File size: 4,842 Bytes
b9dc0b4 feaf987 b9dc0b4 feaf987 b9dc0b4 46aff9a 3e423dc 1383e6c 557fa65 1383e6c b9dc0b4 46aff9a 3e423dc 1383e6c b9dc0b4 feaf987 5db2163 f0807b4 5db2163 f4e7af1 8ad70fa 4bef673 8ad70fa 5db2163 7715fa7 f0807b4 7715fa7 f4e7af1 8ad70fa 4bef673 8ad70fa 7715fa7 5db2163 3bd0ebe 53d779f 3bd0ebe f0807b4 f589043 83a9ebf 142f8c4 4b97856 83a9ebf 142f8c4 83a9ebf 142f8c4 6c7d239 0b26114 6c7d239 0b26114 f0807b4 80a0047 3157372 80a0047 419cef8 80a0047 5db2163 142f8c4 dca9ad8 142f8c4 9e45f6e 142f8c4 4c7d242 50e4835 4c7d242 5db2163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
language:
- en
license: cc-by-nc-4.0
size_categories:
- 1M<n<10M
task_categories:
- image-to-video
- text-to-video
dataset_info:
features:
- name: UUID
dtype: string
- name: Text_Prompt
dtype: string
- name: Image_Prompt
dtype: image
- name: Subject
dtype: string
- name: Timestamp
dtype: string
- name: Text_NSFW
dtype: float32
- name: Image_NSFW
dtype: string
splits:
- name: Full
num_bytes: 13440652664.125
num_examples: 1701935
- name: Subset
num_bytes: 790710630.0
num_examples: 100000
- name: Eval
num_bytes: 78258893.0
num_examples: 10000
download_size: 27500759907
dataset_size: 27750274851.25
configs:
- config_name: default
data_files:
- split: Full
path: data/Full-*
- split: Subset
path: data/Subset-*
- split: Eval
path: data/Eval-*
tags:
- prompt
- image-to-video
- text-to-video
---
```python
# Full (text and compressed image) prompts: ~13.4G
from datasets import load_dataset
ds = load_dataset("WenhaoWang/TIP-I2V", split='Full', streaming=True)
# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```
```python
# 100k subset (text and compressed image) prompts: ~0.8G
from datasets import load_dataset
ds = load_dataset("WenhaoWang/TIP-I2V", split='Subset', streaming=True)
# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```
```python
# 10k TIP-Eval (text and compressed image) prompts: ~0.08G
from datasets import load_dataset
ds = load_dataset("WenhaoWang/TIP-I2V", split='Eval', streaming=True)
# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```
```python
# Embeddings for full text prompts (~21G) and image prompts (~3.5G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Full_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Full_Image_Embedding.parquet", repo_type="dataset")
```
```python
# Embeddings for 100k subset text prompts (~1.2G) and image prompts (~0.2G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Subset_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Subset_Image_Embedding.parquet", repo_type="dataset")
```
```python
# Full uncompressed image prompts: ~1T
from huggingface_hub import hf_hub_download
for i in range(1,52):
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="image_prompt_tar/image_prompt_%d.tar"%i, repo_type="dataset")
```
```python
# 100k subset uncompressed image prompts: ~69.6G
from huggingface_hub import hf_hub_download
for i in range(1,3):
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="sub_image_prompt_tar/sub_image_prompt_%d.tar"%i, repo_type="dataset")
```
```python
# Full videos generated by Pika: ~1T
from huggingface_hub import hf_hub_download
for i in range(1,52):
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="pika_videos_tar/pika_videos_%d.tar"%i, repo_type="dataset")
```
```python
# 100k subset videos generated by Pika (~57.6G), Stable Video Diffusion (~38.9G), Open-Sora (~xxG), I2VGen-XL (~xxG), and CogVideoX-5B (~xxG)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_1.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_2.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/svd_videos_subset.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/opensora_videos_subset.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/cog_videos_subset.tar", repo_type="dataset")
```
```python
# 10k TIP-Eval videos generated by Pika (~5.6G), Stable Video Diffusion (~xG), Open-Sora (~xxG), I2VGen-XL (~xxG), and CogVideoX-5B (~xxG)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/pika_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/svd_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/opensora_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/i2vgenxl_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/cog_videos_eval.tar", repo_type="dataset")
```
|