WenhaoWang commited on
Commit
2c45b77
·
verified ·
1 Parent(s): 23c8e15

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -48
README.md CHANGED
@@ -54,22 +54,22 @@ pretty_name: TIP-I2V
54
  ---
55
 
56
  # Summary
57
- This is the dataset proposed in our paper [**TIP-I2V: A Million-Scale Real Prompt-Gallery Dataset for Image-to-Video Diffusion Models**](https://arxiv.org/abs/2411.xxxxx).
58
 
59
  TIP-I2V is the first dataset comprising over 1.70 million unique user-provided text and image prompts. Besides the prompts, TIP-I2V also includes videos generated by five state-of-the-art image-to-video models (Pika, Stable Video Diffusion, Open-Sora, I2VGen-XL, and CogVideoX-5B). The TIP-I2V contributes to the development of better and safer image-to-video models.
60
 
61
  <p align="center">
62
- <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/teasor.png" width="1000">
63
  </p>
64
 
65
  # Datapoint
66
  <p align="center">
67
- <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/datapoint.png" width="1000">
68
  </p>
69
 
70
  # Statistics
71
  <p align="center">
72
- <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/stat.png" width="1000">
73
  </p>
74
 
75
  # Download
@@ -80,7 +80,7 @@ For users in mainland China, try setting `export HF_ENDPOINT=https://hf-mirror.c
80
  ```python
81
  # Full (text and compressed image) prompts: ~13.4G
82
  from datasets import load_dataset
83
- ds = load_dataset("WenhaoWang/TIP-I2V", split='Full', streaming=True)
84
 
85
  # Convert to Pandas format (it may be slow)
86
  import pandas as pd
@@ -91,7 +91,7 @@ df = pd.DataFrame(ds)
91
  ```python
92
  # 100k subset (text and compressed image) prompts: ~0.8G
93
  from datasets import load_dataset
94
- ds = load_dataset("WenhaoWang/TIP-I2V", split='Subset', streaming=True)
95
 
96
  # Convert to Pandas format (it may be slow)
97
  import pandas as pd
@@ -101,7 +101,7 @@ df = pd.DataFrame(ds)
101
  ```python
102
  # 10k TIP-Eval (text and compressed image) prompts: ~0.08G
103
  from datasets import load_dataset
104
- ds = load_dataset("WenhaoWang/TIP-I2V", split='Eval', streaming=True)
105
 
106
  # Convert to Pandas format (it may be slow)
107
  import pandas as pd
@@ -113,22 +113,22 @@ df = pd.DataFrame(ds)
113
  ```python
114
  # Embeddings for full text prompts (~21G) and image prompts (~3.5G)
115
  from huggingface_hub import hf_hub_download
116
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Full_Text_Embedding.parquet", repo_type="dataset")
117
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Full_Image_Embedding.parquet", repo_type="dataset")
118
  ```
119
 
120
  ```python
121
  # Embeddings for 100k subset text prompts (~1.2G) and image prompts (~0.2G)
122
  from huggingface_hub import hf_hub_download
123
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Subset_Text_Embedding.parquet", repo_type="dataset")
124
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Subset_Image_Embedding.parquet", repo_type="dataset")
125
  ```
126
 
127
  ```python
128
  # Embeddings for 10k TIP-Eval text prompts (~0.1G) and image prompts (~0.02G)
129
  from huggingface_hub import hf_hub_download
130
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Eval_Text_Embedding.parquet", repo_type="dataset")
131
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Eval_Image_Embedding.parquet", repo_type="dataset")
132
  ```
133
 
134
  ## Download uncompressed image prompts
@@ -137,20 +137,20 @@ hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Eval_Image_Emb
137
  # Full uncompressed image prompts: ~1T
138
  from huggingface_hub import hf_hub_download
139
  for i in range(1,52):
140
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="image_prompt_tar/image_prompt_%d.tar"%i, repo_type="dataset")
141
  ```
142
 
143
  ```python
144
  # 100k subset uncompressed image prompts: ~69.6G
145
  from huggingface_hub import hf_hub_download
146
  for i in range(1,3):
147
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="sub_image_prompt_tar/sub_image_prompt_%d.tar"%i, repo_type="dataset")
148
  ```
149
 
150
  ```python
151
  # 10k TIP-Eval uncompressed image prompts: ~6.5G
152
  from huggingface_hub import hf_hub_download
153
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_image_prompt_tar/eval_image_prompt.tar", repo_type="dataset")
154
  ```
155
 
156
  ## Download generated videos
@@ -159,60 +159,44 @@ hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_image_prompt_tar/ev
159
  # Full videos generated by Pika: ~1T
160
  from huggingface_hub import hf_hub_download
161
  for i in range(1,52):
162
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="pika_videos_tar/pika_videos_%d.tar"%i, repo_type="dataset")
163
  ```
164
 
165
  ```python
166
  # 100k subset videos generated by Pika (~57.6G), Stable Video Diffusion (~38.9G), Open-Sora (~47.2G), I2VGen-XL (~54.4G), and CogVideoX-5B (~36.7G)
167
  from huggingface_hub import hf_hub_download
168
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_1.tar", repo_type="dataset")
169
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_2.tar", repo_type="dataset")
170
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/svd_videos_subset.tar", repo_type="dataset")
171
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/opensora_videos_subset.tar", repo_type="dataset")
172
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_1.tar", repo_type="dataset")
173
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_2.tar", repo_type="dataset")
174
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/cog_videos_subset.tar", repo_type="dataset")
175
  ```
176
 
177
  ```python
178
  # 10k TIP-Eval videos generated by Pika (~5.8G), Stable Video Diffusion (~3.9G), Open-Sora (~4.7G), I2VGen-XL (~5.4G), and CogVideoX-5B (~3.6G)
179
  from huggingface_hub import hf_hub_download
180
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/pika_videos_eval.tar", repo_type="dataset")
181
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/svd_videos_eval.tar", repo_type="dataset")
182
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/opensora_videos_eval.tar", repo_type="dataset")
183
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/i2vgenxl_videos_eval.tar", repo_type="dataset")
184
- hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/cog_videos_eval.tar", repo_type="dataset")
185
  ```
186
 
187
  # Comparison with VidProM and DiffusionDB
188
  <p align="center">
189
- <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/table.png" width="1000">
190
  </p>
191
  <p align="center">
192
- <img src="https://huggingface.co/datasets/WenhaoWang/TIP-I2V/resolve/main/assets/comparison.png" width="1000">
193
  </p>
194
 
195
- Click the [WizMap (TIP-I2V VS VidProM)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fdata_tip-i2v_vidprom.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fgrid_tip-i2v_vidprom.json) and [WizMap (TIP-I2V VS DiffusionDB)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fdata_tip-i2v_diffusiondb.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fgrid_tip-i2v_diffusiondb.json)
196
  (wait for 5 seconds) for an interactive visualization of our 1.70 million prompts.
197
 
198
- # Curators
199
- TIP-I2V is created by [Wenhao Wang](https://wangwenhao0716.github.io/) and Professor [Yi Yang](https://scholar.google.com/citations?user=RMSuNFwAAAAJ&hl=zh-CN).
200
 
201
  # License
202
 
203
  The prompts and videos in our TIP-I2V are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).
204
 
205
-
206
- # Citation
207
- ```
208
- @article{wang2024tipi2v,
209
- title={TIP-I2V: A Million-Scale Real Prompt-Gallery Dataset for Image-to-Video Diffusion Models},
210
- author={Wang, Wenhao and Yang, Yi},
211
- booktitle={arXiv preprint arXiv:2411.xxxxx},
212
- year={2024}
213
- }
214
- ```
215
-
216
- # Contact
217
-
218
- If you have any questions, feel free to contact Wenhao Wang (wangwenhao0716@gmail.com).
 
54
  ---
55
 
56
  # Summary
57
+ This is the dataset proposed in our paper **TIP-I2V: A Million-Scale Real Prompt-Gallery Dataset for Image-to-Video Diffusion Models**.
58
 
59
  TIP-I2V is the first dataset comprising over 1.70 million unique user-provided text and image prompts. Besides the prompts, TIP-I2V also includes videos generated by five state-of-the-art image-to-video models (Pika, Stable Video Diffusion, Open-Sora, I2VGen-XL, and CogVideoX-5B). The TIP-I2V contributes to the development of better and safer image-to-video models.
60
 
61
  <p align="center">
62
+ <img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/teasor.png" width="1000">
63
  </p>
64
 
65
  # Datapoint
66
  <p align="center">
67
+ <img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/datapoint.png" width="1000">
68
  </p>
69
 
70
  # Statistics
71
  <p align="center">
72
+ <img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/stat.png" width="1000">
73
  </p>
74
 
75
  # Download
 
80
  ```python
81
  # Full (text and compressed image) prompts: ~13.4G
82
  from datasets import load_dataset
83
+ ds = load_dataset("TIP-I2V/TIP-I2V", split='Full', streaming=True)
84
 
85
  # Convert to Pandas format (it may be slow)
86
  import pandas as pd
 
91
  ```python
92
  # 100k subset (text and compressed image) prompts: ~0.8G
93
  from datasets import load_dataset
94
+ ds = load_dataset("TIP-I2V/TIP-I2V", split='Subset', streaming=True)
95
 
96
  # Convert to Pandas format (it may be slow)
97
  import pandas as pd
 
101
  ```python
102
  # 10k TIP-Eval (text and compressed image) prompts: ~0.08G
103
  from datasets import load_dataset
104
+ ds = load_dataset("TIP-I2V/TIP-I2V", split='Eval', streaming=True)
105
 
106
  # Convert to Pandas format (it may be slow)
107
  import pandas as pd
 
113
  ```python
114
  # Embeddings for full text prompts (~21G) and image prompts (~3.5G)
115
  from huggingface_hub import hf_hub_download
116
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Full_Text_Embedding.parquet", repo_type="dataset")
117
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Full_Image_Embedding.parquet", repo_type="dataset")
118
  ```
119
 
120
  ```python
121
  # Embeddings for 100k subset text prompts (~1.2G) and image prompts (~0.2G)
122
  from huggingface_hub import hf_hub_download
123
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Subset_Text_Embedding.parquet", repo_type="dataset")
124
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Subset_Image_Embedding.parquet", repo_type="dataset")
125
  ```
126
 
127
  ```python
128
  # Embeddings for 10k TIP-Eval text prompts (~0.1G) and image prompts (~0.02G)
129
  from huggingface_hub import hf_hub_download
130
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Eval_Text_Embedding.parquet", repo_type="dataset")
131
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="Embedding/Eval_Image_Embedding.parquet", repo_type="dataset")
132
  ```
133
 
134
  ## Download uncompressed image prompts
 
137
  # Full uncompressed image prompts: ~1T
138
  from huggingface_hub import hf_hub_download
139
  for i in range(1,52):
140
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="image_prompt_tar/image_prompt_%d.tar"%i, repo_type="dataset")
141
  ```
142
 
143
  ```python
144
  # 100k subset uncompressed image prompts: ~69.6G
145
  from huggingface_hub import hf_hub_download
146
  for i in range(1,3):
147
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="sub_image_prompt_tar/sub_image_prompt_%d.tar"%i, repo_type="dataset")
148
  ```
149
 
150
  ```python
151
  # 10k TIP-Eval uncompressed image prompts: ~6.5G
152
  from huggingface_hub import hf_hub_download
153
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_image_prompt_tar/eval_image_prompt.tar", repo_type="dataset")
154
  ```
155
 
156
  ## Download generated videos
 
159
  # Full videos generated by Pika: ~1T
160
  from huggingface_hub import hf_hub_download
161
  for i in range(1,52):
162
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="pika_videos_tar/pika_videos_%d.tar"%i, repo_type="dataset")
163
  ```
164
 
165
  ```python
166
  # 100k subset videos generated by Pika (~57.6G), Stable Video Diffusion (~38.9G), Open-Sora (~47.2G), I2VGen-XL (~54.4G), and CogVideoX-5B (~36.7G)
167
  from huggingface_hub import hf_hub_download
168
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_1.tar", repo_type="dataset")
169
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_2.tar", repo_type="dataset")
170
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/svd_videos_subset.tar", repo_type="dataset")
171
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/opensora_videos_subset.tar", repo_type="dataset")
172
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_1.tar", repo_type="dataset")
173
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_2.tar", repo_type="dataset")
174
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="subset_videos_tar/cog_videos_subset.tar", repo_type="dataset")
175
  ```
176
 
177
  ```python
178
  # 10k TIP-Eval videos generated by Pika (~5.8G), Stable Video Diffusion (~3.9G), Open-Sora (~4.7G), I2VGen-XL (~5.4G), and CogVideoX-5B (~3.6G)
179
  from huggingface_hub import hf_hub_download
180
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/pika_videos_eval.tar", repo_type="dataset")
181
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/svd_videos_eval.tar", repo_type="dataset")
182
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/opensora_videos_eval.tar", repo_type="dataset")
183
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/i2vgenxl_videos_eval.tar", repo_type="dataset")
184
+ hf_hub_download(repo_id="TIP-I2V/TIP-I2V", filename="eval_videos_tar/cog_videos_eval.tar", repo_type="dataset")
185
  ```
186
 
187
  # Comparison with VidProM and DiffusionDB
188
  <p align="center">
189
+ <img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/table.png" width="1000">
190
  </p>
191
  <p align="center">
192
+ <img src="https://huggingface.co/datasets/TIP-I2V/TIP-I2V/resolve/main/assets/comparison.png" width="1000">
193
  </p>
194
 
195
+ Click the [WizMap (TIP-I2V VS VidProM)](x) and [WizMap (TIP-I2V VS DiffusionDB)](x)
196
  (wait for 5 seconds) for an interactive visualization of our 1.70 million prompts.
197
 
 
 
198
 
199
  # License
200
 
201
  The prompts and videos in our TIP-I2V are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).
202