Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-label-image-classification
Languages:
English
Size:
100B<n<1T
License:
YuxuanZhang888
commited on
Commit
•
f434f07
1
Parent(s):
0233002
Delete ColonCancerCTDatasetScript.py
Browse files- ColonCancerCTDatasetScript.py +0 -158
ColonCancerCTDatasetScript.py
DELETED
@@ -1,158 +0,0 @@
|
|
1 |
-
import pydicom
|
2 |
-
from PIL import Image
|
3 |
-
import numpy as np
|
4 |
-
import io
|
5 |
-
import datasets
|
6 |
-
import gdown
|
7 |
-
import re
|
8 |
-
import s3fs
|
9 |
-
import random
|
10 |
-
|
11 |
-
example_manifest_url = "https://drive.google.com/uc?id=1JBkQTXeieyN9_6BGdTF_DDlFFyZrGyU6"
|
12 |
-
example_manifest_file = gdown.download(example_manifest_url, 'manifest_file.s5cmd', quiet = False)
|
13 |
-
full_manifest_url = "https://drive.google.com/uc?id=1KP6qxcQoPF4MJdEPNwW7J6BlL_sUJ17j"
|
14 |
-
full_manifest_file = gdown.download(full_manifest_url, 'full_manifest_file.s5cmd', quiet = False)
|
15 |
-
fs = s3fs.S3FileSystem(anon=True)
|
16 |
-
|
17 |
-
_DESCRIPTION = "This is the description"
|
18 |
-
_HOMEPAGE = "https://imaging.datacommons.cancer.gov/"
|
19 |
-
_LICENSE = "https://fairsharing.org/FAIRsharing.0b5a1d"
|
20 |
-
_CITATION = "National Cancer Institute Imaging Data Commons (IDC) Collections was accessed on DATE from https://registry.opendata.aws/nci-imaging-data-commons"
|
21 |
-
|
22 |
-
|
23 |
-
class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
|
24 |
-
"""TODO: Short description of my dataset."""
|
25 |
-
VERSION = datasets.Version("1.1.0")
|
26 |
-
|
27 |
-
BUILDER_CONFIGS = [
|
28 |
-
datasets.BuilderConfig(name="example", version=VERSION, description="This is a subset of the full dataset for demonstration purposes"),
|
29 |
-
datasets.BuilderConfig(name="full_data", version=VERSION, description="This is the complete dataset"),
|
30 |
-
]
|
31 |
-
DEFAULT_CONFIG_NAME = "example"
|
32 |
-
|
33 |
-
def _info(self):
|
34 |
-
return datasets.DatasetInfo(
|
35 |
-
description=_DESCRIPTION,
|
36 |
-
features=datasets.Features(
|
37 |
-
{
|
38 |
-
"image": datasets.Image(),
|
39 |
-
"ImageType": datasets.Sequence(datasets.Value('string')),
|
40 |
-
"StudyDate": datasets.Value('string'),
|
41 |
-
"SeriesDate": datasets.Value('string'),
|
42 |
-
"Manufacturer": datasets.Value('string'),
|
43 |
-
"StudyDescription": datasets.Value('string'),
|
44 |
-
"SeriesDescription": datasets.Value('string'),
|
45 |
-
"PatientSex": datasets.Value('string'),
|
46 |
-
"PatientAge": datasets.Value('string'),
|
47 |
-
"PregnancyStatus": datasets.Value('string'),
|
48 |
-
"BodyPartExamined": datasets.Value('string'),
|
49 |
-
}),
|
50 |
-
homepage = _HOMEPAGE,
|
51 |
-
license = _LICENSE,
|
52 |
-
citation = _CITATION
|
53 |
-
|
54 |
-
)
|
55 |
-
|
56 |
-
def _split_generators(self, dl_manager):
|
57 |
-
"""Returns SplitGenerators."""
|
58 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the
|
59 |
-
s3_series_paths = []
|
60 |
-
s3_individual_paths = []
|
61 |
-
if self.config.name == 'example':
|
62 |
-
manifest_file = example_manifest_file
|
63 |
-
else:
|
64 |
-
manifest_file = full_manifest_file
|
65 |
-
|
66 |
-
with open(manifest_file, 'r') as file:
|
67 |
-
for line in file:
|
68 |
-
match = re.search(r'cp (s3://[\S]+) .', line)
|
69 |
-
if match:
|
70 |
-
s3_series_paths.append(match.group(1)[:-2]) # Deleting the '/*' in directories
|
71 |
-
for series in s3_series_paths:
|
72 |
-
for content in fs.ls(series):
|
73 |
-
s3_individual_paths.append(fs.info(content)['Key'])
|
74 |
-
|
75 |
-
random.shuffle(s3_individual_paths)
|
76 |
-
|
77 |
-
# Define the split sizes
|
78 |
-
train_size = int(0.7 * len(s3_individual_paths))
|
79 |
-
val_size = int(0.15 * len(s3_individual_paths))
|
80 |
-
# Split the paths into train, validation, and test sets
|
81 |
-
train_paths = s3_individual_paths[:train_size]
|
82 |
-
val_paths = s3_individual_paths[train_size:train_size + val_size]
|
83 |
-
test_paths = s3_individual_paths[train_size + val_size:]
|
84 |
-
|
85 |
-
return [
|
86 |
-
datasets.SplitGenerator(
|
87 |
-
name=datasets.Split.TRAIN,
|
88 |
-
gen_kwargs={
|
89 |
-
"paths": train_paths,
|
90 |
-
"split": "train"
|
91 |
-
},
|
92 |
-
),
|
93 |
-
datasets.SplitGenerator(
|
94 |
-
name=datasets.Split.VALIDATION,
|
95 |
-
gen_kwargs={
|
96 |
-
"paths": val_paths,
|
97 |
-
"split": "dev"
|
98 |
-
},
|
99 |
-
),
|
100 |
-
datasets.SplitGenerator(
|
101 |
-
name=datasets.Split.TEST,
|
102 |
-
gen_kwargs={
|
103 |
-
"paths": test_paths,
|
104 |
-
"split": "test"
|
105 |
-
},
|
106 |
-
),
|
107 |
-
]
|
108 |
-
|
109 |
-
def _generate_examples(self, paths, split):
|
110 |
-
"""Yields examples."""
|
111 |
-
# TODO: This method will yield examples, i.e. rows in the dataset.
|
112 |
-
for path in paths:
|
113 |
-
key = path
|
114 |
-
with fs.open(path, 'rb') as f:
|
115 |
-
dicom_data = pydicom.dcmread(f)
|
116 |
-
pixel_array = dicom_data.pixel_array
|
117 |
-
# Adjust for MONOCHROME1 to invert the grayscale values
|
118 |
-
if dicom_data.PhotometricInterpretation == "MONOCHROME1":
|
119 |
-
pixel_array = np.max(pixel_array) - pixel_array
|
120 |
-
# Normalize or scale 16-bit or other depth images to 8-bit
|
121 |
-
if pixel_array.dtype != np.uint8:
|
122 |
-
pixel_array = (np.divide(pixel_array, np.max(pixel_array)) * 255).astype(np.uint8)
|
123 |
-
# Convert to RGB if it is not already (e.g., for color images)
|
124 |
-
if len(pixel_array.shape) == 2:
|
125 |
-
im = Image.fromarray(pixel_array, mode="L") # L mode is for grayscale
|
126 |
-
elif len(pixel_array.shape) == 3 and pixel_array.shape[2] in [3, 4]:
|
127 |
-
im = Image.fromarray(pixel_array, mode="RGB")
|
128 |
-
else:
|
129 |
-
raise ValueError("Unsupported DICOM image format")
|
130 |
-
with io.BytesIO() as output:
|
131 |
-
im.save(output, format="PNG")
|
132 |
-
png_image = output.getvalue()
|
133 |
-
# Extracting metadata
|
134 |
-
ImageType = dicom_data.get("ImageType", "")
|
135 |
-
StudyDate = dicom_data.get("StudyDate", "")
|
136 |
-
SeriesDate = dicom_data.get("SeriesDate", "")
|
137 |
-
Manufacturer = dicom_data.get("Manufacturer", "")
|
138 |
-
StudyDescription = dicom_data.get("StudyDescription", "")
|
139 |
-
SeriesDescription = dicom_data.get("SeriesDescription", "")
|
140 |
-
PatientSex = dicom_data.get("PatientSex", "")
|
141 |
-
PatientAge = dicom_data.get("PatientAge", "")
|
142 |
-
PregnancyStatus = dicom_data.get("PregnancyStatus", "")
|
143 |
-
if PregnancyStatus == None:
|
144 |
-
PregnancyStatus = "None"
|
145 |
-
else:
|
146 |
-
PregnancyStatus = "Yes"
|
147 |
-
BodyPartExamined = dicom_data.get("BodyPartExamined", "")
|
148 |
-
yield key, {"image": png_image,
|
149 |
-
"ImageType": ImageType,
|
150 |
-
"StudyDate": StudyDate,
|
151 |
-
"SeriesDate": SeriesDate,
|
152 |
-
"Manufacturer": Manufacturer,
|
153 |
-
"StudyDescription": StudyDescription,
|
154 |
-
"SeriesDescription": SeriesDescription,
|
155 |
-
"PatientSex": PatientSex,
|
156 |
-
"PatientAge": PatientAge,
|
157 |
-
"PregnancyStatus": PregnancyStatus,
|
158 |
-
"BodyPartExamined": BodyPartExamined}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|