Datasets:

Modalities:
Text
Formats:
text
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 13,337 Bytes
d58c721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d83cf
d58c721
 
 
 
 
 
12d83cf
 
 
 
 
 
 
 
 
d58c721
 
 
 
 
 
 
12d83cf
d58c721
 
 
 
 
 
 
 
 
 
 
 
 
12d83cf
d58c721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d83cf
 
d58c721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d83cf
 
d58c721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d83cf
 
 
 
 
d58c721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Created by Danyang Zhang @X-Lance.

import lemminflect
from nltk.corpus import stopwords
import nltk
#import random
import re
from typing import Pattern, List, Dict, Tuple
from typing import Optional
import json
import numpy as np

from . import sentence_pattern

import logging

logger = logging.getLogger("rewriting")

def match_target(target: str, phrase: str) -> bool:
    """
    Args:
        target: str as the target pattern, possible targets:
          + v.
          + v.ing
          + who
          + categ
          + kw
          + article
        phrase: str as the candidate

    Returns:
        bool
    """

    if not (   target.startswith("<")\
           and target.endswith(">...")\
           ):
        return False
    pos = target[1:-4]
    if pos=="v." or pos=="v.ing":
        return judge_verb(pos, phrase)
    return True

def transform_target(target: str, phrase: str, **kargs) -> str:
    """
    Args:
        target: str as the target pattern, possible targets:
          + v.
          + v.ing
          + who
          + categ
          + kw
          + article
        phrase: str as the candidate
        kargs: dict like {str: something}

    Returns:
        str as the transformed phrase
    """

    if not (   target.startswith("<")\
           and target.endswith(">...")\
           ):
        return phrase
    pos = target[1:-4]
    if pos=="v.":
        return to_infinitive(phrase)
    if pos=="v.ing":
        return to_vbg(phrase)
    if pos=="kw":
        return extract_keywords(phrase, **kargs)
    if pos=="who":
        return drop_titles(phrase, **kargs)
    return phrase

def judge_verb(pos: str, phrase: str) -> bool:
    #  function judge_verb {{{ # 
    """
    Judges if the first word of `phrase` is a verb infinitive or a present
    participle.

    Args:
        pos: str, "v." or "v.ing"
        phrase: str

    Returns:
        bool
    """

    tokens = nltk.word_tokenize(phrase)
    pos_tags = nltk.pos_tag(tokens)
    return pos=="v." and pos_tags[0][1]=="VB"\
        or pos=="v.ing" and pos_tags[0][1]=="VBG"

    #head = phrase.split(maxsplit=1)[0]
    #lemmas = lemminflect.getLemma(head, upos="VERB", lemmatize_oov=False)
    #if len(lemmas)==0:
        #return False
#
    #if pos=="v.":
        #return lemmas[0]==head
    #elif pos=="v.ing":
        #ing = lemminflect.getInflect(lemmas[0], tag="VBG", inflect_oov=False)
        #return ing==head
    #  }}} function judge_verb # 

def to_infinitive(phrase: str) -> str:
    head, tail = phrase.split(maxsplit=1)
    return lemminflect.getLemma(head, upos="VERB")[0]\
         + " "\
         + tail

def to_vbg(phrase: str) -> str:
    head, tail = phrase.split(maxsplit=1)
    return lemminflect.getInflection(head, tag="VBG")[0]\
         + " "\
         + tail

def extract_keywords( phrase: str
                    , rng: np.random.Generator = np.random.default_rng()
                    ) -> str:
    #  function extract_keywords {{{ # 
    tokens = nltk.word_tokenize(phrase[1:-1])
    pos_tags = nltk.pos_tag(tokens)

    keywords = map(lambda kwd: (kwd[0].lower(), kwd[1]), pos_tags)
    keywords = list( filter( lambda kwd: (  kwd[1].startswith("NN")\
                                         or kwd[1].startswith("JJ")\
                                         or kwd[1].startswith("VB")
                                         )\
                                     and kwd[0] not in stopwords.words()
                           , keywords
                           )
                   )
    noun_keywords = list( filter( lambda kwd: not kwd[1].startswith("VB")
                                , keywords
                                )
                        )
    if len(noun_keywords)!=0:
        keywords = noun_keywords
    keywords = list(map(lambda kwd: "\"{:}\"".format(kwd[0]), keywords))

    sampled_keywords = list( filter( lambda _: rng.random()<0.3
                                   , keywords
                                   )
                           )
    if len(sampled_keywords)==0:
        sampled_keywords = [keywords[rng.integers(len(keywords))]]
    return ", ".join(sampled_keywords)
    #  }}} function extract_keywords # 

def drop_titles( phrase: str
               , rng: np.random.Generator = np.random.default_rng()
               ) -> str:
    #  function drop_titles {{{ # 
    titles = phrase.split(", ")
    sampled_titles = list( filter( lambda _: rng.random()<0.3
                                 , titles[1:]
                                 )
                         )
    return ", ".join([titles[0]] + sampled_titles)
    #  }}} function drop_titles # 

def parse_file(file_name: str, with_regex: bool = False)\
        -> Tuple[ List[sentence_pattern.Item]
                , Optional[List[Pattern[str]]]
                ]:
    with open(file_name) as f:
        item_list = list( map( sentence_pattern.parse_pattern
                             , f.read().splitlines()
                             )
                        )
    regex_list = list( map( lambda itm: re.compile(itm.regex)
                          , item_list
                          )
                     ) if with_regex else None
    return item_list, regex_list

class TransformerSet:
    """
    Sentences requiring transformation:
    1. search in command and instruction
    2. categ in command and instruction
    3. author in command and instruction
    4. article in command and instruction (Different)
    5. other sentences
    """

    def __init__( self
                , search_pattern_file: str
                , article_pattern_file: str
                , article_command_pattern_file: str
                , categ_pattern_file: str
                , author_pattern_file: str
                , question_pattern_file: str
                , doccano_file: str
                , rng: np.random.Generator
                ):
        #  method __init__ {{{ # 
        """
        Args:
            search_pattern_file (str): pattern file for search instructions
            article_pattern_file (str): pattern file for article instructions
            article_command_pattern_file (str): pattern file for article
              instructions in "command" field
            categ_pattern_file (str): pattern file for category instructions
            author_pattern_file (str): pattern file for author instructions
            question_pattern_file (str): pattern file for WikiHowNFQA questions
            doccano_file (str): the path to the json file exported by doccano
            rng (np.random.Generator): used to generate random indices
        """

        self._search_template_lib: List[sentence_pattern.Item]
        self._article_template_lib: List[sentence_pattern.Item]
        self._article_command_template_lib: List[sentence_pattern.Item]
        self._categ_template_lib: List[sentence_pattern.Item]
        self._author_template_lib: List[sentence_pattern.Item]
        self._question_template_lib: List[sentence_pattern.Item]

        self._search_template_regex: List[Pattern[str]]
        #self._article_template_regex: List[Pattern[str]]
        #self._article_command_template_regex: List[Pattern[str]]
        #self._categ_template_regex: List[Pattern[str]]
        #self._author_template_regex: List[Pattern[str]]

        self._search_template_lib, self._search_template_regex =\
                parse_file(search_pattern_file, with_regex=True)
        self._article_template_lib, _ = parse_file(article_pattern_file)
        self._article_command_template_lib, _ = parse_file(article_command_pattern_file)
        self._categ_template_lib, _ = parse_file(categ_pattern_file)
        self._author_template_lib, _ = parse_file(author_pattern_file)
        self._question_template_lib, _ = parse_file(question_pattern_file)

        self._annotation_dict: Dict[str, List[str]] = {}
        with open(doccano_file) as f:
            doccano_dict = json.load(f)
        for anntt in doccano_dict:
            self._annotation_dict[anntt["text"]] = [anntt["text"]] + anntt["label"]

        self._rng: np.random.Generator = rng
        #  }}} method __init__ # 

    def transform(self, sentence: str, environment="instruction") -> str:
        #  method `transform` {{{ # 
        """
        Args:
            sentence: str
            environment: str, "instruction" or "command"

        Returns:
            str
        """

        logger.debug("Starting transform: %s", sentence)

        has_leading_then = sentence.startswith("Then, ")
        if has_leading_then:
            sentence = sentence[6].upper() + sentence[7:]

        if sentence.startswith("Search an article"):
            transformed = self._transform_search(sentence)
        elif sentence.startswith("Access the article"):
            transformed = self._transform_article(sentence, environment)
        elif sentence.startswith("Access the page"):
            transformed = self._transform_categ(sentence)
        elif sentence.startswith("Check the author"):
            transformed = self._transform_author(sentence)
        elif sentence.startswith("My question is"):
            transformed: str = self._transform_question(sentence)

        elif sentence in self._annotation_dict:
            candidates = self._annotation_dict[sentence]
            random_index = self._rng.integers(len(candidates))
            transformed = candidates[random_index]
        else:
            transformed = sentence

        if has_leading_then:
            transformed = "Then, " + transformed[0].lower() + transformed[1:]

        logger.debug("Transformation result: %s", transformed)

        return transformed
        #  }}} method `transform` # 

    def _transform_search(self, sentence: str) -> str:
        #  method _transform_search {{{ # 
        if sentence in self._annotation_dict:
            nb_candidates = len(self._annotation_dict[sentence])
            weights = np.full((nb_candidates,), 2)
            weights[0] = 1
            weights = weights/np.sum(weights)
            random_index = self._rng.choice( nb_candidates
                                           , p=weights
                                           )
            sentence = self._annotation_dict[sentence][random_index]

        template = None
        target_str = None
        for tpl, rgx in zip(self._search_template_lib, self._search_template_regex):
            match_ = rgx.match(sentence)
            if match_ is not None:
                template = tpl
                target_str = match_.group(1)
                break
        if template is None:
            return sentence

        # if the template seems to match the sentence according to the regex,
        # but the target isn't consistent, we should ignore it.
        target_pattern = template.get_targets()
        if not match_target(target_pattern[0], target_str):
            return sentence

        return self._apply_new_template(target_str, self._search_template_lib)
        #  }}} method _transform_search # 

    def _transform_article(self, sentence: str, environment: str) -> str:
        #  method _transform_article {{{ # 
        """
        Args:
            sentence: str
            environment: str, "instruction" or "command", indicates different
              target template library

        Returns:
            str
        """

        assert sentence.startswith("Access the article \"")\
           and sentence.endswith("\"")
        target_str = sentence[19:]

        target_template_library = self._article_template_lib\
                                    if environment=="instruction"\
                                    else self._article_command_template_lib

        return self._apply_new_template(target_str, target_template_library)
        #  }}} method _transform_article # 

    def _transform_categ(self, sentence: str) -> str:
        assert sentence.startswith("Access the page of category ")
        target_str = sentence[28:]
        return self._apply_new_template(target_str, self._categ_template_lib)
    def _transform_author(self, sentence: str) -> str:
        assert sentence.startswith("Check the author page of ")\
           and sentence.endswith(".")
        target_str = sentence[25:-1]
        return self._apply_new_template(target_str, self._author_template_lib)
    def _transform_question(self, sentence: str) -> str:
        assert sentence.startswith("My question is: ")\
           and sentence.endswith("?")
        target_str: str = sentence[16:-1]
        return self._apply_new_template(target_str, self._question_template_lib)

    def _apply_new_template( self
                           , target_str: str
                           , template_library: List[sentence_pattern.Item]
                           ) -> str:
        #  method _apply_new_template {{{ # 
        new_template_index = self._rng.integers(len(template_library))
        new_template = template_library[new_template_index]
        #print(new_template)
        #print(repr(new_template))
        target_pattern = new_template.get_targets()
        target_str = transform_target(target_pattern[0], target_str, rng=self._rng)
        new_template.implement(iter([target_str]))
        return new_template.instantiate()
        #  }}} method _apply_new_template #