import torch import torch.nn as nn import torchvision from torchvision.models import vgg19 import utils from utils import batch_wct, batch_histogram_matching class Encoder(nn.Module): def __init__(self, layers = [1, 6, 11, 20]): super(Encoder, self).__init__() vgg = torchvision.models.vgg19(pretrained=True).features self.encoder = nn.ModuleList() temp_seq = nn.Sequential() for i in range(max(layers)+1): temp_seq.add_module(str(i), vgg[i]) if i in layers: self.encoder.append(temp_seq) temp_seq = nn.Sequential() def forward(self, x): features = [] for layer in self.encoder: x = layer(x) features.append(x) return features # need to copy the whole architecture bcuz we will need outputs from "layers" layers to compute the loss class Decoder(nn.Module): def __init__(self, layers=[1, 6, 11, 20]): super(Decoder, self).__init__() vgg = torchvision.models.vgg19(pretrained=False).features self.decoder = nn.ModuleList() temp_seq = nn.Sequential() count = 0 for i in range(max(layers)-1, -1, -1): if isinstance(vgg[i], nn.Conv2d): # get number of in/out channels out_channels = vgg[i].in_channels in_channels = vgg[i].out_channels kernel_size = vgg[i].kernel_size # make a [reflection pad + convolution + relu] layer temp_seq.add_module(str(count), nn.ReflectionPad2d(padding=(1,1,1,1))) count += 1 temp_seq.add_module(str(count), nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size)) count += 1 temp_seq.add_module(str(count), nn.ReLU()) count += 1 # change down-sampling(MaxPooling) --> upsampling elif isinstance(vgg[i], nn.MaxPool2d): temp_seq.add_module(str(count), nn.Upsample(scale_factor=2)) count += 1 if i in layers: self.decoder.append(temp_seq) temp_seq = nn.Sequential() # append last conv layers without ReLU activation self.decoder.append(temp_seq[:-1]) def forward(self, x): y = x for layer in self.decoder: y = layer(y) return y class AdaIN(nn.Module): def __init__(self): super(AdaIN, self).__init__() def forward(self, content, style, style_strength=1.0, eps=1e-5): """ content: tensor of shape B * C * H * W style: tensor of shape B * C * H * W note that AdaIN does computation on a pair of content - style img""" b, c, h, w = content.size() content_std, content_mean = torch.std_mean(content.view(b, c, -1), dim=2, keepdim=True) style_std, style_mean = torch.std_mean(style.view(b, c, -1), dim=2, keepdim=True) normalized_content = (content.view(b, c, -1) - content_mean) / (content_std+eps) stylized_content = (normalized_content * style_std) + style_mean output = (1-style_strength) * content + style_strength * stylized_content.view(b, c, h, w) return output class Style_Transfer_Network(nn.Module): def __init__(self, layers = [1, 6, 11, 20]): super(Style_Transfer_Network, self).__init__() self.encoder = Encoder(layers) self.decoder = Decoder(layers) self.adain = AdaIN() def forward(self, content, styles, style_strength = 1., interpolation_weights = None, preserve_color = None, train = False): if interpolation_weights is None: interpolation_weights = [1/len(styles)] * len(styles) # encode the content image content_feature = self.encoder(content) # encode style images style_features = [] for style in styles: if preserve_color == 'whitening_and_coloring' or preserve_color == 'histogram_matching': style = batch_wct(style, content) style_features.append(self.encoder(style)) transformed_features = [] for style_feature, interpolation_weight in zip(style_features, interpolation_weights): AdaIN_feature = self.adain(content_feature[-1], style_feature[-1], style_strength) * interpolation_weight if preserve_color == 'histogram_matching': AdaIN_feature *= 0.9 transformed_features.append(AdaIN_feature) transformed_feature = sum(transformed_features) stylized_image = self.decoder(transformed_feature) if preserve_color == "whitening_and_coloring": stylized_image = batch_wct(stylized_image, content) if preserve_color == "histogram_matching": stylized_image = batch_histogram_matching(stylized_image, content) if train: return stylized_image, transformed_feature else: return stylized_image