File size: 3,302 Bytes
f89843e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
task_categories:
- conversational
language:
- en
tags:
- recommendation
viewer: false
---

# Dataset Card for `Reddit-Movie-raw`

## Dataset Description

- **Homepage:** https://github.com/AaronHeee/LLMs-as-Zero-Shot-Conversational-RecSys
- **Repository:** https://github.com/AaronHeee/LLMs-as-Zero-Shot-Conversational-RecSys
- **Paper:** To appear
- **Point of Contact:** zhh004@eng.ucsd.edu

### Dataset Summary

This dataset provides the raw text from [Reddit](https://reddit.com) related to movie recommendation conversations. 
The dataset is extracted from the data dump of [pushshift.io](https://arxiv.org/abs/2001.08435) and only for research use.

### Disclaimer

⚠️ **Please note that conversations processed from Reddit raw data may include content that is not entirely conducive to a positive experience (e.g., toxic speech). Exercise caution and discretion when utilizing this information.**

### Folder Structure

We explain our data folder as follows:

```bash
reddit_movie_raw
├── IMDB-database
│   ├── clean.py # script to obtain clean IMDB movie titles, which can be used for movie name matching if needed.
│   ├── movie_clean.tsv # results after movie title cleaning 
│   ├── title.basics.tsv # original movie title information from IMDB
│   └── title.ratings.tsv # # original movie title and rating information from IMDB
├── Reddit-Movie-large
│   ├── sentences.jsonl # raw sentences from the subreddit/* data, it can be used for following processing
│   └── subreddit # raw text from different subreddits from Jan. 2012 to Dec. 2022 (large)
│       ├── bestofnetflix.jsonl
│       ├── movies.jsonl
│       ├── moviesuggestions.jsonl
│       ├── netflixbestof.jsonl
│       └── truefilm.jsonl
└── Reddit-Movie-small
    ├── sentences.jsonl # raw sentences from the subreddit/* data, it can be used for following processing
    └── subreddit # raw text from different subreddits from Jan. 2022 to Dec. 2022 (small)
        ├── bestofnetflix.jsonl
        ├── movies.jsonl
        ├── moviesuggestions.jsonl
        ├── netflixbestof.jsonl
        └── truefilm.jsonl
```

### Data Processing

We also provide first-version processed Reddit-Movie datasets as [Reddit-Movie-small-V1]() and [Reddit-Movie-large-V1]().
Join us if you want to improve the processing quality as well!

### Citation Information

Please cite these two papers if you used this raw data, thanks!

```bib
@inproceedings{baumgartner2020pushshift,
  title={The pushshift reddit dataset},
  author={Baumgartner, Jason and Zannettou, Savvas and Keegan, Brian and Squire, Megan and Blackburn, Jeremy},
  booktitle={Proceedings of the international AAAI conference on web and social media},
  volume={14},
  pages={830--839},
  year={2020}
}
```

```bib
@inproceedings{he23large,
  title = Large language models as zero-shot conversational recommenders",
  author = "Zhankui He and Zhouhang Xie and Rahul Jha and Harald Steck and Dawen Liang and Yesu Feng and Bodhisattwa Majumder and Nathan Kallus and Julian McAuley",
  year = "2023",
  booktitle = "CIKM"
}
```

Please contact [Zhankui He](https://aaronheee.github.io) if you have any questions or suggestions.