# -*- coding: utf-8 -*- """PlantsDataset Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1nkvgrtbJQaIBdnxYHl8WTpKVL_AzAzux """ import datasets from datasets import load_dataset, DatasetInfo, Features, Value, ClassLabel, Split, SplitGenerator, GeneratorBasedBuilder, BuilderConfig, Array3D, Version import os from PIL import Image import matplotlib.pyplot as plt import numpy as np import pandas as pd import geopandas as gpd from datasets import ( GeneratorBasedBuilder, Version, DownloadManager, SplitGenerator, Split, Features, Value, BuilderConfig, DatasetInfo ) import matplotlib.pyplot as plt import seaborn as sns import csv import json from shapely.geometry import Point import base64 import matplotlib.pyplot as plt import matplotlib.image as mpimg import io import os from PIL import Image import numpy as np from datasets import DatasetInfo, Features, Value, ClassLabel, Split, SplitGenerator, GeneratorBasedBuilder, BuilderConfig from datasets import NamedSplit, Split, SplitGenerator import gdown _DRIVE_ID = "1fXgVwhdU5YGj0SPIcHxSpxkhvRh54oEH" _URL = f"https://drive.google.com/uc?export=download&id={_DRIVE_ID}" class PlantsDataset(GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ BuilderConfig(name="default", version=VERSION, description="Default configuration for PlantsDataset"), ] def _info(self): features = Features({ "image": Value("string"), # Change to Array3D to store image arrays "label": ClassLabel(names=["aleo vera", "calotropis gigantea"]), }) return DatasetInfo( description="Your dataset description", features=features, supervised_keys=("image", "label"), homepage="Your dataset homepage", citation="Citation for your dataset", ) def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URL) return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={ "data_folder": os.path.join(downloaded_file, "train"), }, ), SplitGenerator( name=Split.TEST, gen_kwargs={ "data_folder": os.path.join(downloaded_file, "test"), }, ), ] def _generate_examples(self, data_folder): label_names = self.info.features['label'].names for label_name in label_names: subfolder_path = os.path.join(data_folder, label_name) label = label_names.index(label_name) for root, _, files in os.walk(subfolder_path): for file_name in files: file_path = os.path.join(root, file_name) if os.path.isfile(file_path) and file_name.lower().endswith(('.png', '.jpg', '.jpeg')): # Image ID should be unique, use filename for simplicity image_id = os.path.splitext(file_name)[0] yield image_id, { "image": file_path, # Store file path as a string "label": label, } else: print(f"Skipped file {file_path}, since it is not an image.") # Instantiate the dataset builder for PlantsDataset plants_dataset = PlantsDataset() # Download the data and prepare the dataset plants_dataset.download_and_prepare() # Access the dataset as a `DatasetDict` dataset_dict = plants_dataset.as_dataset() # Access the train and test splits train_dataset = dataset_dict['train'] test_dataset = dataset_dict['test'] # Now you can use `train_dataset` and `test_dataset` as needed # For example, you can iterate over the dataset and access the file paths and labels for example in train_dataset: print(example['image'], example['label'])