File size: 42,046 Bytes
6d205e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1
00:00:04,940 --> 00:00:07,660
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุญู…ุฏ ู„ู„ู‡ ุฑุจ ุงู„ุนุงู„ู…ูŠู†

2
00:00:07,660 --> 00:00:10,500
ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุณูŠุฏู†ุง ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡

3
00:00:10,500 --> 00:00:17,340
ุฃุฌู…ุนูŠู† ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 23 ููŠ ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ุฉ

4
00:00:17,340 --> 00:00:22,200
ู†ูŠู„ ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู‚ุณู… ุงู„ุฑูŠุงุถูŠุงุช

5
00:00:22,200 --> 00:00:27,900
ูƒู„ูŠุฉ ุงู„ุนู„ูˆู…ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูŠูˆู… ู‡ูŠ ุนุจุงุฑุฉ ุนู†

6
00:00:27,900 --> 00:00:33,180
ุชูƒู…ู„ุฉ ู„ section ุชู…ุงู†ูŠุฉ ุชู„ุงุชุฉ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† .. ู…ู†

7
00:00:33,180 --> 00:00:36,580
.. ู…ู† ู‡ุฐุง .. ุงู„ู„ูŠ ู‡ูˆ ุงู„ chapter ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ู‡ุฐุง

8
00:00:36,580 --> 00:00:39,320
ุงู„ section ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงุชุญุฏุซู†ุง ุนู† ุงู„ exponential

9
00:00:39,320 --> 00:00:44,670
function ูˆูƒูŠู ุฃุซุจุชู†ุง ูˆุฌูˆุฏู‡ุงูˆุงุฎุฏู†ุง ุฎูˆุงุตู‡ุง ุงู„ุขู† ุจุฏู†ุง

10
00:00:44,670 --> 00:00:47,910
ู†ุญูƒูŠ ุนู† ุงู„ุฌุฒุก ุงู„ุชุงู†ูŠ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ section ุงู„ู„ูŠ ู‡ูˆ

11
00:00:47,910 --> 00:00:51,050
ุงู„ logarithmic function ุงู„ logarithmic function

12
00:00:51,050 --> 00:00:55,290
ุงู„ู„ูŠ ู‡ูˆ ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุซุจุช ูˆุฌูˆุฏู‡ุง ูˆูƒูŠู ุงู„ู„ูŠ ู‡ูˆ

13
00:00:55,290 --> 00:01:00,410
ู†ุงุฎุฏ ุฎูˆุงุตู‡ุง ุจู†ูุณ ุงู„ุจู†ุงุก ุงู„ู„ูŠ ุฃูˆ ู†ุจู†ุน ุงู„ุจู†ุงุก ุงู„ู„ูŠ

14
00:01:00,410 --> 00:01:05,820
ุจู†ู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉุงู„ุงู† ู„ู…ุง ุญูƒูŠู†ุง ุนู† ุงู„

15
00:01:05,820 --> 00:01:10,020
exponential function E ู„ุฌูŠู†ุง ุงู† ุงู„ exponential E

16
00:01:10,020 --> 00:01:12,780
is strictly increasing differentiable function

17
00:01:12,780 --> 00:01:18,160
with domain R and range ุงู„ู„ูŠ ู‡ูˆ Y ุฃูƒุจุฑ ู…ู† 0 ูŠุนู†ูŠ

18
00:01:18,160 --> 00:01:22,480
ู„ู…ุง ุญูƒูŠู†ุง ุนู† ุงู„ E ุญูƒูŠู†ุง ุนู† ุงู„ E ู…ู† R ุงู„ู„ูŠ ู‡ูŠ ุงู„

19
00:01:22,480 --> 00:01:26,600
exponential ู„ุนู†ุฏ ุงู„ูุชุฑุฉ 0 ูˆ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐู‡ ุงู„

20
00:01:26,600 --> 00:01:31,560
function ู‡ูŠ rangeู‡ุง ูˆ ู‡ูŠ domainู‡ุง ูˆ ูƒุงู†ุช strictly

21
00:01:31,560 --> 00:01:35,700
increasingStrictly increasing ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ

22
00:01:35,700 --> 00:01:40,020
ุนู† 120 ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ููŠ ุฅู„ู‡ุง ุงู„ function ู‡ุฐู‡ on

23
00:01:40,020 --> 00:01:43,940
two ูˆูƒุงู†ุช differentiable ุงู„ุขู† ุงู„ function ุงู„ู„ูŠ ู‡ูŠ

24
00:01:43,940 --> 00:01:46,840
ุงู„ exponential ุทุจุนุง ู…ุง ุฃู†ุชูˆุง ุนุงุฑููŠู† ูƒูŠู ุฑุณู…ุชู‡ุง ู„ูˆ

25
00:01:46,840 --> 00:01:50,460
ุฌูŠู†ุง ุฌุฑุจู†ุง ู†ุฑุณู…ู‡ุง ู‡ู†ู„ุงู‚ูŠ ุงู„ุฑุณู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุงู„ู„ูŠ

26
00:01:50,460 --> 00:01:56,180
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุฑุณู…ุฉ ุงู„ exponentialุงู„ุงู† ุงู†ุง ุจุฏู‰ ุงุฌู‰

27
00:01:56,180 --> 00:02:00,300
ุงู„ู„ู‰ ู‡ูˆ ู…ู† ุฎู„ุงู„ ุงู„ู„ู‰ ู‡ูˆ ุงู„ function ุงู„ exponential

28
00:02:00,300 --> 00:02:05,980
ุงุนุฑู ุงู„ inverse ู„ู‡ุง ูˆุงุณู…ูŠู‡ ุงู„ู„ู‰ ู‡ูˆ logarithmic

29
00:02:05,980 --> 00:02:10,860
function ุงูˆ ุจุฏู‰ ุงุณู…ูŠู‡ ุงู„ logarithm ุงู„ุทุจูŠุนู‰ ุงู„ู„ู‰ ู‡ู‰

30
00:02:10,860 --> 00:02:16,020
ุงู„ len functionู…ุดุฑูˆุน ุงู„ูƒู„ุงู… ุงู‡ ู„ุฅู† ุงูŠู‡ ุนุจุงุฑุฉ ุนู†

31
00:02:16,020 --> 00:02:19,240
function one to one ูˆ one to Hana ุฅุฐุง ุตุงุฑ ุงู„

32
00:02:19,240 --> 00:02:23,580
inverse ู„ู‡ุง ู…ูˆุฌูˆุฏ ู„ุฅู†ู‡ุง strictly increasing ุฅุฐุง

33
00:02:23,580 --> 00:02:29,560
ุตุงุฑ ุงู„ L ู…ู† ุนู†ุฏ zero ูˆ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู„ุนู†ุฏ ุงู„ R ู‡ุงุฏูŠ

34
00:02:29,560 --> 00:02:34,100
ุงู„ู„ูŠ ู‡ูŠุงู„ู€ function ุงู„ุฌุฏูŠุฏุฉ ู‡ูŠ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณู…ูŠู‡ุง ุงู„ู€

35
00:02:34,100 --> 00:02:38,320
logarithmic function ูˆู‡ูŠ ุฑุณู…ุชู‡ุง ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ุงู„ู„ูŠ

36
00:02:38,320 --> 00:02:42,460
ู‡ูŠ ุงู„ inverse ู„ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุฏูŠ ุฃุนุฑูู‡ุง ุงู„ุขู†

37
00:02:42,460 --> 00:02:47,000
ูˆุชุนุฑูŠู ุงู„ุขู† ุตุงุฑ ุดุฑุนูŠ ุจู†ุงุก ุนู„ู‰ ูˆุฌูˆุฏ ุงู„ exponential

38
00:02:47,000 --> 00:02:50,930
ุงู„ู„ูŠ ุจุฏูŠ ุฃุนุฑูู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ inverse ุณุจุนุชู‡ุงุงู„ุนู…ู„

39
00:02:50,930 --> 00:02:57,030
ุงู„ู…ุนุฑููŠ ู„ู„ู€ E ู‡ูˆ

40
00:02:57,030 --> 00:03:02,850
ุงู„ู€ Logarithm ุฃูˆ ุงู„ู€ Nature Logarithm ุงู„ู„ูŠ ู‡ูŠ It

41
00:03:02,850 --> 00:03:07,870
will be denoted by L or by Lin ุงู„ุฃูƒุชุฑ ุดูŠูˆุนุง ุทุจุนุง

42
00:03:07,870 --> 00:03:11,810
ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู€ Lin ู„ุฃู† ุจู…ุง ุฃู† ุงู„ู€ E ูˆ L ุงู†ูุฑุณ

43
00:03:11,810 --> 00:03:17,110
ู„ุจุนุถ ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู€ E composite L composite E of X

44
00:03:17,110 --> 00:03:22,920
ู‡ูŠุณุงูˆูŠ ุงู„ู€ Xู„ูƒู„ ุงู„ู€ x ูˆ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ R ู„ุฃู†

45
00:03:22,920 --> 00:03:26,540
ุงู„ู€ E ุจุชุดุชุบู„ ุนู„ู‰ ูƒู„ ุงู„ุฅูƒุณุงุช ุงู„ู„ูŠ ููŠ ุงู„ู€ R ู„ุฃู†

46
00:03:26,540 --> 00:03:30,740
ุจูŠู†ู…ุง E composite L of Y E composite L of Y ุงู„ู€ L

47
00:03:30,740 --> 00:03:34,660
ุจุชุดุชุบู„ .. ุจุชุดุชุบู„ ู…ูŠู† ุนู„ู‰ ู…ูŠู† ุจุณ ุนู„ู‰ ุงู„ู€ positive E

48
00:03:34,660 --> 00:03:38,240
composite L of Y ุจูŠุณุงูˆูŠ ู„ูƒู„ Y element in R ูˆ Y

49
00:03:38,240 --> 00:03:44,900
ุฃุดู…ู„ู‡ุง ุฃูƒุจุฑ ู…ู† 0ุงู„ุงู† connotations .. connotations

50
00:03:44,900 --> 00:03:49,860
ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ N ุงู„ู€ E of X ู„ุฃู† ุงู„ู€ N ู‡ูŠ ุงู„ู€ L ูˆุงู„ู€

51
00:03:49,860 --> 00:03:53,880
E ู‡ูŠ ุงู„ู€ E ูˆุนู†ุฏูŠ ุงู„ู€ E to the N ุงู„ู„ูŠ ู‡ูˆ ุจุณูˆุก ุงู„ู€ Y

52
00:03:53,880 --> 00:03:57,780
ูˆู‡ูˆ ุจุณูˆุก ุงู„ู€ X ุจู†ุงุก ุนู„ู‰ ุฃู† ุงู„ูˆุงุญุฏุฉ inverse ู„ู„ุชุงู†ูŠุฉ

53
00:04:01,010 --> 00:04:04,750
ุฃูˆ ูƒู„ ูˆุงุญุฏุฉ inverse ู„ู„ุงุฎุฑู‰ ุงู„ู€ logarithm is a

54
00:04:04,750 --> 00:04:08,630
strictly increasing function L with domain ุงู„ู„ูŠ ู‡ูˆ

55
00:04:08,630 --> 00:04:12,150
ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ domain ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุชุนุฑูู†ุง ู‡ูŠูƒ

56
00:04:12,150 --> 00:04:16,210
ุฃุตู„ุง ุงู„ุงู† ุงู„ derivative of L is given by L prime

57
00:04:16,210 --> 00:04:19,750
of X ุงูŠุด ุจุชุณุงูˆูŠ ูˆุงุญุฏุฉ ู„ X for X ุฃูƒุจุฑ ู…ู† ุณูุฑ ุงู„ุงู†

58
00:04:19,750 --> 00:04:23,430
ุงู„ logarithm satisfy the functional equation ุชุญู‚ู‚

59
00:04:23,430 --> 00:04:27,010
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฏุงู„ูŠุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ L of X ููŠ Y ุจุณุงูˆูŠ

60
00:04:27,010 --> 00:04:31,000
L of X ุฒุงุฆุฏ LL of Y for X ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู†

61
00:04:31,000 --> 00:04:34,560
ุณูุฑ Y ุฃูƒุจุฑ

62
00:04:34,560 --> 00:04:38,260
ู…ู† ุณูุฑ

63
00:04:38,260 --> 00:04:40,560
Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ

64
00:04:40,560 --> 00:04:40,580
ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y

65
00:04:40,580 --> 00:04:40,640
ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู†

66
00:04:40,640 --> 00:04:40,700
ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y

67
00:04:40,700 --> 00:04:40,700
ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู†

68
00:04:40,700 --> 00:04:41,020
ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y

69
00:04:41,020 --> 00:04:47,140
ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑL of

70
00:04:47,140 --> 00:04:51,420
XR ุจูŠุณุงูˆูŠ R ู„L of X ู„ุฅู† X ุฃูƒุจุฑ ู…ู† 0 ูˆR ุงู„ู…ุชุฑ ูƒูŠูˆู‡

71
00:04:51,420 --> 00:04:54,840
ูƒู„ู‡ู† ุงู„ู„ูŠ ู‡ูŠ ุฎูˆุงุต ุงู†ุชูˆุง ุจุชุนุฑููˆู‡ู… ู‚ุจู„ ู‡ูŠูƒ ุจุณ ุงู„ุขู†

72
00:04:54,840 --> 00:04:58,440
ุจุฏู†ุง ู†ุจุฑู‡ู†ู‡ู… ูˆ ู†ุซุจุช ุตุญุชู‡ู… limit L of X ู„ู…ุง X ุชุฑูˆุญ

73
00:04:58,440 --> 00:05:01,740
ู„ู€0 ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ ุณุงู„ุจ infinity and limit L of X

74
00:05:01,740 --> 00:05:07,340
ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุงู„ ุงู„ู†ู‡ุงูŠุฉ ุจุชุณุงูˆูŠ ู…ุงู„ ุงู„ู†ู‡ุงูŠุฉ ุฎู„ูŠู†ุง

75
00:05:07,340 --> 00:05:14,840
ุงุญู†ุง ู†ุดูˆู ู†ุจุฑู‡ู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู…ุทู„ูˆุจุงู„ุฃู† ุงู„ู€ L is

76
00:05:14,840 --> 00:05:17,560
strictly increasing with domain X element alone

77
00:05:17,560 --> 00:05:20,880
and range R follows from the fact that E is

78
00:05:20,880 --> 00:05:24,840
strictly increasing with domain R and range ุงู„ู„ูŠ

79
00:05:24,840 --> 00:05:33,320
ู‡ูˆ ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ุงู† ุนู†ุฏูŠ ุงู„ L is strictly increasing

80
00:05:33,320 --> 00:05:37,560
ุจู†ุงุก ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ E ู†ูุณู‡ุง strictly increasing

81
00:05:37,560 --> 00:05:48,560
ุงู„ุงู† EComposite L E Composite L of Y ุงูŠุด ุจุชุณุงูˆูŠุŸ Y

82
00:05:48,560 --> 00:05:55,320
ู„ูƒู„ Y ูˆY ุงู„ู…ูˆุฌูˆุฏุฉ ู„ูƒู„ Y element in ุณูุฑ ูˆู…ู„ุง ู†ู‡ุงูŠุฉุŒ

83
00:05:55,320 --> 00:06:00,780
ู…ุธุจูˆุทุŸ ุงู„ุงู† ูุงุถู„ูˆู„ ุงู„ุฌู‡ุชูŠู† ุงู„ุงู† ุทุจุนุง ุงุญู†ุง ุจู†ุนุฑู

84
00:06:00,780 --> 00:06:06,360
ุงู†ู‡ ู…ู† ุงู„ุงุตู„ ู…ุฏุงู…ุฉ ุงู„ E isุงู„ู„ูŠ ู‡ูˆ differentiable

85
00:06:06,360 --> 00:06:10,480
ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ inverse ุฅู„ู‡ุง is differentiable by

86
00:06:10,480 --> 00:06:14,680
theorem 6 9 ูƒุฏู‡ ู…ุด ุนุงุฑู ุฅูŠุด ููŠ ุงู„ู„ูŠ ู‡ูˆ chapter 6

87
00:06:14,680 --> 00:06:18,200
ู‚ุฏุงู…ุฉ ุงู„ function ุงู„ู„ูŠ ู‡ูŠ is differentiable ุงู„

88
00:06:18,200 --> 00:06:20,880
inverse ุฅู„ู‡ุง ุจุฑุถู‡ is differentiable ููŠ ุญุงู„ุฉ ูˆุฌูˆุฏู‡ุง

89
00:06:20,880 --> 00:06:27,480
ุงู„ุขู† E ูุงุถู„ ุงู„ุฌู‡ุชูŠู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ E prime of L of Y

90
00:06:27,480 --> 00:06:36,600
ูL prime of Y ุจุณุงูˆูŠ ุฅูŠุด ูˆุงุญุฏ ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุขู†ูˆุงุถุญ

91
00:06:36,600 --> 00:06:41,900
ุฃู† ู‡ุฐุง ุญุงุตู„ ุงู„ุถุฑุจ ุตุงุฑ ุฃูƒุจุฑ ู…ู† ู…ูŠู† strictly ู…ู† 0

92
00:06:41,900 --> 00:06:47,920
ูˆุจู…ุง ุฃู† ุงู„ู€ E is strictly increasing ุฃุซุจุชู†ุง E' of

93
00:06:47,920 --> 00:06:53,420
L of Y is strictly ุฃูƒุจุฑ ู…ู† 0 ุฅุฐุง ุจูŠุธู„ู‡ุง L' of Y is

94
00:06:53,420 --> 00:06:57,180
strictly ุฃูƒุจุฑ ู…ู† 0 ู„ูƒู„ Y ู‡ู†ุง ุฅุฐุง ุตุงุฑุช ุงู„ู€ L is

95
00:06:57,180 --> 00:07:02,740
strictly increasingุงู„ุงู† ุทุจุนุง ุงู„ domain ู…ุฏุงู… ุงู† ู‡ุฐู‡

96
00:07:02,740 --> 00:07:07,000
ุงู„ inverse ู„ ุงู„ E ุงู„ domain ุงู„ู„ูŠ ู‡ูˆ ุงู„ inverse ู‡ูˆ

97
00:07:07,000 --> 00:07:11,380
range ุงู„ function ุงู„ุฃุตู„ูŠุฉ ูˆ ุจูŠุตูŠุฑ sub wave ููŠ

98
00:07:11,380 --> 00:07:18,460
ุงู„ูุฆุฑ ุงุฐุง ุงู„ุงู† ุงุญู†ุง ุงุซุจุชู†ุง ุงู† ุงู„ is strictly

99
00:07:18,460 --> 00:07:23,530
increasingุงู„ุงู† ูˆ rangeู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุตุงุฑ domain ุงู„ู„ูŠ

100
00:07:23,530 --> 00:07:28,310
ู‡ูˆ ุงูˆ range ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ู‡ุฐูŠ ุงู„ู„ูŠ ุตุงุฑ domainู‡ุง

101
00:07:28,310 --> 00:07:32,990
domain ุงู„ L ูˆ ู‡ุฐูŠ ุตุงุฑุช ุงู„ู„ูŠ ู‡ูˆ range ุงู„ L ุฒูŠ ู…ุง

102
00:07:32,990 --> 00:07:37,330
ู‚ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุงูˆ ุนู†ุฏูŠ ุงู„ุงู† ุจุฏู†ุง ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ

103
00:07:37,330 --> 00:07:42,070
ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุฎู„ูŠู†ูŠ ู†ูƒุชุจ ู‡ู†ุง ุนุดุงู† ู†ุชุฐูƒุฑ

104
00:07:42,070 --> 00:07:48,430
ุงูŠุด ุงู„ู„ูŠ ุจุฏู†ุง ู†ุซุจุชู‡ ุงู„ุงู† ุจุฏู†ุง ู†ุซุจุช ุงูŠู† ุฃุซุจุชู†ุง

105
00:07:48,430 --> 00:07:54,230
ุงู„ุฃูˆู„ู‰ุงู„ู„ูŠ ูู‰ ุงู„ู†ุต ุจุชู‚ู„ู‘ู‰ prime of X ุงู„ู„ู‰ ู†ูƒุชุจู‡ู†

106
00:07:54,230 --> 00:07:59,330
ุงู„ู„ู‰ ุจุฏู†ุง ู†ุซุจุชู‡ู† ุนุดุงู† ู†ุชุฐูƒุฑู‡ู†

107
00:07:59,330 --> 00:08:12,240
ู‚ู„ู‘ู‰ prime I ุงูˆ VIII ู‚ู„ู‘ู‰ primeof X ุจุณูˆุฉ ูˆุงุญุฏุฉ ู„ X

108
00:08:12,240 --> 00:08:19,680
ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ L of XY ุจุณูˆุฉ L X ุฒุงุฆุฏ L Y ุทุจุนุง ุงู„ Y

109
00:08:19,680 --> 00:08:25,780
ู‡ู†ุงูƒ ุงู„ L of ูˆุงุญุฏ ุจุณูˆุฉ ุณูุฑ L of E ุจุณูˆุฉ ูˆุงุญุฏ ูƒู„ู‡ู…

110
00:08:25,780 --> 00:08:34,440
ุจุณูŠุทุงุชL prime L of X to the R ุณูˆู‰ R L of X ูˆ Limit

111
00:08:34,440 --> 00:08:39,720
L of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ Zero ู…ู† ุงู„ูŠู…ูŠู† ุณูˆู‰ ุณุงู„ุจ ู„ู…ุง

112
00:08:39,720 --> 00:08:45,140
ู„ู†ู‡ุงูŠุฉ ูˆ Limit ู„L of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ

113
00:08:45,140 --> 00:08:48,520
ุณูˆู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ุฎู„ู‘ูŠู†ูŠ ุฃุดูˆู ุฃู† ุฏูˆู„ ุนู„ู‰ ุงู„ุณุฑูŠุน ูุงู†ูˆุง

114
00:08:48,520 --> 00:08:53,640
ูƒู„ู‡ุง ุดุบู„ุงุช ูŠุนู†ูŠ ุจุฃุนุชู‚ุฏ ุฃู†ู‡ ุณู‡ู„ ุฃู†ูƒ ู†ุซุจุชู‡ุง

115
00:08:55,730 --> 00:09:02,210
ุนู†ุฏูŠ ู„ุฃู† ุฒูŠ ู…ุง ุนู…ู„ุช ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ู„ู…ุง ูุถู„ุช ู‡ุฐู‡

116
00:09:02,210 --> 00:09:07,290
ุชูุงุถู„ู‡ E composite L of X ู„ู…ุง ุนู…ู„ุชู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ

117
00:09:07,290 --> 00:09:14,250
ุงู„ู„ูŠ ู‡ูŠ ูƒุงู†ุช ุนู†ุฏูŠ ู‡ูŠู† ุฃุนู…ู„ E composite L of X ุงู„ูƒู„

118
00:09:14,250 --> 00:09:19,370
ุงู„ู„ูŠ ู‡ูŠ ุจุณุงูˆูŠ ุงู„ X ูุงุถู„ ู‡ุฐุง ูŠุตูŠุฑ E prime

119
00:09:26,060 --> 00:09:29,100
ุจู†ุณุจุฉ ู„ู€ x ุฃู‚ู„ ุงู„ู€ prime of x

120
00:09:34,780 --> 00:09:40,160
ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุนู„ู‰ ุงู„ู€ E prime of L of X ุฅุฐุง ุงู„ู€ E

121
00:09:40,160 --> 00:09:44,300
ุงู„ู‚ู„ูŠ ุจุฑุงูŠู… of X ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ E prime composite

122
00:09:44,300 --> 00:09:48,340
L of X ูˆุงู„ู€ E prime ู‡ูŠ ู†ูุณ ุงู„ู€ E ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅุฐุง

123
00:09:48,340 --> 00:09:51,140
ุจูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ E composite L of X ุฅู„ู‰ ุงู„ E

124
00:09:51,140 --> 00:09:54,640
composite L of X ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅูŠุด ุจุชุณุงูˆูŠ ุจุณุงูˆูŠ X

125
00:09:54,640 --> 00:09:57,660
ูุจุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ X ูุงู„ู‚ู„ูŠ ุจุฑุงูŠู… ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ X

126
00:09:57,660 --> 00:10:02,910
ู„ูƒู„ X ููŠ ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ Zeroูˆ 1 ู†ูŠุฌูŠ ุงู„ุขู† ู†ุดูˆู

127
00:10:02,910 --> 00:10:06,710
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฎู„ู‘ูŠู†ุง ู†ุซุจุช

128
00:10:06,710 --> 00:10:12,690
ุงู„ู„ูŠ ู‡ูˆ L of X ููŠ Y ุจุณูˆุง L of X ุฒุงุฆุฏ ู…ูŠู† ุฒุงุฆุฏ L of

129
00:10:12,690 --> 00:10:17,270
Y ุจุฑุถู‡ ุงู„ุฅุซุจุงุช ุณู‡ู„ ูˆุงู†ุชุจู‡ูˆุง ู…ุนุงูŠุง ูˆุณู‡ู„ุณ ุนู†ุฏู‰ ุงู„ุขู†

130
00:10:24,240 --> 00:10:27,240
F X ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ Y

131
00:10:27,240 --> 00:10:27,740
ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ

132
00:10:27,740 --> 00:10:27,900
ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†

133
00:10:27,900 --> 00:10:28,100
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†

134
00:10:28,100 --> 00:10:28,700
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†

135
00:10:28,700 --> 00:10:28,920
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†

136
00:10:28,920 --> 00:10:32,100
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†

137
00:10:32,100 --> 00:10:43,400
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X

138
00:10:43,400 --> 00:10:51,850
ุฃูƒุจุฑ ู…ู† ุตูุฑ F Xู„ุฃู† ุงู„ู€ E ูˆุงู„ู€ L ุงู†ูุฑุณุฉ ุจุนุถ ุงู„ุงู† ู…ู†

139
00:10:51,850 --> 00:10:55,130
ุงู„ุฎุงุตูŠุฉ ุชุจุน ุงู„ู€ exponential ุจุฏู†ุง ู†ุตู„ ู„ู…ู†ุŸ ู„ู„

140
00:10:55,130 --> 00:11:00,970
logarithmic ุฅุฐุง ุฃุถุฑุจ ู„ X ููŠ Y ุจูŠุทู„ุน ุนู†ุฏ X ููŠ Y

141
00:11:00,970 --> 00:11:05,190
ุจุชุณุงูˆูŠ E of U ููŠ E of V E of U ููŠ E of V ุฅูŠุด

142
00:11:05,190 --> 00:11:10,010
ุจุชุณุงูˆูŠุŸ E of U ุฒุงุฆุฏ V ุฃุซุจุชู†ุงู‡ุง ุฅุฐุง ู…ู† ู‡ุฐุง ุงู„ูƒู„ุงู…

143
00:11:10,970 --> 00:11:15,270
ุฎูุฏ ุงู„ู€ L ู„ู„ุฌู‡ุชูŠู† ู„ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ inverse ู„ุจุนุถ

144
00:11:15,270 --> 00:11:20,450
ุจูŠุตูŠุฑ ุนู†ุฏูŠ L of X ููŠ Y ุจุณุงูˆูŠ L of E of U ุฒุงุฆุฏ V

145
00:11:20,450 --> 00:11:24,410
ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ุจุชุณุงูˆูŠ U ุฒุงุฆุฏ V U ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† L

146
00:11:24,410 --> 00:11:30,750
of X ูˆ V ุนุจุงุฑุฉ ุนู† L of Y ุฅุฐุง ุฃุซุจุชุช L of X ุฒุงุฆุฏ X

147
00:11:30,750 --> 00:11:39,370
ููŠ Y ุจุณุงูˆูŠ L of X ุฒุงุฆุฏ L of Yุงู„ุงู† ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ู‰ E

148
00:11:39,370 --> 00:11:47,050
of Zero ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฎุฏู„ู‰ ุงู„ L ุงู„ุฌู‡ุชูŠู† ุจูŠุตูŠุฑ ZL of

149
00:11:47,050 --> 00:11:53,010
E of Zero ุจูŠุณุงูˆูŠ L of ูˆุงุญุฏ ุงู„ L of E of Zero ู‡ุฏูƒ

150
00:11:53,010 --> 00:11:59,450
inverse ุงู„ุชุงู†ูŠุฉ ุจูŠุณุงูˆูŠ Zero ู†ูุณ ุงู„ุงุดูŠุงู„ู€ L of E of

151
00:11:59,450 --> 00:12:07,270
1 ุจูŠุณุงูˆูŠ L of EุŒ ู…ุธุจูˆุทุŸ ุงู„ู€ L of E of 1 ุจูŠุณุงูˆูŠ 1ุŒ

152
00:12:07,270 --> 00:12:12,230
ุจูŠุตูŠุฑ L of E ุจูŠุณุงูˆูŠ 1 ุจูŠุตูŠุฑ ุฃุซุจุชู†ุง L of E ุจูŠุณุงูˆูŠ 1

153
00:12:12,230 --> 00:12:19,730
ูˆ L of 1 ุจูŠุณุงูˆูŠ 0 ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ุงู… ุณู‡ู„ุŒ ุทูŠุจ ุจูŠุตูŠุฑ

154
00:12:19,730 --> 00:12:23,710
ุนู„ุงู‚ุฉ ุฃู†ู‡ ุณู‡ู„ ุงู„ู„ูŠ ุจู†ุญูƒูŠู‡ุŒ ุงู„ุขู†

155
00:12:27,210 --> 00:12:32,730
ู†ุฃุชูŠ ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ L of X to the R ุจุณุงูˆุฉ

156
00:12:32,730 --> 00:12:37,010
Zero ุจุณุงูˆุฉ R ููŠ L of X ู‡ุฐู‡ ุจุฑุถู‡ ุจู‚ุงุด By

157
00:12:37,010 --> 00:12:41,910
Mathematical Induction ุนู…ู„ู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒุฉ ุจุงู„ู„ูŠ ู‡ูˆ

158
00:12:41,910 --> 00:12:47,330
ุงู„ section ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ exponential

159
00:12:47,330 --> 00:12:52,830
ุนู„ู‰ ุงู„ุณุฑูŠุน ู†ุดูˆู ุงู„ุชูุงุตูŠู„ ู„ุฅู†ู‡ ุงู„ุชูุงุตูŠู„ ู…ุนุงุฏุฉ

160
00:13:07,050 --> 00:13:11,430
ุงู„ุชูุงุตูŠู„ ู‡ุชู„ุงุฌูˆู‡ุง ู…ุนุงุฏุฉ ูุฎู„ูŠู†ูŠ ุจุณุฑุนุฉ ู†ู…ุฑ ุนู„ูŠู‡ุง

161
00:13:11,430 --> 00:13:17,730
ุนู†ุฏูŠ we show by induction L of X ุจุณูˆุง L L of X ุฒูŠ

162
00:13:17,730 --> 00:13:21,850
ู…ุง ู‚ู„ู†ุง ุนุดุงู† ู„ุซุจุชู‡ุง ู‡ุฐู‡ ุฃุซุจุชู†ุง ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ L of

163
00:13:21,850 --> 00:13:27,190
X ุนุงุฑูุด ุงู„ุฑุฒูˆู… ุฃุตู„ุง ุฃูุตู„ ูˆู„ุง ู„ุฃ ู„ูƒู† ุจุฏูŠ ุฃูุตู„ ู„ูˆ

164
00:13:27,190 --> 00:13:32,790
ุฃู†ุชูˆุง ุนู†ุฏู‰ ู„ูˆ ุงุชูุฌู†ุง ุฃู† ู†ูุตู„ ูˆู„ุง ู„ุฃ L of X ููŠ Y

165
00:13:32,790 --> 00:13:39,580
ุจุณูˆุง L of X ููŠ L of Yof x was n ุจุณุงูˆูŠ n ููŠ L of x

166
00:13:39,580 --> 00:13:44,060
ุทุจุนุง for n ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ a trivial ู†ูุชุฑุถ

167
00:13:44,060 --> 00:13:48,180
ุฃู†ู‡ุง ุตุญูŠุญุฉ ู„ L ู„ n ุจุชุณุงูˆูŠ k ุจูŠุตูŠุฑ L of x was k

168
00:13:48,180 --> 00:13:53,080
ุจุณุงูˆูŠ k L of x ุงู„ุขู† ุจุฏู†ุง ู†ุญุณุจ ู„ L of x was k ุฒุงุฆุฏ

169
00:13:53,080 --> 00:13:59,480
ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุจุณุงูˆูŠ L of x was k ููŠ xู‡ุฐู‡ ุงู„ู€ L ู„ู‡ุง

170
00:13:59,480 --> 00:14:04,760
ุญุณุจ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ุจุณูˆุก L ุงู„ุฃูˆู„ู‰ X plus K ููŠ

171
00:14:04,760 --> 00:14:09,860
L ุงู„ุชุงู†ูŠ L of X ุงู„ู„ูŠ ู‡ูˆ ู…ูุชุฑุถ ุฅู†ู‡ุง ุตุญูŠุญุฉ ุนู„ู‰ K ุฏู‡

172
00:14:09,860 --> 00:14:19,600
ุจุณูˆุก K ููŠ L of X ุขุณู ุฒุงุฆุฏ ู‡ุฐู‡ ุจุณูˆุก K L of Xู„ุฃู†ู‡ุง

173
00:14:19,600 --> 00:14:26,400
ุตุญูŠุญุฉ ู„ู€ K ุฒุงุฆุฏ L of X ูˆูŠุณุงูˆูŠ K ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ L of

174
00:14:26,400 --> 00:14:31,520
X ุฅุฐุง ุตุงุฑุช ู‡ุฐู‡ ุตุญูŠุญุฉ ุงู„ู„ูŠ ู‡ูŠ L ู„ K ุฒุงุฆุฏ ูˆุงุญุฏ ุฅุฐุง

175
00:14:31,520 --> 00:14:36,760
ุตุงุฑุช ุตุญูŠุญุฉ ู„ูƒู„ ู…ู† ู„ูƒู„ N element in N ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ

176
00:14:36,760 --> 00:14:43,080
ุงู„ induction ุงู„ู„ูŠ ุจู†ุญูƒูŠ ููŠู‡ ุฅุฐุง ุงู„ุฃู† ุฃุซุจุชู†ุง ุฃู† L

177
00:14:43,080 --> 00:14:49,710
of X ู‡ูˆ N ู„L of X ู„ูƒู„ ุงู„ู„ูŠ ู‡ูŠ ุนู†ุฏูŠุงู„ุงู† by VI ุงู„ู„ูŠ

178
00:14:49,710 --> 00:14:53,530
ู‡ูˆ ุฒูŠ .. ู…ุดุงุจู‡ ู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุจุงู„ุธุจุท ููŠ ุญุฏ

179
00:14:53,530 --> 00:14:58,890
ุงู„ exponential ุจุณ ุฎู„ูŠู†ูŠ ู…ุด ูˆุดูƒู„ุฉ ุจุชุนูŠุฏู‡ ุงู„ุงู† ุดูˆู L

180
00:14:58,890 --> 00:15:03,680
of XM minus M ุฃูŠุด ุจุชุณุงูˆูŠุŸ L of ูˆุงุญุฏุงู„ู„ูŠ ู‡ูŠ ู„ุฃู† ู‡ุฐุง

181
00:15:03,680 --> 00:15:05,860
X ู‡ูˆ ุงู„ุณูุฑ ุงู„ู„ูŠ ู‡ูŠ L of ูˆุงุญุฏ L of ูˆุงุญุฏ ู…ุด ู‚ูˆู„ู†ุง

182
00:15:05,860 --> 00:15:11,040
ุนู†ู‡ุง ุณูุฑ ู‡ูˆ ูŠุณูˆู‰ L of XM ููŠ XM minus ูˆุงุญุฏ ุงู„

183
00:15:11,040 --> 00:15:16,300
logarithmic ุจุทู„ุญ ุงู†ุฌู…ุน L of XM ุฒุงุฆุฏ L of X minus M

184
00:15:16,300 --> 00:15:21,920
ู„ุฃู† ู‡ุฐู‡ ุฃุซุจุชู†ุงู‡ุง ุนุจุงุฑุฉ ุนู† M L of X ุฒุงุฆุฏL of X

185
00:15:21,920 --> 00:15:27,500
minus M ุตุงุฑ ุนู†ุฏูŠ ุงู„ุงู† M ููŠ L of X ุฒุงุฆุฏ L of X

186
00:15:27,500 --> 00:15:32,040
minus M ุจุณูˆุง ุณูุฑ ุงู†ุฌู„ูŠ ู‡ุฐุง ุนู„ู‰ ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ุจุทู„ุน

187
00:15:32,040 --> 00:15:35,760
L of X minus M ุงู„ู„ูŠ ู‚ุนุฏุช ู„ุญุงู„ู‡ุง ุจุณูˆุง ู†ุงู‚ุต M ููŠ L

188
00:15:35,760 --> 00:15:41,720
of X ุงุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุงู† ู„ูƒู„ M ุณูˆุงุก ู…ูˆุฌุจุฉ ุงูˆ ุณุงู„ุจุฉ

189
00:15:41,720 --> 00:15:48,940
ุจุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ L of X ู‚ุต Mุจุณุงูˆุฉ M ููŠ L of X

190
00:15:48,940 --> 00:15:53,860
ุณูˆุงุก ูƒุงู†ุช ูˆุฌุจุฉ ุฃูˆ ุณุงู„ุจุฉ ู†ูŠุฌูŠ ุงู„ุขู† ู…ู†ู‡ุง ุจุฏู†ุง ู†ุงุฎุฏ

191
00:15:53,860 --> 00:15:57,360
ู„ู…ูŠู† ู„ุฃ ุงู„ู„ูŠ ู‡ูŠ ุงู„ R ู„ุงู† therefore for any M

192
00:15:57,360 --> 00:16:02,800
element in Z ูˆ N element in Nุนู†ุฏูŠ ุงุญุณุจู„ูŠ ุงู„ุงู† L of

193
00:16:02,800 --> 00:16:07,020
X ุฃุณ M ุนู„ู‰ N ุจุณ ุถุฑุจู„ูŠู‡ุง ููŠ N ุจุนุฏ ุฅุฐู†ูƒ Y ุณุงูˆูŠ ุงู„ู„ูŠ

194
00:16:07,020 --> 00:16:12,460
ู‡ูŠ L of X ุฃุณ M ุนู„ู‰ N ู„ูƒู„ ู…ุง ู„ู‡ ุฃุณ N ู„ุฅู†ู‡ ุตุญูŠุญุฉ ู‡ุฐู‡

195
00:16:12,460 --> 00:16:18,080
ู„ู„ N ุงู„ู„ูŠ ู‡ูŠ ููŠ N ูˆุงุชูุฌู†ุง ุนู„ูŠู‡ุง ุงู„ุงู† ู‡ุฐู‡ ุจุชุณุงูˆูŠ

196
00:16:18,080 --> 00:16:21,520
ู‡ุฐู‡ ูˆุงุถุญุฉ ู„ุฅู† ู‡ุฐู‡ ู‡ูŠ ุงู„ X ุชุจุนุชู†ุง ูˆู‡ุฐู‡ ุงู„ N ุจุชุทู„ุน

197
00:16:21,520 --> 00:16:27,410
ุจุฑุงุงู„ุงู† ู‡ุฐู‡ ุงู„ุงู† ู…ุน ุงู„ุงู† ุจูŠุตูŠุฑ L of X plus M L of

198
00:16:27,410 --> 00:16:30,870
X plus M ู‚ุจู„ ุจุดูˆูŠุฉ ุจู‚ู‰ ู‚ูˆู„ู†ุง ุนู†ู‡ุง ุจูŠุณุงูˆูŠ M L of X

199
00:16:30,870 --> 00:16:34,270
ุณูˆุงุก ูƒุงู†ุช M positive ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ negative ุตุงุฑ ู‡ุฐู‡

200
00:16:34,270 --> 00:16:40,930
ุจุชุณุงูˆูŠ ู‡ุฐู‡ ุฅุฐุง ุงู†ุฌู„ูŠ ุงู„ุขู†ุงู„ุงู† ู‡ุฐู‡ ุงู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ L

201
00:16:40,930 --> 00:16:44,910
of X of M ุนู„ู‰ N ุจูŠุณูˆูŠ M ุนู„ู‰ N ููŠ L of X ุฅุฐุง ุตุงุฑ

202
00:16:44,910 --> 00:16:49,490
ุนู†ุฏูŠ ู„ุฃูŠ rational number ุตุงุฑ ุนู†ุฏูŠ L of X R ุจูŠุณูˆูŠ R

203
00:16:49,490 --> 00:16:55,670
L of X ู„ูƒู„ R ุงู„ู„ูŠ ุจู†ุชู…ูŠูŠู† NQ ู†ูŠุฌูŠ ุงู„ุขู† ู„ุฃ ุงู„ู„ูŠ ู‡ูŠ

204
00:16:55,670 --> 00:16:57,230
ุงู„ุฌุฒุก ุงู„ุฃุฎูŠุฑ ู…ู† ุงู„ู†ุธุฑูŠุฉ

205
00:17:08,180 --> 00:17:11,120
ุงู„ูƒู„ุงู… ู…ุดุงุจู‡ ู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ููŠ ุงู„ุฅุซุจุงุช ุงู„ู„ูŠ

206
00:17:11,120 --> 00:17:15,260
ู‡ูˆ ุงู„ limit ุชุจุน ุงู„ exponential ุนู†ุฏ 2 ุฃุตุบุฑ ู…ู† E

207
00:17:15,260 --> 00:17:19,380
ูˆู‚ู„ู†ุง ู„ูŠุด ุงู„ุงู† ุงู„ E n ู‡ู†ุง ุจูŠุตูŠุฑ 2 ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ

208
00:17:19,380 --> 00:17:19,920
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ

209
00:17:19,920 --> 00:17:21,140
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ

210
00:17:21,140 --> 00:17:22,840
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ

211
00:17:22,840 --> 00:17:23,240
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ

212
00:17:23,240 --> 00:17:26,700
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ

213
00:17:26,700 --> 00:17:30,620
ู…ู† E ุฃุตุบ

214
00:17:33,960 --> 00:17:39,580
ู„ูƒู† ุงู„ู„ูŠ ู‡ูˆ L of E N ุจุณูˆุก N and ุงู„ู„ูŠ ู‡ูŠ L of E

215
00:17:39,580 --> 00:17:44,020
minus N ุจุณูˆุก ู†ู‚ุต N ุฎู„ูŠู†ูŠ ููŠ ุงู„ุฐุงูƒุฑ ู‡ุฐูˆู„ ุงุฐุง for

216
00:17:44,020 --> 00:17:47,480
every N element in R there exists X element in R

217
00:17:47,480 --> 00:17:52,670
ุจุญูŠุซ ุงู† X ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† Nู„ูƒู„ N element in N ููŠ X

218
00:17:52,670 --> 00:17:56,350
element in R ุฃูƒูŠุฏ X ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† E N ู„ุฃู†ู‡ ุฃุฎุณุฑุช

219
00:17:56,350 --> 00:18:00,590
N ุจูŠู† ุฅูŠุฏูŠุง ุญุณุจุช ุงู„ E N ุทู„ุน ุนู†ุฏ ุฑู‚ู… ุฃุฎุฏุช ุงู„ X ุฃูƒุจุฑ

220
00:18:00,590 --> 00:18:03,310
ู…ู†ู‡ุง ูƒูŠุฏ ุจุงู„ู„ู‡ ุทูŠุจ ู„ุฃู†ู‡ unbounded real numbers

221
00:18:03,310 --> 00:18:06,710
then L ููŠ ู‡ุฐู‡ ุฃูƒุจุฑ ุฃูˆ ู…ู† L ููŠ ู‡ุฐู‡ ู„ุฃู†ู‡ ุงู„ L

222
00:18:06,710 --> 00:18:10,810
strictly increasing ุฅุฐุง ุตุงุฑ L ููŠ X ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู†

223
00:18:10,810 --> 00:18:16,130
ุงู„ NA ุฃู„ูˆู E ุฃู† ูŠุนู†ูŠ ุฃูƒุจุฑ ู…ู† ุงู„ุงู† ู„ุฃู† limit ู‡ุฐู‡ as

224
00:18:16,130 --> 00:18:21,210
x goes to infinity ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ุฃูƒุจุฑ ุฃุณุงูˆูŠ ุงู„ู„ูŠ

225
00:18:21,210 --> 00:18:23,950
ู‡ูŠ limit ู‡ุฐู‡ as n goes to infinity ูˆูŠุณุงูˆู‰ infinity

226
00:18:23,950 --> 00:18:27,550
ู„ุฃู† ู„ูƒู„ ู„ู…ุง ุงู„ุงู† ุชุฑูˆุญ ู„ู…ุง ู„ู†ู‡ุงูŠุฉ ุฃูƒูŠุฏ ุงู„ X ุจุชุฑูˆุญ

227
00:18:27,550 --> 00:18:31,270
ู„ู…ูŠู† ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ูุตุงุฑ ุนู†ุฏูŠ ู‡ุฐู‡ ุจุชุฑูˆุญ ุฅู„ู‰ ู…ุง

228
00:18:31,270 --> 00:18:34,970
ู„ู†ู‡ุงูŠุฉ ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ limit L of X ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุง

229
00:18:34,970 --> 00:18:41,040
ู„ู†ู‡ุงูŠุฉ ุจูŠุณุงูˆูŠ ู…ุง ู„ู†ู‡ุงูŠุฉ similarlyุงู„ุงู† ู„ูƒู„ ู†ู‚ุต any

230
00:18:41,040 --> 00:18:43,100
element in z positive ุจู„ุงู‚ูŠ x element in r

231
00:18:43,100 --> 00:18:45,740
positive ุจุญูŠุซ ุงู† x ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ

232
00:18:45,740 --> 00:18:46,340
ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู†

233
00:18:46,340 --> 00:18:47,840
ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ

234
00:18:47,840 --> 00:18:51,500
ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู†

235
00:18:51,500 --> 00:18:57,960
ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ

236
00:18:57,960 --> 00:19:02,520
ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู†

237
00:19:02,520 --> 00:19:09,620
ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุทูŠุจ then L of X

238
00:19:09,620 --> 00:19:13,660
ู‡ูŠูƒูˆู† ุฃุตุบุฑ ูŠุณุงูˆูŠ ุงู„ E to the minus N ูŠุนู†ูŠ L of X

239
00:19:13,660 --> 00:19:17,800
ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ูŠุณุงูˆูŠ ู†ุงู‚ุต N ุฅุฐุง as N goes to

240
00:19:17,800 --> 00:19:22,700
infinity as N goes to infinity ุงู„ู„ูŠ ู‡ูˆ ุงู„ E to the

241
00:19:22,700 --> 00:19:26,540
minus N ุจูŠุฑูˆุญ ู„ู„0 ู…ู† ุงู„ูŠู…ูŠู† ุฅุฐุง ุงู„ X ุจุชุฑูˆุญ ู„ู„0 ู…ู†

242
00:19:26,540 --> 00:19:30,820
ุงู„ูŠู…ูŠู† ุฅุฐุง ุนู†ุฏูŠ ุงู„ X ุจุชุฑูˆุญ ู„ู„ 0 ู…ู† ุงู„ูŠู…ูŠู†ุงู„ู„ูŠ ู‡ูˆ

243
00:19:30,820 --> 00:19:34,580
ุฃุตุบุฑ ู„ู…ุง ุงู„ู€ limit L of X ุฃุตุบุฑ ู…ู† limit E to the

244
00:19:34,580 --> 00:19:37,900
minus N ู„ู…ุง ู‡ุฐุง ูŠุฑูˆุญ ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ุฃูˆ ุจู…ุนู†ู‰ ุฃุฎุฑ

245
00:19:37,900 --> 00:19:41,680
ู„ู…ุง ุงู„ู€ N ุชุฑูˆุญ ู„ู…ู‡ุฉ ู„ู†ู‡ุงูŠุฉ ูˆ ู‡ุฐุง ุจูŠุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู€

246
00:19:41,680 --> 00:19:44,760
Infinity ุฅุฐุง limit L of X ู„ู…ุง X ุชุฑูˆุญ ู„ู…ู‡ุฉ ู„ู†ู‡ุงูŠุฉ

247
00:19:44,760 --> 00:19:50,920
ุจุณุงูˆูŠ ุณุงู„ุจ Infinity ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ hence limit L of

248
00:19:50,920 --> 00:19:54,460
X ู„ู…ุง X ุชุฑูˆุญ ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ ุณุงู„ุจ Infinity

249
00:19:54,460 --> 00:19:58,500
ุทูŠุจ

250
00:20:12,260 --> 00:20:16,320
ุงู„ุงู† ุณุงุฑุนู†ุง ุงู„ุงู† ู†ู‚ุฏุฑ ุงู† ุงู„ู„ูŠ ู‡ูˆ ู†ุญูƒูŠ ุนู† ุงู„ bar

251
00:20:16,320 --> 00:20:20,080
functions ุจุฏู†ุง ู†ุนุฑู ุงู„ bar functions ุงู„ู„ูŠ ู‡ูŠ ุจู†ุงุก

252
00:20:20,080 --> 00:20:25,060
ุนู„ู‰ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ูˆ ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุถูˆุน ุงู„ bar functions

253
00:20:25,060 --> 00:20:28,880
ูƒู„ ู…ุง ููŠู‡ ุชู‚ุฑูŠุจุง ูŠุนู†ูŠ ุจู†ุนุชุจุฑู‡ exercises ุงุญู†ุง ู„ูƒู†

254
00:20:28,880 --> 00:20:32,520
ุฎู„ูŠู†ุง ู†ุนุฑู ุงู„ุชุนุฑูŠูุงุช ูˆ ุงู„ู†ุธุฑูŠุงุช ุจุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ

255
00:20:32,520 --> 00:20:35,900
ู…ุนุงูƒู… exercises ุจุณูŠุทุฉ ุจู†ุงุก ุนู„ู‰ ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ

256
00:20:35,900 --> 00:20:40,720
ุจู†ุนุฑูู‡ุง ุงู„ู„ูŠ ู‡ู†ุงุฎุฏ ฮฑ ูŠู„ูŠู…ู†ุชุงู† R ูˆ X ุฃูƒุจุฑ ู…ู† 0The

257
00:20:40,720 --> 00:20:43,320
number X to the Alpha is defined to be .. ุงู„ุขู† ุจุฏูŠ

258
00:20:43,320 --> 00:20:46,940
ุฃุนุฑู ุญุงุฌุฉ ุงุณู…ู‡ุง X to the Alpha X to the Alpha ุจุฏูŠ

259
00:20:46,940 --> 00:20:49,900
ุฃุนุฑูู‡ุง .. ุฅูŠุด ุจุฏูŠ ุฃุนุฑูู‡ุงุŸ ุจุฅูŠุดูŠ ุฃู†ุง ู…ุนุฑู ุนู†ุฏูŠ ู…ู†

260
00:20:49,900 --> 00:20:54,440
ุงู„ุฃุตู„ ุงู„ exponential ู…ุนุฑูุฉ .. ุฎู„ุตู†ุง ู…ู†ู‡ุง ูˆ ุงู„ len

261
00:20:54,440 --> 00:20:59,000
ู…ุนุฑูุฉ .. ุฅุฐุง E to the Alpha ููŠ ู„ู† ุงู„ X ู‡ุฐู‡ ุงู„ู…ู‚ุฏุงุฑ

262
00:20:59,000 --> 00:21:03,820
ู„ู‡ุฐุง ู…ุนุฑู ูˆ ู‡ุฐุง ู…ุนุฑู ุจุฏูŠ ุฃุณู…ูŠ X to the Min to the

263
00:21:03,820 --> 00:21:07,400
Alpha ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ูˆุงู‚ุน ุนุจุงุฑุฉ ุนู† Min E to the

264
00:21:07,400 --> 00:21:12,040
AlphaL of X L of X ู…ุนุฑูุฉ ูˆุงู„ู€ E ู…ุนุฑูุฉ ุฅุฐุง ูƒู„ ู‡ุฐู‡

265
00:21:12,040 --> 00:21:16,000
ู…ุนุฑูุฉ ุจุชุณู…ูŠู‡ุง X to the main to the alpha ุงู„ุขู† ุตุงุฑุช

266
00:21:16,000 --> 00:21:19,540
ุนู†ุฏูŠ ูŠุนู†ูŠ ู‚ูŠู…ุฉ ุงู„ู€ X under this function ุงู„ู„ูŠ

267
00:21:19,540 --> 00:21:23,120
ุนุฑูุชู‡ุง ู„ุฌุฏูŠุฏุฉ ูŠุนู†ูŠ ุฅุฐุง ุจุชุณู…ูŠู‡ุง ุฏูŠ ุงู„ function ุงู„ู€

268
00:21:23,120 --> 00:21:28,240
R of X ุฅูŠุด ุนุฑูุชู‡ุง ุฃู†ุง ุจุชุณุงูˆูŠ X to the alphaุŸูŠุนู†ูŠ

269
00:21:28,240 --> 00:21:31,680
ูƒู„ ุงู„ X ุจุชุตูŠุฑ ูŠุดู…ู„ X to the Alpha ูˆ X ุฃูƒุจุฑ ู…ู† 0

270
00:21:31,680 --> 00:21:36,780
ู‡ุฐู‡ ุงู„ X to the Alpha ู‡ูŠ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณู…ูŠู‡ุง ุงู„ power

271
00:21:36,780 --> 00:21:42,000
function ุจุฏูŠ ุฃุณู…ูŠู‡ุง power function with exponent

272
00:21:42,000 --> 00:21:47,540
mean Alpha ูˆ ุงู„ X ู‡ูŠ ุฃุดู…ุงู„ู‡ุง ุงู„ู…ุชุบูŠุฑุฉ ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู†

273
00:21:47,540 --> 00:21:54,340
0 ุดูˆู ุงู„ุขู† ู†ุดูˆู ุจุนุถ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ

274
00:21:54,340 --> 00:21:56,460
ุงู„ุฏุงู„ุฉ ุทูŠุจ

275
00:22:04,730 --> 00:22:08,690
ุงู„ุงู† if x ุฃูƒุจุฑ ู…ู† 0 and alpha ุจุณุงูˆุฉ m ุนู„ู‰ n where

276
00:22:08,690 --> 00:22:12,770
m element in z ูˆ n element in n then we define x

277
00:22:12,770 --> 00:22:17,790
to the alpha ุจุณุงูˆุฉ x to the m ุฃุณูˆุงุญุฏ ุนู„ู‰ n in

278
00:22:17,790 --> 00:22:23,110
section mean ุฎู…ุณุฉ ุณุชุฉ ู‡ุชุนุฑูู†ุงู‡ุง ุฒู…ุงู† ุงู†ู‡ ููŠ ุญุงู„ุฉ

279
00:22:23,110 --> 00:22:26,570
ุจุณ ุงู„ู„ูŠ ู‡ูŠ ุงู„ rational number ุนุฑูู†ุง x to the m ุนู„ู‰

280
00:22:26,570 --> 00:22:30,630
n ุจุณุงูˆุฉ x to the m ู„ูƒู„ ุฃุณูˆุงุญุฏ ุนู„ู‰ nู…ุงุดูŠ ุงู„ุญุงู„

281
00:22:30,630 --> 00:22:34,510
..ุงู„ุงู† ุจุฏู†ุง ู†ุดูˆู ู‡ุฐุง ุงู„ุชุนุฑูŠู ู…ุทุงุจู‚ ู„ุชุนุฑูŠูู†ุง ุงู„ูŠูˆู…

282
00:22:34,510 --> 00:22:41,670
ูˆู„ุง ู„ุฃ hence we have ู„ู† ุงู„ X to the Alpha ู„ู† ุงู„ X

283
00:22:41,670 --> 00:22:45,370
to the Alpha ู„ู† ุงู„ X to the Alpha ุจุณุงูˆูŠ Alpha ู„ู†

284
00:22:45,370 --> 00:22:51,540
ุงู„ Xุนุฑูู†ุงู‡ุง ู‡ุฐู‡ ุทูŠุจ where X to the Alpha ุจูŠุณูˆุง E

285
00:22:51,540 --> 00:22:56,260
to the Lin X to the Min to the Alpha ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณูˆุง

286
00:22:56,260 --> 00:23:01,020
E to the Alpha ููŠ Min ููŠ Lin ุงู„ X ูƒู„ุงู… ูƒู„ู‡ ุณู‡ู„ ุงู„

287
00:23:01,020 --> 00:23:05,740
X to the Alpha ู‡ูˆ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ุง ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† E

288
00:23:05,740 --> 00:23:10,570
ุจุชุตูŠุฑ to the Lin X to the Alphaู„ุฃู†ู‡ ุงุณุชุจุฏู„ุช ุงู„ู€ x

289
00:23:10,570 --> 00:23:15,090
to the alpha ุจู‚ูŠู…ุชู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ

290
00:23:15,090 --> 00:23:18,630
alpha ln x ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ุณุงูˆูŠุฉ e to the ln x to the

291
00:23:18,630 --> 00:23:24,510
mean to the alpha ุฅุฐุง ุณูˆุงุก ุงุญู†ุง ุจุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ู‡ูˆ

292
00:23:24,510 --> 00:23:28,190
ุงุญู†ุง ู‡ุฐุง ุจุงู„ exponent ุฃูˆ ุจุงู„ ุงู„ function ุงู„ู„ูŠ

293
00:23:28,190 --> 00:23:33,110
ุนุฑูู†ุงู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ู‡ูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ูŠู…ุชูŠู† ู†ูุณ

294
00:23:33,110 --> 00:23:34,790
ุงู„ู‚ูŠู…ุฉ ุทูŠุจ

295
00:23:37,160 --> 00:23:42,300
ู†ุฌูŠ ุงู„ุขู† ู„ุจุนุถ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ ู‡ูŠ ุชุจุนุช ุงู„ exponential

296
00:23:42,300 --> 00:23:47,180
ุงู„ power function ูˆ ุงู„ุฎูˆุงุต ู‡ู†ุชุฑูƒู‡ ู„ูƒู… ุฅูŠุงู‡ ู„ุฃู†ู‡ุง

297
00:23:47,180 --> 00:23:54,600
ู…ุจุงุดุฑุฉ ุนู„ู‰ ุงู„ุชุนุฑูŠู ุชุจุนู†ุง ู…ุจุงุดุฑุฉ

298
00:23:54,600 --> 00:24:01,100
ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆ ู‡ูŠูƒูˆู† ููŠ ุนู†ุฏูŠ

299
00:24:01,100 --> 00:24:05,760
ุงู„ุขู† ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ุงู„ู„ูŠ ู‡ูŠ 8 3 11 ู„ูˆ ูƒุงู†ุช Alpha

300
00:24:05,760 --> 00:24:11,340
element in R ูˆ X ูˆ Y ุงู„ู„ูŠ ู‡ูˆ ุชู†ุชู…ูŠ ู„ู„ูุชุฑุฉ Zero ูˆ

301
00:24:11,340 --> 00:24:16,500
ุชู…ุงู†ูŠุฉ Zero ูˆ ู…ุง ู„ู†ู‡ุงูŠุฉ ุขุณู then ู…ุนู„ุด ุนุดุงู† ุฏู‡ ุทู„ุนุช

302
00:24:16,500 --> 00:24:20,450
ุงู„ูƒู‡ุฑุจุง ู‚ุนุฏ ู†ู‚ู„ู ุงู„ูƒู‡ุฑุจุง ุฃู†ุงIf ฮฑ element in R ูˆ X

303
00:24:20,450 --> 00:24:26,350
Y belongs to 0 ฮฑ then 1 to the ฮฑ ุจุณูˆุก 1 ูˆ X to the

304
00:24:26,350 --> 00:24:30,270
ฮฑ ุฃูƒุจุฑ ู…ู† 0 ูˆ X Y to the ฮฑ ุจุณูˆุก X to the ฮฑ ูˆ Y to

305
00:24:30,270 --> 00:24:35,590
the ฮฑ ูˆ X ุนู„ู‰ Y to the ฮฑ ุจุณูˆุก X to the ฮฑ ุนู„ู‰ Y to

306
00:24:35,590 --> 00:24:39,370
the ฮฑ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุทุจุนุง ุงู„ู„ูŠ ู‡ูŠ ู…ุจุงุดุฑุฉ ุนู„ู‰

307
00:24:39,370 --> 00:24:45,100
ุชุนุฑูŠูู†ุง ุงู„ู„ูŠ ู‡ูˆ X to the ฮฑ ุจุณูˆุก Eof ฮฑ ู„ู† X ูŠุนู†ูŠ

308
00:24:45,100 --> 00:24:49,800
ุจุฏูƒ ุชูŠุฌูŠ ุชุณุชุฎุฏู… ุชุนุฑูŠููƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ ูˆุนู„ูŠู‡

309
00:24:49,800 --> 00:24:53,480
ุงู„ู„ูŠ ู‡ูˆ ุจุชุจุฏุฃ ุชุดุชุบู„ ูˆ ุชุจู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ

310
00:24:53,480 --> 00:24:57,680
ุงู„ู‚ูˆุงู†ูŠู† ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†ู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุชุนุฑูŠูู†ุง ุงู„ู„ูŠ ู‡ูˆ X

311
00:24:58,570 --> 00:25:05,210
to the alpha ุจุชุณุงูˆูŠ E of alpha len ุงู„ู„ูŠ ู‡ูŠ L of X

312
00:25:05,210 --> 00:25:10,650
ุฃูˆ ุญุณุจ ุงู„ notation ุชุจุนุชู†ุง E to the alpha len ุงู„ X

313
00:25:10,650 --> 00:25:15,710
ู‡ุฐุง ุงู„ุขู† ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุนู„ูŠู‡ ุจุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุชุจุฏุฃ ุงู„ู„ูŠ

314
00:25:15,710 --> 00:25:23,290
ู‡ูˆ ุชุดุชุบู„ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉูˆุชุจุฑู‡ู†ู‡ุง ุงู„ู„ูŠ ุนู†ุฏู†ุง

315
00:25:23,290 --> 00:25:27,630
ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ุฐูƒุฑู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡

316
00:25:27,630 --> 00:25:32,090
ุงู„ู†ุธุฑูŠุฉ ุนู„ู‰ ุงู„ุชุนุฑูŠู ู…ุจุงุดุฑุฉ ูˆู†ุธุฑูŠุฉ ุชุงู†ูŠุฉ ุฃูŠุถุง ุจุฑุถู‡

317
00:25:32,090 --> 00:25:35,670
ู…ู† ุงู„ุฎูˆุงุต ุฅุฐุง ูƒุงู†ุช Alpha ูˆ Beta element ุฑ ูˆ X ููŠ

318
00:25:35,670 --> 00:25:40,640
ุงู„ูุชุฑุฉ Zero ูˆู„ุง ู†ู‡ุงูŠุฉ ุฅุฐุง Xุชูˆ ุฏุง ุฃู„ูุฉ ุฒูŠุงุฏุฉ ุจูŠุชุง

319
00:25:40,640 --> 00:25:44,040
ุจุฑุถู‡ ู†ูุณ ุงู„ุงุดูŠุงุก ุทุจุนุง ู‡ุชู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู†ุช ู„ู…ุง ุชูŠุฌูŠ

320
00:25:44,040 --> 00:25:48,320
ุชูุฑุฏ ู‡ุฐู‡ ู‡ุชุตูŠุฑ ุชุณุชุฎุฏู… ุฎูˆุงุต ุงู„ู…ุนุฑูุฉ ุงู„ู„ูŠ ู‡ูŠ

321
00:25:48,320 --> 00:25:52,360
ุจูˆุงุณุทุชู‡ุง ู…ุนุฑูุฉ ู‡ุชุณุชุฎุฏู… ุฎูˆุงุต ุงู„ X exponential ูˆุงู„ู†

322
00:25:52,360 --> 00:25:55,420
ุงู„ู„ูŠ ู‚ุจู„ู‡ ุจุดูˆูŠุฉ ู‡ุชู„ุงู‚ูŠ ุญุงู„ูƒ ุจุชุตู„ X ุชูˆ ุฏุง ุฃู„ูุฉ

323
00:25:55,420 --> 00:25:58,310
ุฒูŠุงุฏุฉ ุจูŠุชุง ุจุณูˆุก X ุชูˆ ุฏุง ุฃู„ูุฉ ููŠ X ุชูˆ ุฏุง ุจูŠุชุงูˆ ู†ูุณ

324
00:25:58,310 --> 00:26:05,170
ุงู„ุดูŠุก xยฒฮฑยฒฮฒ ุจูŠุณุงูˆูŠ x ฮฑ beta ูˆ ูŠุณุงูˆูŠ xยฒฮฒยฒฮฑ ูˆ ู‡ุชูŠุฌูŠ

325
00:26:05,170 --> 00:26:08,830
.. ุงู„ู„ูŠ ู‡ูŠ ูƒู„ู‡ุง ู‚ูˆุงู†ูŠู† ุงุญู†ุง ุจู†ุนุฑูู‡ุง xยฒ-ฮฑ ุจูŠุณุงูˆูŠ 1

326
00:26:08,830 --> 00:26:12,270
ุนู„ู‰ xยฒฮฑ ูˆ ู†ูุณ ุงู„ุดูŠุก ุฅุฐุง ูƒุงู†ุช alpha ุฃุตุบุฑ ู…ู† beta

327
00:26:12,270 --> 00:26:17,770
ู‡ูŠูƒูˆู† xยฒฮฑ ุฃุตุบุฑ ู…ู† xยฒฮฒ ู„ู…ุง ุงู† x ุชูƒูˆู† ุฃูƒุจุฑ ู…ู† 1 ูˆ

328
00:26:17,770 --> 00:26:22,130
ู‡ุฐู‡ ูƒู„ู‡ุง ุจุชูƒูˆู† x resources ู…ุนุงูƒู… ุงู„ู„ูŠ ู‡ูŠ ู…ุจุงุดุฑุฉ

329
00:26:22,130 --> 00:26:31,830
ุนู„ู‰ ู‡ุฐู‡ ุงู„ุชุนุฑูŠูุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุนู„ู‰ ุงู„ุณุฑูŠุน let

330
00:26:31,830 --> 00:26:35,010
alpha element in R then the function x ุจุงู„ุชุฑูˆุญ ู„ู„ู€

331
00:26:35,010 --> 00:26:37,670
x alpha ู…ู† 0 ูˆ 1 to R is continuous and

332
00:26:37,670 --> 00:26:41,210
differentiable and ุงู„ู„ูŠ ู‡ูˆ ุงู„ derivative ู„ู„ x to

333
00:26:41,210 --> 00:26:43,630
the alpha ุจุณูˆุก alpha to the x to the alpha minus 1

334
00:26:43,630 --> 00:26:47,650
for x element in 0 ูˆ 1 ุทุจูŠุนูŠ ุฃุตู„ุง ู‡ูŠ composition

335
00:26:47,650 --> 00:26:54,490
of two ู‡ูŠ ุนู†ุฏู‰ function ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ continuousู‡ุฐุง

336
00:26:54,490 --> 00:26:57,650
ูƒู„ู‡ุง ุนู„ู‰ ุจุนุถ ุงู„ู€ E ูƒู…ุงู† continuous ุฏู‡ ุงู„ู„ูŠ ู‡ุชุทู„ุน

337
00:26:57,650 --> 00:26:59,850
ู‡ุฐุง continuous ูˆ ู‡ุฐุง continuous ูˆ ู†ูุณ ุงู„ุงุดูŠ ุงู„

338
00:26:59,850 --> 00:27:02,870
differentiability ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ function

339
00:27:02,870 --> 00:27:05,890
ุงู„ู„ูŠ ุนู†ุฏู†ุง X to the X to the Alpha ุญุณุจ ุชุนุฑูŠูู†ุง is

340
00:27:05,890 --> 00:27:09,410
continuous and differentiable ูˆ ู„ูˆ ุจุฏูƒ ุชุณู…ูŠ ุงู„ู„ูŠ

341
00:27:09,410 --> 00:27:13,710
ู‡ูˆ ู‡ุฐู‡ ุงู„ derivative ูˆ ุจุฏูƒ ุชุจุฏุฃ ุชูุงุถู„ ุฏูŠ ุงุชูุงุถู„ DX

342
00:27:13,710 --> 00:27:17,050
Alpha ูŠุนู†ูŠ ุจุฏูƒ ุชุชูุงุถู„ ู‡ุฐู‡ ูƒูŠู ุชุชูุงุถู„ ู‡ุฐู‡ ุงู„

343
00:27:17,050 --> 00:27:20,860
exponential ุงู„ู„ูŠ ู‡ูŠ E to the Alpha ู„ุฅู† ุงู„ Xูู‰

344
00:27:20,860 --> 00:27:25,580
ุงู„ุชูุงุถู„ ุงู„ู„ู‰ ู‡ูˆ ุงู„ู„ู‰ ุฌูˆุง ุงู„ู„ู‰ ู‡ูˆ Alpha ูู‰ ูˆุงุญุฏ ุนู„ู‰

345
00:27:25,580 --> 00:27:30,120
X ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ู„ู‰ ู‡ู‰ ุจู…ุนู†ู‰ ุขุฎุฑ ุจุตูŠุฑ ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ูˆ

346
00:27:30,120 --> 00:27:35,260
ุนุจุงุฑุฉ ุนู† E to the Alpha ู„ู† ุงู„ X ุงู„ู„ู‰ ู‡ู‰ ุนุจุงุฑุฉ ุนู†

347
00:27:35,260 --> 00:27:38,480
ุงู„ X to the Alpha ู†ูุณู‡ุง ูู‰ ุงู„ุชูุงุถู„ ู‡ุฐู‡ ุงู„ู„ู‰ ู‡ู‰

348
00:27:38,480 --> 00:27:43,080
Alpha ุนู„ู‰ X ุจูŠุณุงูˆู‰ Alpha ุฃุณ X ุงู„ู„ู‰ ู‡ู‰ ู‡ุฐู‡ ุจุชุทู„ุน

349
00:27:43,080 --> 00:27:46,680
ู†ุงู‚ุต ูˆุงุญุฏ Alpha ู…ุงู†ุณ ูˆุงุญุฏ for X element in zero

350
00:27:46,680 --> 00:27:53,250
ูˆู…ู„ุง ู†ู‡ุงูŠุฉุงู„ุงู† ุจุนุถ ุงู„ู…ู„ุงุญุธุงุช ุงู„ุฃุฎุฑู‰ ุงู„ู„ูŠ ุจูŠู‚ูˆู„ูƒ

351
00:27:53,250 --> 00:28:01,010
ุฅูŠุงู‡ุง ุนู„ู‰ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุจูŠู‚ูˆู„ุจู‚ูˆู„ ู„ูƒ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ุฅุฐุง

352
00:28:01,010 --> 00:28:07,610
ูƒุงู†ุช Alpha ุฃูƒุจุฑ ู…ู† 0 ูุจุตูŠุฑ

353
00:28:07,610 --> 00:28:11,970
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ function ู…ู† X and X alpha is

354
00:28:11,970 --> 00:28:15,930
strictly increasing ุนู„ู‰ ูุชุฑุฉ 0 ูˆ ู…ู„ุง ู†ู‡ุงูŠุฉ ุทุจูŠุนูŠ

355
00:28:15,930 --> 00:28:19,890
ู„ู…ุง Alpha ุฃูƒุจุฑ ู…ู† 0 ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุงู† ุงู„ู…ู‚ุฏุฑ ู‡ุฐุง

356
00:28:19,890 --> 00:28:24,120
ุจุธู„ู‡ ู…ูˆุฌุจูˆ ู‡ุฐู‡ ุฃู„ู ุฃูƒุจุฑ ู…ู† ุณูุฑ ุจูŠูƒูˆู† ุจูŠุจุฏูˆ ุฃูƒุจุฑ ู…ู†

357
00:28:24,120 --> 00:28:27,180
ุณูุฑ ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ derivative ุฃูƒุจุฑ ู…ู†

358
00:28:27,180 --> 00:28:31,160
ุณูุฑ ุฅุฐุง ุตุงุฑุช ุนู†ุฏ ุงู„ุฏู„ุฉ strictly increasing ู„ูˆ ูƒุงู†ุช

359
00:28:31,160 --> 00:28:34,520
ุฃู„ู ุฃุตุบุฑ ู…ู† ุณูุฑ ู‡ุชุตูŠุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุนูƒุณ strictly

360
00:28:34,520 --> 00:28:38,420
decreasing ู„ุฅู†ู‡ ู‡ุชูƒูˆู† ู‡ุฐู‡ ุณุงู„ุจุฉ ูˆู‡ุฐู‡ ู…ุฏู„ุฉ ู…ูˆุฌุจุฉ

361
00:28:38,420 --> 00:28:42,180
ุจุชุธู„ ู‡ุฐู‡ ูƒู„ู‡ุง ู…ูˆุฌุจุฉ ุฅุฐุง ุตุงุฑุช strictly decreasing

362
00:28:42,180 --> 00:28:45,360
ุนู†ุฏ ุฃู„ู ุจุชุณุงูˆูŠ ุณูุฑ ุจูŠูƒูˆู† ุงุญู†ุง ุงู„ derivative ู„ู„ูˆุงุญุฏ

363
00:28:45,360 --> 00:28:48,880
ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ุนุจุงุฑุฉ ุนู† constant function ุงู„ู„ูŠ ู‡ูˆ

364
00:28:48,880 --> 00:28:51,300
ููŠ ุญุงู„ุฉ ุงู„ุฃู„ู ุจุชุณุงูˆูŠ ุณูุฑ

365
00:28:53,910 --> 00:29:02,970
ุงู„ุงู† ู†ูŠุฌูŠ ุงู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ู‡ูŠูƒ ุจู†ูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ูˆุตู„ู†ุง

366
00:29:02,970 --> 00:29:09,190
ู„ุขุฎุฑ ุชุนุฑูŠู ุจุฏู‡ ูŠุนุฑู ุงู„ู„ูŠ ู‡ูˆ ุงู„ log function ู„ู„ุฃุณุงุณ

367
00:29:09,190 --> 00:29:13,090
a ุงุญู†ุง ุงู„ู„ูŠ ุนุฑูู†ุงู‡ ุงู„ len ุงู„ู„ูŠ ู‡ูˆ ู„ู„ุฃุณุงุณ e ุจู…ุนู†ู‰

368
00:29:13,090 --> 00:29:16,530
ุขุฎุฑ ูƒูŠู ุจุฏู‡ ุงุนุฑูู‡ ุงู„ุขู† ุงุญู†ุง ู„ุณู‡ ู…ุงุนุฑูุด ุงู„ุฃุณุงุณุงุช

369
00:29:16,530 --> 00:29:19,930
ู‡ุฏุง ูƒุตู…ู†ุง ุงู„ len ูˆ ุงู„ exponential ุงู„ุงู† ุจุฏู†ุง ู†ุนุฑู

370
00:29:19,930 --> 00:29:25,920
ุงู„ู„ูŠ ู‡ูˆ ู†ุณู…ูŠ ุงู„ logุงู„ู„ุบุงุฑูŠุซู… ู„ู„ุฃุณุงุณ A ู†ูุชุฑุถ ุฃู† A

371
00:29:25,920 --> 00:29:28,860
ุฃูƒุจุฑ ู…ู† 0 ูˆ A ู„ุงุช ุณูˆู‰ 1 it is sometimes useful to

372
00:29:28,860 --> 00:29:34,820
define the function log ู„ู„ุฃุณุงุณ A ูƒู…ุงู„ูŠ ุงู„ุงู† log A

373
00:29:34,820 --> 00:29:39,560
of X ูƒุฏู‡ ุงู„ู„ูŠ ุจูŠุณุงูˆูŠ ู„ู† ุงู„ X ุนู„ู‰ ู„ู† ุงู„ A ุญูŠุซ ุงู„ A

374
00:29:39,560 --> 00:29:43,940
ุนุฏุฏ ุซุงุจุช ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐู‡ ุงู„ุขู† ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ log

375
00:29:43,940 --> 00:29:49,540
ุงู„ุนุงู…ุฉ ู‡ูŠ ู†ูุณ ุงู„ exponential ุจุณ ู…ุถุฑูˆุจุฉ ููŠ ุซุงุจุชุงู„ุฃู†

376
00:29:49,540 --> 00:29:52,920
ุฅุฐุง ุงู„ู€ exponential ุงู„ุฃุตู„ูŠุฉ ุนู„ูŠู‡ุง ู‡ูˆ ู…ุนุฑู ุงู„ุงู†

377
00:29:52,920 --> 00:29:59,140
ุจู‚ูˆู„ูƒ ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง log ุฃูˆ ุงู„ logarithm

378
00:29:59,140 --> 00:30:04,620
ู„ู„ุฃุณุงุณ A ู„ูˆ ูƒุงู† ุงู„ุฃุณุงุณ E ู‡ุฐุง ุจุตูŠุฑ ู„ู† ุงู„ E ูˆุงุญุฏ

379
00:30:04,620 --> 00:30:09,320
ุจู†ุตูŠุฑ ู†ุฑุฌุน ู„ู† ุงู„ X ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุฅุฐุง ู„ูˆ

380
00:30:09,320 --> 00:30:14,000
ูƒุงู†ุช ุงู„ A ู‡ูŠ ุงู„ E ุจู†ุฑุฌุน ู„ู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุฒูŠ

381
00:30:14,000 --> 00:30:17,060
ู…ุง ู‚ู„ู†ุง is called the logarithm of X to the base A

382
00:30:19,560 --> 00:30:23,400
Yields ุฏุง ุงู„ู€ logarithm ุงู„ุนุงุฏูŠ ุงู„ุงู† ุงู„ู„ูŠ ู…ุดู‡ูˆุฑ

383
00:30:23,400 --> 00:30:28,020
ุนู†ุฏู†ุง ู„ู„ุญุณุงุจุงุช ุงู„ู„ูŠ ู‡ูˆ ู„ู„ุฃุณุงุณ ุนุดุฑุฉ ุงู„ู„ูŠ ู‡ูˆ ุจู†ุณู…ูŠ

384
00:30:28,020 --> 00:30:32,220
ุงู„ู„ูŠ ู‡ูˆ log to the base ุนุดุฑุฉ ุฃูˆ ุงู„ู„ูŠ ุจู†ุณู…ูŠ common

385
00:30:32,220 --> 00:30:36,720
logarithm ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจู†ุณุชุฎุฏู…ู‡ ุนุงุฏุฉ ููŠ ุงู„ุญุณุงุจุงุช ูˆ

386
00:30:36,720 --> 00:30:41,620
ู‡ูŠูƒ ุจูƒูˆู† ุนู†ุฏู†ุง ุงุญู†ุง ุงู†ู‡ูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ section ุงู„ู„ูŠ

387
00:30:41,620 --> 00:30:46,180
ู‡ูˆ ุชู…ุงู†ูŠุฉ ุชู„ุงุชุฉ ูˆ ุจูƒูˆู† ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูŠุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ

388
00:30:46,180 --> 00:30:52,240
ู…ู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ู‡ูˆ ู…ุง ูŠุชุนู„ู‚ ุจุงู„ .. ุงู„ู„ูŠ ู‡ูˆ ุงู„

389
00:30:52,240 --> 00:30:54,660
logarithmic function ูˆุงู„ power function ูˆุงู„

390
00:30:54,660 --> 00:31:00,040
logarithmic ู„ู„ุฃุณุงุณ ุงู„ู„ูŠ ู‡ูˆ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงูŠู‡ ูˆ ุฅู„ู‰

391
00:31:00,040 --> 00:31:00,640
ู„ู‚ุงุก