Update Populus_Stomatal_Images_Datasets.py
Browse files
Populus_Stomatal_Images_Datasets.py
CHANGED
@@ -111,10 +111,12 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
111 |
|
112 |
def _split_generators(self, dl_manager):
|
113 |
|
114 |
-
|
115 |
"csv": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.csv",
|
116 |
-
"zip": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.zip"
|
|
|
117 |
})
|
|
|
118 |
|
119 |
species_info = pd.read_csv(data_files["csv"])
|
120 |
extracted_images_path = os.path.join(data_files["zip"], "Labeled Stomatal Images")
|
@@ -128,7 +130,8 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
128 |
gen_kwargs={
|
129 |
"filepaths": all_image_filenames,
|
130 |
"species_info": species_info,
|
131 |
-
"data_dir": extracted_images_path
|
|
|
132 |
},
|
133 |
)]
|
134 |
|
@@ -157,42 +160,84 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
157 |
})
|
158 |
return annotations
|
159 |
|
160 |
-
def _generate_examples(self, filepaths, species_info, data_dir):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
"""Yields examples as (key, example) tuples."""
|
|
|
|
|
|
|
|
|
162 |
for file_name in filepaths:
|
163 |
image_id = os.path.splitext(file_name)[0] # Extract the base name without the file extension
|
164 |
image_path = os.path.join(data_dir, f"{image_id}.jpg")
|
165 |
-
|
166 |
-
|
167 |
# Find the corresponding row in the CSV for the current image
|
168 |
species_row = species_info.loc[species_info['FileName'] == image_id]
|
169 |
if not species_row.empty:
|
170 |
species = species_row['Species'].values[0]
|
171 |
scientific_name = species_row['ScientificName'].values[0]
|
172 |
-
width = species_row['
|
173 |
-
height = species_row['
|
174 |
else:
|
175 |
# Default values if not found
|
176 |
species = None
|
177 |
scientific_name = None
|
178 |
width = 1024 # Default value
|
179 |
height = 768 # Default value
|
180 |
-
|
181 |
pics_array = None
|
182 |
with Image.open(image_path) as img:
|
183 |
-
pics_array = np.array(img)# Convert the PIL image to a numpy array
|
184 |
-
|
185 |
-
|
186 |
-
annotations =
|
187 |
-
|
188 |
# Yield the dataset example
|
189 |
yield image_id, {
|
190 |
"image_id": image_id,
|
191 |
"species": species,
|
192 |
"scientific_name": scientific_name,
|
193 |
-
"pics_array": pics_array, #
|
194 |
"image_resolution": {"width": width, "height": height},
|
195 |
"annotations": annotations
|
196 |
}
|
197 |
-
|
198 |
-
|
|
|
111 |
|
112 |
def _split_generators(self, dl_manager):
|
113 |
|
114 |
+
data_files = dl_manager.download_and_extract({
|
115 |
"csv": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.csv",
|
116 |
+
"zip": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.zip",
|
117 |
+
"annotations_json": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/annotations.json"
|
118 |
})
|
119 |
+
|
120 |
|
121 |
species_info = pd.read_csv(data_files["csv"])
|
122 |
extracted_images_path = os.path.join(data_files["zip"], "Labeled Stomatal Images")
|
|
|
130 |
gen_kwargs={
|
131 |
"filepaths": all_image_filenames,
|
132 |
"species_info": species_info,
|
133 |
+
"data_dir": extracted_images_path,
|
134 |
+
"annotations_file": data_files["annotations_json"]
|
135 |
},
|
136 |
)]
|
137 |
|
|
|
160 |
})
|
161 |
return annotations
|
162 |
|
163 |
+
# def _generate_examples(self, filepaths, species_info, data_dir):
|
164 |
+
# """Yields examples as (key, example) tuples."""
|
165 |
+
# for file_name in filepaths:
|
166 |
+
# image_id = os.path.splitext(file_name)[0] # Extract the base name without the file extension
|
167 |
+
# image_path = os.path.join(data_dir, f"{image_id}.jpg")
|
168 |
+
# label_path = os.path.join(data_dir, f"{image_id}.txt")
|
169 |
+
|
170 |
+
# # Find the corresponding row in the CSV for the current image
|
171 |
+
# species_row = species_info.loc[species_info['FileName'] == image_id]
|
172 |
+
# if not species_row.empty:
|
173 |
+
# species = species_row['Species'].values[0]
|
174 |
+
# scientific_name = species_row['ScientificName'].values[0]
|
175 |
+
# width = species_row['Witdh'].values[0]
|
176 |
+
# height = species_row['Heigth'].values[0]
|
177 |
+
# else:
|
178 |
+
# # Default values if not found
|
179 |
+
# species = None
|
180 |
+
# scientific_name = None
|
181 |
+
# width = 1024 # Default value
|
182 |
+
# height = 768 # Default value
|
183 |
+
|
184 |
+
# pics_array = None
|
185 |
+
# with Image.open(image_path) as img:
|
186 |
+
# pics_array = np.array(img)# Convert the PIL image to a numpy array and then to a list
|
187 |
+
# # print(pics_array.shape)
|
188 |
+
|
189 |
+
# annotations = self._parse_yolo_labels(label_path, width, height)
|
190 |
+
|
191 |
+
# # Yield the dataset example
|
192 |
+
# yield image_id, {
|
193 |
+
# "image_id": image_id,
|
194 |
+
# "species": species,
|
195 |
+
# "scientific_name": scientific_name,
|
196 |
+
# "pics_array": pics_array, # Should be a list for JSON serializability
|
197 |
+
# "image_resolution": {"width": width, "height": height},
|
198 |
+
# "annotations": annotations
|
199 |
+
# }
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
def _generate_examples(self, filepaths, species_info, data_dir, annotations_file):
|
205 |
"""Yields examples as (key, example) tuples."""
|
206 |
+
# Load annotations from JSON file
|
207 |
+
with open(annotations_file, 'r') as file:
|
208 |
+
annotations_dict = json.load(file)
|
209 |
+
|
210 |
for file_name in filepaths:
|
211 |
image_id = os.path.splitext(file_name)[0] # Extract the base name without the file extension
|
212 |
image_path = os.path.join(data_dir, f"{image_id}.jpg")
|
213 |
+
|
|
|
214 |
# Find the corresponding row in the CSV for the current image
|
215 |
species_row = species_info.loc[species_info['FileName'] == image_id]
|
216 |
if not species_row.empty:
|
217 |
species = species_row['Species'].values[0]
|
218 |
scientific_name = species_row['ScientificName'].values[0]
|
219 |
+
width = species_row['Width'].values[0] # Corrected field name from 'Witdh'
|
220 |
+
height = species_row['Height'].values[0] # Corrected field name from 'Heigth'
|
221 |
else:
|
222 |
# Default values if not found
|
223 |
species = None
|
224 |
scientific_name = None
|
225 |
width = 1024 # Default value
|
226 |
height = 768 # Default value
|
227 |
+
|
228 |
pics_array = None
|
229 |
with Image.open(image_path) as img:
|
230 |
+
pics_array = np.array(img) # Convert the PIL image to a numpy array
|
231 |
+
|
232 |
+
# Retrieve annotations for the current image from the dictionary
|
233 |
+
annotations = annotations_dict.get(image_id, [])
|
234 |
+
|
235 |
# Yield the dataset example
|
236 |
yield image_id, {
|
237 |
"image_id": image_id,
|
238 |
"species": species,
|
239 |
"scientific_name": scientific_name,
|
240 |
+
"pics_array": pics_array.tolist(), # Convert numpy array to list for JSON serializability
|
241 |
"image_resolution": {"width": width, "height": height},
|
242 |
"annotations": annotations
|
243 |
}
|
|
|
|