from datasets import DatasetInfo, Features, Value, ClassLabel, Split, SplitGenerator, GeneratorBasedBuilder import os from PIL import Image import matplotlib.pyplot as plt import numpy as np # Google Drive ID for your ZIP file _DRIVE_ID = "1fXgVwhdU5YGj0SPIcHxSpxkhvRh54oEH" _URL = f"https://drive.google.com/uc?export=download&id={_DRIVE_ID}" class PlantsDataset(GeneratorBasedBuilder): class MyConfig(BuilderConfig): def __init__(self, **kwargs): super().__init__(**kwargs) BUILDER_CONFIGS = [ MyConfig(name="plants_default", description="Default configuration for PlantsDataset"), ] BUILDER_CONFIGS = [ MyConfig(name="default", description="Default configuration"), ] def _info(self): features = Features({ "image": Value("string"), "label": ClassLabel(names=["aleo vera", "calotropis gigantea"]), }) return DatasetInfo( description="Your dataset description", features=features, supervised_keys=("image", "label"), homepage="Your dataset homepage", citation="Citation for your dataset", ) def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URL) return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={ "data_folder": os.path.join(downloaded_file, "train"), }, ), SplitGenerator( name=Split.TEST, gen_kwargs={ "data_folder": os.path.join(downloaded_file, "test"), }, ), ] def _generate_examples(self, data_folder): label_names = self.info.features['label'].names for label, subfolder in enumerate(label_names): subfolder_path = os.path.join(data_folder, subfolder) for root, _, files in os.walk(subfolder_path): for file_name in files: file_path = os.path.join(root, file_name) if os.path.isfile(file_path): # Open the image using Pillow and convert it to an array with Image.open(file_path) as image: image_array = np.array(image) # Yield the example with the image data and label yield file_path, { "image": image_array.tolist(), # Convert array to list "label": label, } def _display_image(self, image_path, label): with Image.open(image_path) as img: plt.imshow(img) plt.title(f"Label: {self.info.features['label'].int2str(label)}") plt.axis('off') # Hide the axis plt.show() # Create an instance of the PlantsDataset class plants_dataset = PlantsDataset() # Build and upload the dataset plants_dataset.download_and_prepare()