---
language:
- en
license: cc-by-nc-4.0
size_categories:
- 1M
# Statistics
# Download ## Download the text and (compressed) image prompts with related information ```python # Full (text and compressed image) prompts: ~13.4G from datasets import load_dataset ds = load_dataset("WenhaoWang/TIP-I2V", split='Full', streaming=True) # Convert to Pandas format (it may be slow) import pandas as pd df = pd.DataFrame(ds) ``` ```python # 100k subset (text and compressed image) prompts: ~0.8G from datasets import load_dataset ds = load_dataset("WenhaoWang/TIP-I2V", split='Subset', streaming=True) # Convert to Pandas format (it may be slow) import pandas as pd df = pd.DataFrame(ds) ``` ```python # 10k TIP-Eval (text and compressed image) prompts: ~0.08G from datasets import load_dataset ds = load_dataset("WenhaoWang/TIP-I2V", split='Eval', streaming=True) # Convert to Pandas format (it may be slow) import pandas as pd df = pd.DataFrame(ds) ``` ## Download the embeddings for text and image prompts ```python # Embeddings for full text prompts (~21G) and image prompts (~3.5G) from huggingface_hub import hf_hub_download hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Full_Text_Embedding.parquet", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Full_Image_Embedding.parquet", repo_type="dataset") ``` ```python # Embeddings for 100k subset text prompts (~1.2G) and image prompts (~0.2G) from huggingface_hub import hf_hub_download hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Subset_Text_Embedding.parquet", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Subset_Image_Embedding.parquet", repo_type="dataset") ``` ```python # Embeddings for 10k TIP-Eval text prompts (~0.1G) and image prompts (~0.02G) from huggingface_hub import hf_hub_download hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Eval_Text_Embedding.parquet", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="Embedding/Eval_Image_Embedding.parquet", repo_type="dataset") ``` ## Download uncompressed image prompts ```python # Full uncompressed image prompts: ~1T from huggingface_hub import hf_hub_download for i in range(1,52): hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="image_prompt_tar/image_prompt_%d.tar"%i, repo_type="dataset") ``` ```python # 100k subset uncompressed image prompts: ~69.6G from huggingface_hub import hf_hub_download for i in range(1,3): hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="sub_image_prompt_tar/sub_image_prompt_%d.tar"%i, repo_type="dataset") ``` ```python # 10k TIP-Eval uncompressed image prompts: ~6.5G from huggingface_hub import hf_hub_download hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_image_prompt_tar/eval_image_prompt.tar", repo_type="dataset") ``` ## Download generated videos ```python # Full videos generated by Pika: ~1T from huggingface_hub import hf_hub_download for i in range(1,52): hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="pika_videos_tar/pika_videos_%d.tar"%i, repo_type="dataset") ``` ```python # 100k subset videos generated by Pika (~57.6G), Stable Video Diffusion (~38.9G), Open-Sora (~47.2G), I2VGen-XL (~54.4G), and CogVideoX-5B (~xxG) from huggingface_hub import hf_hub_download hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_1.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_2.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/svd_videos_subset.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/opensora_videos_subset.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_1.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_2.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="subset_videos_tar/cog_videos_subset.tar", repo_type="dataset") ``` ```python # 10k TIP-Eval videos generated by Pika (~5.8G), Stable Video Diffusion (~3.9G), Open-Sora (~xxG), I2VGen-XL (~5.4G), and CogVideoX-5B (~xxG) from huggingface_hub import hf_hub_download hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/pika_videos_eval.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/svd_videos_eval.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/opensora_videos_eval.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/i2vgenxl_videos_eval.tar", repo_type="dataset") hf_hub_download(repo_id="WenhaoWang/TIP-I2V", filename="eval_videos_tar/cog_videos_eval.tar", repo_type="dataset") ``` # Comparison with VidProM and DiffusionDB
Click the [WizMap (TIP-I2V VS VidProM)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fdata_tip-i2v_vidprom.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fgrid_tip-i2v_vidprom.json) and [WizMap (TIP-I2V VS DiffusionDB)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fdata_tip-i2v_diffusiondb.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FWenhaoWang%2FPublic%2Fresolve%2Fmain%2Fgrid_tip-i2v_diffusiondb.json) (wait for 5 seconds) for an interactive visualization of our 1.70 million prompts. # Curators TIP-I2V is created by [Wenhao Wang](https://wangwenhao0716.github.io/) and Professor [Yi Yang](https://scholar.google.com/citations?user=RMSuNFwAAAAJ&hl=zh-CN). # License The prompts and videos in our TIP-I2V are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en). # Citation ``` @article{wang2024tipi2v, title={TIP-I2V: A Million-Scale Real Prompt-Gallery Dataset for Image-to-Video Diffusion Models}, author={Wang, Wenhao and Yang, Yi}, booktitle={arXiv preprint arXiv:2410.xxxxx}, year={2024} } ``` # Contact If you have any questions, feel free to contact Wenhao Wang (wangwenhao0716@gmail.com).