Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Languages:
English
Tags:
Cloud Detection
Cloud Segmentation
Remote Sensing Images
Satellite Images
HRC-WHU
CloudSEN12-High
License:
import os | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from concurrent.futures import ThreadPoolExecutor | |
# Define the function to retrieve the color palette for a given dataset | |
def get_palette(dataset_name: str): | |
if dataset_name in ["cloudsen12_high_l1c", "cloudsen12_high_l2a"]: | |
return [79, 253, 199, 77, 2, 115, 251, 255, 41, 221, 53, 223] | |
if dataset_name == "l8_biome": | |
return [79, 253, 199, 221, 53, 223, 251, 255, 41, 77, 2, 115] | |
if dataset_name in ["gf12ms_whu_gf1", "gf12ms_whu_gf2", "hrc_whu"]: | |
return [79, 253, 199, 77, 2, 115] | |
raise Exception("dataset_name not supported") | |
# Function to apply the color palette to a mask | |
def give_colors_to_mask(mask: np.ndarray, colors=None) -> np.ndarray: | |
"""Convert a mask to a colorized version using the specified palette.""" | |
im = Image.fromarray(mask.astype(np.uint8)).convert("P") | |
im.putpalette(colors) | |
return im | |
# Function to process a single file | |
def process_file(file_path, palette): | |
try: | |
# Load the mask | |
mask = np.array(Image.open(file_path)) | |
# Apply the color palette | |
colored_mask = give_colors_to_mask(mask, palette) | |
# Save the colored mask, overwriting the original file | |
colored_mask.save(file_path) | |
return True | |
except Exception as e: | |
print(f"Error processing {file_path}: {e}") | |
return False | |
# Main processing function for a dataset | |
def process_dataset(dataset_name, base_root, progress_bar): | |
ann_dir = os.path.join(base_root, dataset_name, "ann_dir") | |
if not os.path.exists(ann_dir): | |
print(f"Annotation directory does not exist for {dataset_name}: {ann_dir}") | |
return | |
# Get the color palette for this dataset | |
palette = get_palette(dataset_name) | |
# Gather all files to process | |
files_to_process = [] | |
for split in ["train", "val", "test"]: | |
split_dir = os.path.join(ann_dir, split) | |
if not os.path.exists(split_dir): | |
print(f"Split directory does not exist for {dataset_name}: {split_dir}") | |
continue | |
# Add all png files in the directory to the list | |
for file_name in os.listdir(split_dir): | |
if file_name.endswith(".png"): | |
files_to_process.append(os.path.join(split_dir, file_name)) | |
# Multi-threaded processing | |
with ThreadPoolExecutor() as executor: | |
results = list(tqdm( | |
executor.map(lambda f: process_file(f, palette), files_to_process), | |
total=len(files_to_process), | |
desc=f"Processing {dataset_name}", | |
leave=False | |
)) | |
# Update the progress bar | |
progress_bar.update(len(files_to_process)) | |
print(f"{dataset_name}: Processed {sum(results)} files out of {len(files_to_process)}.") | |
# Define the root directory and datasets | |
base_root = "data" # Replace with your datasets' root directory | |
dataset_names = [ | |
"cloudsen12_high_l1c", | |
"cloudsen12_high_l2a", | |
"gf12ms_whu_gf1", | |
"gf12ms_whu_gf2", | |
"hrc_whu", | |
"l8_biome" | |
] | |
# Main script | |
if __name__ == "__main__": | |
# Calculate total number of files for all datasets | |
total_files = 0 | |
for dataset_name in dataset_names: | |
ann_dir = os.path.join(base_root, dataset_name, "ann_dir") | |
for split in ["train", "val", "test"]: | |
split_dir = os.path.join(ann_dir, split) | |
if os.path.exists(split_dir): | |
total_files += len([f for f in os.listdir(split_dir) if f.endswith(".png")]) | |
# Create a progress bar | |
with tqdm(total=total_files, desc="Overall Progress") as progress_bar: | |
for dataset_name in dataset_names: | |
process_dataset(dataset_name, base_root, progress_bar) | |