Ziyuan111 commited on
Commit
ec658a9
·
verified ·
1 Parent(s): 5e8e38f

Upload 4 files

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. README.md +293 -0
  3. durhamtrees.py +238 -0
  4. merged.csv +3 -0
  5. plantsdataset.py +84 -0
.gitattributes CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
56
+ merged.csv filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ size_categories:
6
+ - 1M<n<10M
7
+ task_categories:
8
+ - token-classification
9
+ - table-question-answering
10
+ ---
11
+ # Durham Urban Canopy Analysis and Enhancement Initiative (DUCAEI)
12
+ The `Class` is a custom dataset class that brings together information from two distinct domains into a unified dataset.
13
+ This class is designed to streamline the process of working with data from different sources and enable users to seamlessly access and analyze combined datasets.
14
+ ## Project Overview
15
+
16
+ ![Dataset Preview](https://github.com/AuraMa111/Urban_Tree_Canopy_in_Durham/blob/main/Picture1.png?raw=true)
17
+
18
+
19
+
20
+ The Durham Urban Canopy Analysis and Enhancement Initiative (DUCAEI) is committed to utilizing the Trees & Planting Sites dataset for a comprehensive geospatial analysis of Durham's urban tree canopy. Through Python within Google Colab, our aim is to identify key locations for canopy expansion, evaluate the impact of urban development on green spaces, and deliver informed recommendations for the sustainable growth of urban tree coverage.
21
+
22
+ ## Background and Rationale
23
+
24
+ Durham's urban tree canopy is a crucial component that contributes to environmental quality, public health, and overall city aesthetics. This canopy is under threat due to ongoing urban development and natural wear. A systematic, data-driven approach is critical for strategic planning and conservation of the urban forest to ensure its vitality for generations to come.
25
+
26
+ ## Data Sources and Methodology
27
+ These data files are from durham open.
28
+
29
+ And for the .py file:
30
+
31
+ The provided Python script defines a dataset class named `DurhamTrees` using the `datasets` library. This class combines information from two different domains ("class1_domain1" and "class2_domain1") and includes features from both domains.
32
+
33
+ Trees & Planting Sites Dataset: Hosted on the Durham Open Data portal, this dataset includes location, species, size, and health of street trees, alongside designated future planting sites.
34
+ Data Source: Durham Trees & Planting Sites Dataset
35
+ https://live-durhamnc.opendata.arcgis.com/datasets/DurhamNC::trees-planting-sites/about
36
+
37
+ Key components of the script:
38
+
39
+ 1. **Imported Libraries:**
40
+ - `datasets`: for building the dataset.
41
+ - `pandas`: for handling data in tabular form.
42
+ - `geopandas`: for working with geospatial data.
43
+ - Other standard libraries for various functionalities.
44
+
45
+ 2. **URL Definitions:**
46
+ - Specifies URLs for CSV and GeoJSON files from two different domains.
47
+
48
+ 3. **DurhamTrees Class:**
49
+ - Inherits from `datasets.GeneratorBasedBuilder`.
50
+ - Defines configurations for two classes ("class1_domain1" and "class2_domain1").
51
+ - Specifies features for the combined dataset, including features from both classes.
52
+
53
+ 4. **Info Method:**
54
+ - Describes the combined dataset's features, supervised keys, homepage, and citation.
55
+
56
+ 5. **Split Generators Method:**
57
+ - Downloads and extracts data from the provided URLs.
58
+ - Defines split generators for training data.
59
+
60
+ 6. **Generate Examples Methods:**
61
+ - `_generate_examples`: Calls methods to generate examples for both classes.
62
+ - `_generate_examples_from_class1`: Reads CSV and GeoJSON data, merges them, and yields examples.
63
+ - `_generate_examples_from_class2`: Reads CSV data and yields examples.
64
+
65
+ 7. **Column Extraction:**
66
+ - Defines columns to extract for both classes, indicating which features to include in the final dataset.
67
+
68
+ 8. **Example Yielding:**
69
+ - Iterates over rows of the final dataframes, converting each row to a dictionary and yielding examples with unique identifiers.
70
+
71
+ The script is intended for creating a combined dataset from two different sources, and it uses the `datasets` library to facilitate data handling.
72
+
73
+ ### Data Sources
74
+
75
+ We will leverage the following files from the Durham Trees & Planting Sites Dataset, as found on the Durham Open Data portal:
76
+
77
+ - `merge.csv`
78
+ - `Trees_&_Planting_Sites.csv`
79
+ - `Trees_%26_Planting_Sites.geojson`
80
+
81
+ # Dataset Card for Urban Tree Inventory
82
+
83
+ ## Dataset Description
84
+
85
+ This dataset provides comprehensive information about urban trees within a specified area, including their physical characteristics, environmental benefits, and the economic value they add in terms of ecosystem services.
86
+
87
+ ### Spatial Data (GeoJSON)
88
+
89
+ **Format:** GeoJSON
90
+
91
+ **Content:**
92
+
93
+ - **Type:** `FeatureCollection` - A collection of feature objects.
94
+ - **Features:** Each feature object represents a tree and contains:
95
+ - **Type:** `Feature`
96
+ - **Geometry:** `Point` (includes longitude and latitude of the tree location).
97
+ - **Properties:** Detailed information about the tree (some fields may overlap with the CSV structure below).
98
+
99
+ **IMAGE DAYA**
100
+ dataset_info:
101
+ features:
102
+ - name: image
103
+ dtype: image
104
+ - name: label
105
+ dtype:
106
+ class_label:
107
+ names:
108
+ '0': aechmea_fasciata
109
+ '1': agave_americana
110
+ '2': agave_attenuata
111
+ '3': agave_tequilana
112
+ '4': aglaonema_commutatum
113
+ '5': albuca_spiralis
114
+ '6': allium_cepa
115
+ '7': allium_sativum
116
+
117
+ ### Tabular Data (CSV)
118
+
119
+ **Format:** CSV
120
+
121
+ **Columns:**
122
+
123
+ - **X, Y:** Coordinates of the tree location.
124
+ - **OBJECTID:** Unique identifier for the tree.
125
+ - **streetaddress:** Street address nearest to the tree.
126
+ - **city:** City where the tree is located.
127
+ - **zipcode:** Zip code for the location of the tree.
128
+ - **facilityid:** Identifier for the facility associated with the tree, if any.
129
+ - **present:** Indication of whether the tree is currently present.
130
+ - **genus, species, commonname:** Botanical and common names of the tree.
131
+ - **plantingdate:** Date when the tree was planted.
132
+ - **diameterin:** Diameter of the tree trunk in inches.
133
+ - **heightft:** Height of the tree in feet.
134
+ - **condition:** Health condition of the tree.
135
+ - **contractwork:** Indicates if the tree has had any contract work done.
136
+ - **neighborhood:** Neighborhood where the tree is located.
137
+ - **program:** The program under which the tree was planted.
138
+ - **plantingw:** Width of the planting site.
139
+ - **plantingcond:** Condition of the planting site.
140
+ - **underpwerlins:** Whether the tree is under power lines.
141
+ - **matureheight:** The mature height of the tree.
142
+ - **GlobalID:** A global unique identifier for the tree.
143
+ - **created_user:** The user who created the record.
144
+ - **created_date:** The date the record was created.
145
+ - **last_edited_user:** The user who last edited the record.
146
+ - **last_edited_date:** The date the record was last edited.
147
+
148
+ #### Environmental and Economic Data:
149
+
150
+ - **isoprene, monoterpene, vocs:** Emissions and absorption data for various compounds.
151
+ - **coremoved_ozperyr, o3removed_ozperyr, etc.:** Annual pollutant removal metrics.
152
+ - **o2production_lbperyr:** Annual oxygen production.
153
+ - **carbonstorage_lb, carbonstorage_dol:** Carbon storage metrics.
154
+ - **grosscarseq_lbperyr, grosscarseq_dolperyr:** Gross carbon sequestration.
155
+ - **avoidrunoff_ft2peryr, avoidrunoff_dol2peryr:** Metrics related to stormwater runoff avoidance.
156
+ - **totannbenefits_dolperyr:** Total annual dollar benefits from the tree.
157
+ - **leafarea_sqft, potevapotran_cuftperyr, etc.:** Metrics related to the water cycle.
158
+ - **heating_mbtuperyr, cooling_kwhperyr, etc.:** Energy savings related to the tree's impact on building energy use.
159
+
160
+ ### Example Record
161
+
162
+ **GeoJSON Feature:**
163
+ ```json
164
+ {
165
+ "crs": {
166
+ "type": "name",
167
+ "properties": {
168
+ "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
169
+ }
170
+ },
171
+ "features": [
172
+ {
173
+ "type": "Feature",
174
+ "properties": {
175
+ "OBJECTID": 2840940,
176
+ "streetaddress": "411 N GREGSON ST",
177
+ "city": "DURHAM",
178
+ "zipcode": 27701,
179
+ "facilityid": 2936423,
180
+ "present": "Planting Site",
181
+ "genus": null,
182
+ "species": "",
183
+ "commonname": null,
184
+ "plantingdate": null,
185
+ "diameterin": 0.0,
186
+ "heightft": null,
187
+ "condition": null,
188
+ "contractwork": null,
189
+ "neighborhood": "Walltown",
190
+ "program": null,
191
+ "plantingw": "Greater than 5 ft",
192
+ "plantingcond": "Fair",
193
+ "underpwerlins": "No",
194
+ "matureheight": "Large (over 60 feet tall)",
195
+ "GlobalID": "{8BA6662A-8777-473A-82BB-FD77FE6813BB}",
196
+ "created_user": "A1",
197
+ "created_date": "2024-02-03T10:17:12Z",
198
+ "last_edited_user": "A1",
199
+ "last_edited_date": "2024-02-03T10:17:12Z",
200
+ "isoprene": null,
201
+ "monoterpene": null,
202
+ "vocs": null,
203
+ "coremoved_ozperyr": null,
204
+ "coremoved_dolperyr": null,
205
+ "o3removed_ozperyr": null,
206
+ "o3removed_dolperyr": null,
207
+ "no2removed_ozperyr": null,
208
+ "no2removed_dolperyr": null,
209
+ "so2removed_ozperyr": null,
210
+ "so2removed_dolperyr": null,
211
+ "pm10removed_ozperyr": null,
212
+ "pm10removed_dolperyr": null,
213
+ "pm25removed_ozperyr": null,
214
+ "o2production_lbperyr": null,
215
+ "replacevalue_dol": null,
216
+ "carbonstorage_lb": null,
217
+ "carbonstorage_dol": null,
218
+ "grosscarseq_lbperyr": null,
219
+ "grosscarseq_dolperyr": null,
220
+ "avoidrunoff_ft2peryr": null,
221
+ "avoidrunoff_dol2peryr": null,
222
+ "polremoved_ozperyr": null,
223
+ "polremoved_dolperyr": null,
224
+ "totannbenefits_dolperyr": null,
225
+ "leafarea_sqft": null,
226
+ "potevapotran_cuftperyr": null,
227
+ "evaporation_cuftperyr": null,
228
+ "transpiration_cuftperyr": null,
229
+ "h2ointercept_cuftperyr": null,
230
+ "avoidrunval_cuftperyr": null,
231
+ "avoidrunval_dol2peryr": null,
232
+ "carbonavoid_lbperyr": null,
233
+ "carbonavoid_dolperyr": null,
234
+ "heating_mbtuperyr": null,
235
+ "heating_dolperyrmbtu": null,
236
+ "heating_kwhperyr": null,
237
+ "heating_dolperyrmwh": null,
238
+ "cooling_kwhperyr": null,
239
+ "cooling_dolperyr": null,
240
+ "totalenerg_dolperyr": null
241
+ },
242
+ "geometry": {
243
+ "type": "Point",
244
+ "coordinates": [-78.908630289999962, 36.00441249000005, 0.0]
245
+ }
246
+ }
247
+ ]
248
+ }
249
+
250
+ ```
251
+ The `Trees_&_Planting_Sites.csv` file encompasses a range of attributes for each record:
252
+
253
+ - **OBJECTID:** Unique identifier for each record.
254
+ - **streetaddr:** Street address where the tree or planting site is located.
255
+ - **city:** The city name, which is Durham.
256
+ - **zipcode:** Postal code for the location.
257
+ - **facilityid:** Identifier possibly linked to a facility or area associated with the tree.
258
+ - **present:** Type of feature present, such as a tree or a planting site.
259
+ - **genus:** Genus of the tree.
260
+ - **species:** Species of the tree.
261
+ - **commonname:** Common name of the tree.
262
+ - **plantingda:** Date or year range when the tree was planted or the planting site was established.
263
+ - ...
264
+ ### Objectives
265
+
266
+ 1. Combine Shapefile and CSV data into a comprehensive geospatial dataset using Python.
267
+ 2. Apply Python libraries to uncover relationships between tree canopy data and urban development.
268
+ 3. Provide practical insights and strategies for the expansion of Durham's urban tree canopy.
269
+ 4. Produce analyses and visualizations with the GeoJSON file.
270
+
271
+ ### Methodology
272
+
273
+ Our analytical process within Google Colab will encompass:
274
+
275
+ - **Data Preparation and Integration:** Using tools like Geopandas, Pandas, and PyShp to organize and combine spatial and tabular data.
276
+ - **Geospatial Analysis:** Applying Shapely and Rtree for spatial analysis, and using SciPy or Statsmodels for statistical correlations.
277
+ - **Visualization and Optimization:** Generating maps and graphs with Matplotlib, Seaborn, or Plotly, and utilizing optimization algorithms to suggest optimal planting locations.
278
+
279
+ ## Deliverables
280
+
281
+ 1. A collection of Google Colab Python notebooks that outline our analytical processes.
282
+ 2. Interactive maps and visualizations that connect tree canopy coverage with urban development metrics.
283
+ 3. An exhaustive report that contains our findings and recommendations for enhancing the urban canopy.
284
+
285
+ ## Limitations
286
+
287
+ - **Computational Resources:** The limited computational offerings of Google Colab may pose a challenge to the size of the datasets or the complexity of models we can employ.
288
+ - **Data Quality:** The accuracy and currency of the data ultimately affect the precision of our recommendations.
289
+ - **Sociopolitical Considerations:** Implementation of our data-driven suggestions must be reviewed within the context of local policy and community input.
290
+
291
+ ## Conclusion
292
+
293
+ DUCAEI aims to create a more verdant and livable urban landscape in Durham through this Python-based analytical project. By laying a strong foundation for data-informed decision-making, we hope to cultivate a thriving, green, and sustainable urban environment.
durhamtrees.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """DurhamTrees
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1czig7JIbqTKp9wNUIRcdMEDF3pFgtxKv
8
+ """
9
+
10
+ # -*- coding: utf-8 -*-
11
+ """DurhamTrees
12
+ Automatically generated by Colaboratory.
13
+ Original file is located at
14
+ https://colab.research.google.com/drive/1czig7JIbqTKp9wNUIRcdMEDF3pFgtxKv
15
+ """
16
+ import pyarrow.parquet as pq
17
+ import pandas as pd
18
+ import geopandas as gpd
19
+ from datasets import (
20
+ GeneratorBasedBuilder, Version, DownloadManager, SplitGenerator, Split,
21
+ Features, Value, BuilderConfig, DatasetInfo
22
+ )
23
+ import matplotlib.pyplot as plt
24
+ import seaborn as sns
25
+ import csv
26
+ import json
27
+ from shapely.geometry import Point
28
+ import base64
29
+ import matplotlib.pyplot as plt
30
+ import matplotlib.image as mpimg
31
+ import io
32
+ # URL definitions
33
+ _URLS = {
34
+ "first_domain1": {
35
+ "csv_file": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy",
36
+ "geojson_file": "https://drive.google.com/uc?export=download&id=1cbn7EY7RofXN7c6Ph0eIGFIZowPZ5lKE",
37
+
38
+ },
39
+ "first_domain2": {
40
+ "csv_file2": "https://drive.google.com/uc?export=download&id=1RVdaI5dSTPStjhOHO40ypDv2cAQZpi_Y",
41
+ },
42
+ }
43
+
44
+ # Combined Dataset Class
45
+ class DurhamTrees(GeneratorBasedBuilder):
46
+
47
+ VERSION = Version("1.0.0")
48
+
49
+
50
+ class MyConfig(BuilderConfig):
51
+ def __init__(self, **kwargs):
52
+ super().__init__(**kwargs)
53
+
54
+ BUILDER_CONFIGS = [
55
+ MyConfig(name="durham_default", description="Default configuration for DurhamTrees"),
56
+ ]
57
+
58
+
59
+ def _info(self):
60
+ return DatasetInfo(
61
+ description="This dataset combines information from both classes, with additional processing for csv_file2.",
62
+ features=Features({
63
+ "feature1_from_class1": Value("string"),
64
+ "geometry":Value("string"),
65
+ "OBJECTID": Value("int64"),
66
+ "X": Value("float64"),
67
+ "Y": Value("float64"),
68
+ "feature1_from_class2": Value("string"),
69
+ "streetaddress": Value("string"),
70
+ "city": Value("string"),
71
+ "facilityid": Value("int64"),
72
+ "present": Value("string"),
73
+ "genus": Value("string"),
74
+ "species": Value("string"),
75
+ "commonname": Value("string"),
76
+ "diameterin": Value("float64"),
77
+ "condition": Value("string"),
78
+ "neighborhood": Value("string"),
79
+ "program": Value("string"),
80
+ "plantingw": Value("string"),
81
+ "plantingcond": Value("string"),
82
+ "underpwerlins": Value("string"),
83
+ "GlobalID": Value("string"),
84
+ "created_user": Value("string"),
85
+ "last_edited_user": Value("string"),
86
+ "isoprene": Value("float64"),
87
+ "monoterpene": Value("float64"),
88
+ "monoterpene_class2": Value("float64"),
89
+ "vocs": Value("float64"),
90
+ "coremoved_ozperyr": Value("float64"),
91
+ "coremoved_dolperyr": Value("float64"),
92
+ "o3removed_ozperyr": Value("float64"),
93
+ "o3removed_dolperyr": Value("float64"),
94
+ "no2removed_ozperyr": Value("float64"),
95
+ "no2removed_dolperyr": Value("float64"),
96
+ "so2removed_ozperyr": Value("float64"),
97
+ "so2removed_dolperyr": Value("float64"),
98
+ "pm10removed_ozperyr": Value("float64"),
99
+ "pm10removed_dolperyr": Value("float64"),
100
+ "pm25removed_ozperyr": Value("float64"),
101
+ "o2production_lbperyr": Value("float64"),
102
+ "replacevalue_dol": Value("float64"),
103
+ "carbonstorage_lb": Value("float64"),
104
+ "carbonstorage_dol": Value("float64"),
105
+ "grosscarseq_lbperyr": Value("float64"),
106
+ "grosscarseq_dolperyr": Value("float64"),
107
+ "avoidrunoff_ft2peryr": Value("float64"),
108
+ "avoidrunoff_dol2peryr": Value("float64"),
109
+ "polremoved_ozperyr": Value("float64"),
110
+ "polremoved_dolperyr": Value("float64"),
111
+ "totannbenefits_dolperyr": Value("float64"),
112
+ "leafarea_sqft": Value("float64"),
113
+ "potevapotran_cuftperyr": Value("float64"),
114
+ "evaporation_cuftperyr": Value("float64"),
115
+ "transpiration_cuftperyr": Value("float64"),
116
+ "h2ointercept_cuftperyr": Value("float64"),
117
+ "carbonavoid_lbperyr": Value("float64"),
118
+ "carbonavoid_dolperyr": Value("float64"),
119
+ "heating_mbtuperyr": Value("float64"),
120
+ "heating_dolperyrmbtu": Value("float64"),
121
+ "heating_kwhperyr": Value("float64"),
122
+ "heating_dolperyrmwh": Value("float64"),
123
+ "cooling_kwhperyr": Value("float64"),
124
+ "cooling_dolperyr": Value("float64"),
125
+ "totalenerg_dolperyr": Value("float64"),
126
+ }),
127
+ supervised_keys=("image", "label"),
128
+ homepage="https://github.com/AuraMa111?tab=repositories",
129
+ citation="Citation for the combined dataset",
130
+ )
131
+
132
+ def _split_generators(self, dl_manager):
133
+ downloaded_files = dl_manager.download_and_extract(_URLS)
134
+
135
+ return [
136
+ SplitGenerator(
137
+ name=Split.TRAIN,
138
+ gen_kwargs={
139
+ "class1_data_file": downloaded_files["first_domain1"]["csv_file"],
140
+ "class1_geojson_file": downloaded_files["first_domain1"]["geojson_file"],
141
+ "class2_data_file": downloaded_files["first_domain2"]["csv_file2"],
142
+ "split": Split.TRAIN,
143
+ },
144
+ ),
145
+ ]
146
+
147
+
148
+
149
+
150
+ def _generate_examples(self, class1_data_file, class1_geojson_file, class2_data_file, parquet_file, split):
151
+ class1_examples = list(self._generate_examples_from_class1(class1_data_file, class1_geojson_file))
152
+ class2_examples = list(self._generate_examples_from_class2(class2_data_file))
153
+
154
+
155
+ examples = class1_examples + class2_examples
156
+ df = pd.DataFrame(examples)
157
+
158
+ for id_, example in enumerate(examples):
159
+ if not isinstance(example, dict):
160
+ # Convert the example to a dictionary if it's not
161
+ example = {"example": example}
162
+ yield id_, example
163
+
164
+ def _generate_examples_from_class1(self, csv_filepath, geojson_filepath):
165
+ columns_to_extract = ["OBJECTID", "X", "Y"] # Remove "geometry" from columns_to_extract
166
+ csv_data = pd.read_csv(csv_filepath)
167
+
168
+ with open(geojson_filepath, 'r') as file:
169
+ geojson_dict = json.load(file)
170
+ gdf = gpd.GeoDataFrame.from_features(geojson_dict['features'], crs="EPSG:4326") # Specify the CRS if known
171
+ merged_data = gdf.merge(csv_data, on='OBJECTID')
172
+ final_data = merged_data[columns_to_extract + ['geometry']] # Include 'geometry' in the final_data
173
+ for id_, row in final_data.iterrows():
174
+ example = row.to_dict()
175
+ yield id_, example
176
+
177
+
178
+
179
+
180
+
181
+ def _generate_examples_from_class2(self, csv_filepath2):
182
+ csv_data2 = pd.read_csv(csv_filepath2)
183
+
184
+
185
+ columns_to_extract = [
186
+ "streetaddress", "city", "facilityid", "present", "genus", "species",
187
+ "commonname", "diameterin", "condition", "neighborhood", "program", "plantingw",
188
+ "plantingcond", "underpwerlins", "GlobalID", "created_user", "last_edited_user", "isoprene", "monoterpene",
189
+ "monoterpene", "vocs", "coremoved_ozperyr", "coremoved_dolperyr",
190
+ "o3removed_ozperyr", "o3removed_dolperyr", "no2removed_ozperyr", "no2removed_dolperyr",
191
+ "so2removed_ozperyr", "so2removed_dolperyr", "pm10removed_ozperyr", "pm10removed_dolperyr",
192
+ "pm25removed_ozperyr", "o2production_lbperyr", "replacevalue_dol", "carbonstorage_lb",
193
+ "carbonstorage_dol", "grosscarseq_lbperyr", "grosscarseq_dolperyr", "polremoved_ozperyr", "polremoved_dolperyr",
194
+ "totannbenefits_dolperyr", "leafarea_sqft", "potevapotran_cuftperyr", "evaporation_cuftperyr",
195
+ "transpiration_cuftperyr", "h2ointercept_cuftperyr",
196
+ "carbonavoid_lbperyr", "carbonavoid_dolperyr", "heating_mbtuperyr",
197
+ "heating_dolperyrmbtu", "heating_kwhperyr", "heating_dolperyrmwh", "cooling_kwhperyr",
198
+ "cooling_dolperyr", "totalenerg_dolperyr",
199
+ ]
200
+
201
+ final_data = csv_data2[columns_to_extract]
202
+ for id_, row in final_data.iterrows():
203
+ example = row.to_dict()
204
+ non_empty_example = {key: value for key, value in example.items() if pd.notna(value)}
205
+ yield id_, example
206
+
207
+
208
+
209
+
210
+ def _correlation_analysis(self, df):
211
+ correlation_matrix = df.corr()
212
+ sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=.5)
213
+ plt.title("Correlation Analysis")
214
+ plt.show()
215
+
216
+
217
+
218
+
219
+
220
+
221
+ # Create an instance of the DurhamTrees class
222
+ durham_trees_dataset = DurhamTrees(name='class1_domain1')
223
+
224
+ # Build the dataset
225
+ durham_trees_dataset.download_and_prepare()
226
+
227
+ # Access the dataset
228
+ dataset = durham_trees_dataset.as_dataset()
229
+
230
+
231
+ # Create an instance of the DurhamTrees class for another configuration
232
+ durham_trees_dataset_another = DurhamTrees(name='class2_domain1')
233
+
234
+ # Build the dataset for the new instance
235
+ durham_trees_dataset_another.download_and_prepare()
236
+
237
+ # Access the dataset for the new instance
238
+ dataset_another = durham_trees_dataset_another.as_dataset()
merged.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c641de2bfbe65205fb17a842455e14a65d7be2f9dafe4a86972152f1d877f9a
3
+ size 11188246
plantsdataset.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import DatasetInfo, Features, Value, ClassLabel, Split, SplitGenerator, GeneratorBasedBuilder
2
+ import os
3
+ from PIL import Image
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ # Google Drive ID for your ZIP file
7
+ _DRIVE_ID = "1fXgVwhdU5YGj0SPIcHxSpxkhvRh54oEH"
8
+ _URL = f"https://drive.google.com/uc?export=download&id={_DRIVE_ID}"
9
+
10
+ class PlantsDataset(GeneratorBasedBuilder):
11
+ class MyConfig(BuilderConfig):
12
+ def __init__(self, **kwargs):
13
+ super().__init__(**kwargs)
14
+
15
+ BUILDER_CONFIGS = [
16
+ MyConfig(name="plants_default", description="Default configuration for PlantsDataset"),
17
+ ]
18
+
19
+ BUILDER_CONFIGS = [
20
+ MyConfig(name="default", description="Default configuration"),
21
+ ]
22
+
23
+ def _info(self):
24
+ features = Features({
25
+ "image": Value("string"),
26
+ "label": ClassLabel(names=["aleo vera", "calotropis gigantea"]),
27
+ })
28
+ return DatasetInfo(
29
+ description="Your dataset description",
30
+ features=features,
31
+ supervised_keys=("image", "label"),
32
+ homepage="Your dataset homepage",
33
+ citation="Citation for your dataset",
34
+ )
35
+
36
+ def _split_generators(self, dl_manager):
37
+ downloaded_file = dl_manager.download_and_extract(_URL)
38
+
39
+ return [
40
+ SplitGenerator(
41
+ name=Split.TRAIN,
42
+ gen_kwargs={
43
+ "data_folder": os.path.join(downloaded_file, "train"),
44
+ },
45
+ ),
46
+ SplitGenerator(
47
+ name=Split.TEST,
48
+ gen_kwargs={
49
+ "data_folder": os.path.join(downloaded_file, "test"),
50
+ },
51
+ ),
52
+ ]
53
+
54
+ def _generate_examples(self, data_folder):
55
+ """Yields examples as (key, example) tuples."""
56
+ label_names = self.info.features['label'].names
57
+ for label, subfolder in enumerate(label_names):
58
+ subfolder_path = os.path.join(data_folder, subfolder)
59
+ for root, _, files in os.walk(subfolder_path):
60
+ for file_name in files:
61
+ file_path = os.path.join(root, file_name)
62
+ if os.path.isfile(file_path):
63
+ # Open the image using Pillow and convert it to an array
64
+ with Image.open(file_path) as image:
65
+ image_array = np.array(image)
66
+
67
+ # Yield the example with the image data and label
68
+ yield file_path, {
69
+ "image": image_array.tolist(), # Convert array to list
70
+ "label": label,
71
+ }
72
+
73
+ def _display_image(self, image_path, label):
74
+ with Image.open(image_path) as img:
75
+ plt.imshow(img)
76
+ plt.title(f"Label: {self.info.features['label'].int2str(label)}")
77
+ plt.axis('off') # Hide the axis
78
+ plt.show()
79
+
80
+ # Create an instance of the PlantsDataset class
81
+ plants_dataset = PlantsDataset()
82
+
83
+ # Build and upload the dataset
84
+ plants_dataset.download_and_prepare()