|
import onnxruntime |
|
import numpy as np |
|
import pyworld as pw |
|
import librosa |
|
import soundfile as sf |
|
|
|
def resize2d(source, target_len): |
|
source[source<0.001] = np.nan |
|
target = np.interp(np.linspace(0, len(source)-1, num=target_len,endpoint=True), np.arange(0, len(source)), source) |
|
return np.nan_to_num(target) |
|
|
|
def _calculate_f0(input: np.ndarray,length,sr,f0min,f0max, |
|
use_continuous_f0: bool=True, |
|
use_log_f0: bool=True) -> np.ndarray: |
|
input = input.astype(float) |
|
frame_period = len(input)/sr/(length)*1000 |
|
f0, timeaxis = pw.dio( |
|
input, |
|
fs=sr, |
|
f0_floor=f0min, |
|
f0_ceil=f0max, |
|
frame_period=frame_period) |
|
f0 = pw.stonemask(input, f0, timeaxis, sr) |
|
if use_log_f0: |
|
nonzero_idxs = np.where(f0 != 0)[0] |
|
f0[nonzero_idxs] = np.log(f0[nonzero_idxs]) |
|
return f0.reshape(-1) |
|
|
|
|
|
def get_text(wav,sr,transform=1.0): |
|
|
|
|
|
if len(wav.shape) > 1: |
|
wav = librosa.to_mono(wav.transpose(1, 0)) |
|
if sr!=16000: |
|
wav16 = librosa.resample(wav, sr, 16000) |
|
else: |
|
wav16=wav |
|
|
|
source = {"source":np.expand_dims(np.expand_dims(wav16,0),0)} |
|
hubertsession = onnxruntime.InferenceSession("hubert.onnx",providers=['CUDAExecutionProvider']) |
|
units = np.array(hubertsession.run(['embed'], source)[0]) |
|
f0=_calculate_f0(wav,units.shape[1],sr, |
|
f0min=librosa.note_to_hz('C2'), |
|
f0max=librosa.note_to_hz('C7')) |
|
f0=resize2d(f0,units.shape[1]) |
|
f0[f0!=0]=f0[f0!=0]+np.log(transform) |
|
expf0 = np.expand_dims(f0,(0,2)) |
|
output=np.concatenate((units,expf0,expf0),axis=2) |
|
return output.astype(np.float32),f0 |
|
|
|
def getkey(key): |
|
return np.power(2,key/12.0) |
|
|
|
def infer(f,r,speaker,key,reqf0=False): |
|
speaker=int(speaker[7:]) |
|
if not f is None: |
|
file=f |
|
elif not r is None: |
|
file=r |
|
else: |
|
return "请上传音频", None |
|
audio,sr = librosa.load(file,sr=None) |
|
if sr<16000: |
|
return "采样率过低,请上传至少拥有16000Hz采样率的音频",None |
|
duration = audio.shape[0] / sr |
|
print(audio,sr,duration) |
|
if duration > 120: |
|
return "请上传小于2min的音频", None |
|
|
|
x,sourcef0 = get_text(audio,sr,getkey(key)) |
|
x_lengths = [np.size(x,1)] |
|
print(x_lengths[0],sr,speaker,key) |
|
sid = [speaker] |
|
ort_inputs = {'x':x,'x_lengths':x_lengths,'sid':sid,"noise_scale":[0.667],"length_scale":[1.0],"noise_scale_w":[0.8]} |
|
infersession = onnxruntime.InferenceSession("onnxmodel334.onnx",providers=['CUDAExecutionProvider']) |
|
ort_output = infersession.run(['audio'], ort_inputs) |
|
|
|
genf0=np.array([]) |
|
if reqf0: |
|
wav, sr = librosa.load(o,sr=None) |
|
genf0=_calculate_f0(wav,x_lengths[0],sr, |
|
f0min=librosa.note_to_hz('C2'), |
|
f0max=librosa.note_to_hz('C7')) |
|
genf0=resize2d(genf0,x_lengths[0]) |
|
return 'success',(22050,ort_output[0][0][0]) |