Update Populus_Stomatal_Images_Datasets.py
Browse files
Populus_Stomatal_Images_Datasets.py
CHANGED
@@ -109,38 +109,27 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
109 |
)
|
110 |
|
111 |
def _split_generators(self, dl_manager):
|
112 |
-
#
|
113 |
data_files = dl_manager.download_and_extract({
|
114 |
"csv": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.csv",
|
115 |
-
"
|
116 |
})
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
#
|
122 |
-
|
123 |
-
|
124 |
-
# Read the CSV file to get the species information
|
125 |
-
species_info = pd.read_csv(csv_path)
|
126 |
-
|
127 |
-
# Get the list of image filenames from the CSV that are part of the config
|
128 |
-
image_filenames_config = species_info['FileName'].apply(lambda x: x + '.jpg').tolist()
|
129 |
|
130 |
-
#
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
"species_info": species_info,
|
140 |
-
"data_dir": extracted_config_path
|
141 |
-
},
|
142 |
-
)
|
143 |
-
]
|
144 |
|
145 |
|
146 |
|
@@ -168,6 +157,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
168 |
return annotations
|
169 |
|
170 |
def _generate_examples(self, filepaths, species_info, data_dir):
|
|
|
171 |
for file_name in filepaths:
|
172 |
image_id = os.path.splitext(file_name)[0] # Extract the base name without the file extension
|
173 |
image_path = os.path.join(data_dir, f"{image_id}.jpg")
|
@@ -178,15 +168,19 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
178 |
if not species_row.empty:
|
179 |
species = species_row['Species'].values[0]
|
180 |
scientific_name = species_row['ScientificName'].values[0]
|
181 |
-
width = species_row['
|
182 |
-
height = species_row['
|
183 |
else:
|
184 |
-
#
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
187 |
with Image.open(image_path) as img:
|
188 |
pics_array = np.array(img).tolist() # Convert the PIL image to a numpy array and then to a list
|
189 |
-
|
190 |
annotations = self._parse_yolo_labels(label_path, width, height)
|
191 |
|
192 |
# Yield the dataset example
|
@@ -199,3 +193,4 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
199 |
"annotations": annotations
|
200 |
}
|
201 |
|
|
|
|
109 |
)
|
110 |
|
111 |
def _split_generators(self, dl_manager):
|
112 |
+
# Only download data, no need to split
|
113 |
data_files = dl_manager.download_and_extract({
|
114 |
"csv": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.csv",
|
115 |
+
"zip": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.zip"
|
116 |
})
|
117 |
|
118 |
+
species_info = pd.read_csv(data_files["csv"])
|
119 |
+
extracted_images_path = os.path.join(data_files["zip"], "Labeled Stomatal Images")
|
120 |
+
|
121 |
+
# Get all image filenames
|
122 |
+
all_image_filenames = species_info['FileName'].apply(lambda x: x + '.jpg').tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
# No longer need to randomize and split the dataset
|
125 |
+
return [datasets.SplitGenerator(
|
126 |
+
name=datasets.Split.TRAIN,
|
127 |
+
gen_kwargs={
|
128 |
+
"filepaths": all_image_filenames,
|
129 |
+
"species_info": species_info,
|
130 |
+
"data_dir": extracted_images_path
|
131 |
+
},
|
132 |
+
)]
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
|
135 |
|
|
|
157 |
return annotations
|
158 |
|
159 |
def _generate_examples(self, filepaths, species_info, data_dir):
|
160 |
+
"""Yields examples as (key, example) tuples."""
|
161 |
for file_name in filepaths:
|
162 |
image_id = os.path.splitext(file_name)[0] # Extract the base name without the file extension
|
163 |
image_path = os.path.join(data_dir, f"{image_id}.jpg")
|
|
|
168 |
if not species_row.empty:
|
169 |
species = species_row['Species'].values[0]
|
170 |
scientific_name = species_row['ScientificName'].values[0]
|
171 |
+
width = species_row['Witdh'].values[0]
|
172 |
+
height = species_row['Heigth'].values[0]
|
173 |
else:
|
174 |
+
# Default values if not found
|
175 |
+
species = None
|
176 |
+
scientific_name = None
|
177 |
+
width = 1024 # Default value
|
178 |
+
height = 768 # Default value
|
179 |
+
|
180 |
+
pics_array = None
|
181 |
with Image.open(image_path) as img:
|
182 |
pics_array = np.array(img).tolist() # Convert the PIL image to a numpy array and then to a list
|
183 |
+
|
184 |
annotations = self._parse_yolo_labels(label_path, width, height)
|
185 |
|
186 |
# Yield the dataset example
|
|
|
193 |
"annotations": annotations
|
194 |
}
|
195 |
|
196 |
+
|