Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Languages:
English
Tags:
Cloud Detection
Cloud Segmentation
Remote Sensing Images
Satellite Images
HRC-WHU
CloudSEN12-High
License:
File size: 5,835 Bytes
b589012 2ca7972 b589012 2ca7972 13fc469 2ca7972 13fc469 2ca7972 13fc469 2ca7972 13fc469 2ca7972 13fc469 2ca7972 13fc469 2ca7972 13fc469 2ca7972 b589012 2ca7972 b589012 2ca7972 b589012 2ca7972 b589012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
license: cc-by-nc-4.0
dataset_info:
features:
- name: image
dtype: image
- name: annotation
dtype: image
splits:
- name: train
num_bytes: 8683872818.848
num_examples: 45728
- name: val
num_bytes: 1396718238.836
num_examples: 15358
- name: test
num_bytes: 1516829621.65
num_examples: 4623
download_size: 12492798567
dataset_size: 11597420679.334
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
- split: test
path: data/test-*
---
# Dataset Card for Cloud-Adapter
This dataset card aims to describe the datasets used in the Cloud-Adapter, a collection of high-resolution satellite images and semantic segmentation masks for cloud detection and related tasks.
## Install
```bash
pip install huggingface-hub
```
## Usage
```bash
# Step 1: Download datasets
huggingface-cli download --repo-type dataset XavierJiezou/Cloud-Adapter --local-dir data --include hrc_whu.zip
huggingface-cli download --repo-type dataset XavierJiezou/Cloud-Adapter --local-dir data --include gf12ms_whu_gf1.zip
huggingface-cli download --repo-type dataset XavierJiezou/Cloud-Adapter --local-dir data --include gf12ms_whu_gf2.zip
huggingface-cli download --repo-type dataset XavierJiezou/Cloud-Adapter --local-dir data --include cloudsen12_high_l1c.zip
huggingface-cli download --repo-type dataset XavierJiezou/Cloud-Adapter --local-dir data --include cloudsen12_high_l2a.zip
huggingface-cli download --repo-type dataset XavierJiezou/Cloud-Adapter --local-dir data --include l8_biome.zip
# Step 2: Extract datasets
unzip hrc_whu.zip -d hrc_whu
unzip gf12ms_whu_gf1.zip -d gf12ms_whu_gf1
unzip gf12ms_whu_gf2.zip -d gf12ms_whu_gf2
unzip cloudsen12_high_l1c.zip -d cloudsen12_high_l1c
unzip cloudsen12_high_l2a.zip -d cloudsen12_high_l2a
unzip l8_biome.zip -d l8_biome
```
## Example
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
# Define the dataset repository
repo_id = "XavierJiezou/Cloud-Adapter"
# Select the zip file of the dataset to download
zip_files = [
"hrc_whu.zip",
# "gf12ms_whu_gf1.zip",
# "gf12ms_whu_gf2.zip",
# "cloudsen12_high_l1c.zip",
# "cloudsen12_high_l2a.zip",
# "l8_biome.zip",
]
# Define a directory to extract the datasets
output_dir = "cloud_adapter_paper_data"
# Ensure the output directory exists
os.makedirs(output_dir, exist_ok=True)
# Step 1: Download and extract each ZIP file
for zip_file in zip_files:
print(f"Downloading {zip_file}...")
# Download the ZIP file from Hugging Face Hub
zip_path = hf_hub_download(repo_id=repo_id, filename=zip_file, repo_type="dataset")
# Extract the ZIP file
extract_path = os.path.join(output_dir, zip_file.replace(".zip", ""))
with zipfile.ZipFile(zip_path, "r") as zip_ref:
print(f"Extracting {zip_file} to {extract_path}...")
zip_ref.extractall(extract_path)
# Step 2: Explore the extracted datasets
# Example: Load and display the contents of the "hrc_whu" dataset
dataset_path = os.path.join(output_dir, "hrc_whu")
train_images_path = os.path.join(dataset_path, "img_dir", "train")
train_annotations_path = os.path.join(dataset_path, "ann_dir", "train")
# Display some files in the training set
print("Training Images:", os.listdir(train_images_path)[:5])
print("Training Annotations:", os.listdir(train_annotations_path)[:5])
# Example: Load and display an image and its annotation
from PIL import Image
# Load an example image and annotation
image_path = os.path.join(train_images_path, os.listdir(train_images_path)[0])
annotation_path = os.path.join(train_annotations_path, os.listdir(train_annotations_path)[0])
# Open and display the image
image = Image.open(image_path)
annotation = Image.open(annotation_path)
print("Displaying the image...")
image.show()
print("Displaying the annotation...")
annotation.show()
```
## Source Data
- hrc_whu: https://github.com/dr-lizhiwei/HRC_WHU
- gf12ms_whu: https://github.com/whu-ZSC/GF1-GF2MS-WHU
- cloudsen12_high: https://huggingface.co/datasets/csaybar/CloudSEN12-high
- l8_biome: https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data
## Citation
```
@article{hrc_whu,
title = {Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
volume = {150},
pages = {197-212},
year = {2019},
author = {Zhiwei Li and Huanfeng Shen and Qing Cheng and Yuhao Liu and Shucheng You and Zongyi He},
}
@article{gf12ms_whu,
author={Zhu, Shaocong and Li, Zhiwei and Shen, Huanfeng},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Transferring Deep Models for Cloud Detection in Multisensor Images via Weakly Supervised Learning},
year={2024},
volume={62},
pages={1-18},
}
@article{cloudsen12_high,
title={CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2},
author={Aybar, Cesar and Ysuhuaylas, Luis and Loja, Jhomira and Gonzales, Karen and Herrera, Fernando and Bautista, Lesly and Yali, Roy and Flores, Angie and Diaz, Lissette and Cuenca, Nicole and others},
journal={Scientific data},
volume={9},
number={1},
pages={782},
year={2022},
}
@article{l8_biome,
title = {Cloud detection algorithm comparison and validation for operational Landsat data products},
journal = {Remote Sensing of Environment},
volume = {194},
pages = {379-390},
year = {2017},
author = {Steve Foga and Pat L. Scaramuzza and Song Guo and Zhe Zhu and Ronald D. Dilley and Tim Beckmann and Gail L. Schmidt and John L. Dwyer and M. {Joseph Hughes} and Brady Laue}
}
```
## Contact
For questions, please contact Xavier Jiezou at xuechaozou (at) foxmail (dot) com. |