File size: 1,484 Bytes
661a2a1
 
 
 
 
 
 
6c806b5
4248e51
 
0d7fdda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c806b5
0d7fdda
6c806b5
 
0d7fdda
6c806b5
 
 
 
 
0d7fdda
6c806b5
 
0d7fdda
 
 
 
 
 
 
 
 
 
 
8676df5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
task_categories:
- time-series-forecasting
language:
- en
size_categories:
- 1M<n<1B
tags:
- finance
---


# Timeseries Data Processing

This repository contains a script for loading and processing timeseries data using the `datasets` library and converting it to a pandas DataFrame for further analysis.

## Dataset

The dataset used in this example is `Weijie1996/load_timeseries`, which contains timeseries data with the following features:
- `id`
- `datetime`
- `target`
- `category`

## Requirements

- Python 3.6+
- `datasets` library
- `pandas` library

You can install the required libraries using pip:

```sh
pip install datasets pandas
```

## Usage

The following example demonstrates how to load the dataset and convert it to a pandas DataFrame.

```python
from datasets import load_dataset

ds = load_dataset("Weijie1996/load_timeseries", split='train')
# Print the category of the dataset

print(set(ds['category']))
print(set(ds['id']))

# Filter the dataset that category is 15m and id is GE_1
ds = ds.filter(lambda x: x['category'] == '30m' and x['id'] == 'GE_1') 

# Transform the dataset to a pandas dataframe
df = ds.to_pandas()

```

## Output
``` data
        id            datetime    target category
0  NL_1  2013-01-01 00:00:00  0.117475      60m
1  NL_1  2013-01-01 01:00:00  0.104347      60m
2  NL_1  2013-01-01 02:00:00  0.103173      60m
3  NL_1  2013-01-01 03:00:00  0.101686      60m
4  NL_1  2013-01-01 04:00:00  0.099632      60m
```