XintongHe commited on
Commit
fc20259
1 Parent(s): afb6bc0

Update new_dataset_script.py

Browse files
Files changed (1) hide show
  1. new_dataset_script.py +58 -52
new_dataset_script.py CHANGED
@@ -18,7 +18,8 @@
18
  import csv
19
  import json
20
  import os
21
-
 
22
  import datasets
23
 
24
 
@@ -129,55 +130,60 @@ class NewDataset(datasets.GeneratorBasedBuilder):
129
  },
130
  )]
131
 
132
-
133
-
134
- # ... other necessary imports and class definitions
135
- def _parse_yolo_labels(self, label_path, width, height):
136
- annotations = []
137
- with open(label_path, 'r') as file:
138
- yolo_data = file.readlines()
139
-
140
- for line in yolo_data:
141
- class_id, x_center_rel, y_center_rel, width_rel, height_rel = map(float, line.split())
142
- x_min = (x_center_rel - width_rel / 2) * width
143
- y_min = (y_center_rel - height_rel / 2) * height
144
- x_max = (x_center_rel + width_rel / 2) * width
145
- y_max = (y_center_rel + height_rel / 2) * height
146
- annotations.append({
147
- "category_id": int(class_id),
148
- "bounding_box": {
149
- "x_min": x_min,
150
- "y_min": y_min,
151
- "x_max": x_max,
152
- "y_max": y_max
153
- }
154
- })
155
- return annotations
156
-
157
- def _generate_examples(self, filepaths, species_info, data_dir):
158
- """Yields examples as (key, example) tuples."""
159
- for file_name in filepaths:
160
- image_id = os.path.splitext(file_name)[0]
161
- image_path = os.path.join(data_dir, f"{image_id}.jpg")
162
- label_path = os.path.join(data_dir, f"{image_id}.txt")
163
-
164
- with Image.open(image_path) as img:
165
- pics_array = np.array(img)
166
- width, height = img.size
167
-
168
- species_row = species_info.loc[species_info['FileName'] == file_name]
169
- species = species_row['Species'].values[0] if not species_row.empty else None
170
- scientific_name = species_row['ScientificName'].values[0] if not species_row.empty else None
171
-
172
- annotations = self._parse_yolo_labels(label_path, width, height)
173
-
174
- # Create a structured object that includes the image and its metadata
175
- img_with_metadata_and_annotations = {
176
- "image_id": image_id,
177
- "species": species,
178
- "scientific_name": scientific_name,
179
- "image": img, # Assuming you want to keep the PIL Image object; otherwise use pics_array
180
- "annotations": annotations
181
  }
182
-
183
- yield image_id, img_with_metadata_and_annotations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  import csv
19
  import json
20
  import os
21
+ from PIL import Image
22
+ import numpy as np
23
  import datasets
24
 
25
 
 
130
  },
131
  )]
132
 
133
+
134
+ def save_metadata_as_json(image_id, annotations, species, scientific_name, json_path):
135
+ metadata = {
136
+ "image_id": image_id,
137
+ "species": species,
138
+ "scientific_name": scientific_name,
139
+ "annotations": annotations
140
+ }
141
+ with open(json_path, 'w') as json_file:
142
+ json.dump(metadata, json_file)
143
+
144
+ def _parse_yolo_labels(self, label_path, width, height):
145
+ annotations = []
146
+ with open(label_path, 'r') as file:
147
+ yolo_data = file.readlines()
148
+
149
+ for line in yolo_data:
150
+ class_id, x_center_rel, y_center_rel, width_rel, height_rel = map(float, line.split())
151
+ x_min = (x_center_rel - width_rel / 2) * width
152
+ y_min = (y_center_rel - height_rel / 2) * height
153
+ x_max = (x_center_rel + width_rel / 2) * width
154
+ y_max = (y_center_rel + height_rel / 2) * height
155
+ annotations.append({
156
+ "category_id": int(class_id),
157
+ "bounding_box": {
158
+ "x_min": x_min,
159
+ "y_min": y_min,
160
+ "x_max": x_max,
161
+ "y_max": y_max
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  }
163
+ })
164
+ return annotations
165
+
166
+ def _generate_examples(self, filepaths, species_info, data_dir, split):
167
+ """Yields examples as (key, example) tuples."""
168
+ for file_name in filepaths:
169
+ image_id = os.path.splitext(file_name)[0] # Extract the base name without the file extension
170
+ image_path = os.path.join(data_dir, f"{image_id}.jpg")
171
+ label_path = os.path.join(data_dir, f"{image_id}.txt")
172
+ json_path = os.path.join(data_dir, f"{image_id}.json") # JSON file path
173
+
174
+ with Image.open(image_path) as img:
175
+ width, height = img.size
176
+
177
+ species_row = species_info.loc[species_info['FileName'] == file_name]
178
+ species = species_row['Species'].values[0] if not species_row.empty else None
179
+ scientific_name = species_row['ScientificName'].values[0] if not species_row.empty else None
180
+
181
+ annotations = self._parse_yolo_labels(label_path, width, height)
182
+
183
+ # Save metadata to JSON
184
+ save_metadata_as_json(image_id, annotations, species, scientific_name, json_path)
185
+
186
+ yield image_id, {
187
+ "image": img, # Return the PIL image
188
+ "metadata_json": json_path # Return the path to the JSON file
189
+ }