tomatotest / tomatotest.py
XingjianL's picture
test
a47c6c3
import io
from PIL import Image
from datasets import GeneratorBasedBuilder, DatasetInfo, Features, SplitGenerator, Value, Array2D, Split
import datasets
import numpy as np
import h5py
class CustomConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(CustomConfig, self).__init__(**kwargs)
self.dataset_type = kwargs.pop("name", "all")
_metadata_urls = {
"train":"https://huggingface.co/datasets/XingjianLi/tomatotest/resolve/main/train.txt",
"val":"https://huggingface.co/datasets/XingjianLi/tomatotest/resolve/main/val.txt"
}
class RGBSemanticDepthDataset(GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CustomConfig(name="all", version="1.0.0", description="load both segmentation and depth"),
CustomConfig(name="depth", version="1.0.0", description="only load depth"),
CustomConfig(name="seg", version="1.0.0", description="only load segmentation"),
] # Configs initialization
BUILDER_CONFIG_CLASS = CustomConfig
def _info(self):
return DatasetInfo(
features=Features({
"left_rgb": datasets.Image(),
"right_rgb": datasets.Image(),
"left_seg": datasets.Image(),
"left_depth": datasets.Image(),
"right_depth": datasets.Image(),
})
)
def _h5_loader(self, bytes_stream, type_dataset):
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13
f = io.BytesIO(bytes_stream)
h5f = h5py.File(f, "r")
left_rgb = self._read_jpg(h5f['rgb_left'][:])
if type_dataset == 'depth':
right_rgb = self._read_jpg(h5f['rgb_right'][:])
left_depth = h5f['depth_left'][:].astype(np.float32)
right_depth = h5f['depth_right'][:].astype(np.float32)
return left_rgb, right_rgb, np.zeros((1,1)), left_depth, right_depth
elif type_dataset == 'seg':
left_seg = h5f['seg_left'][:]
return left_rgb, np.zeros((1,1)), left_seg, np.zeros((1,1)), np.zeros((1,1))
else:
right_rgb = self._read_jpg(h5f['rgb_right'][:])
left_seg = h5f['seg_left'][:]
left_depth = h5f['depth_left'][:].astype(np.float32)
right_depth = h5f['depth_right'][:].astype(np.float32)
return left_rgb, right_rgb, left_seg, left_depth, right_depth
def _read_jpg(self, bytes_stream):
return Image.open(io.BytesIO(bytes_stream))
def _split_generators(self, dl_manager):
archives = dl_manager.download({"train":["data/images_1730238419.175364.tar"],
"val":["data/images_1730238419.175364.tar"]})
split_metadata = dl_manager.download(_metadata_urls)
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"archives": [dl_manager.iter_archive(archive) for archive in archives["train"]],
"split_txt": split_metadata["train"]
},
),
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={
"archives": [dl_manager.iter_archive(archive) for archive in archives["val"]],
"split_txt": split_metadata["val"]
},
),
]
def _generate_examples(self, archives, split_txt):
#print(split_txt, archives)
with open(split_txt, encoding="utf-8") as split_f:
all_splits = split_f.read().split('\n')
#print(len(all_splits))
for archive in archives:
#print(archive)
for path, file in archive:
if path.split('/')[-1][:-3] not in all_splits:
#print(path.split('/')[-1][:-3], all_splits[0])
continue
#print("added")
left_rgb, right_rgb, left_seg, left_depth, right_depth = self._h5_loader(file.read(), self.config.dataset_type)
yield path, {
"left_rgb": left_rgb,
"right_rgb": right_rgb,
"left_seg": left_seg,
"left_depth": left_depth,
"right_depth": right_depth,
}