feat: basic version of convert.py
Browse files- convert.py +147 -0
- requirements.txt +3 -0
convert.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from qwikidata.entity import WikidataItem
|
2 |
+
from qwikidata.json_dump import WikidataJsonDump
|
3 |
+
import pyarrow as pa
|
4 |
+
import pyarrow.parquet as pq
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
# create an instance of WikidataJsonDump
|
8 |
+
wjd_dump_path = "wikidata-20240304-all.json.bz2"
|
9 |
+
wjd = WikidataJsonDump(wjd_dump_path)
|
10 |
+
|
11 |
+
# Create an empty list to store the dictionaries
|
12 |
+
# data = []
|
13 |
+
|
14 |
+
# # Iterate over the entities in wjd and add them to the list
|
15 |
+
# for ii, entity_dict in enumerate(wjd):
|
16 |
+
# if ii > 1:
|
17 |
+
# break
|
18 |
+
|
19 |
+
# if entity_dict["type"] == "item":
|
20 |
+
# data.append(entity_dict)
|
21 |
+
|
22 |
+
# TODO: Schema for Data Set
|
23 |
+
# Create a schema for the table
|
24 |
+
# {
|
25 |
+
# "id": "Q60",
|
26 |
+
# "type": "item",
|
27 |
+
# "labels": {},
|
28 |
+
# "descriptions": {},
|
29 |
+
# "aliases": {},
|
30 |
+
# "claims": {},
|
31 |
+
# "sitelinks": {},
|
32 |
+
# "lastrevid": 195301613,
|
33 |
+
# "modified": "2020-02-10T12:42:02Z"
|
34 |
+
#}
|
35 |
+
# schema = pa.schema([
|
36 |
+
# ("id", pa.string()),
|
37 |
+
# ("type", pa.string()),
|
38 |
+
# # {
|
39 |
+
# # "labels": {
|
40 |
+
# # "en": {
|
41 |
+
# # "language": "en",
|
42 |
+
# # "value": "New York City"
|
43 |
+
# # },
|
44 |
+
# # "ar": {
|
45 |
+
# # "language": "ar",
|
46 |
+
# # "value": "\u0645\u062f\u064a\u0646\u0629 \u0646\u064a\u0648 \u064a\u0648\u0631\u0643"
|
47 |
+
# # }
|
48 |
+
# # }
|
49 |
+
# ("labels", pa.map_(pa.string(), pa.struct([
|
50 |
+
# ("language", pa.string()),
|
51 |
+
# ("value", pa.string())
|
52 |
+
# ]))),
|
53 |
+
# # "descriptions": {
|
54 |
+
# # "en": {
|
55 |
+
# # "language": "en",
|
56 |
+
# # "value": "largest city in New York and the United States of America"
|
57 |
+
# # },
|
58 |
+
# # "it": {
|
59 |
+
# # "language": "it",
|
60 |
+
# # "value": "citt\u00e0 degli Stati Uniti d'America"
|
61 |
+
# # }
|
62 |
+
# # }
|
63 |
+
# ("descriptions", pa.map_(pa.string(), pa.struct([
|
64 |
+
# ("language", pa.string()),
|
65 |
+
# ("value", pa.string())
|
66 |
+
# ]))),
|
67 |
+
# # "aliases": {
|
68 |
+
# # "en": [
|
69 |
+
# # {
|
70 |
+
# # "language": "en",pa.string
|
71 |
+
# # "value": "New York"
|
72 |
+
# # }
|
73 |
+
# # ],
|
74 |
+
# # "fr": [
|
75 |
+
# # {
|
76 |
+
# # "language": "fr",
|
77 |
+
# # "value": "New York City"
|
78 |
+
# # },
|
79 |
+
# # {
|
80 |
+
# # "language": "fr",
|
81 |
+
# # "value": "NYC"
|
82 |
+
# # },
|
83 |
+
# # {
|
84 |
+
# # "language": "fr",
|
85 |
+
# # "value": "The City"
|
86 |
+
# # },
|
87 |
+
# # {
|
88 |
+
# # "language": "fr",
|
89 |
+
# # "value": "La grosse pomme"
|
90 |
+
# # }
|
91 |
+
# # ]
|
92 |
+
# # }
|
93 |
+
# # }
|
94 |
+
# ("aliases", pa.map_(pa.string(), pa.struct([
|
95 |
+
# ("language", pa.string()),
|
96 |
+
# ("value", pa.string())
|
97 |
+
# ]))),
|
98 |
+
# # {
|
99 |
+
# # "claims": {
|
100 |
+
# # "P17": [
|
101 |
+
# # {
|
102 |
+
# # "id": "q60$5083E43C-228B-4E3E-B82A-4CB20A22A3FB",
|
103 |
+
# # "mainsnak": {},
|
104 |
+
# # "type": "statement",
|
105 |
+
# # "rank": "normal",
|
106 |
+
# # "qualifiers": {
|
107 |
+
# # "P580": [],
|
108 |
+
# # "P5436": []
|
109 |
+
# # },
|
110 |
+
# # "references": [
|
111 |
+
# # {
|
112 |
+
# # "hash": "d103e3541cc531fa54adcaffebde6bef28d87d32",
|
113 |
+
# # "snaks": []
|
114 |
+
# # }
|
115 |
+
# # ]
|
116 |
+
# # }
|
117 |
+
# # ]
|
118 |
+
# # }
|
119 |
+
# # }
|
120 |
+
# ("claims", pa.map_(pa.string(), pa.array(pa.struct([
|
121 |
+
# ("id", pa.string()),
|
122 |
+
# ("mainsnak", pa.struct([])),
|
123 |
+
# ("type", pa.string()),
|
124 |
+
# ("rank", pa.string()),
|
125 |
+
# ("qualifiers", pa.map_(pa.string(), pa.array(pa.struct([
|
126 |
+
|
127 |
+
# ])))),
|
128 |
+
# ("references", pa.array(pa.struct([
|
129 |
+
# ("hash", pa.string()),
|
130 |
+
# ("snaks", pa.array(pa.struct([])))
|
131 |
+
# ])))
|
132 |
+
# ])))),
|
133 |
+
# ("sitelinks", pa.struct([
|
134 |
+
# ("site", pa.string()),
|
135 |
+
# ("title", pa.string())
|
136 |
+
# ])),
|
137 |
+
# ("lastrevid", pa.int64()),
|
138 |
+
# ("modified", pa.string())
|
139 |
+
# ])
|
140 |
+
|
141 |
+
# Create a table from the list of dictionaries and the schema
|
142 |
+
# table = pa.Table.from_pandas(pd.DataFrame(data), schema=schema)
|
143 |
+
table = pa.Table.from_pandas(pd.DataFrame(wjd))
|
144 |
+
|
145 |
+
# Write the table to disk as parquet
|
146 |
+
parquet_path = "wikidata-20240304-all.parquet"
|
147 |
+
pq.write_table(table, parquet_path)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
qwikidata
|
2 |
+
pyarrow
|
3 |
+
pandas
|