be\u5411\u4f5c\u8005\u7684\u90e8\u843d\u683c\u6587\u7ae0\uff0c\u767c\u73fe\u4f5c\u8005\u5beb\u4e0b\u5177\u6709\u8ca0\u9762\u60c5 Negative Thought Event (2) DSM-IV-TR \u6182\u9b31\u75c7\u81e8\u5e8a\u5224\u5225\u6a19\u6e96 \u73fe\u4eca\u7684\u91ab\u5b78\u5c1a\u672a\u63d0\u4f9b\u751f\u7269\u6aa2\u6e2c\u65b9\u6cd5\u4ee5\u76f4\u63a5\u78ba\u8a3a\u6182\u9b31\u75c7\u60a3\u8005\u3002\u4ee5\u91cd\u5ea6\u6182\u9b31\u75c7\u800c\u8a00\uff0c \u7cbe\u795e\u79d1\u91ab\u5e2b\u76ee\u524d\u4e3b\u8981\u6839\u64da\u7f8e\u570b\u7cbe\u795e\u75be\u75c5\u5354\u6703(American Psychiatric Association, APA) \u7684 \u7cbe\u795e\u75be\u75c5\u8a3a\u65b7\u8207\u7d71\u8a08\u624b\u518a\u7b2c\u56db\u7248\u4fee\u8a02\u7248(DSM-IV-TR)\u7684\u4e5d\u9805\u5224\u5225\u6a19\u6e96\u5c0d\u75c5\u60a3\u505a\u7be9\u6aa2\u548c \u8a3a\u65b7\u3002\u5982\u8868\u4e8c\u6240\u793a\uff0c\u6211\u5011\u63d0\u51fa\u7684\u6182\u9b31\u50be\u5411\u5206\u6790\u65b9\u6cd5\u7684\u8ca0\u9762\u60c5\u7dd2\u56e0\u7d20\uff0c\u53ef\u4ee5\u76f8\u5c0d\u61c9 DSM-IV-TR \u7684\u524d\u4e09\u9805\u5224\u5225\u6a19\u6e96(\u9805\u6b21 1\u30012\u30013)\u3002\u6182\u9b31\u75c7\u60a3\u8005\u7684\u7db2\u8a8c\u6587\u7ae0\u4e5f\u5e38\u51fa\u73fe\u8ca0\u9762\u60c5 \u7dd2\u4f34\u96a8\u8457\u8ca0\u9762\u7684\u751f\u7406\u75c7\u72c0\uff0c\u8b6c\u5982\u8aaa\u54ed\u6ce3\u3001\u982d\u75db\u3001\u5931\u7720\u3001\u98df\u617e\u4e0b\u964d\u7b49\u7b49\u3002\u9019\u4e9b\u75c7\u72c0\u525b\u597d\u7b26 \u5408\u8868 1 \u4e2d DSM-IV-TR \u7684 4\u30015\u30016\u30017 \u9805\u5224\u5225\u6a19\u6e96\u3002\u53e6\u5916\u6182\u9b31\u75c7\u60a3\u8005\u7684\u7db2\u8a8c\u6587\u7ae0\u4e5f\u5e38\u51fa\u73fe \u8ca0\u9762\u60f3\u6cd5\uff0c\u4f8b\u5982\u81ea\u6bba\u3001\u8df3\u6a13\u3001\u81ea\u6b98\u3001\u71d2\u70ad\u7b49\u7b49\u3002\u9019\u4e9b\u8ca0\u9762\u60f3\u6cd5\u4e5f\u7b26\u5408\u8868\u4e8c\u4e2d DSM-IV-TR \u7684\u7b2c 8\u30019 \u5169\u9805\u5224\u5225\u6a19\u6e96\u3002\u6839\u64da\u9019\u4e09\u9805\u56e0\u7d20\u7684\u5c0d\u61c9\u95dc\u4fc2\uff0c\u53ef\u4ee5\u6e05\u695a\u986f\u793a\u6211\u5011\u7684\u5206\u6790\u65b9\u6cd5 \u61c9\u8a72\u6709\u6548\u5730\u6db5\u84cb\u6182\u9b31\u75c7\u81e8\u5e8a\u8a3a\u65b7\u5224\u5225\u6a19\u6e96\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\u6211\u5011\u63d0\u51fa\u7684\u4e8b\u4ef6\u56e0\u7d20\u4e26\u672a\u51fa\u73fe \u5728 DSM-IV-TR \u7684\u4e5d\u9805\u5224\u5225\u6a19\u6e96\uff0c\u672c\u7814\u7a76\u63d0\u51fa\u9019\u9805\u5275\u65b0\u56e0\u7d20\uff0c\u4e26\u6df1\u5165\u63a2\u7a76\u662f\u5426\u53ef\u4ee5\u6709\u6548 \u5730\u5354\u52a9\u5206\u6790\u6182\u9b31\u50be\u5411\u3002 \u8868\u4e8c\u3001DSM-IV-TR \u91cd\u5ea6\u6182\u9b31\u75c7\u4e5d\u9805\u5224\u5225\u6a19\u6e96\u8207\u672c\u7814\u7a76\u63d0\u51fa\u7684\u6182\u9b31\u56e0\u7d20\u5c0d\u61c9\u95dc\u4fc2 \u5224\u5225\u6a19\u6e96 \u8aaa\u660e \u6182\u9b31\u50be\u5411 \u56e0\u7d20 1 \u6182\u9b31\u60c5\u7dd2\uff1a\u5feb\u6a02\u4e0d\u8d77\u4f86\u3001\u7169\u8e81\u3001\u9b31\u60b6 \u8ca0\u9762\u60c5\u7dd2 2 \u8208\u8da3\u8207\u559c\u6a02\u6e1b\u5c11\uff1a\u63d0\u4e0d\u8d77\u8208\u8da3 3 \u7121\u6cd5\u5c08\u6ce8\uff1a\u7121\u6cd5\u6c7a\u65b7\u3001\u77db\u76fe\u7336\u8c6b\u3001\u7121\u6cd5\u5c08\u5fc3 4 \u9ad4\u91cd\u548c\u98df\u617e\u5931\u5e38\uff1a\u9ad4\u91cd\u4e0b\u964d(\u6216\u589e\u52a0)\u3001\u98df\u617e\u4e0b\u964d(\u6216\u589e\u52a0) \u75c7\u72c0 5 \u5931\u7720(\u6216\u55dc\u7761)\uff1a\u96e3\u5165\u7761\u6216\u6574\u5929\u60f3\u7761 6 \u7cbe\u795e\u904b\u52d5\u6027\u9072\u6eef(\u6216\u6fc0\u52d5)\uff1a\u601d\u8003\u52d5\u4f5c\u8b8a\u7de9\u6162\u3001\u8166\u7b4b\u8b8a\u920d 7 \u75b2\u7d2f\u5931\u53bb\u6d3b\u529b\uff1a\u6574\u5929\u60f3\u8eba\u5e8a\u3001\u9ad4\u529b\u8b8a\u5dee 8 \u7121\u50f9\u503c\u611f\u6216\u7f6a\u60e1\u611f\uff1a\u89ba\u5f97\u6d3b\u8457\u6c92\u610f\u601d\u3001\u81ea\u8cac\u96e3\u904e\uff0c\u90fd\u662f\u8ca0\u9762\u60f3 \u6cd5 \u8ca0\u9762\u60f3\u6cd5 9 \u81ea\u6bba\u610f\u5716\uff1a\u53cd\u8986\u60f3\u5230\u6b7b\u4ea1\uff0c\u751a\u81f3\u6709\u81ea\u6bba\u610f\u5ff5\u3001\u4f01\u5716\u6216\u8a08\u756b \u5716\u4e8c\u3001\u90e8\u843d\u683c\u4f5c\u8005\u7684\u6182\u9b31\u50be\u5411\u9810\u6e2c\u7cfb\u7d71\u67b6\u69cb (\u4e8c) \u90e8\u843d\u683c\u4f5c\u8005\u7684\u6182\u9b31\u50be\u5411\u9810\u6e2c\u6a21\u578b (1) \u554f\u984c\u548c\u69cb\u60f3 \u6182\u9b31\u539f\u672c\u662f\u4e00\u500b\u62bd\u8c61\u6982\u5ff5\uff0c\u96fb\u8166\u7cfb\u7d71\u7121\u6cd5\u5f9e\u90e8\u843d\u683c\u4f5c\u8005\u6587\u7ae0\u4e2d\u76f4\u63a5\u5224\u5225\u4ed6\u7684\u6182\u9b31 \u50be\u5411\uff0c\u7136\u800c\u6839\u64da\u6211\u5011\u5c0d\u6182\u9b31\u75c7\u60a3\u8005\u7db2\u8a8c\u6587\u7ae0\u7684\u89c0\u5bdf\uff0c\u6182\u9b31\u75c7\u60a3\u8005\u64b0\u5beb\u7684\u6587\u7ae0\u7d93\u5e38\u6703\u51fa\u73fe \u8ca0\u9762\u60c5\u7dd2\u3001\u4e8b\u4ef6\u3001\u75c7\u72c0\u548c\u8ca0\u9762\u60f3\u6cd5 (\u5982\u5716\u4e00)\u3002\u56e0\u6b64\u70ba\u4e86\u8b93\u96fb\u8166\u7cfb\u7d71\u6709\u6548\u5730\u81ea\u52d5\u9810\u6e2c\u90e8 \u843d \u683c \u4f5c \u8005 \u7684 \u6182 \u9b31 \u50be \u5411 \uff0c \u6211 \u5011 \u69cb \u60f3 \u63d0 \u51fa \u4e8b \u4ef6 \u60c5 \u7dd2 \u9a45 \u52d5 \u7684 \u6182 \u9b31 \u50be \u5411 \u9810 \u6e2c \u6a21 \u578b (Event-Emotion-driven Depression Tendency Prediction Model)\uff0c\u85c9\u7531\u8ca0\u9762\u60c5\u7dd2\u3001\u4e8b\u4ef6\u3001 \u75c7\u72c0\u548c\u8ca0\u9762\u60f3\u6cd5\u7279\u5fb5\u7684\u5206\u6790\uff0c\u7136\u5f8c\u5224\u5225\u51fa\u90e8\u843d\u683c\u4f5c\u8005\u7684\u6182\u9b31\u50be\u5411\u3002\u5716\u4e8c\u5c55\u793a\u6211\u5011\u63d0\u51fa\u7684 \u90e8\u843d\u683c\u4f5c\u8005\u7684\u6182\u9b31\u50be\u5411\u9810\u6e2c\u7cfb\u7d71\u67b6\u69cb\uff0c\u9996\u5148\u8f38\u5165\u67d0\u4f4d\u90e8\u843d\u683c\u4f5c\u8005\u55ae\u7bc7\u6216\u6578\u7bc7\u7684\u90e8\u843d\u683c\u6587 \u7ae0\uff0c\u5229\u7528\u56db\u500b\u6182\u9b31\u56e0\u7d20\u8a5e\u5f59\u96c6\uff0c\u7cfb\u7d71\u53ef\u4ee5\u64f7\u53d6\u51fa\u8ca0\u9762\u60c5\u7dd2\u3001\u4e8b\u4ef6\u3001\u75c7\u72c0\u548c\u8ca0\u9762\u60f3\u6cd5\u56db\u7a2e \u985e\u578b\u7684\u6182\u9b31\u7279\u5fb5\uff0c\u7136\u5f8c\u4f7f\u7528\u4e8b\u4ef6\u60c5\u7dd2\u9a45\u52d5\u7684\u6182\u9b31\u50be\u5411\u9810\u6e2c\u6a21\u578b (EEDTP)\u4f86\u8a08\u7b97\u90e8\u843d\u683c\u4f5c \u8005\u7684\u6182\u9b31\u50be\u5411\u5206\u6578\u3002 (2) \u4e8b\u4ef6\u60c5\u7dd2\u9a45\u52d5\u7684\u6182\u9b31\u50be\u5411\u9810\u6e2c\u6a21\u578b(Event-Emotion-driven Depression Tendency Prediction Model) Event-Emotion-driven Depression Tendency Prediction Model Depression Tendency Score Negative Thought Negative Emotion Symptom Negative Event Negative Thought Negative Emotion Negative Event Symptom \u7dd2(Negative Emotion)\u7684\u90e8\u843d\u683c\u6587\u7ae0\u6642\uff0c\u5f80\u5f80\u6709\u5f88\u9ad8\u7684\u6bd4\u4f8b\u662f\u56e0\u70ba\u67d0\u4e9b\u4e8b\u4ef6(Event)\u9020 \u9019\u5e7e\u5e74\u5728\u81ea\u7136\u8a9e\u8a00\u8655\u7406\u9818\u57df\u4e2d\uff0c\u6709\u9700\u591a\u76f8\u95dc\u4e8b\u4ef6\u64f7\u53d6\u7684\u7814\u7a76\u30022005 \u5e74 Event Relation \u7684\u5075\u6e2c\uff0c\u4e3b\u8981\u662f\u904b\u7528\u5b78\u8853\u4e0a\u5ee3\u6cdb\u4f7f\u7528\u7684\u8a5e\u5178\u8cc7\u6e90\uff0c\u5982\uff1aWordnet Depression Lexicons \u6210\u4f5c\u8005\u5fc3\u60c5\u4e0d\u4f73\uff0c\u6216\u662f\u4f34\u96a8\u8457\u75c7\u72c0(Symptom) \u3001\u66f4\u751a\u6709\u4e0d\u597d\u7684\u8ca0\u9762\u60f3\u6cd5(Negative \u548c Framenet\uff0c\u4f86\u8a13\u7df4\u5305\u542b\u8a9e\u6cd5\u8207\u8a9e\u610f\u8cc7\u8a0a\u7684\u7279\u5b9a\u9818\u57df\u52d5\u8a5e\u8a5e\u5f59\u7db2 Verbnet\u3002 Depression Feature Extraction Thought)\u3002\u6211\u5011\u5c07\u8ca0\u9762\u60c5\u7dd2\u3001\u4e8b\u4ef6\u3001\u75c7\u72c0\u53ca\u8ca0\u9762\u60f3\u6cd5\u9019\u56db\u9805\u7a31\u70ba\u6182\u9b31\u56e0\u7d20\uff0c\u56e0\u6b64\u516c\u5f0f |