WenhaoWang
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -54,22 +54,22 @@ pretty_name: TIP-I2V
|
|
54 |
---
|
55 |
|
56 |
# Summary
|
57 |
-
This is the dataset proposed in our paper
|
58 |
|
59 |
TIP-I2V is the first dataset comprising over 1.70 million unique user-provided text and image prompts. Besides the prompts, TIP-I2V also includes videos generated by five state-of-the-art image-to-video models (Pika, Stable Video Diffusion, Open-Sora, I2VGen-XL, and CogVideoX-5B). The TIP-I2V contributes to the development of better and safer image-to-video models.
|
60 |
|
61 |
<p align="center">
|
62 |
-
<img src="https://huggingface.co/datasets/
|
63 |
</p>
|
64 |
|
65 |
# Datapoint
|
66 |
<p align="center">
|
67 |
-
<img src="https://huggingface.co/datasets/
|
68 |
</p>
|
69 |
|
70 |
# Statistics
|
71 |
<p align="center">
|
72 |
-
<img src="https://huggingface.co/datasets/
|
73 |
</p>
|
74 |
|
75 |
# Download
|
@@ -80,7 +80,7 @@ For users in mainland China, try setting `export HF_ENDPOINT=https://hf-mirror.c
|
|
80 |
```python
|
81 |
# Full (text and compressed image) prompts: ~13.4G
|
82 |
from datasets import load_dataset
|
83 |
-
ds = load_dataset("
|
84 |
|
85 |
# Convert to Pandas format (it may be slow)
|
86 |
import pandas as pd
|
@@ -91,7 +91,7 @@ df = pd.DataFrame(ds)
|
|
91 |
```python
|
92 |
# 100k subset (text and compressed image) prompts: ~0.8G
|
93 |
from datasets import load_dataset
|
94 |
-
ds = load_dataset("
|
95 |
|
96 |
# Convert to Pandas format (it may be slow)
|
97 |
import pandas as pd
|
@@ -101,7 +101,7 @@ df = pd.DataFrame(ds)
|
|
101 |
```python
|
102 |
# 10k TIP-Eval (text and compressed image) prompts: ~0.08G
|
103 |
from datasets import load_dataset
|
104 |
-
ds = load_dataset("
|
105 |
|
106 |
# Convert to Pandas format (it may be slow)
|
107 |
import pandas as pd
|
@@ -113,22 +113,22 @@ df = pd.DataFrame(ds)
|
|
113 |
```python
|
114 |
# Embeddings for full text prompts (~21G) and image prompts (~3.5G)
|
115 |
from huggingface_hub import hf_hub_download
|
116 |
-
hf_hub_download(repo_id="
|
117 |
-
hf_hub_download(repo_id="
|
118 |
```
|
119 |
|
120 |
```python
|
121 |
# Embeddings for 100k subset text prompts (~1.2G) and image prompts (~0.2G)
|
122 |
from huggingface_hub import hf_hub_download
|
123 |
-
hf_hub_download(repo_id="
|
124 |
-
hf_hub_download(repo_id="
|
125 |
```
|
126 |
|
127 |
```python
|
128 |
# Embeddings for 10k TIP-Eval text prompts (~0.1G) and image prompts (~0.02G)
|
129 |
from huggingface_hub import hf_hub_download
|
130 |
-
hf_hub_download(repo_id="
|
131 |
-
hf_hub_download(repo_id="
|
132 |
```
|
133 |
|
134 |
## Download uncompressed image prompts
|
@@ -137,20 +137,20 @@ hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Eval_Image_Emb
|
|
137 |
# Full uncompressed image prompts: ~1T
|
138 |
from huggingface_hub import hf_hub_download
|
139 |
for i in range(1,52):
|
140 |
-
hf_hub_download(repo_id="
|
141 |
```
|
142 |
|
143 |
```python
|
144 |
# 100k subset uncompressed image prompts: ~69.6G
|
145 |
from huggingface_hub import hf_hub_download
|
146 |
for i in range(1,3):
|
147 |
-
hf_hub_download(repo_id="
|
148 |
```
|
149 |
|
150 |
```python
|
151 |
# 10k TIP-Eval uncompressed image prompts: ~6.5G
|
152 |
from huggingface_hub import hf_hub_download
|
153 |
-
hf_hub_download(repo_id="
|
154 |
```
|
155 |
|
156 |
## Download generated videos
|
@@ -159,60 +159,44 @@ hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_image_prompt_tar/ev
|
|
159 |
# Full videos generated by Pika: ~1T
|
160 |
from huggingface_hub import hf_hub_download
|
161 |
for i in range(1,52):
|
162 |
-
hf_hub_download(repo_id="
|
163 |
```
|
164 |
|
165 |
```python
|
166 |
# 100k subset videos generated by Pika (~57.6G), Stable Video Diffusion (~38.9G), Open-Sora (~47.2G), I2VGen-XL (~54.4G), and CogVideoX-5B (~36.7G)
|
167 |
from huggingface_hub import hf_hub_download
|
168 |
-
hf_hub_download(repo_id="
|
169 |
-
hf_hub_download(repo_id="
|
170 |
-
hf_hub_download(repo_id="
|
171 |
-
hf_hub_download(repo_id="
|
172 |
-
hf_hub_download(repo_id="
|
173 |
-
hf_hub_download(repo_id="
|
174 |
-
hf_hub_download(repo_id="
|
175 |
```
|
176 |
|
177 |
```python
|
178 |
# 10k TIP-Eval videos generated by Pika (~5.8G), Stable Video Diffusion (~3.9G), Open-Sora (~4.7G), I2VGen-XL (~5.4G), and CogVideoX-5B (~3.6G)
|
179 |
from huggingface_hub import hf_hub_download
|
180 |
-
hf_hub_download(repo_id="
|
181 |
-
hf_hub_download(repo_id="
|
182 |
-
hf_hub_download(repo_id="
|
183 |
-
hf_hub_download(repo_id="
|
184 |
-
hf_hub_download(repo_id="
|
185 |
```
|
186 |
|
187 |
# Comparison with VidProM and DiffusionDB
|
188 |
<p align="center">
|
189 |
-
<img src="https://huggingface.co/datasets/
|
190 |
</p>
|
191 |
<p align="center">
|
192 |
-
<img src="https://huggingface.co/datasets/
|
193 |
</p>
|
194 |
|
195 |
-
Click the [WizMap (TIP-I2V VS VidProM)](
|
196 |
(wait for 5 seconds) for an interactive visualization of our 1.70 million prompts.
|
197 |
|
198 |
-
# Curators
|
199 |
-
TIP-I2V is created by [Wenhao Wang](https://wangwenhao0716.github.io/) and Professor [Yi Yang](https://scholar.google.com/citations?user=RMSuNFwAAAAJ&hl=zh-CN).
|
200 |
|
201 |
# License
|
202 |
|
203 |
The prompts and videos in our TIP-I2V are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).
|
204 |
|
205 |
-
|
206 |
-
# Citation
|
207 |
-
```
|
208 |
-
@article{wang2024tipi2v,
|
209 |
-
title={TIP-I2V: A Million-Scale Real Prompt-Gallery Dataset for Image-to-Video Diffusion Models},
|
210 |
-
author={Wang, Wenhao and Yang, Yi},
|
211 |
-
booktitle={arXiv preprint arXiv:2411.xxxxx},
|
212 |
-
year={2024}
|
213 |
-
}
|
214 |
-
```
|
215 |
-
|
216 |
-
# Contact
|
217 |
-
|
218 |
-
If you have any questions, feel free to contact Wenhao Wang (wangwenhao0716@gmail.com).
|
|
|
54 |
---
|
55 |
|
56 |
# Summary
|
57 |
+
This is the dataset proposed in our paper **TIP-I2V: A Million-Scale Real Prompt-Gallery Dataset for Image-to-Video Diffusion Models**.
|
58 |
|
59 |
TIP-I2V is the first dataset comprising over 1.70 million unique user-provided text and image prompts. Besides the prompts, TIP-I2V also includes videos generated by five state-of-the-art image-to-video models (Pika, Stable Video Diffusion, Open-Sora, I2VGen-XL, and CogVideoX-5B). The TIP-I2V contributes to the development of better and safer image-to-video models.
|
60 |
|
61 |
<p align="center">
|
62 |
+
<img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/teasor.png" width="1000">
|
63 |
</p>
|
64 |
|
65 |
# Datapoint
|
66 |
<p align="center">
|
67 |
+
<img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/datapoint.png" width="1000">
|
68 |
</p>
|
69 |
|
70 |
# Statistics
|
71 |
<p align="center">
|
72 |
+
<img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/stat.png" width="1000">
|
73 |
</p>
|
74 |
|
75 |
# Download
|
|
|
80 |
```python
|
81 |
# Full (text and compressed image) prompts: ~13.4G
|
82 |
from datasets import load_dataset
|
83 |
+
ds = load_dataset("TIP-I2V/TIP-I2V", split='Full', streaming=True)
|
84 |
|
85 |
# Convert to Pandas format (it may be slow)
|
86 |
import pandas as pd
|
|
|
91 |
```python
|
92 |
# 100k subset (text and compressed image) prompts: ~0.8G
|
93 |
from datasets import load_dataset
|
94 |
+
ds = load_dataset("TIP-I2V/TIP-I2V", split='Subset', streaming=True)
|
95 |
|
96 |
# Convert to Pandas format (it may be slow)
|
97 |
import pandas as pd
|
|
|
101 |
```python
|
102 |
# 10k TIP-Eval (text and compressed image) prompts: ~0.08G
|
103 |
from datasets import load_dataset
|
104 |
+
ds = load_dataset("TIP-I2V/TIP-I2V", split='Eval', streaming=True)
|
105 |
|
106 |
# Convert to Pandas format (it may be slow)
|
107 |
import pandas as pd
|
|
|
113 |
```python
|
114 |
# Embeddings for full text prompts (~21G) and image prompts (~3.5G)
|
115 |
from huggingface_hub import hf_hub_download
|
116 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Full_Text_Embedding.parquet", repo_type="dataset")
|
117 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Full_Image_Embedding.parquet", repo_type="dataset")
|
118 |
```
|
119 |
|
120 |
```python
|
121 |
# Embeddings for 100k subset text prompts (~1.2G) and image prompts (~0.2G)
|
122 |
from huggingface_hub import hf_hub_download
|
123 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Subset_Text_Embedding.parquet", repo_type="dataset")
|
124 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Subset_Image_Embedding.parquet", repo_type="dataset")
|
125 |
```
|
126 |
|
127 |
```python
|
128 |
# Embeddings for 10k TIP-Eval text prompts (~0.1G) and image prompts (~0.02G)
|
129 |
from huggingface_hub import hf_hub_download
|
130 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Eval_Text_Embedding.parquet", repo_type="dataset")
|
131 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Eval_Image_Embedding.parquet", repo_type="dataset")
|
132 |
```
|
133 |
|
134 |
## Download uncompressed image prompts
|
|
|
137 |
# Full uncompressed image prompts: ~1T
|
138 |
from huggingface_hub import hf_hub_download
|
139 |
for i in range(1,52):
|
140 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="image_prompt_tar/image_prompt_%d.tar"%i, repo_type="dataset")
|
141 |
```
|
142 |
|
143 |
```python
|
144 |
# 100k subset uncompressed image prompts: ~69.6G
|
145 |
from huggingface_hub import hf_hub_download
|
146 |
for i in range(1,3):
|
147 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="sub_image_prompt_tar/sub_image_prompt_%d.tar"%i, repo_type="dataset")
|
148 |
```
|
149 |
|
150 |
```python
|
151 |
# 10k TIP-Eval uncompressed image prompts: ~6.5G
|
152 |
from huggingface_hub import hf_hub_download
|
153 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_image_prompt_tar/eval_image_prompt.tar", repo_type="dataset")
|
154 |
```
|
155 |
|
156 |
## Download generated videos
|
|
|
159 |
# Full videos generated by Pika: ~1T
|
160 |
from huggingface_hub import hf_hub_download
|
161 |
for i in range(1,52):
|
162 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="pika_videos_tar/pika_videos_%d.tar"%i, repo_type="dataset")
|
163 |
```
|
164 |
|
165 |
```python
|
166 |
# 100k subset videos generated by Pika (~57.6G), Stable Video Diffusion (~38.9G), Open-Sora (~47.2G), I2VGen-XL (~54.4G), and CogVideoX-5B (~36.7G)
|
167 |
from huggingface_hub import hf_hub_download
|
168 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_1.tar", repo_type="dataset")
|
169 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_2.tar", repo_type="dataset")
|
170 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/svd_videos_subset.tar", repo_type="dataset")
|
171 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/opensora_videos_subset.tar", repo_type="dataset")
|
172 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_1.tar", repo_type="dataset")
|
173 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_2.tar", repo_type="dataset")
|
174 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/cog_videos_subset.tar", repo_type="dataset")
|
175 |
```
|
176 |
|
177 |
```python
|
178 |
# 10k TIP-Eval videos generated by Pika (~5.8G), Stable Video Diffusion (~3.9G), Open-Sora (~4.7G), I2VGen-XL (~5.4G), and CogVideoX-5B (~3.6G)
|
179 |
from huggingface_hub import hf_hub_download
|
180 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/pika_videos_eval.tar", repo_type="dataset")
|
181 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/svd_videos_eval.tar", repo_type="dataset")
|
182 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/opensora_videos_eval.tar", repo_type="dataset")
|
183 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/i2vgenxl_videos_eval.tar", repo_type="dataset")
|
184 |
+
hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/cog_videos_eval.tar", repo_type="dataset")
|
185 |
```
|
186 |
|
187 |
# Comparison with VidProM and DiffusionDB
|
188 |
<p align="center">
|
189 |
+
<img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/table.png" width="1000">
|
190 |
</p>
|
191 |
<p align="center">
|
192 |
+
<img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/comparison.png" width="1000">
|
193 |
</p>
|
194 |
|
195 |
+
Click the [WizMap (TIP-I2V VS VidProM)](x) and [WizMap (TIP-I2V VS DiffusionDB)](x)
|
196 |
(wait for 5 seconds) for an interactive visualization of our 1.70 million prompts.
|
197 |
|
|
|
|
|
198 |
|
199 |
# License
|
200 |
|
201 |
The prompts and videos in our TIP-I2V are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|