import gradio as gr import pickle # Load the decision tree model from the pickle file with open('best_tree.pkl', 'rb') as file: model = pickle.load(file) # Define the predict function def predict(latitude, longitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income): # Prepare the input features features = [[longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income]] # Make predictions using the loaded model prediction = model.predict(features) # Return the predicted output return prediction[0] # Create the input interface using Gradio inputs = [ gr.inputs.Number(label="Longitude"), gr.inputs.Number(label="Latitude"), gr.inputs.Number(label="Housing Median Age"), gr.inputs.Number(label="Total Rooms"), gr.inputs.Number(label="Total Bedrooms"), gr.inputs.Number(label="Population"), gr.inputs.Number(label="Households"), gr.inputs.Number(label="Median Income") ] # Create the output interface using Gradio output = gr.outputs.Label(num_top_classes=1) # Define example data for demonstration examples = [ [37.88, -122.23, 41, 880, 129, 322, 126, 8.3252], [37.84, -122.27, 48, 1922, 409, 1026, 335, 1.7969], [37.83, -122.26, 52, 1656, 420, 718, 382, 2.6768] ] # Create the Gradio interface interface = gr.Interface(fn=predict, inputs=inputs, outputs=output, title="Decision Tree Predictor", examples=examples).launch()