File size: 53,786 Bytes
6d205e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
1
00:00:05,740 --> 00:00:08,920
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู…ุญุงุถุฑุฉ

2
00:00:08,920 --> 00:00:14,780
ุงู„ุชุงุณุนุฉ ู‡ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† discussion ุฃูˆ ู…ู†ุงู‚ุดุฉ

3
00:00:14,780 --> 00:00:22,060
ู„ู€ Section 6.2 ูˆ 6.3 ุงู„ู„ูŠ ู‡ูˆ ู…ู†ุงู‚ุดุฉ ู„ู€ Main Value 

4
00:00:22,060 --> 00:00:25,220
Theorem and its Applications ูˆู…ู†ุงู‚ุดุฉ ุฃูŠุถู‹ุง ู„ู€

5
00:00:25,220 --> 00:00:30,560
L'Hopital's Rule ู†ูŠุฌูŠ ุงู„ุขู† ู„ู€ 6.2 ุงู„ุฃุณุฆู„ุฉ ุงู„ู…ุทู„ูˆุจุฉ

6
00:00:30,560 --> 00:00:35,720
ู‡ูŠ ูƒู…ุง ูŠู„ูŠ ู†ุจุฏุฃ ููŠ ุณุคุงู„ 6.2  ุงุฏุฎู„ู†ุง ุนู„ู‰ ุงู„ูƒุชุงุจ 

7
00:00:35,720 --> 00:00:39,160
ุฎู„ูŠู†ุง ู†ุดูˆู ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู…ุซุงู„ ุงู„ู€ ุงู„ุณุคุงู„ ู…ู†

8
00:00:39,160 --> 00:00:45,790
ุงู„ูƒุชุงุจ ู†ุจุฏุฃ ุงู„ุขู† ุจุณุคุงู„ 5 ุงู„ุณุคุงู„ ุงู„ุฎุงู…ุณ ู‡ูˆ ูƒู…ุง ูŠู„ูŠ

9
00:00:45,790 --> 00:00:49,550
Let a ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆ b ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆ a strictly

10
00:00:49,550 --> 00:00:55,570
ุฃูƒุจุฑ ู…ู† b ุทุจุนู‹ุง ูƒู„ ุงู„ุนู„ุงู‚ุฉ strictly ูˆุจู†ูุชุฑุถ ุฃู† n

11
00:00:55,570 --> 00:01:00,290
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 2 prove that a ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ู†ุงู‚ุต b

12
00:01:00,290 --> 00:01:05,290
ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ุฃุตุบุฑ ู…ู† a - b ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n 

13
00:01:05,290 --> 00:01:10,490
ู„ูˆ ุฌูŠู†ุง ู„ุงุญุธู†ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุนู†ุฏ ุฎู…ุณุฉ ุจูŠู‚ูˆู„ ู„ูŠ

14
00:01:10,490 --> 00:01:16,710
ุฃู† a ุฃูƒุจุฑ ู…ู† b ุฃูƒุจุฑ ู…ู† 0 ุฃูˆ n ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 2

15
00:01:16,710 --> 00:01:23,070
ุจูŠู‚ูˆู„ ู„ูŠ prove that ุฃู† a ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ู†ุงู‚ุต b ุฃุณ ูˆุงุญุฏ

16
00:01:23,070 --> 00:01:30,710
ุนู„ู‰ n ุฃุตุบุฑ ู…ู† a - b ุงู„ูƒู„ ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ู†ูŠุฌูŠ

17
00:01:30,710 --> 00:01:36,890
ู„ู„ุจุฑู‡ุงู† ู„ูˆ ุฌูŠู†ุง ู„ุงุญุธู†ุง ุฅู†ู‡ ุนู†ุฏูŠ ุงู„ู€ ู†ูŠุฌูŠ ู„ู„ุณุคุงู„ 

18
00:01:36,890 --> 00:01:40,770
ุจุณ ูƒูŠู ู†ููƒุฑ ููŠ ุงู„ุณุคุงู„ ู‡ูˆ ู…ุง ุฃุนุทูŠู†ูŠ hint ููŠ ุงู„ูƒุชุงุจ 

19
00:01:40,770 --> 00:01:45,190
ู„ูƒู† ุฎู„ูŠู†ุง ู†ุดูˆู ูƒูŠู ูƒูŠู ุญุตู„ ุนู„ู‰ ุงู„ู€ hint ู„ูˆ ุฃุฏูŠู†ุง

20
00:01:45,190 --> 00:01:50,490
ุฌุณู…ู†ุง ุงู„ุฌู‡ุชูŠู† ู‡ุฐุง ู…ุด ู…ู† ุถู…ู† ุงู„ุญู„ ุทุจุนู‹ุง ุนู†ุฏูŠ a / b

21
00:01:51,290 --> 00:01:55,270
ุงู„ูƒู„ ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ู†ุงู‚ุต ุฌุณู…ุฉ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ b ุฃุณ

22
00:01:55,270 --> 00:01:59,510
ูˆุงุญุฏ ุนู„ู‰ n ู„ู„ุฌู‡ุชูŠู† ุทุจุนู‹ุง ูˆุงู„ู€ b ุทุจุนู‹ุง ู…ูˆุฌุจุฉ ูููŠุด ุดูŠุก

23
00:01:59,510 --> 00:02:05,290
ุจุชุบูŠุฑ ุจูŠุตูŠุฑ a / b - 1 ุงู„ูƒู„ ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n

24
00:02:05,290 --> 00:02:10,710
ู„ูˆ ู†ุฌู„ู†ุง ู‡ุฐู‡ a / b ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ู†ุงู‚ุต ุงู„ู€ a /

25
00:02:10,710 --> 00:02:16,150
b - 1 ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† 1 ุงู„ุขู†

26
00:02:16,700 --> 00:02:21,940
ุนู†ุฏูŠ ู‡ุฐุง ุงู„ุขู† ูƒู„ู‡ ุนู„ู‰ ุจุนุถู‡ ู‡ูˆ ู†ูุณู‡ ุงู„ู€ F ู…ู…ูƒู†

27
00:02:21,940 --> 00:02:27,680
ู†ุณุชู‚ู„ ุงู„ุฏุงู„ุฉ ู…ู† ุฎู„ุงู„ู‡ ุฃู†ู‡ ู†ุงุฎุฏ ุงู„ู€ F of X ู„ู€ F of X

28
00:02:27,680 --> 00:02:35,690
ูˆู‡ุชูˆุตู„ู†ุง ุจูŠุณุงูˆูŠ x ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n - x - 1 

29
00:02:35,690 --> 00:02:42,810
ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ูˆุทุจุนู‹ุง ู‡ูˆ ุงู„ุขู† ู…ุนุทูŠู†ูŠ ููŠ ุงู„ุณุคุงู„ a

30
00:02:42,810 --> 00:02:47,790
ุฃูƒุจุฑ ู…ู† b ุฃูƒุจุฑ ู…ู† 0 ู„ูˆ ุทู„ุนู†ุง ู†ู„ุงู‚ูŠ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡

31
00:02:47,790 --> 00:02:56,610
ูˆู„ุงุญุธู†ุง ุฃูˆุฌุฏู†ุง ุงู„ู€ f prime ู„ู‡ุง f prime of x ุฎู„ูŠู†ุง 

32
00:02:56,610 --> 00:03:02,130
ู†ุงุฎุฏ ุงู„ู€ x ุนู†ุฏู‡ ุงู„ู€ x ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 1 ูˆู‡ู†ุดูˆู

33
00:03:02,130 --> 00:03:05,730
ุงู„ู„ูŠ ู‡ูˆ ู„ูŠุด ุนู†ุฏู‡ ุงู„ู€ x ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 1 ุจุฑุถู‡

34
00:03:05,730 --> 00:03:09,070
ุจุชุธุจุท ููŠ ุญุงู„ุชู†ุง ู„ุฃู† ุงู„ู„ูŠ ุจู†ูŠู†ุง ุนู„ู‰ ุฃุณุงุณู‡ุง ุงู„ู„ูŠ ู‡ูŠ

35
00:03:09,070 --> 00:03:13,290
ุงู„ู€ a / b ู†ูุณู‡ุง ุฃูƒุจุฑ strictly ู…ู† ู…ูŠู†ุŸ ู…ู† 1

36
00:03:13,290 --> 00:03:17,150
ูุงู„ุฃู…ูˆุฑ ู…ุชู†ุงุณู‚ุฉ ู…ุน ุจุนุถ ูˆู„ูˆ ุจุฏู†ุง ู†ุทุจู‚ ุญู„ู„ู‡ุง ุฌูŠ ุฌูŠ

37
00:03:17,150 --> 00:03:20,670
ุงู„ู„ูŠ ู‡ูˆ ุชุทุจูŠู‚ ู…ุนู‚ูˆู„ ุงู„ู„ูŠ ู‡ู†ู‚ู ุงู„ู€ prime of x ุจูŠุณุงูˆูŠ

38
00:03:20,670 --> 00:03:26,200
1 / n ููŠ x ุฃุณ 1 / n - 1 ู†ุงู‚ุต ุงู„ู„ูŠ

39
00:03:26,200 --> 00:03:30,720
ู‡ูˆ 1 / n ููŠ x - 1 ุฃุณ 1 / n -

40
00:03:30,720 --> 00:03:36,520
1 ูˆูŠุณุงูˆูŠ 1 / n ููŠ x ุฃุณ 1 / n - 1

41
00:03:36,520 --> 00:03:44,840
ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ x - 1 ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ 1 / n

42
00:03:44,840 --> 00:03:50,460
ู†ุงู‚ุต 1 ุงู„ุขู† ู„ูˆ ุทู„ุนู†ุง ู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุง

43
00:03:53,450 --> 00:03:56,930
ู„ูˆ ุทู„ุนู†ุง ู„ู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู€ x ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฅูŠุดุŸ

44
00:03:56,930 --> 00:04:02,450
1 ูŠุนู†ูŠ ุงู„ุขู† ุงู„ู€ x ุฃูƒุจุฑ ูŠุณุงูˆูŠ 1 ู„ุฐุง ู„ู…ุง ุนู†ุฏูŠ

45
00:04:02,450 --> 00:04:06,950
ุงู„ุฃุณ ุงู„ู„ูŠ ู‡ู†ุง ุฃุณ ุฅูŠุดุŸ ู…ุงู„ู‡ ุจุงู„ุณุงู„ุจ ุฃูˆ ุตูุฑ ุนู„ู‰ ุณูˆุก

46
00:04:06,950 --> 00:04:10,130
ุงู„ุธุฑูˆู ุงู„ู„ูŠ ู‡ูˆ ุจุงู„ุณุงู„ุจ ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ูŠุตูŠุฑ

47
00:04:10,130 --> 00:04:16,070
1 / x ุงู„ู€ 1 / x ุนุจุงุฑุฉ ุนู† ูƒุณุฑุŒ ู…ุธุจูˆุทุŸ ุงู„ุขู†

48
00:04:16,070 --> 00:04:20,430
ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ู‡ุฐุง ูˆู‡ุฐุง

49
00:04:20,940 --> 00:04:26,360
x ุฃูƒูŠุฏ ุฃูƒุจุฑ ู…ู† x - 1 ุตุญ ูˆู„ุง ู„ุฃุŸ ู„ูƒู† ู„ุฃู†

50
00:04:26,360 --> 00:04:31,240
ู…ู‚ู„ูˆุจู‡ุง ู‡ูŠุตูŠุฑ ุฅูŠุด ู…ุงู„ู‡ุŸ ู‡ูŠุตูŠุฑ ุฃุตุบุฑ ูู‡ูŠุตูŠุฑ ุงู„ู…ู‚ุฏุงุฑ

51
00:04:31,240 --> 00:04:35,440
ู‡ุฐุง ุฃุตุบุฑ ู…ู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู…ุงุดูŠ ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู…ู‚ุฏุงุฑ

52
00:04:35,440 --> 00:04:40,180
ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุจุนุถู‡ ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุตูุฑ ูุงู„ุขู† ุตุงุฑุช ุนู†ุฏูŠ

53
00:04:40,180 --> 00:04:45,720
f' ุฃุตุบุฑ strictly ู…ู† ู…ูŠู†ุŸ ู…ู† ุตูุฑ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุฅุฐุง f

54
00:04:45,720 --> 00:04:47,160
is strictly

55
00:04:50,230 --> 00:04:54,310
decreasing ุจุฏูŠ ุงุณุชุฎุฏู… ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ู…ุฏุงู… strictly

56
00:04:54,310 --> 00:04:59,390
decreasing ูˆุฃู†ุง ุนู†ุฏูŠ a ุฃูƒุจุฑ ู…ู† b ู‡ุณูŠู†ุง ุนู†ุฏูŠ a ุนู„ู‰

57
00:04:59,390 --> 00:05:06,110
b ุฃูƒุจุฑ ู…ู† 1 ูˆุงู„ู€ b ุทุจุนู‹ุง ู„ุง ุชุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุจู…ุง ุฃู†

58
00:05:06,110 --> 00:05:11,930
f is strictly decreasing ุฅุฐุง f of a / b ุฃูƒุจุฑ ู…ู†

59
00:05:11,930 --> 00:05:18,440
f of 1 f of a / b ุฏู„ุชู†ุง ุจูŠุฌูŠุจ ุงู„ุนูˆุถ ููˆู‚ ุจูŠุตูŠุฑ

60
00:05:18,440 --> 00:05:26,380
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุขุณู ุฃุตุบุฑ ุนู†ุฏูŠ f of a / b ุฅูŠุด

61
00:05:26,380 --> 00:05:30,920
ู‡ุชุณุงูˆูŠูƒุŸ ู‚ูˆู„ูˆุง ู…ุนุงูŠุง ุงู„ู„ูŠ ู‡ูˆ a / b ุฃุณ 1 / n

62
00:05:30,920 --> 00:05:40,360
ู†ุงู‚ุต a / b - 1 ูƒู„ ุฃุณ 1 / n ู‡ุฐุง ุฅูŠุด

63
00:05:40,360 --> 00:05:45,310
ู…ุงู„ู‡ุŸ ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† f of 1 f of 1 ุญุณุจ ู„ูŠ f

64
00:05:45,310 --> 00:05:50,290
of 1 ู‡ุฐู‡ 1 ูˆู‡ุฐู‡ 0 ูุจูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† ุฃุตุบุฑ ู…ู†

65
00:05:50,290 --> 00:05:53,350
1 ุทุจุนู‹ุง ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ุจู†ุนู…ู„ ุนู…ู„ูŠุฉ ุนูƒุณูŠุฉ ู„ู„ูŠ

66
00:05:53,350 --> 00:05:57,530
ุนู…ู„ู†ุงู‡ุง ููˆู‚ ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงุถุฑุจ ุงู„ุฌู‡ุชูŠู† ููŠ b ุฃุณ 1

67
00:05:57,530 --> 00:06:04,260
ุนู„ู‰ n ูุจูŠุตูŠุฑ a ุฃุณ 1 ุนู„ู‰ n ู†ุงู‚ุต a - b ุฃุณ 1 ุนู„ู‰

68
00:06:04,260 --> 00:06:10,940
n ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† b ุฃุณ 1 ุนู„ู‰ n ุถุฑุจุช ูƒู„ู‡ ููŠ ู…ูŠู†ุŸ

69
00:06:10,940 --> 00:06:14,980
ููŠ b ุฃุณ 1 ุนู„ู‰ n ุฅู† ุฌู„ู‘ูŠ ุงู„ุขู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ a ุฃุณ

70
00:06:14,980 --> 00:06:20,320
1 ุนู„ู‰ n ู†ุงู‚ุต b ุฃุณ 1 ุนู„ู‰ n ุฃุตุบุฑ ู…ู† a - b

71
00:06:20,320 --> 00:06:26,530
ุงู„ูƒู„ ุฃุณ 1 ุนู„ู‰ n ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ุฅูŠุงู‡

72
00:06:26,530 --> 00:06:32,150
ูŠู„ุง ุฅูŠู‡ ุจุนุฏู‡ุŸ ุฎู„ูŠู†ุง ู†ูŠุฌูŠ ู„ู„ุณุคุงู„ ุงู„ู„ูŠ ุงู„ู…ุทู„ูˆุจ ุงู„ุขุฎุฑ

73
00:06:32,150 --> 00:06:38,570
ุงู„ู„ูŠ ู‡ูˆ use the mean value theorem ุณุคุงู„ 6 use the

74
00:06:38,570 --> 00:06:42,830
mean value theorem to prove that sin x - sin y

75
00:06:42,830 --> 00:06:47,070
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ x - y for all x, y in R ู‡ุฐุง

76
00:06:47,070 --> 00:06:50,610
ุงู„ุณุคุงู„ ุญู„ูŠู†ุง ุฒูŠู‡ ุจุงู„ุธุจุท ุงู„ู„ูŠ ู‡ูˆ mean ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€

77
00:06:50,610 --> 00:06:52,070
cosine ู…ุธุจูˆุทุŸ

78
00:06:57,300 --> 00:07:03,320
ุงู„ุขู† ู…ุง ุฃุนุฑูุด ููŠู‡ ุฏุงุนูŠ ู†ุญู„ู‡ ูˆู„ุง ุฅู† ู‡ูˆ ู†ูุณู‡ ุฃูˆ ู…ุตูˆุฑ

79
00:07:03,320 --> 00:07:06,740
ุนู…ู„ู†ุงู‡

80
00:07:06,740 --> 00:07:12,000
ูˆู„ุง ู„ุฃุŸ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ cosine ุนู…ู„ู†ุงู‡ุง ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ูˆู…ุด

81
00:07:12,000 --> 00:07:14,340
ู‡ูŠุฎุชู„ู ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญู„

82
00:07:22,460 --> 00:07:27,840
ุฃุญู„ู‡ ูˆู„ุง ุฎู„ุตุชุŸ ุงู„ุขู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุณุจุนุฉ use the mean

83
00:07:27,840 --> 00:07:32,580
value theorem to prove that x - 1 / x ุฃุตุบุฑ ู…ู† x

84
00:07:32,580 --> 00:07:39,160
ุฃุตุบุฑ ู…ู† x - 1 for x ุฃูƒุจุฑ ู…ู† 1 ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏ 

85
00:07:39,160 --> 00:07:45,440
ุงุญู†ุง ุญู„ูŠู†ุง ูˆุงุญุฏ ุฒุงุฆุฏ x ู‡ุฐู‡ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู†

86
00:07:45,440 --> 00:07:51,040
ู…ูŠู†ุŸ ุนู† ุงู„ู„ูŠ ู‡ูˆ ln lx ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ู‡ูŠ f of x ุจูŠุณุงูˆูŠ ln

87
00:07:51,040 --> 00:07:56,440
lx ูˆุจู†ุณุชุฎุฏู… ุงู„ู€ mean value theorem ูˆุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ููŠู‡

88
00:07:56,440 --> 00:08:00,540
ุฏุงุนูŠ ู†ุญู„ู‡ุŸ ุฎู„ูŠู†ุง ู†ุญู„ู‡ ุฎู„ูŠู†ุง ู†ุญู„ู‡ ุนุดุงู† ุจู†ุตูˆุฑ

89
00:08:00,540 --> 00:08:12,360
ุงู„ุขู† ุณุคุงู„ ุณุจุนุฉ ุงู„ุขู† ุนู†ุฏูŠ ุจุฏุฃ ุฃุซุจุช ุฃู† ln lx ุฃุตุบุฑ ู…ู† 

90
00:08:12,360 --> 00:08:20,000
x - 1 ูˆุฃูƒุจุฑ ู…ู† x - 1 ุนุงู„ู…ูŠู‹ุง ุนู„ู‰ x 

91
00:08:20,000 --> 00:08:26,400
solution ุงู„ุนุงู„ู…ูŠู† value theorem ุงู„ุนุงู„ู…ูŠู† value

92
00:08:26,400 --> 00:08:29,960
theorem ู†ุญู„ู‡ ุงู„ุนุงู„ู…ูŠู† value theorem ู„ุฃู†ู‡ ู„ุณู‡ ู…ุง

93
00:08:29,960 --> 00:08:35,980
ุฎุฏู†ุงุด ุงู„ู„ูŠ ู‡ูˆ Taylor's theorem ู…ุด 

94
00:08:35,980 --> 00:08:39,340
ูุงู‡ู…

95
00:08:39,340 --> 00:08:42,110
ุนู„ูŠูƒ ุจูŠู†ูุน ู†ุญู„ู‡ุง ุจุงุณุชุฎุฏุงู… Taylor and x not

96
00:08:42,110 --> 00:08:44,690
ุจูŠุณุงูˆูŠู‡ุง ูŠุนู†ูŠ ุงู„ู€ mainly ุทูŠุจ ุขู‡ ุงุญู†ุง ุงุญู†ุง ุนุดุงู†

97
00:08:44,690 --> 00:08:48,850
ู„ุณู‡ ู…ุง ุฎุฏู†ุงุด Taylor's theorem ุจุฏู†ุง ู†ุญู„ู‡ุง ุนู„ู‰ ู…ูŠู†ุŸ

98
00:08:48,850 --> 00:08:51,970
ุนู„ู‰ ุงู„ู€ mean value theorem ู„ูŠุดุŸ ู„ุฃู†ู‡ ุงุญู†ุง ู„ุณู‡

99
00:08:51,970 --> 00:09:00,070
ู…ุง ุฎุฏู†ุงุด Taylor's theorem ุทูŠุจ ุงู„ุขู† let f of x

100
00:09:00,070 --> 00:09:07,330
ุจุชุณุงูˆูŠ ln ุงู„ู€ x ูˆุนู†ุฏูŠ ุงู„ู€ x ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ุฃูƒุจุฑ ุฃูˆ

101
00:09:07,330 --> 00:09:11,800
ุชุณุงูˆูŠ ุงู„ู€ 1 ูˆู„ุง ู„ุฃุŸ ุนู†ุฏูŠ ุงู„ู€ x ุฃูƒุจุฑ ู…ู† 100 ู…ู† 0

102
00:09:11,800 --> 00:09:14,940
for

103
00:09:14,940 --> 00:09:23,100
x ุฃูƒุจุฑ ู…ู† 0 ู…ุด ุนุงูŠุฒ ุฅู†ู‘ูŠ ู…ุงุดูŠ ุงู„ุญูŠู† ู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ุฃู†

104
00:09:23,100 --> 00:09:26,540
ู†ุณุชุฎุฏู… ุงู„ู€ mean value theorem continuous ูˆ closed ูˆ

105
00:09:26,540 --> 00:09:31,300
differentiable ูˆูƒู„ ุงู„ุฃู…ูˆุฑ ู‡ุฐู‡ ุดุงู…ู„ุฉ ู…ุชุญู‚ู‚ุฉ ุฅุฐุง

106
00:09:31,300 --> 00:09:38,150
there exist c element in a ูˆ b c ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ

107
00:09:38,150 --> 00:09:42,290
element ู…ุนุงูŠุงุŸ

108
00:09:42,290 --> 00:09:52,610
ุทูŠุจ ู„ุฃู† let f of x ุจูŠุณุงูˆูŠ ln x ูˆ x ุฃูƒุจุฑ ู…ู† 0 ูˆุนู†ุฏูŠ

109
00:09:52,610 --> 00:09:57,430
ุงู„ู…ุทู„ูˆุจ ููŠ ุงู„ู€ inequality ุงู„ู„ูŠ ู‡ูŠ x ุฃูƒุจุฑ ู…ู† 1 ูŠุนู†ูŠ

110
00:09:57,430 --> 00:10:02,870
x ุณู†ุชู…ูŠ ุฅู„ู‰ ุงู„ู€ 1 ูˆู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู…ุนุงูŠุงุŸ ุฅุฐุง there

111
00:10:02,870 --> 00:10:11,590
exists c ู„ุฐู‹ุง ุจุฏูŠ ุฃุทุจู‚ ุงู„ุขู† we apply mean value

112
00:10:11,590 --> 00:10:18,570
theorem on ูˆูŠู† ู‚ูˆู„ ู…ุนุงูŠุง on 1 ูˆ x there exists

113
00:10:18,570 --> 00:10:25,090
c element 1 ูˆ x such that ู…ุนุงูŠุง such that ุงู„ู„ูŠ

114
00:10:25,090 --> 00:10:36,890
ู‡ูˆ f prime of c ูŠุณุงูˆูŠ f of x ู†ุงู‚ุต f 1 ุนู„ู‰ x ู†ุงู‚ุต

115
00:10:36,890 --> 00:10:48,110
ุฅูŠุด ู†ุงู‚ุต 1 ุขู‡ ูุงู„ุขู† ุนู†ุฏูŠ f of x ู‚ุฏ ุฅูŠุดุŸ ูˆูŠุณุงูˆูŠ ln

116
00:10:48,110 --> 00:10:56,450
ุงู„ู€ x ู†ุงู‚ุต ln ุงู„ู€ 1 ู‚ุฏ ุฅูŠุดุŸ 0 ุนู„ู‰ x - 1 ูˆู‡ุฐุง

117
00:10:56,450 --> 00:11:02,050
ู…ูŠู†ุŸ ู‡ูˆ f prime of c ุนุจุงุฑุฉ ุนู† ln ุงู„ู€ 1 ุนู„ู‰ c ู…ุธุจูˆุท

118
00:11:02,870 --> 00:11:06,570
ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุจุฏุฃ ุฃุฌูŠุจ ู„ุฅู† ุงู„ู€ x ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†

119
00:11:06,570 --> 00:11:12,270
x - 1 ุตุงุฑ ุนู†ุฏูŠ ุฅุฐุง ln ุงู„ู€ x ุจูŠุณุงูˆูŠ 1 ุนู„ู‰

120
00:11:12,270 --> 00:11:18,390
c ููŠ x - 1 ูˆุงู„ู„ูŠ ุนู†ุฏ c ุฅูŠุด ู…ุงู„ู‡ุŸ ุจุฃุฎุฐู‡ ุฃู†ุง

121
00:11:18,390 --> 00:11:23,050
ุฃูƒุจุฑ ู…ู† 1 ู…ุฏุงู… ุฃูƒุจุฑ ู…ู† 1 ุฅุฐุง 1 / c ุงู„ู„ูŠ

122
00:11:23,050 --> 00:11:28,390
ู‡ูˆ ุฃุตุบุฑ ู…ู† 1 ู…ุธุจูˆุท ุฅุฐุง ู‡ุฐุง ุฃูƒูŠุฏ ู‡ุฐุง ุฃุตุบุฑ ู…ู† x

123
00:11:28,390 --> 00:11:35,440
- 1 ู…ุธุจูˆุทุŸ ู„ุฃู† ุงู„ู€ 1 / c ุฅูŠุด ู…ุงู„ู‡ุŸ ุนุจุงุฑุฉ

124
00:11:35,440 --> 00:11:43,990
ุนู† ูƒุณุฑ ุงู„ุขู† ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ln ุงู„ู€ x ุจูŠุณุงูˆูŠ

125
00:11:43,990 --> 00:11:49,410
1 / c ููŠ x - 1 ู„ูƒู† ุงู„ู€ x ุฃู†ุง c ุฅูŠุด

126
00:11:49,410 --> 00:11:54,190
ู…ุนู†ุงู‡ุง ุจูŠู† ุงู„ู€ 1 ูˆุงู„ู€ x ูŠุนู†ูŠ c ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ c ุฃุตุบุฑ

127
00:11:54,190 --> 00:11:59,430
ู…ู† x ูŠุนู†ูŠ ุงู„ู€ 1 / x ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† ู…ูŠู† ุงู„ุขู†ุŸ c

128
00:11:59,430 --> 00:12:05,890
ุฃุตุบุฑ ู…ู† x ุฅุฐุง 1 / c ุฃูƒุจุฑ ู…ู† 1 / x ูุจูŠุตูŠุฑ

129
00:12:05,890 --> 00:12:13,190
ุนู†ุฏ ู‡ุฐุง ุฃูƒุจุฑ ู…ู† 1 / x ููŠ x - 1 ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ

130
00:12:13,190 --> 00:12:18,230
ุตุงุฑ ุนู†ุฏ ln ุงู„ู€ x ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ ู…ู† x - 1 ุนู„ู‰ ุงู„ู€ x

131
00:12:18,230 --> 00:12:21,550
ู‡ูŠ ุนู†ุฏ ุงู„ู€ inequality ุงู„ุซุงู†ูŠุฉ ูˆู‡ูŠ ุนู†ุฏ ุงู„ู€

132
00:12:21,550 --> 00:12:26,690
inequality ุงู„ุฃูˆู„ู‰ ู…ู† ุงู„ุชู†ุชูŠู† ุฅุฐุง ln ุงู„ู€ x ุฅูŠุด ู…ุงู„ู‡ุŸ

133
00:12:26,690 --> 00:12:32,790
ุฃุตุบุฑ ู…ู† x - 1 ู…ุธุจูˆุท ุงู„ู„ูŠ ุจุนู…ู„ู‡ ูˆุฃูƒุจุฑ ู…ู† x

134
00:12:32,790 --> 00:12:41,190
- 1 ุนุงู„ู…ูŠู‹ุง ุนู„ู‰ x ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุฅูŠุด ุงู„ุณุคุงู„ ุงู„ู„ูŠ

135
00:12:41,190 --> 00:12:49,550
ุจุนุฏู‡ุŸ ุงู„ุขู† ุณุคุงู„ ุซู…ุงู†ูŠุฉ let f ู…ู† a ู„ุนู†ุฏ b

136
00:13:11,390 --> 00:13:17,630
ุณุคุงู„ ุซู…ุงู†ูŠุฉ let

137
00:13:17,630 --> 00:13:30,470
f ู…ู† a ูˆ b ู„ุนู†ุฏ r ุฅูŠุด ู…ุงู„ู‡ุŸ continuous ุฃูˆ 

138
00:13:30,470 --> 00:13:37,190
differentiable on

139
00:13:37,190 --> 00:13:45,370
mean on open interval a ูˆ b show

140
00:13:45,370 --> 00:13:51,730
that if limit f prime of x ุนู†ุฏูŠ limit f prime of x

141
00:13:51,730 --> 00:14:01,630
ู„ู…ุง x ุชุฑูˆุญ ู„ู„ู€ a ุจุณุงูˆูŠ a capital then ุงู„ู„ูŠ ู‡ูŠ f

142
00:14:01,630 --> 00:14:11,990
prime of a  F prime of A exists and equals A

143
00:14:11,990 --> 00:14:21,750
solution ุฃูˆ proof ู…ุง ุฃุนุทูŠู†ูŠ

144
00:14:21,750 --> 00:14:28,650
F is differentiable ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ู…ู† A ูˆB ุฃูˆ

145
00:14:28,650 --> 00:14:33,350
continuous ุทุจุนู‹ุง open ุฃูˆ continuous ุนู„ู‰ closed ู…ู† A

146
00:14:34,120 --> 00:14:39,860
ูˆ ุนู†ุฏูŠ limit f prime of x ู…ุนุทูŠู†ูŠู‡ุง ู„ู…ุง x ุชุฑูˆุญ ุฅู„ู‰

147
00:14:39,860 --> 00:14:50,180
ุงู„ู€ a ุฅูŠุด ุจุณุงูˆูŠุŸ ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ a capital ุงุทู„ุน 

148
00:14:50,180 --> 00:14:58,560
ู„ููˆู‚ ุงู„ุขู† ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู€ f prime of a ุชุนุฑูŠูู‡ุง ุงู„ู„ูŠ ู‡ูŠ

149
00:14:58,560 --> 00:15:04,600
limit F of X ู†ุงู‚ุต F of A ุนู„ู‰ X minus A ู„ู…ุง X ุชุฑูˆุญ

150
00:15:04,600 --> 00:15:09,940
ู„ู„ู€A ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฅุฐุง ูƒุงู† ุงู„ู€ limit ู‡ุฐุง

151
00:15:09,940 --> 00:15:13,500
exist ุฅุฐุง ุฃุซุจุชู†ุง ุฅู† ุงู„ู€ limit ู‡ุฐุง exist ุจุชูƒูˆู† ุงู„ู€ F 

152
00:15:13,500 --> 00:15:18,440
prime of A ุฃุดู…ุงู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ exist ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุขู†

153
00:15:18,440 --> 00:15:21,200
ู‡ูˆ ู…ุง ุฃุนุทูŠู†ูŠ limit F prime of X ู„ู…ุง X ุชุฑูˆุญ ู„ู€A

154
00:15:21,200 --> 00:15:28,290
ุฃุดู…ุงู„ู‡ุง ู‡ูŠ ุงู„ู€ exist ูˆุงุถุญ ุฃู‡ุŸ ู„ุฃู† ุจุฏูŠ ุฃุทุจู‚ ุงู„ู€ Mean

155
00:15:28,290 --> 00:15:33,290
Value Theorem ู„ุฃู† ููŠ ุงู„ุจุฏุงูŠุฉ ุนู„ู‰ ุฃูŠ X ูˆูŠู† ููŠ

156
00:15:33,290 --> 00:15:39,170
ุงู„ูุชุฑุฉ A ูˆB ููŠ ุงู„ูุชุฑุฉ A ูˆB ู„ูˆ ุฃุฎุฏู†ุง X ููŠ ุงู„ู€ A ูˆB

157
00:15:39,170 --> 00:15:44,380
ุจุงู„ู€ Mean Value Theorem ุจูŠู† ุนู„ู‰ ุงู„ู€ A ูˆุงู„ู€ X ุนู„ู‰ 

158
00:15:44,380 --> 00:15:47,920
ุงู„ูุชุฑุฉ ุงู„ู€ A ูˆุงู„ู€ X there exists CX ู…ุง ู„ู‡ุง

159
00:15:47,920 --> 00:15:52,340
between X and A such that F of X ู†ุงู‚ุต F of A ุจุณุงูˆูŠ

160
00:15:52,340 --> 00:15:57,240
F prime C of X ููŠ X minus A ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุชุทุจูŠู‚ ุงู„ู€

161
00:15:57,240 --> 00:16:02,860
Mean Value Theorem ุนู„ู‰ ุงู„ูุชุฑุฉ A ูˆ B and so ูˆ ู…ู†ู‡

162
00:16:02,860 --> 00:16:07,700
ุงู„ู„ูŠ ู‡ูŠ ุจู†ู‚ูˆู„ F prime C of X ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ F of X

163
00:16:07,700 --> 00:16:15,920
ู†ุงู‚ุต F of A ุนู„ู‰ X minus A ุงู„ุขู† ุนู†ุฏูŠ

164
00:16:15,920 --> 00:16:22,520
.. ุฎู„ู‘ูŠู†ุง ู†ูŠุฌูŠ ู†ุงุฎุฏ ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ุฃู‡ ุนุดุงู† ู„ุณู‡ ุจุฏุฃุช

165
00:16:22,520 --> 00:16:26,600
ุจูŠู† F prime of A ุฃุดู…ุงู„ู‡ุง ู…ูˆุฌูˆุฏุฉ ุจุณุงูˆูŠ limit ุงู„ู€ F

166
00:16:26,600 --> 00:16:31,180
prime CX ู„ู…ุง X ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ู€ AุŒ ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ู‡ุฐู‡

167
00:16:31,180 --> 00:16:36,610
ุงู„ุขู† ู„ูˆ exist ุจุชูƒูˆู† F prime of A ุฃุดู…ุงู„ู‡ุง exist ุงู„ุขู†

168
00:16:36,610 --> 00:16:40,510
ู„ุงุญุธ ุงุญู†ุง ุทุจู‚ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ mean value theorem ุนู„ู‰

169
00:16:40,510 --> 00:16:46,910
ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† a ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ x ู„ุฌูŠู†ุง ุงู„ู€ cx

170
00:16:46,910 --> 00:16:53,290
ูˆูŠู† ู…ูˆุฌูˆุฏุฉุŸ ุจูŠู† ุงู„ู€ a ูˆุงู„ู€ x ุงู„ุขู† ู„ู…ุง cx ุชุฑูˆุญ ู„ู„ู€ a

171
00:16:53,290 --> 00:17:00,050
ุฃูƒูŠุฏ ุงู„ู€ x ู‡ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ู€ a ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ ุงู„ุขู†

172
00:17:00,050 --> 00:17:05,700
ุจูŠุตูŠุฑ ุนู†ุฏูŠ ู‡ูˆ ู…ุง ุฃุนุทูŠู†ูŠ ุฃุตู„ุง limit f prime of x ู„ู…ุง x 

173
00:17:05,700 --> 00:17:10,600
ุชุฑูˆุญ ู„ู„ู€ a exist ู…ุงุดูŠ ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ู„ุฃู† limit f prime

174
00:17:11,520 --> 00:17:17,760
of CX ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ A ู‡ูŠ ู†ูุณู‡ุง as X goes to A

175
00:17:17,760 --> 00:17:21,700
CX ูˆูŠู† ู‡ุชุฑูˆุญ ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ A ุฃุชูˆู…ุงุชูŠูƒ CX ู‡ุชุฑูˆุญ ู„ู„ู€

176
00:17:21,700 --> 00:17:26,480
A ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ู„ู‚ู‰ limit F prime of CX ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€

177
00:17:26,480 --> 00:17:29,880
A ู‡ูˆ ู†ูุณ limit F prime of CX ู„ู…ุง A CX ุชุฑูˆุญ ู„ู„ู€ A

178
00:17:29,880 --> 00:17:34,580
ูˆู‡ุฐุง ู‡ูˆ ู…ุง ุฃุนุทูŠู†ูŠ ุฅูŠุด ุงุณู…ู‡ ุฅู† existence ู‡ูˆ ุฅูŠู‡ุŒ ุฅุฐุง

179
00:17:34,580 --> 00:17:39,500
ุตุงุฑ ู‡ุฐุง ุงู„ู€ limit exist ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู…ุณุงูˆูŠ

180
00:17:39,500 --> 00:17:42,620
ู„ู„ู€ limit ู‡ุฐุง ุงู„ู„ูŠ ุจู†ูŠู† ุนู„ูŠู‡ ุฅุฐุง ุญูŠูƒูˆู† ุงู„ู€ F prime

181
00:17:42,620 --> 00:17:46,920
of A exist ูˆุจุฑุถู‡ ุญูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุญูŠุณุงูˆูŠ ุฅูŠู‡ุŸ ุงุทู„ุน ุนู„ู‰

182
00:17:46,920 --> 00:17:53,100
ู„ุฏูƒ ุงู„ู„ูŠ ุจุงู„ูƒ ู†ุฎู„ุต ู†ุนู… ู„ุง ุงุทู„ุน ุนู„ู‰ ุงู„ู„ูŠ ุจุนุฏู‡ ุฃูŠูˆุฉ

183
00:17:53,100 --> 00:17:55,420
ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุนุฏู‡

184
00:18:06,430 --> 00:18:13,030
ูƒุจุฑ ู‡ุฐุง ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุณุฃู„ุชู†ูŠ ุนู†ู‡ ูŠุง ู…ุญู…ุฏ

185
00:18:13,030 --> 00:18:18,450
ู‚ุจู„ ู‡ูŠูƒ ุงุทู„ุน ู„ูŠ .. ุฎู„ูŠู‡ ุจุณ ุงุทู„ุน ู„ูŠ ุนู„ู‰ ุงู„ูƒุชุงุจ ุนู„ู‰

186
00:18:18,450 --> 00:18:28,770
628 ุงู„ู†ุธุฑูŠุฉ 628 ุงู†ุฒู„ ุงู†ุฒู„ 628 ุงุทู„ุน ู„ูŠ ุนู„ูŠู‡ุง ุงู„ู†ุธุฑูŠุฉ

187
00:18:28,770 --> 00:18:36,630
ุนุดุงู† ู†ู‚ูˆู„ ู„ูƒ ุฅูŠุด ู‡ูˆ ุงู„ุณุคุงู„ ุนู„ูŠู‡ ู„ุฃู†ู‡ ู…ู‡ู… ู†ุนุฑู ุนู† ุฅูŠุดุŒ

188
00:18:36,630 --> 00:18:40,410
ุงู„ุขู† ุฅุฐุง ุจุชุชุฐูƒุฑูˆุง ุฃุฎุฐู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ first

189
00:18:40,410 --> 00:18:45,390
derivative test for extrema ุจุชู‚ูˆู„ ุฅุฐุง ูƒุงู† ู„ุฌูŠู†ุง

190
00:18:45,390 --> 00:18:47,870
neighborhood Hannah subset ู…ู† I such that F double

191
00:18:47,870 --> 00:18:51,950
prime ุฃูƒุจุฑ ุณุงุนุฉ ูˆุณูุฑ ูˆX ุงู„ .. ุงู„ .. ุงู„ .. ู„ูˆ F 

192
00:18:51,950 --> 00:18:54,350
double prime ุฃูƒุจุฑ ุณุงุนุฉ ูˆุณูุฑ ู…ุฑุฉ ุน ุงู„ูŠู…ูŠู† ูˆู…ุฑุฉ ุน

193
00:18:54,350 --> 00:18:59,350
ุงู„ูŠุณุงุฑ ุฅุฐุง F has ุฅูŠุด ู…ุงู„ู‡ุง relative ุฅูŠุด ู…ุงู„ู‡ุง

194
00:18:59,350 --> 00:19:05,280
maximum ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจุชุบูŠุฑ ุดุฑุทู‡ุง ู…ู† ู…ูˆุฌุจ ุฅู„ู‰ ุณุงู„ุจ

195
00:19:05,280 --> 00:19:09,260
ูุจุชูƒูˆู† ุนู†ุฏูŠ relative maximumุŒ ุงู„ุขู† ู‡ู„ ุงู„ุนูƒุณ ุตุญูŠุญุŸ

196
00:19:09,260 --> 00:19:12,440
ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ููŠ ุนู†ุฏู†ุง relative maximumุŒ ู‡ู„ ุดุฑุท ุฅู†ู‡ุง

197
00:19:12,440 --> 00:19:17,950
ุชุบูŠุฑ ุฅุดุงุฑุชู‡ุง ููŠ ุงู„ู„ูŠ ุฏุงุŸ ุงุทู„ุน ู„ููˆู‚ ุดูˆูŠุฉ ุนุดุงู† ุฃูˆุฑุฌูŠูƒ

198
00:19:17,950 --> 00:19:21,170
ุงู„ุณุคุงู„ ูˆูŠู† ูƒุงู† ู…ูˆุฌูˆุฏ ู‡ุงู† remark the converse of

199
00:19:21,170 --> 00:19:25,410
the first derivative test is not true ู…ู‡ู… ุงู„ูƒู„ุงู…

200
00:19:25,410 --> 00:19:28,610
ู‡ุฐุง for example there exists a differentiable

201
00:19:28,610 --> 00:19:31,610
function f ู…ู† R ู„ู€R with absolute minimum at x

202
00:19:31,610 --> 00:19:35,210
ุจุงู„ุณุงูˆูŠุฉ ุตูุฑ but such that f prime takes on both

203
00:19:35,210 --> 00:19:39,110
positive and negative values on both sides of ุงู„ู„ูŠ

204
00:19:39,110 --> 00:19:45,000
ู‡ูŠ x ุจุชุณุงูˆูŠ ุนูŠุงุด ุจุณุงูˆูŠ ุตูุฑ ู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ู‡ุฐุง ุงู„ุขู†

205
00:19:45,000 --> 00:19:49,920
ู‡ุฐุง ุงู„ุญุฏูŠุซ ู‡ูˆ ุณุคุงู„ู†ุง ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ุจุฏู†ุง ู†ุญูƒูŠ ููŠู‡

206
00:19:49,920 --> 00:19:52,880
ุงู„ู„ูŠ ู‡ูˆ exercise ู‚ุฏุงุดุŸ ุชุณุนุฉ ุงุฑุฌุน ู„ูŠ ุนู„ู‰ exercise

207
00:19:52,880 --> 00:19:56,560
ุชุณุนุฉ ุฅุฐุง ุงู„ู€ exercise ุชุณุนุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฅูŠุดุŸ ุจูŠู‚ูˆู„ ู„ูŠู‡

208
00:19:56,560 --> 00:20:00,280
ุฅู† ุงู„ู€ converts of this theorem need not to be true

209
00:20:00,280 --> 00:20:04,930
in general ุจุงู„ุธุจุท ุฅูŠุด ุจูŠู‚ูˆู„ุŸ ุจูŠู‚ูˆู„ ู„ู€ F ู…ู† R ู„ู€ R ุจูŠ

210
00:20:04,930 --> 00:20:08,910
define by F of X ุจูŠุณุงูˆูŠ 2 X plus 4 ุฒุงุฆุฏ X plus 4

211
00:20:08,910 --> 00:20:12,770
Sine 1 ุนู„ู‰ X For X ู„ุง ุชุณุงูˆูŠ ุตูุฑ ุนู†ุฏ F of 0 ุฅูŠุด

212
00:20:12,770 --> 00:20:16,450
ุจูŠุณุงูˆูŠ Zero ุฅุฐุง ุฃู†ุง ู…ุนุฑูุช ุฏุงู„ุฉ ุงู„ู€ F ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ

213
00:20:16,450 --> 00:20:20,450
ุจู‡ุฐู‡ ู„ู…ุง X ู„ุง ุชุณุงูˆูŠ ุตูุฑ ูˆุนู†ุฏ X ุจูŠุณุงูˆูŠ ุตูุฑ ุนุฑูู‡ุง F 

214
00:20:20,450 --> 00:20:25,120
of 0 ุจูŠุณุงูˆูŠ ุฃูŠุดุŸ Zero ุจูŠู‚ูˆู„ ู„ุดู‡ุฏุงุช ุฃูˆู„ ุดูŠุก F has an

215
00:20:25,120 --> 00:20:30,440
absolute minimum when ุนู†ุฏ ุงู„ู€ 0 but that its

216
00:20:30,440 --> 00:20:34,820
derivative has both positive and negative values

217
00:20:34,820 --> 00:20:40,280
everywhere ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุดุŸ ููŠ neighborhood ุญูˆุงู„ูŠู† ู…ูŠู†ุŸ

218
00:20:40,280 --> 00:20:49,380
ุญูˆุงู„ูŠู† ุงู„ุตูุฑ ูˆุงุถุญ ุทูŠุจุŒ ู†ุดูˆู ุงู„ุขู†ุŒ ุนู…ู„ูŠุฉ ููŠู‡

219
00:20:49,380 --> 00:20:54,280
absolute minimum ู…ุด ุตุนุจุฉุŒ ุงู„ู„ูŠ ู‡ูŠ ุจุณ ุฎู„ูŠู†ุง ู†ุชุทู„ุน

220
00:20:54,280 --> 00:20:58,140
ุนู„ู‰ ุงู„ุญุณุงุจุงุชุŒ ู„ุฃู† ุงู„ุญุณุงุจุงุช ุจุชุงุฎุฏ ูˆุฌู‡ุŒ ูุฎู„ูŠู†ุง ู†ุชุทู„ุน

221
00:20:58,140 --> 00:21:02,900
ุนู„ู‰ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู…ุญุณูˆุจุฉ ูˆุฎู„ุงุต ู„ุฃู† ู„ุฃูŠ x ุงู„ู€ ูŠู†ุชู† ุงุฑ

222
00:21:02,900 --> 00:21:07,360
ุฃูƒูŠุฏ ุงู„ู€ x ุงู„ุงุฑุจุนุฉ ุฅูŠู‡ ุฃุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ ูˆุงู„ู€

223
00:21:07,360 --> 00:21:11,900
sign ุงู„ูˆุงุญุฏ ุนู„ู‰ x ุฃูƒุจุฑ ุงูƒูŠุฏ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ู†ุงู‚ุต

224
00:21:11,900 --> 00:21:16,300
ูˆุงุญุฏ ุงุถุฑุจ ุงู„ุฌู‡ุชูŠู† ููŠ x ุงู„ุงุฑุจุนุฉ ูุจูŠุตูŠุฑ x ุงู„ุงุฑุจุนุฉ ููŠ

225
00:21:16,300 --> 00:21:20,680
ู‡ุฐุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู†ุงู‚ุต ุฅูŠุดุŸ x ุงู„ุงุฑุจุนุฉ ุฃุถูŠู ู„ู„ุฌู‡ุชูŠู†

226
00:21:20,680 --> 00:21:26,110
ุงุชู†ูŠู† x ุงู„ุงุฑุจุนุฉ ูุจูŠุตูŠุฑ 2x ุฃุณ 4 ุฒุงุฆุฏ ู‡ุฐุง ุฃูƒุจุฑ ุฃูˆ

227
00:21:26,110 --> 00:21:30,470
ูŠุณุงูˆูŠ ุงู„ู„ูŠ ุถูุช 2x ุฃุณ 4 ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ ูŠุง ุนุงุด ู†ุงู‚ุต ุงู„ู„ูŠ

228
00:21:30,470 --> 00:21:34,930
ู‡ูŠ x ุฃุณ 4 ุงู„ู„ูŠ ู‡ูˆ ุจูŠุทู„ุน ู‚ุฏุงุด x ุฃุณ 4 ุงู„ู„ูŠ ู‡ูˆ ุฃูƒูŠุฏ

229
00:21:34,930 --> 00:21:39,270
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 0 ุตุงุฑุช ุนู†ุฏ ู‚ูŠู…ุฉ ุงู„ู€ function f of x

230
00:21:39,270 --> 00:21:44,770
ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุญูƒูŠ ุนู†ู‡ุง ุฏุงุฆู…ุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 0 ุงู„ู„ูŠ ู‡ูˆ

231
00:21:44,770 --> 00:21:49,650
ู…ูŠู†ุŸ ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ F0 ุฅุฐุง ุตุงุฑ ููŠ ุนู†ุฏูŠ F has

232
00:21:49,650 --> 00:21:58,450
absolute minimum at mean at zero ู„ูƒู† ุนู†ุฏูŠ ู„ุทุจูŠุนุฉ

233
00:21:58,450 --> 00:22:02,590
ุงู„ู€ sine ูˆุทุจูŠุนุฉ ุงู„ู€ cosine ู„ูˆ ุฌูŠุช ุงู„ุขู† ุฃุฎุฏุช ุฃูŠ

234
00:22:02,590 --> 00:22:06,990
neighborhood ุญูˆุงู„ูŠู† ู†ุงู‚ุต delta ูˆdelta ุจุฏูŠ ุฃุซุจุช ู„ูƒ

235
00:22:06,990 --> 00:22:12,410
ุฅู† F prime ู…ุฑุฉ ู…ู…ูƒู† ุชุณูˆูŠ ู„ูŠ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆู…ุฑุฉ ุชูƒูˆู†

236
00:22:12,410 --> 00:22:21,190
ุฃุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุงุถุญุŸ ุฅุฐุง ุชุนุงู„ ุดูˆู ุนู†ุฏูŠ ุฎุฏ ู„ุฃูŠ

237
00:22:21,190 --> 00:22:25,370
neighborhood ุญูˆุงู„ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Zero ุฎุฏู‡ ู…ู† ู†ุงู‚ุต

238
00:22:25,370 --> 00:22:29,850
Delta ูˆDelta ู„ุฃูŠ Delta ููŠ ุงู„ุฏู†ูŠุง ุฃูˆ ู„ุฃูŠ ู…ุซู„ูˆู† ููŠ

239
00:22:29,850 --> 00:22:34,450
ุงู„ุฏู†ูŠุง ุนู†ุฏูŠ ู‡ูŠ ุงู„ู€ neighborhood ุงู„ู„ูŠ ุจุญูƒูŠ ููŠู‡

240
00:22:40,490 --> 00:22:45,390
ุงู„ู†ู‚ุทุฉ ุงู„ุฏุงุฎู„ูŠุฉ ุงู„ู„ูŠ ุงุญู†ุง ู…ุณุชู‡ุฏููŠู† ููŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุตูุฑ

241
00:22:45,390 --> 00:22:51,500
ุฎุฏ ุฃูŠ neighbor ุญูˆุงู„ูŠู‡ ู†ุงู‚ุต ุฏู„ุชุง ุฃูˆ ุฏู„ุชุง ุชู‚ุฏุฑ ุชู„ุงู‚ูŠ

242
00:22:51,500 --> 00:22:58,220
n ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงุชู†ูŠู† very large ุงู„ู„ูŠ

243
00:22:58,220 --> 00:23:04,540
ุจูŠูƒูˆู† n ุฃุดู…ุงู„ู‡ุง very close to zero ู…ุงุดูŠ ูŠุนู†ูŠ ู…ู‡ู…ุง

244
00:23:04,540 --> 00:23:09,300
ุฒุบุฑุช ู„ูŠ ุงู„ู€ delta ุจุฑุงุฌูŠู„ูƒ n ูƒุจูŠุฑุฉ ูƒูุงูŠุฉ ุฅู†ู‡ุง ุชุถู„ู‡ุง

245
00:23:09,300 --> 00:23:18,320
ููŠ ู‡ุฐุง ุงู„ุฌูˆุงุฑ ูˆุชุญู‚ู‚ ู…ุง ูŠู„ูŠ ุฅูŠุด ุฃุฎุฐุชู‡ุงุŸ ุฃุฎุฏุช ุงู„ู†ู‚ุทุฉ

246
00:23:18,320 --> 00:23:22,460
ูˆุงุญุฏ ุนู„ู‰ ุงุชู†ูŠู† and by ุทุจุนุง ุงู„ุขู† ู‡ุฐุง ุจุฒุบุฑู‡ุง ุฌุฏู‹ุง ู…ุง

247
00:23:22,460 --> 00:23:28,120
ุจุฏู‡ ุจุชูƒุจูŠุฑ ุงู„ุขู† ูˆู†ูุณ ุงู„ุดูŠุก 2 ุนู„ู‰ 4 n ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ

248
00:23:28,120 --> 00:23:30,780
ุจุงู‚ูŠ ุทุจุนุง ู„ูŠุด ุฃุฎุฏุช ู‡ูŠูƒุŸ ุนุดุงู† ูˆุงุญุฏุฉ ุชุฎู„ูŠ ู„ูŠ ุงู„ู€ sign

249
00:23:30,780 --> 00:23:34,620
ุตูุฑ ูˆูˆุงุญุฏุฉ ุชุฎู„ูŠ ู„ูŠ ุงู„ู€ cosine ุฅูŠู‡ุŸ ุนุดุงู† ุตูุฑ ูˆุงุถุญ ูˆููŠ

250
00:23:34,620 --> 00:23:37,580
ู†ูุณ ุงู„ูˆุฌู‡ ุจุชุฎู„ูŠ ู„ูŠ ุงู„ู€ sign ูˆุงุญุฏ ูˆุงู„ู€ cosine ูˆุงุญุฏ

251
00:23:37,580 --> 00:23:44,380
ุจุดูƒู„ ู…ุนุงูƒุณ ุฏู‡ ูู†ุดูˆู ุงู„ุดูŠุก ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ุงู„ุขู† ู‡ุฐู‡ ุงู„ุขู† ูˆู‡ุฐู‡

252
00:23:44,380 --> 00:23:47,380
ุงู„ุขู† ุงุฎุชุฑุช ุงู„ุขู† ุงู„ู„ูŠ ุชุฎู„ูŠู†ูŠ ุฅูŠุงู‡ุง ู…ูˆุฌูˆุฏุฉ ููŠ

253
00:23:47,380 --> 00:23:51,060
ู†ุงู‚ุต delta ูˆdelta ู‡ุฐูˆู„ ุงู„ู†ู‚ุทุชูŠู† ููŠ ูˆูŠู†ุŸ ููŠ ุงู„ุฌูˆุงุฑ

254
00:23:51,060 --> 00:23:56,880
ุงู„ู„ูŠ ุฃุนุทูŠุชู†ูŠ ุฅูŠุงู‡ ุฃูŠ ุฌูˆุงุฑ ุจุชุนุทูŠู†ูŠ ูŠุง ุจุฏุฃ ุฌูŠู„ูƒ ุงู„ุขู†

255
00:23:56,880 --> 00:24:01,300
ุงู„ู…ู†ุงุณุจุฉ ุฅู„ูŠู‡ ุงุญุณุจ ู„ูŠ ุงู„ุขู† F prime F prime of X

256
00:24:01,300 --> 00:24:04,040
ุจุชุนุฑู .. ู†ุนุฑู ู†ุญุณุจู‡ุง ุฎู„ูŠู†ุง ู†ุญุณุจ F prime of X ุนู„ู‰

257
00:24:04,040 --> 00:24:08,580
ุฌู‡ุชู‡ุง ู„ุฃู†ู‡ ู…ุด ู‡ุญุณุจู‡ุง ุนุดุงู† ุชูƒูˆู† ู‚ุฏุงู…ูƒู… F prime of X

258
00:24:10,740 --> 00:24:18,560
ุฃู ุจุฑุงูŠู… of x ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุชู…ุงู†ูŠุฉ x ุชูƒุนูŠุจ ุฒุงุฆุฏ ุฃุฑุจุนุฉ 

259
00:24:18,560 --> 00:24:28,300
x ุชูƒุนูŠุจ sign ูˆุงุญุฏ ุนู„ู‰ x ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ ู„ูŠุด

260
00:24:28,300 --> 00:24:34,800
ุฒุงุฆุฏ ู†ุงู‚ุต x ุฃุตุจุญ ุฃุฑุจุนุฉ ุจูŠุตูŠุฑ x ุชุฑุจูŠุน sign ูˆุงุญุฏ ุนู„ู‰

261
00:24:34,800 --> 00:24:41,650
x ุตุญูŠุญุŸ ู‡ุฐู‡ ุงู„ูŠูˆู…ูŠู† f prime of x ุจุฏูŠ ุงู„ุขู† ู†ุนูˆุถ ุนู„ู‰ 

262
00:24:41,650 --> 00:24:47,310
f ุนู†ุฏ ุงู„ู†ู‚ุทุฉ ุฃูˆู„ ุดูŠุก ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ

263
00:24:47,310 --> 00:24:52,450
ุนู„ู‰ ุงุชู†ูŠู† and by ุนูˆุถู†ุง ุนู†ู‡ุง ููŠ ุชู…ุงู†ูŠุฉ x ุณูƒุนูŠุจ ู‡ูŠ 

264
00:24:52,450 --> 00:24:57,210
ุซู…ุงู†ูŠุฉ ููŠ x ุณูƒุนูŠุจ ุฒุงุฆุฏ ุฃุฑุจุนุฉ ู‡ูŠ x ุณูƒุนูŠุจ ูˆู‡ูŠ sin

265
00:24:57,210 --> 00:25:01,820
ูˆุงุญุฏ ุนู„ู‰ x ุจูŠุตูŠุฑ sin ุงุชู†ูŠู† and by ุนุดุงู† ู‡ูŠูƒ ุงู„ุงุฎุชูŠุงุฑ

266
00:25:01,820 --> 00:25:05,020
ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงุชู†ูŠู† and by ุฃุณ ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูŠ ..

267
00:25:05,020 --> 00:25:11,580
ุงู„ู„ูŠ ู‡ูŠ .. ุจุญู‡ุง ุฏูŠ ุจูŠุตูŠุฑ ุฃุณ ุงุชู†ูŠู† ุฃู‡ ูˆู‡ุงูŠ ุงู„ู†ุงู‚ุต

268
00:25:11,580 --> 00:25:16,900
ูุงู‡ู…ูŠู†ุŸ x ุชุฑุจูŠุน ู‡ุง ุฏูŠ ู…ุญุงุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ x ุชุฑุจูŠุน

269
00:25:16,900 --> 00:25:23,800
ุจุงู„ุณุงู„ุจ ูˆุงุถุญ ู‡ู‡ ููŠ cosine ู…ู† ุงู„ู„ูŠ ู‡ูˆ 2 unbi ุงู„ุขู†

270
00:25:23,800 --> 00:25:27,580
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ููŠ ุงู„ู†ุต ูƒู„ู‡ ุฅูŠุด ุญุจุงู„ู‡ุŸ ู‡ูŠุตูŠุฑ ุตูุฑ

271
00:25:27,580 --> 00:25:32,160
ู„ุฃู†ู‡ sin 2 unbi ุตูุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ

272
00:25:32,160 --> 00:25:34,860
ุซู…ุงู†ูŠุฉ ุจุชุฑูˆุญ ู…ุน ุซู…ุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ู… ูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ unbi

273
00:25:34,860 --> 00:25:39,880
ูƒู„ ุชูƒุนูŠุจ ู‡ุฐุง ุงู„ู€ cosine ุฅูŠุด ุจูŠุณุงูˆูŠุŸ ูˆุงุญุฏ ุฅุฐุง ุจูŠุธู„ ู…ู†

274
00:25:39,880 --> 00:25:47,480
ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุณุงู„ุจ ุชุฑุจูŠุน ุฅูŠู‡ ุงู„ุขู† ู†ุงุฎุฏ 1 ุนู„ู‰

275
00:25:47,480 --> 00:25:52,120
unbi ุนุงู… ุงู„ู…ุดุชุฑูƒ ุชุฑุจูŠุน ุจูŠุธู„ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ู†ุง ุนุจุงุฑุฉ ุนู†

276
00:25:52,120 --> 00:25:59,560
ุงู„ู„ูŠ ู‡ูŠ 4 unbi ู„ุฃู†ู‡ ู…ุงุฎุฏ ู‡ู†ุง ุงู„ู„ูŠ ู‡ูŠ 1 ุนู„ู‰ 2 unbi

277
00:25:59,560 --> 00:26:03,720
ู„ูƒู„ ุชุฑุจูŠุน ุงู„ู„ูŠ ู‡ูˆ ุนุงู… ุงู„ู…ุดุชุฑูƒ ุจูŠุธู„ 4 ุนู„ู‰ unbi ู†ุงู‚ุต

278
00:26:03,720 --> 00:26:08,840
ุฅูŠู‡ุŸ ุงุด ูˆุงุญุฏ ูˆุงุถุญ ุงู„ู€ 4 ุนู„ู‰ n by ู„ู„ู€ n ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ

279
00:26:08,840 --> 00:26:14,660
2 ุฅู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจูŠุตูŠุฑ ูŠุตุบุฑ ู„ุฏุฑุฌุฉ ุฃู†ู‡ ุฃุตุบุฑ ู…ู†

280
00:26:14,660 --> 00:26:18,320
ุงู„ูˆุงุญุฏ ู„ู„ู€ n ุฃูƒุจุฑ ูŠุณุงูˆูŠ 2 ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนุจุงุฑุฉ 

281
00:26:18,320 --> 00:26:22,460
ุนู† ุณุงู„ุจ ููŠ ู…ูˆุฌุฉ ุจูŠุทู„ุน ุฃุตุบุฑ ู…ู† 0 ุฅุฐุง F ุจุฑุงูŠู… ุทู„ุนุช

282
00:26:22,460 --> 00:26:29,390
ุฃุตุบุฑ ู…ู† 0 ููŠ ู†ูุณ ุงู„ูˆู‚ุช ุฃู ุจุฑุงูŠู… ู„ 2 ุนู„ู‰ ูƒุฐุง ุนู„ู‰ 4n 

283
00:26:29,390 --> 00:26:34,130
ุฒุงุฆุฏ 1 ููŠ ฯ€  ุฃุถุฑุจู‡ุง ุฃุญุณุจู‡ุง ุจูŠุตูŠุฑ ุชู…ุงู†ูŠุฉ ูˆุนูˆุถ ูˆุนูˆุถ

284
00:26:34,130 --> 00:26:38,150
ูˆุนูˆุถ ุงู„ุขู† ู…ุด ุงู„ sign ุงู„ู„ูŠ ู‡ุชุช cancel ู‡ุชุช cancel

285
00:26:38,150 --> 00:26:43,110
ู…ูŠู† ุงู„ cosine ูู‡ูŠุทู„ุน ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ูŠ ูˆู‡ูŠู‡ ู‡ุฐุง

286
00:26:43,110 --> 00:26:48,390
ุงู„ู…ู‚ุฏุงุฑูŠู†ุŒ ุงู„ู…ู‚ุฏุงุฑูŠู† ู…ูˆุฌุจุงุชุŒ ุฅุฐุง ู‡ูŠูƒูˆู† ุฃูƒุจุฑ ู…ู†

287
00:26:48,390 --> 00:26:53,510
ู…ูŠู†ุŸ ู…ู† ุตูุฑุŒ ุฅุฐุง ููŠ ูƒู„ ุงู„ู…ู†ุทู‚ุฉุŒ ููŠ ูƒู„ ุงู„ู…ู†ุทู‚ุฉุŒ

288
00:26:53,510 --> 00:26:58,050
ู‡ุชู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุฌุงู†ุจ ุจุนุถุŒ ุฌุงู†ุจ ุจุนุถุŒ ู…ุฑุฉ ุฃูƒุจุฑ ู…ู†

289
00:26:58,050 --> 00:27:00,530
ุตูุฑุŒ ู…ุฑุฉ ุฃุตุบุฑ ู…ู† ุตูุฑุŒ ู…ุฑุฉ ุฃูƒุจุฑ ู…ู† ุตูุฑุŒ ู…ุฑุฉ ุฃุตุบุฑ ู…ู†

290
00:27:00,530 --> 00:27:05,070
ุตูุฑุŒ ูููŠุด ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุชุบูŠุฑ ุฅุดุงุฑุชู‡ุง ู…ู† ู…ูˆุฌุจ ุฅู„ู‰ 

291
00:27:05,070 --> 00:27:09,750
ุณุงู„ุจุŒ ู„ุงุŒ ู‡ู… ุฌุงู†ุจ ุจุนุถุŒ ู‡ุฐูˆู„ ุชู†ูุฌ ูŠุง ูˆุงุญุฏุฉ ุชู†ุณุงุด ููŠ

292
00:27:09,750 --> 00:27:14,570
ุฌู‡ุฉ ูˆุงุญุฏุฉ ู…ู† ุงู„ู€ neighborhood ู…ุด ุนู„ู‰ ุงู„ุฌู‡ุชูŠู† ู‡ูˆ ุงู„

293
00:27:14,570 --> 00:27:18,270
test ุงู„ู„ูŠ ุจู†ุนุฑูู‡ ุฃุดู…ู„ ุจูŠู‚ูˆู„ ู„ูƒ ู„ูˆ ุงุชุบูŠุฑ ู…ู† ู‚ุจู„ ุงู„ ..

294
00:27:18,270 --> 00:27:21,690
ู‚ุจู„ .. ููŠ ุงู„ neighborhood ู‚ุจู„ ุงู„ู†ู‚ุทุฉ ุงู„ X note ู…ู†

295
00:27:21,690 --> 00:27:26,990
ู…ูˆุฌุจ ุฅู„ู‰ ุณุงู„ุจ ุจูŠุตูŠุฑ maximum ู…ู† ุณุงู„ุจ ุฅู„ู‰ ู…ูˆุฌุจ ุจูŠุตูŠุฑ

296
00:27:26,990 --> 00:27:34,400
ู…ูˆุฌุจ ุจูŠุตูŠุฑ minimum ุงู„ุขู† ู†ุญู† ู„ุฌูŠู†ุง relative minimum

297
00:27:34,400 --> 00:27:38,800
ุฃูˆ absolute minimum ู„ูƒู† ููŠ ุงู„ู†ู‚ุงุท ู…ู† ู†ุงู‚ุต ุฐู„ุช

298
00:27:38,800 --> 00:27:44,180
ุงู„ุนูŠู† ุฏู„ุช ู‡ุงูŠู† ุงุฎุชุงุฑุช ู„ูƒ ู‡ู†ุง ูˆู‡ู†ุง ุฌุงู† ุจุนุถ ูˆุฌุฑุจ

299
00:27:44,180 --> 00:27:48,650
ูƒู…ุงู† ุจู„ุง ุฌูŠู„ูƒ ูƒู…ุงู† ุงู„ู„ูŠ ู‡ูˆ ุจุญูŠุซ ุฃู† ุชูƒูˆู† ู…ูˆุฌุจุฉ ูˆ

300
00:27:48,650 --> 00:27:53,050
ุณุงู„ุจุฉ ูˆู…ูˆุฌุจุฉ ูˆุณุงู„ุจุฉ ูŠุนู†ูŠ ูุด derivative ู‡ู†ุง ุชูƒูˆู†

301
00:27:53,050 --> 00:27:57,690
ู…ูˆุฌุจุฉ ูƒู„ู‡ุง ูˆู‡ู†ุง ุณุงู„ุจุฉ ูƒู„ู‡ุง ุนุดุงู† ุชุญูƒู… max .. ุชู‚ูˆู„

302
00:27:57,690 --> 00:28:01,190
ุงู„ู„ูŠ ู‡ูˆ .. ุงู„ู„ูŠ ู‡ูŠ ุงู„ .. ูˆ .. ูˆ .. ูˆ ูู‚ุท ุงู„ู„ูŠ ู‡ูŠ

303
00:28:01,190 --> 00:28:04,750
the converse in and the converse need not to 

304
00:28:04,750 --> 00:28:09,990
be true in general ูˆุงุถุญุŸ ููŠ ุงู„ุฌูˆุงุฑูŠู†

305
00:28:09,990 --> 00:28:14,830
.. ู‡ุฐุง .. ู‡ุฐุง ู…ู† ู‡ู†ุง .. ู…ู† ู‡ู†ุง ู„ุนูŠู† ุฏู„ู‡ุง ูุด ุฅุดุงุฑุฉ

306
00:28:14,830 --> 00:28:19,040
ูˆุงุญุฏุฉ ูˆู…ู† ู‡ู†ุง ู„ุนูŠู† ุฏู„ู‡ุง ูุด ุฅุดุงุฑุฉ ูˆุงุญุฏุฉ ุฅุฐุง the

307
00:28:19,040 --> 00:28:22,320
converse need not to be true in general ูˆุงุถุญ ูˆ

308
00:28:22,320 --> 00:28:30,400
ุงู„ู„ู‡ ูˆุงุถุญ ูˆุฃุนูŠุฏ ูˆุงุถุญ ูŠุง ู…ุญู…ุฏ ุงู‡ ุทูŠุจ ุงู„ู„ูŠ ุจุนุฏู‡

309
00:28:30,400 --> 00:28:34,120
ุจุฑุถู‡ ููŠ ุงู„ .. ููŠ ุงู„ .. ููŠ ุงู„ .. ููŠ ุงู„ู…ุซุงู„ ุงุฑุฌุน ู„ูŠ

310
00:28:34,120 --> 00:28:38,700
ู„ู„ูƒุชุงุจ ุนุดุงู† ุฃู‚ูˆู„ ู„ูƒ ู‡ุฐุง ุจุฑุถู‡ ุจุฎุฏู…ูŠู† ุงู„ุณุคุงู„ ู‚ุจู„ู‡ุง

311
00:28:38,700 --> 00:28:42,160
ุงู†ุฒู„ ุงุทู„ุน ู‚ุจู„ ุงู„ู†ุธุฑูŠุฉ ู‚ุจู„ ุงู„ู†ุธุฑูŠุฉ ู‚ุจู„ ุงู„ู†ุธุฑูŠุฉ ููŠ

312
00:28:42,160 --> 00:28:45,520
ุนู†ุฏูŠ ู…ุซุงู„ ู‡ูŠูˆ ุฃูˆ ู„ุง .. ุงูŠูˆู‡ ุงู„ remark ุงู„ remark

313
00:28:45,520 --> 00:28:52,760
ุฃูŠูˆู‡ ุงุทู„ุน ุงู„ remark ู‡ุฐู‡ ุงู„ุขู† ุฅุฐุง ุจุชุชุฐูƒุฑูˆุง ุณุคุงู„ ุนุดุฑ

314
00:28:52,760 --> 00:28:55,260
ุงู„ู„ูŠ ุจู†ุงุญูƒูŠู‡ุง ุงู„ุฌุฏ ุญูƒูŠู‡ุง ุฃู† ุงุญู†ุง ู‚ูˆู„ู†ุง it is

315
00:28:55,260 --> 00:28:59,420
reasonable to define a function to be increasing

316
00:28:59,420 --> 00:29:04,170
at a point ุฅุฐุง ูƒุงู†ุช ู‡ู†ุงูƒ ู…ู‚ุงุฑู†ุฉ ู„ู„ู…ู‚ุงุฑู†ุฉ ููŠ

317
00:29:04,170 --> 00:29:13,750
ุงู„ู…ู‚ุงุฑู†ุฉ ุงู„ู„ูŠ ุญูˆุงู„ู‡ุงุŒ ุฅุฐุง 

318
00:29:13,750 --> 00:29:18,810
ูƒุงู†ุช ู‡ู†ุงูƒ ู…ู‚ุงุฑู†ุฉ ููŠ ุงู„ู…ู‚ุงุฑู†ุฉ ุงู„ู„ูŠ ุญูˆุงู„ู‡ุงุŒ ุฅุฐุง ูƒุงู†ุช

319
00:29:18,810 --> 00:29:19,510
ู‡ู†ุงูƒ ู…ู‚ุงุฑู†ุฉ ููŠ ุงู„ู…ู‚ุงุฑู†ุฉ ุงู„ู„ูŠ ุญูˆุงู„ู‡ุงุŒ

320
00:29:22,640 --> 00:29:27,460
ู…ู† ุงู„ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ุงู„ู€ derivative ุตุญูŠุญ ุจุดูƒู„ ุตุญูŠุญ ููŠ

321
00:29:27,460 --> 00:29:35,840
ู†ู‚ุทุฉ ูุงู„ุนู…ู„ ูŠุฒูŠุฏ ููŠ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ูˆู„ูƒู† ู‡ุฐุง ุงู„ูˆุถุน ุบูŠุฑ 

322
00:29:35,840 --> 00:29:40,960
ุตุญูŠุญ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅูŠุด ู…ุงู„ู‡ ู„ูŠุณ ุดุฑุท ุฃู† ูŠูƒูˆู† ุตุญูŠุญ ุฃู†

323
00:29:40,960 --> 00:29:44,500
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ู†ู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ derivative ุตุญูŠุญ ุจุดูƒู„

324
00:29:44,500 --> 00:29:49,220
ุตุญูŠุญ ู„ูƒู† ู…ุงููŠุด .. ู…ุง ู†ู‚ุฏุฑุด ู†ู‚ูˆู„ ุนู†ู‡ุง ุฅูŠุด ู…ุงู„ู‡ุง is

325
00:29:49,220 --> 00:29:53,460
increasing at this point ู‡ุฐุง ููŠ ุงู„ู€ Interval ุตุญูŠุญ

326
00:29:53,460 --> 00:29:57,020
ู„ูƒู† ููŠ ุงู„ู€ Point ุฅูŠุด ู…ุงู„ู‡ need not to be true in

327
00:29:57,020 --> 00:30:01,860
general ูˆู‡ูŠ ู…ุซุงู„ G of X ู‡ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุญูŠุซ ุฃู† G'

328
00:30:02,240 --> 00:30:07,940
ู„ู„ู€ 0 ุจุณุงูˆูŠ 1 ู„ูƒู† ุงู„ู€ G is not increasing in any

329
00:30:07,940 --> 00:30:14,260
neighbourhood ุญูˆุงู„ูŠู† ู…ูŠู† ุงู„ุตูุฑุŒ ู‡ุฐุง ู…ุซุงู„ ุนู„ู‰ G' of

330
00:30:14,260 --> 00:30:20,200
0 ุจุณุงูˆูŠ 1 ุงู„ู„ูŠ ู‡ูˆ strictly ุฃูƒุจุฑ ู…ู† 0 but ุงู„ู„ูŠ ู‡ูˆ ููŠ

331
00:30:20,200 --> 00:30:24,940
ู‡ุฐุง ุงู„ .. ุนู†ุฏ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ุฌูˆุงุฑ ุชุจุนู‡ุง

332
00:30:24,940 --> 00:30:30,260
ู„ุง ูŠู…ูƒู† ุฃู† ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ increasing ููŠ ุฃูŠ ุฌูˆุงุฑ

333
00:30:30,260 --> 00:30:35,610
ุญูˆุงู„ูŠู‡ุง ู‡ุฐุง ู…ุซู„ู†ุง ูŠู„ู‘ุง ุฎู„ู‘ูŠู†ูŠ ู†ุญู„ ุงู„ุณุคุงู„ ุงู„ุขู† ู‡ุงูŠ

334
00:30:35,610 --> 00:30:40,090
ุณุคุงู„ู†ุง let g ู…ู† R ู„R be defined by g of X ุจูŠุณุงูˆูŠ X

335
00:30:40,090 --> 00:30:44,410
ุฒูŠ 2 X ุซุงู†ูˆูŠุฉ ุตูŠู† ูˆุงุญุฏุฉ ู„ X for X ุชุชุณุงูˆูŠ ุตูุฑ and g

336
00:30:44,410 --> 00:30:47,550
of 0 ุจูŠุณุงูˆูŠ 0 show that g prime of 0 ุฅูŠุด ุจูŠุณุงูˆูŠ

337
00:30:47,550 --> 00:30:53,030
ูˆุงุญุฏ but in every neighborhood of zero, the

338
00:30:53,030 --> 00:30:57,430
derivative g prime takes on both positive and

339
00:30:57,430 --> 00:31:01,710
negative values. Thus, g is not monotonic in any

340
00:31:01,710 --> 00:31:05,830
neighborhood. ู‡ู†ู„ุงู‚ูŠ ููŠ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ุŒ ูˆูŠู† ู…ุง ูƒุงู†ุŒ

341
00:31:05,830 --> 00:31:13,210
ู‡ู†ู„ุงู‚ูŠ ุงู„ู€ g prime ุงู„ู„ูŠ ู‡ูŠ ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ

342
00:31:13,210 --> 00:31:18,410
ูŠุนู†ูŠ ู…ุด ู‡ู†ู„ุงู‚ูŠ ููŠ ุฃูŠ neighborhood ุฃู† ุงู„ู€ G' ุฃูƒุจุฑ

343
00:31:18,410 --> 00:31:25,410
ู…ู† ุตูุฑ ู„ุญุงู„ู‡ุง ุฃูˆ ุงู„ู€ G' ู„ู„ู€ X ู‡ูŠ ุฃูƒุจุฑ ู…ู† ุญุงู„ู‡ุง ุฃูˆ

344
00:31:25,410 --> 00:31:33,910
ุฃุตุบุฑ ู…ู† ุญุงู„ู‡ุง ููŠ ูƒู„ .. ู…ู† ุตูุฑ ููŠ ูƒู„ ุงู„ุฌูˆุงุฑ G' ู…ุด

345
00:31:33,910 --> 00:31:38,930
ู‡ุชูƒูˆู† ุฃุตุบุฑ ู…ู† ุตูุฑ ููŠ ูƒู„ ุงู„ุฌูˆุงุฑ ูˆู„ุง ุฃูƒุจุฑ ู…ู† ุตูุฑ ููŠ

346
00:31:38,930 --> 00:31:46,630
ูƒู„ ุงู„ุฌูˆุงุฑ ู‡ู†ู„ุงู‚ูŠ ุฅู„ู‡ุง ู…ุชุฐุจุฐุจุฉ ููŠ ุงู„ุฅุดุงุฑุฉ ูƒูŠูุŸ

347
00:31:48,510 --> 00:31:54,930
ุงู„ุญู„ ุดุจู‡ู‡ ุตุญูŠุญ ุงู„ุญู„ ุดุจู‡ู‡ ุจุณ ู‡ุฐุง ุงู„ุขู† ู…ูˆุธู ู„ู…ูŠู†ุŸ ู„ุง

348
00:31:54,930 --> 00:31:58,990
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู‡ูˆ counter example ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„

349
00:31:58,990 --> 00:32:02,630
remark ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆุฏู‡ counter example ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ

350
00:32:02,630 --> 00:32:08,010
ุงู„ู†ุธุฑูŠุฉ ู‡ุฐูƒ ุจูˆุถุญ ุฃู† ุงู„ theorem need not to be true

351
00:32:08,010 --> 00:32:12,170
in general ูˆู‡ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุจูˆุถุญ ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„

352
00:32:12,170 --> 00:32:18,000
strictly increasing ุนู†ุฏ ู†ู‚ุทุฉ ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง

353
00:32:18,000 --> 00:32:18,380
.. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง ..

354
00:32:18,380 --> 00:32:18,540
ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง

355
00:32:18,540 --> 00:32:19,120
.. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง

356
00:32:19,120 --> 00:32:19,800
.. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง

357
00:32:19,800 --> 00:32:26,540
.. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง

358
00:32:26,540 --> 00:32:29,660
..

359
00:32:29,660 --> 00:32:31,300
ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง

360
00:32:31,300 --> 00:32:32,100
ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง .. ู„ุง

361
00:32:32,100 --> 00:32:39,020
.. ู„ุง .. ู„ุง

362
00:32:39,020 --> 00:32:46,020
.. ู„ุง ุฅูŠุด ุจุนู…ู„ ู‚ุงุนุฏ ุจุฏูŠ ุฃุญุงูˆู„ ุฃุซุจุช ุฃู† g prime of 0

363
00:32:46,020 --> 00:32:51,600
ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ู‡ุงูŠ ุงู„ุชุนุฑูŠู ู‡ุงูŠ ุนู†ุฏู‡ y ุณุงูˆูŠ

364
00:32:51,600 --> 00:32:55,180
ุฌุณู…ู†ุง ุนู„ูŠู‡ ุจูŠุตูŠุฑ ูˆุงุญุฏ ุฒุงุฆุฏ ุงุซู†ูŠู† limit x sin ูˆุงุญุฏ

365
00:32:55,180 --> 00:33:00,380
ุนู„ู‰ x ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงูŠู‡ ุดู…ุงู„ู‡ุŸ ุจุณุงูˆูŠ ุตูุฑ ู„ุฃู† ุงู„ู€

366
00:33:00,380 --> 00:33:03,720
absolute value ู„ู„ู€ X sin ูˆุงุญุฏ ุนู„ู‰ X ุฃูƒุจุฑ ุจุณุงูˆูŠ ุตูุฑ

367
00:33:03,720 --> 00:33:07,740
ูˆุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ absolute value ู„ู„ู€ X ุงู„ู„ูŠ ู‡ูˆ

368
00:33:07,740 --> 00:33:11,020
by Sandwich theorem ุงู„ู„ูŠ ู‡ูˆ ุงู„ limit ู‡ุฐุง ุฅูŠุด ุจุณุงูˆูŠ

369
00:33:11,020 --> 00:33:15,040
ุตูุฑ ุฅุฐุง ุงู„ limit ุนู„ู‰ ุจุนุถ ูˆูƒู„ู‡ ุฅูŠุด ุจุณุงูˆูŠ ูˆุงุญุฏ ุฅุฐุง

370
00:33:15,040 --> 00:33:17,740
D prime of zero ุจุณุงูˆูŠ ูˆุงุญุฏ ุงุทู„ุน ู„ููˆู‚

371
00:33:20,460 --> 00:33:26,260
ุนู†ุฏูŠ for x ุชุชุณุงูˆูŠ 0 ุงู„ู€ g prime ุณู‡ู„ ุฃู† ุฃู†ุง ุฃุฌุฏู‡ุง

372
00:33:26,260 --> 00:33:30,300
ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุฒุงุฆุฏ ุชูุงุถู„ ู‚ุงุนุฏ ุฃุฑุจุน x sin ูˆุงุญุฏ ุนู„ู‰

373
00:33:30,300 --> 00:33:34,080
x ู†ุงู‚ุต ุงุซู†ูŠู† cosine ูˆุงุญุฏ ุนู„ู‰ x ู„ุฃู† ุจุงู„ุธุจุท as above

374
00:33:34,080 --> 00:33:37,520
for any neighborhood ุฒูŠ ุงู„ู„ูŠ ุญูƒูŠู†ุง ู‚ุจู„ ุดูˆูŠุฉ for

375
00:33:37,520 --> 00:33:43,340
any neighborhood ู†ุงู‚ุต ุฏู„ุชุง ูˆุฏู„ุชุง ุญูˆู„ ุงู„ุตูุฑ ุจู‚ุฏุฑ

376
00:33:43,340 --> 00:33:49,200
ุฃู„ุงู‚ูŠ ุงุฏ ุฃูƒุจุฑ ุณูˆุงุก ูˆุงุญุฏ ุจุญูŠุซ ุฃู† ู‡ุฐุง ูˆู‡ุฐุง ูŠูƒูˆู† ููŠ

377
00:33:49,200 --> 00:33:54,160
ุงู„ุฌูˆุงุฑ ู„ูƒู† ุฌูŠ ุจุฑุงูŠู… ุนู†ุฏ ุงู„ุฃูˆู„ู‰ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฌูŠ

378
00:33:54,160 --> 00:33:58,480
ุจุฑุงูŠู… ุนู†ุฏ ุงู„ุซุงู†ูŠุฉ ุดู…ุงู„ู‡ ุฃูƒุจุฑ ู…ู† ุตูุฑ ุจุญุณุงุจุงุช

379
00:33:58,480 --> 00:34:01,580
ู…ุดุงุจู‡ุฉ ุฃูŠ ุณุคุงู„ุŸ

380
00:34:05,050 --> 00:34:09,570
ุทูŠุจ ู†ูŠุฌูŠ ู„ุณุคุงู„ 12 ุณุคุงู„ 12 ุจูŠู‚ูˆู„ ุฅุฐุง ูƒุงู†ุช h of x

381
00:34:09,570 --> 00:34:13,590
ุจูŠุณุงูˆูŠ 0 ุฅุฐุง ูƒุงู†ุช x ุฃุตุบุฑ ู…ู† 0 ูˆ1 ุฅุฐุง ูƒุงู†ุช x ุฃูƒุจุฑ

382
00:34:13,590 --> 00:34:16,650
ุจูŠุณุงูˆูŠ 0 prove that there does not exist a

383
00:34:16,650 --> 00:34:21,310
function f ู…ู† R ู„R such that f prime of x ุดู…ุงู„ู‡

384
00:34:21,310 --> 00:34:26,190
ุจูŠุณุงูˆูŠ h of x ู‡ุฐุง ุญู„ู†ุง ุฒูŠู‡ ุจุฑุถู‡ ุงู„ู„ูŠ ู‡ูˆ ุฏุฑุงุจูˆูƒุณ

385
00:34:26,190 --> 00:34:29,270
theorem using ุฅูŠุด ุฏุฑุงุจูˆูƒุณ theorem ุฅูŠุด ุจู†ู‚ูˆู„

386
00:34:29,270 --> 00:34:37,360
suppose not ู…ุธุจูˆุท ุทุจู‚ ุงู„ุขู† ู‡ูŠ ุนู†ุฏ H of X ู‡ูŠุงุจู‚ูˆู„

387
00:34:37,360 --> 00:34:42,920
ู„ุฃุซุจุช ุฃู†ู‡ ููŠุด ูˆู„ุง function F ู„ูˆ ูุถู„ู†ุงู‡ุง ุจุชุทู„ุน ู…ูŠู†ุŸ

388
00:34:42,920 --> 00:34:46,540
H of X ุจุฏู†ุง ู†ูุชุฑุถ ุงู„ุนูƒุณุŒ ู†ูุชุฑุถ ุฃู†ู‡ ููŠ function

389
00:34:46,540 --> 00:34:51,260
ุงุณู…ู‡ุง F ุจุญูŠุซ ุฃู† F' ุฅูŠุด ุจุชุณุงูˆูŠ H ุตุงุฑุช H ู†ูุณู‡ุง

390
00:34:51,260 --> 00:34:54,400
differentiableุŒ ู…ุงุดูŠ ุขุณูุŒ F ุฅูŠุด ู…ุง ู„ุงุŸ

391
00:34:54,400 --> 00:34:57,880
differentiableุŒ ู…ุธุจูˆุทุŸ ู…ุฏุงู… F differentiableุŒ ุฅุฐุง

392
00:34:57,880 --> 00:35:03,120
by ู…ูŠู†ุŸ By Daraboux's theorem ุงู„ู„ูŠ ู‡ูˆ there exist ูˆ

393
00:35:03,120 --> 00:35:07,640
ุทุจุนุง ูˆุฅุญู†ุง ุนุงุฑููŠู† ุงู„ู†ุต ุจูŠู† ู…ูŠู†ุŸ ุจูŠู† ุงู„ู€ 0 ูˆุงู„ู€ 1

394
00:35:07,640 --> 00:35:12,880
ุฅุฐุง by Daraboux's theorem there exist ุงู„ู„ูŠ ู‡ูˆ ..

395
00:35:12,880 --> 00:35:19,840
ุงู„ู„ูŠ ู‡ูŠ C ุจูŠู† ุงู„ู€ X1 ูˆ X2 ุจุญูŠุซ ุฃู† G of C ุจุณูˆุก ุฃูู‡

396
00:35:19,840 --> 00:35:24,940
prime of C ูˆูŠุณุงูˆูŠ ู†ุต which is impossible ุฃุณุฑุนุช

397
00:35:24,940 --> 00:35:32,940
ุนู„ูŠูƒู…ุŒ ู…ุธุจูˆุทุŸ ุงู„ุขู† ูŠุง ุฌู…ุงุนุฉ ุจุฏูŠ ุฃูุชุฑุถ ุฃู† ุงู„ุนูƒุณ ุตุญูŠุญ

398
00:35:32,940 --> 00:35:37,880
ูŠุนู†ูŠ ุจุฏูŠ ุฃูุชุฑุถ ุฃู† F ู…ู† R ู„ R ุจุญูŠุซ ุฃู† F prime of X

399
00:35:37,880 --> 00:35:42,740
ุฅูŠุด ุจุชุณุงูˆูŠุŸ X ู„ูƒู„ X element in R ู…ุงุดูŠ ุงู„ุญุงู„ ุงุชูุฌู†

400
00:35:42,740 --> 00:35:47,840
ุงู„ู‡ู† ุฅุฐุง F ู†ูุณู‡ุง ุจู†ุงุก ุนู„ู‰ ู‡ุฐุง ุงู„ุญุฏูŠุซ F is

401
00:35:47,840 --> 00:35:52,340
differentiable ุนู„ู‰ R ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ุฃุฎุฑู‰ ู„ุงุญุธ ุฅู† ุงู„ู†ุต

402
00:35:52,340 --> 00:35:55,160
ุจูŠู† ุงู„ู€ 0 ูˆุงู„ู€ 1ุŒ ู…ูŠู† ู‡ูˆ ุงู„ู€ 0 ูˆุงู„ู€ 1ุŸ ุงู„ู€ 0 ูˆุงู„ู€

403
00:35:55,160 --> 00:35:58,060
1 ู‡ูŠ ู‚ูŠู… ุงู„ู€ function ู‡ุฐู‡ ุงู„ู„ูŠ ุจุญูƒูŠ ุนู†ู‡ุงุŒ ูŠุนู†ูŠ ุงู„ู€

404
00:35:58,060 --> 00:36:03,840
0 ูˆุงู„ู€ 1 ู‡ุชูƒูˆู† ุงู„ู€ 0 ุนุจุงุฑุฉ ุนู† ุฃุดูˆู X1 ูˆุงู„ู€ A1

405
00:36:03,840 --> 00:36:09,390
ุฃุดูˆู X2ุŒ ู…ูŠู† X1 ูˆ X2ุŸ ุงุฎุชุฑุช ุงู„ู€ X1 ุฃุตุบุฑ ู…ู† 0ุŸ ูˆ X2

406
00:36:09,390 --> 00:36:13,690
ุฃูƒุจุฑ ู…ู† 0 ุตุงุฑ ุนู†ุฏ ู†ู‚ุทุชูŠู† X1 ูˆ X2 ูˆุงุญุฏ ุฃุตุบุฑ ู…ู† 0

407
00:36:13,690 --> 00:36:18,030
ูˆุงุญุฏ ุฃูƒุจุฑ ู…ู† 0 ูŠุนู†ูŠ ุงู„ุชู…ุชูŠู† ุนุงู…ู„ูŠู† ู„ูุชุฑุฉ ุฅุฐุง ุตุงุฑ

408
00:36:18,030 --> 00:36:24,870
ุนู†ุฏ ู†ุต ููŠ ุงู„ูุชุฑุฉ ุจูŠู† 0 ูˆ 1 ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุจูŠู† H

409
00:36:24,870 --> 00:36:31,520
of X1 ูˆ H of X2 ู„ูƒู† H of X1 ูˆ H of X2 ู…ู† ู‡ู…ุŸ F' of

410
00:36:31,520 --> 00:36:36,900
X1 ูˆ F' of X2 ุฅุฐุง ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุฏุฑุงุจูˆูƒุณ theorem

411
00:36:36,900 --> 00:36:41,260
ู…ุญู‚ู‚ุฉ F is differentiable ูˆู†ุต ุชู†ุชู…ูŠ ู„ู„ูุชุฑุฉ ุจูŠู‡

412
00:36:41,260 --> 00:36:47,340
ุงู„ู„ูŠ ู‡ูŠ F' of X1 ูˆ F' of X2 of X2 ุฅุฐุง ุญุณุจ ุงู„ู„ูŠ ู‡ูŠ

413
00:36:47,340 --> 00:36:51,340
ุฏุฑุงุจูˆูƒุณ theorem ุฃูŠ ุญุงุฌุฉ ุจูŠู†ู‡ู… ู„ุงุฒู… ูŠูƒูˆู† ู„ู‡ุง ุฃุตู„

414
00:36:51,340 --> 00:36:57,190
ุฅุฐุง there exists C ุจูŠู† ุงู„ู€ x1 ูˆุงู„ู€ x2 ุจุญูŠุซ ุฃู†ู‡

415
00:36:57,190 --> 00:37:02,450
ุงู„ู„ูŠ ู‡ูˆ f prime ู„ู„ู€ c ู‡ุฐู‡ ุงู„ู„ูŠ ุงู„ู„ูŠ ุฌุงุชู‡ุง ุจูŠู† x1 ูˆ

416
00:37:02,450 --> 00:37:08,770
x2 ู‡ูŠ ู…ูŠู† ุงู„ู†ุต ูŠุนู†ูŠ ุฒูŠ ุจู…ุณุญ ูƒู„ ุงู„ู‚ูŠู… ุงู„ู„ูŠ ุจูŠู† f of

417
00:37:08,770 --> 00:37:13,080
x1 ูˆ f of x2 ู…ุด ู‡ูŠูƒ ุชุฏุฑุจุช ููŠ ุชุณุชูŠุฑูˆู† ุจุชู‚ูˆู„ ุฅุฐุง ุตุงุฑุช

418
00:37:13,080 --> 00:37:17,460
ุนู†ุฏูŠ ููŠ c ุจูŠู† ู‡ุฐู‡ ูˆู‡ุฐู‡ ุจุญูŠุซ ุฃู† f prime of c ุจุณุงูˆูŠ

419
00:37:17,460 --> 00:37:21,480
ู†ุต ูŠุนู†ูŠ g of c ุจุณุงูˆูŠ ู†ุต ุทุจ ู‡ุฐุง ู…ุณุชุญูŠู„ ู„ุฃู† ุฃุตู„ุง g

420
00:37:21,480 --> 00:37:25,100
.. h ุทุจุนุง ู‡ุฐุง ู…ุด g .. h of c .. ู‡ุฐุง ู…ุณุชุญูŠู„ ู„ูŠุด 

421
00:37:25,100 --> 00:37:28,760
ู…ุณุชุญูŠู„ุŸ ู„ุฃู† h ุฃุตู„ุง ู…ุง ุชุฃุฎุฐ ุฑู‚ู… ุซุงู†ูŠุŒ ูŠุง ุตูุฑ ูŠุง

422
00:37:28,760 --> 00:37:32,020
ูˆุงุญุฏ ุฅุฐุง contradictionุŒ ู…ุฏุงู… contradiction ุฅุฐุง 

423
00:37:32,020 --> 00:37:37,940
there is no function f ู…ู† R ู„R ุจุญูŠุซ ุฃู† f prime of 

424
00:37:37,940 --> 00:37:41,080
x ูŠุณุงูˆูŠ f of x for every x

425
00:37:45,230 --> 00:38:01,830
ููŠ ุถูŠุงุน ุณุคุงู„ูŠู† ุฎู„ู†ุง ู†ู…ุฑ ุนู„ูŠู‡ู… ู‡ุฐุง

426
00:38:01,830 --> 00:38:06,130
ุญู„ู†ุง ุฒูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ let I be an interval and let F

427
00:38:06,130 --> 00:38:11,110
ู…ู† I ู„R be differentiable on I ู…ูุชุฑุถูŠู† ุฃู† F ุนุจุงุฑุฉ 

428
00:38:11,110 --> 00:38:16,000
ุนู† ุงู„ู„ูŠ ู‡ูˆ differentiable function ุนู„ู‰ an interval

429
00:38:16,000 --> 00:38:19,820
I ูˆู‚ูˆู„ ู„ูŠ show that ุฅุฐุง ูƒุงู†ุช F prime is positive

430
00:38:19,820 --> 00:38:25,000
on I ู„ูˆ F prime ุฃูƒุจุฑ ู…ู† 0 ุนู„ู‰ I ู‡ุชูƒูˆู† ุงู„ู€ F  ุฃุดู…ุงู„ู‡ุง

431
00:38:25,000 --> 00:38:29,800
strictly increasing on I ุทุจุนุง ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ ุงู„ุณุฑูŠุน

432
00:38:29,800 --> 00:38:34,940
ู„ู†ูุชุฑุถ F prime ุฃูƒุจุฑ ู…ู† 0 ู„ูƒู„ X element on I ู…ุงุดูŠ

433
00:38:34,940 --> 00:38:41,240
ู‡ูˆ ู†ูุณู‡ุŸ ุฎู„ุงุต ุงู„ู„ูŠ ุจุฏู‡ ุงู„ุณุคุงู„ ู…ูˆุฌูˆุฏ ููŠ ุงู„ุดุฑูŠุญุฉ ุงู„ู„ูŠ

434
00:38:41,240 --> 00:38:44,300
ู‡ูˆ ุงู„ู€ main value theorem  ุงุชูƒู„ ุงู„ู„ู‡ ุฎู„ูŠู†ูŠ ุฃู‚ูˆู„ู‡

435
00:38:44,300 --> 00:38:50,490
ุนู†ู‡ ุงู„ุขู† let I be an interval and let F ู…ู† I ู„ุนู†ุฏ R

436
00:38:50,490 --> 00:38:55,050
ุณูˆุงุก ุงู„ู€ 14 ุจูŠู‡ differentiable on I show that if

437
00:38:55,050 --> 00:38:59,210
the derivative F' is never zero on I ูŠุนู†ูŠ ุฅุฐุง ูƒุงู†ุช

438
00:38:59,210 --> 00:39:04,230
F' ุฃูƒุจุฑ ู…ู† ุตูุฑ ุงู„ู„ูŠ ู‡ูŠ ุชุณุงูˆูŠ ุตูุฑ on I then either

439
00:39:04,230 --> 00:39:08,430
F' ุฃูƒุจุฑ ู…ู† ุตูุฑ for all X limited on I ุฃูˆ F' ุฃุตุบุฑ 

440
00:39:08,430 --> 00:39:13,480
ู…ู† ุตูุฑ ู„ูƒู„ X ุฌู…ุงู„ู‡ุงูŠุนู†ูŠ ุจูŠู‚ูˆู„ ู„ูŠ ุฅุฐุง ูƒุงู†ุช ุงู„ู€ F

441
00:39:13,480 --> 00:39:17,760
differentiable ุนู„ู‰ ุงู„ interval I ูˆูƒุงู†ุช ุงู„ู€ F'

442
00:39:18,160 --> 00:39:23,240
ุจุชุณุงูˆูŠุด 0 ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุงู„ู€ F' ูŠุง ู‡ุชูƒูˆู† ูƒู„ู‡ุง ู…ูˆุฌุจุฉ

443
00:39:23,240 --> 00:39:28,940
ุนู„ู‰ ุงู„ I ูŠุง ูƒู„ู‡ุง ุณุงู„ุจุฉ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ I ู…ุฏุงู…ุช ู…ุง ุบูŠุฑุชุด

444
00:39:28,940 --> 00:39:32,760
ุดุฑุทู‡ุง ุจุงู„ู…ุฑุฉ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ูŠุนู†ูŠ ู…ุด ู‡ุชุบูŠุฑ ุดุฑุทู‡ุง

445
00:39:32,760 --> 00:39:38,260
ุจุงู„ู…ุฑุฉ ู…ุฏุงู…ุช ุงู„ู€ F' ู…ุด 0 ุนู„ู‰ ุงู„ูุชุฑุฉ ุฅุฐุง ุฅุดุงุฑุชู‡ุง

446
00:39:38,260 --> 00:39:43,650
ูˆุงุญุฏุฉ ูŠุง F ุฃูƒุจุฑ ู…ู† 0ุŒ ูŠุง F ุฃูƒุจุฑ ู…ู† .. ุฃุตุบุฑ ู…ู† 0ุŒ

447
00:39:43,650 --> 00:39:47,070
ู‡ุฐุง ููŠ ุถูˆุก ุฃู† F is differentiableุŒ ุจุฏู†ุง ู†ูุชุฑุถ

448
00:39:47,070 --> 00:39:51,170
ุงู„ุนูƒุณ ูˆู†ุตู„ ู„ู€ contradictionุŒ suppose on the contrary

449
00:39:51,170 --> 00:39:56,290
ู†ูุชุฑุถ ุฃู† F prime of X ุฃูƒุจุฑ ู…ู† 0 ู„ู†ู‚ุงุท ... ู„ุจุนุถ

450
00:39:56,290 --> 00:40:00,390
ุงู„ู†ู‚ุท ููŠ IุŒ ูˆ F prime of X ุฃูƒุจุฑ ู…ู† .. ุฃุตุบุฑ ู…ู† 0

451
00:40:00,390 --> 00:40:04,660
ู„ุจุนุถ ุงู„ู†ู‚ุงุท ููŠ IุŒ ูŠุนู†ูŠ ู…ุฎู„ูˆุทุฉ ูˆ ุจุฏู†ุง ู†ุตู„ู‘ ู„ู…ูŠู† ู„ู€

452
00:40:04,660 --> 00:40:08,640
contradiction ุทูŠุจ then there exist a ูˆ b element

453
00:40:08,640 --> 00:40:12,220
in I such that ุฃู ุจุฑุงูŠู… of a ุฃุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆ

454
00:40:12,220 --> 00:40:15,520
ุฃู ุจุฑุงูŠู… b ุฃุตุบุฑ ู…ู† ุตูุฑ ู„ุฅู† ุฃู†ุง ู…ูุชุฑุถ ุงู„ุขู† ุงูุชุฑุถุช

455
00:40:15,520 --> 00:40:18,200
ุฃู†ู‡ ููŠ ู†ู‚ุงุท ุงู„ู„ูŠ ู‡ูŠ ุฃูƒุจุฑ ู…ู† ุตูุฑ ุนู†ุฏู‡ุง ุงู„

456
00:40:18,200 --> 00:40:20,940
derivative ูˆููŠ ู†ู‚ุงุท ุฃุตุบุฑ ู…ู† ุตูุฑ ุนู†ุฏู‡ุง ุงู„

457
00:40:20,940 --> 00:40:25,040
derivative ู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ุจู†ู„ุงู‚ูŠ a ูˆ b ุจุงู„ุญู‚ู‚ ู‡ุฐู‡

458
00:40:25,490 --> 00:40:28,710
ุงู„ุขู† ุฃูƒูŠุฏ ู…ุฏุงู… ู‡ุฐุง ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆู‡ุฐุง ุฃุตุบุฑ ู…ู† ุตูุฑุŒ

459
00:40:28,710 --> 00:40:32,910
ุฅุฐุง ุงู„ุตูุฑ ุจูŠู† ุงู„ู€ F'A ูˆ ุงู„ู€ F'B ู„ุฃู†ู‡ุง ูˆุงุญุฏุฉ ู…ูˆุฌุจุฉ

460
00:40:32,910 --> 00:40:36,850
ุจูˆุงุญุฏุฉ ู…ูŠู†ุŒ ู…ุฏุงู… ุงู„ุตูุฑ ุจูŠู†ู‡ู…ุŒ ุฅุฐุง ุญุณุจ Darabowski's

461
00:40:36,850 --> 00:40:40,990
theoremุŒ ู‡ูŠ ุจุชู…ุณุญ ูƒู„ ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ุจูŠู† ุงู„ุตูˆุฑุŒ ู„ุงุฒู… 

462
00:40:40,990 --> 00:40:45,570
ูƒู„ู‡ุง ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ ุฃุตูˆู„ู‡ุง ุฅุฐู† by Daraboux's theorem

463
00:40:45,570 --> 00:40:49,430
there exists c element in I such that f prime of c

464
00:40:49,430 --> 00:40:52,970
ูŠุณุงูˆูŠ ุตูุฑ ูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจู†ุงู‚ุถ ุงู„ูุฑุถูŠุฉ ุงู„ู„ูŠ ุงุญู†ุง

465
00:40:52,970 --> 00:40:57,570
ูุฑุถู†ุงู‡ุง ุฃู† f prime ู„ุง ุชุณุงูˆูŠ ุตูุฑ ุนู„ู‰ ูƒู„ ุงู„ I ุฅุฐู† f

466
00:40:57,570 --> 00:41:01,730
prime ู„ุง ุชุณุงูˆูŠ ุตูุฑ ุนู„ู‰ ูƒู„ ุงู„ I ู…ุนู†ุงุชู‡ ูˆ

467
00:41:01,730 --> 00:41:05,670
differentiable ุทุจุนุง ู…ุนู†ุงุชู‡ ูŠุง ุฅู…ุง ูƒู„ู‡ู† ุงู„ f prime 

468
00:41:05,670 --> 00:41:11,950
ู…ูˆุฌุจุงุช ูŠุง ุฅู…ุง ูƒู„ู‡ู† ุฅูŠู‡ ุฃุดู…ุงู„ู‡ุง ุณุงู„ุจุฉ ูŠุนู†ูŠ ูŠุง 

469
00:41:11,950 --> 00:41:15,710
increasing strictly increasing ูŠุง strictly ูŠุง

470
00:41:15,710 --> 00:41:23,230
ุฃุดู…ุงู„ู‡ุง decreasing ู…ุงููŠุด ุฃูŠ ุชุบูŠูŠุฑ ู„ู„ุฑุณู… ูˆุงู„ุดูƒู„ ุทูŠุจ

471
00:41:23,230 --> 00:41:28,820
ู†ูŠุฌูŠ ู„ุขุฎุฑ ุงู„ุณุคุงู„ let I Be An Interval Prove That If

472
00:41:28,820 --> 00:41:32,980
F Is Differentiable On I And The Derivative Of F'

473
00:41:33,300 --> 00:41:37,820
Is Bounded On IุŒ Then F Satisfies Lipschitz

474
00:41:37,820 --> 00:41:43,920
Condition On IุŒ ู…ุงุดูŠ ุงู„ุญู„ุŒ ุจุชู‚ูˆู„ ู„ูŠุŒ ุจุชู‚ูˆู„ ู„ูŠ

475
00:41:43,920 --> 00:41:48,460
ุงู„ุณุคุงู„ ู…ุง ูŠุนู†ูŠุŒ Lipschitz Condition

476
00:41:53,580 --> 00:41:58,020
ุฎู„ูŠู†ุง ู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ ุจู†ู‚ูˆู„ู‡ ุฅุฐุง ูƒุงู†ุช F

477
00:41:58,020 --> 00:42:10,320
differentiable on I ูˆ F' bounded on I ุงุซุจุช ุฅู† F 

478
00:42:10,320 --> 00:42:15,680
satisfies Lipschitz conditions ู…ุงุดูŠุŸ ุฅูŠุด Lipschitz

479
00:42:15,680 --> 00:42:23,450
conditionุŸ ุฅู†ู‡ there exists K ุฃูƒุจุฑ ู…ู† 0 such that F

480
00:42:23,450 --> 00:42:30,130
of X ู†ุงู‚ุต F of Y ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู„ุจุณ ุงู„ูŠูˆุฏ ููŠู‡ุง ู„ X 

481
00:42:30,130 --> 00:42:34,330
minus Y ููŠ ู…ูŠู†ุŸ ููŠ K ุงู„ู„ูŠ ูƒู†ุง ู†ู‚ูˆู„ ุนู†ู‡ุง ุนู„ู‰ ุทูˆู„

482
00:42:34,330 --> 00:42:40,630
ู‡ุฐูŠ ุจุชุนุทูŠ ุฅูŠุด ู…ุง ู„ู‡ุง uniformly continuous ู„ูƒู„ X ูˆ 

483
00:42:40,630 --> 00:42:44,190
Y ู„ูƒู„ X ูˆ Y ููŠ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†ู‡ุง ุงู„ู„ูŠ ุจุดุช

484
00:42:44,190 --> 00:42:48,790
ุบู„ condition ุฅูŠุด ู…ุง ู„ู‡ุง ู…ุชุญู‚ู‚ุฉ ุฅุฐุง ุงู„ู€ Absolute ู‡ุฐุง 

485
00:42:48,790 --> 00:42:54,670
ู…ุนู†ุงู‡ ุงู„ู„ูŠ ุจุด ุชุณูƒู†ุฏุดู‡ ู†ูŠุฌูŠ ู†ุญู‚ู‚ู‡ุง ู‡ุฐู‡ ู†ูŠุฌูŠ ู†ุญู‚ู‚

486
00:42:54,670 --> 00:42:55,710
ุงู„ู„ูŠ ู‡ูˆ 

487
00:42:58,230 --> 00:43:02,930
ุงู„ู€ Lipschitz condition ู„ุช x ูˆ y element in I ุจูŠู‡ 

488
00:43:02,930 --> 00:43:06,130
such that x strictly ุฃุตุบุฑ ู…ู† 100 ู…ู† y

489
00:43:27,180 --> 00:43:30,960
ุฅุฐุง ู…ู†ู‡ุง ู†ุงุฎุฐ ุงู„ู€ absolute value ู„ู„ุฌู‡ุชูŠู† ุจุชุทู„ุน ุนู†ุฏูŠ

490
00:43:30,960 --> 00:43:36,260
ุงู„ู„ูŠ ุฃู…ุงู†ูŠ ูˆุงุถุญ ู„ูƒู† F' is bounded ู…ุฏุงู… bounded F'

491
00:43:36,740 --> 00:43:41,940
ุฅุฐุง there exist K ุจุญูŠุซ ุฃู† F' of C ุฃุตุบุฑ ูŠุณุงูˆูŠ K ู„ูƒู„ C

492
00:43:41,940 --> 00:43:47,550
ุฅูŠู‡ ุฃุดู…ุงู„ู‡ุง ู…ู† ุถู…ู† ุงู„ู€ C ุงู„ู„ูŠ ููˆู‚ู‡ุง ู„ุฃู† ุฃู ุจุฑุงูŠู… is

493
00:43:47,550 --> 00:43:51,870
bounded ุนู„ู‰ ูƒู„ ุงู„ I ูˆ ู‡ุฐู‡ ุงู„ู€ K ุจุชู†ูุน ู„ูƒู„ ู…ูŠู† ู„ูƒู„

494
00:43:51,870 --> 00:43:54,570
ุงู„ู€ C's ุงู„ู„ูŠ ููŠ ุงู„ I ุฅุฐุง ุตุงุฑุช ุฃู ุจุฑุงูŠู… ููŠ C ุฃุตุบุฑ ุฃูˆ

495
00:43:54,570 --> 00:43:58,270
ุดูˆูŠู‡ K ุจู†ุนูˆุฏ ููˆู‚ ุจูŠุตูŠุฑ ุฃู of X ู†ุงู‚ุต ุฃู of Y ุฃุตุบุฑ

496
00:43:58,270 --> 00:44:02,150
ุฃูˆ ุดูˆูŠู‡ K ููŠ X minus Y ูˆ ุงู„ X ูˆ ุงู„ Y ูƒุงู†ุช ู†ู‚ุด

497
00:44:02,150 --> 00:44:06,870
ู…ุงู„ู‡ูŠู† arbitrary ุฅุฐุง ุตุงุฑ ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ ุดูˆูŠู‡ K ููŠ X

498
00:44:06,870 --> 00:44:11,790
minus Y ูˆุฏุฎู„ุช ุงู„ู…ุชุณุงูˆูŠุฉ ู„ุฃู† ููŠ ุญุงู„ุฉ ุงู„ X ุจุชุณุงูˆูŠ Y 

499
00:44:11,790 --> 00:44:21,600
ุงู„ู„ูŠ ู‡ูˆ it is trivial therefore I satisfy ุงู„ู„ูŠ ู‡ูˆ

500
00:44:21,600 --> 00:44:25,820
Lipschitz condition ูˆ ุงู„ู„ู‡ ูŠุนุทูŠูƒูˆุง ุงู„ุนุงููŠุฉ