File size: 3,302 Bytes
f89843e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
task_categories:
- conversational
language:
- en
tags:
- recommendation
viewer: false
---
# Dataset Card for `Reddit-Movie-raw`
## Dataset Description
- **Homepage:** https://github.com/AaronHeee/LLMs-as-Zero-Shot-Conversational-RecSys
- **Repository:** https://github.com/AaronHeee/LLMs-as-Zero-Shot-Conversational-RecSys
- **Paper:** To appear
- **Point of Contact:** zhh004@eng.ucsd.edu
### Dataset Summary
This dataset provides the raw text from [Reddit](https://reddit.com) related to movie recommendation conversations.
The dataset is extracted from the data dump of [pushshift.io](https://arxiv.org/abs/2001.08435) and only for research use.
### Disclaimer
⚠️ **Please note that conversations processed from Reddit raw data may include content that is not entirely conducive to a positive experience (e.g., toxic speech). Exercise caution and discretion when utilizing this information.**
### Folder Structure
We explain our data folder as follows:
```bash
reddit_movie_raw
├── IMDB-database
│ ├── clean.py # script to obtain clean IMDB movie titles, which can be used for movie name matching if needed.
│ ├── movie_clean.tsv # results after movie title cleaning
│ ├── title.basics.tsv # original movie title information from IMDB
│ └── title.ratings.tsv # # original movie title and rating information from IMDB
├── Reddit-Movie-large
│ ├── sentences.jsonl # raw sentences from the subreddit/* data, it can be used for following processing
│ └── subreddit # raw text from different subreddits from Jan. 2012 to Dec. 2022 (large)
│ ├── bestofnetflix.jsonl
│ ├── movies.jsonl
│ ├── moviesuggestions.jsonl
│ ├── netflixbestof.jsonl
│ └── truefilm.jsonl
└── Reddit-Movie-small
├── sentences.jsonl # raw sentences from the subreddit/* data, it can be used for following processing
└── subreddit # raw text from different subreddits from Jan. 2022 to Dec. 2022 (small)
├── bestofnetflix.jsonl
├── movies.jsonl
├── moviesuggestions.jsonl
├── netflixbestof.jsonl
└── truefilm.jsonl
```
### Data Processing
We also provide first-version processed Reddit-Movie datasets as [Reddit-Movie-small-V1]() and [Reddit-Movie-large-V1]().
Join us if you want to improve the processing quality as well!
### Citation Information
Please cite these two papers if you used this raw data, thanks!
```bib
@inproceedings{baumgartner2020pushshift,
title={The pushshift reddit dataset},
author={Baumgartner, Jason and Zannettou, Savvas and Keegan, Brian and Squire, Megan and Blackburn, Jeremy},
booktitle={Proceedings of the international AAAI conference on web and social media},
volume={14},
pages={830--839},
year={2020}
}
```
```bib
@inproceedings{he23large,
title = Large language models as zero-shot conversational recommenders",
author = "Zhankui He and Zhouhang Xie and Rahul Jha and Harald Steck and Dawen Liang and Yesu Feng and Bodhisattwa Majumder and Nathan Kallus and Julian McAuley",
year = "2023",
booktitle = "CIKM"
}
```
Please contact [Zhankui He](https://aaronheee.github.io) if you have any questions or suggestions. |