File size: 40,669 Bytes
6d205e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1
00:00:04,910 --> 00:00:09,510
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฎุงู…ุณุฉ ููŠ

2
00:00:09,510 --> 00:00:15,630
ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ูŠ 2 ู„ุทู„ุจุฉ ูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ุชุฎุตุต 

3
00:00:15,630 --> 00:00:22,110
ุฑูŠุงุถูŠุงุช ููŠ ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ุจุบุฒุฉ ุงู„ู…ุญุงุถุฑุฉ

4
00:00:22,110 --> 00:00:26,550
ุงู„ูŠูˆู… ู‡ูŠ ุฌุฒุฆูŠู†ุŒ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† 

5
00:00:26,550 --> 00:00:31,350
Discussion ู„ู€ 6.1 ุงู„ู„ูŠ ู‡ูˆ ู…ู†ุงู‚ุดุฉ ู„ู…ูˆุถูˆุน ุงู„ู„ูŠ ู‡ูˆ

6
00:00:31,350 --> 00:00:37,410
Derivative ุฃูˆ ุงู„ุงุดุชู‚ุงู‚. ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู‡ู†ูƒู…ู„ ุงู„ู„ูŠ ู‡ูˆ

7
00:00:37,410 --> 00:00:43,210
ุงู„ุญุฏูŠุซ ุนู† 6.2 ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Mean Value Theorem ุฃูˆ

8
00:00:43,210 --> 00:00:47,730
ู†ุธุฑูŠุฉ ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ. ู‡ู†ุงุฎุฐ ุจุนุถ ุงู„ุชุทุจูŠู‚ุงุช ู„ู†ุจุฏุฃ 

9
00:00:47,730 --> 00:00:51,750
ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ุฃุณุฆู„ุฉ ุงู„ู„ูŠ ุงุญู†ุง ุทู„ุจู†ุงู‡ุง ู…ู†ูƒู…

10
00:00:51,750 --> 00:00:57,230
ุชุญู„ูˆู‡ุง ูƒูˆุงุฌุจ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฃูˆ ุงู„ุชูŠ ู‚ุจู„ู‡ุง ูˆูƒุงู†ุช 

11
00:00:57,230 --> 00:01:01,210
ุงู„ุฃุณุฆู„ุฉ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ุณุคุงู„ ุงู„ุฑุงุจุน ูˆุงู„ุณุคุงู„ ุงู„ุณุงุจุน

12
00:01:02,000 --> 00:01:07,420
ูˆุงู„ุณุคุงู„ ุงู„ุชุงุณุน ูˆุงู„ุณุคุงู„ ุงู„ุซุงู„ุซ ุนุดุฑ. ุจุงู„ู†ุณุจุฉ ู„ู„ุณุคุงู„

13
00:01:07,420 --> 00:01:13,600
ุงู„ุซุงู„ุซ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ุจุฑู‡ุงู† ู†ุธุฑูŠุฉ 6.1.3 A

14
00:01:13,600 --> 00:01:19,200
ูˆ B. ูˆู‡ุฐู‡ ุงู„ุจุฑุงู‡ูŠู† ุจุฑุงู‡ูŠู† ุณู‡ู„ุฉ ุงู„ู„ูŠ ูƒุงู†ุช ุงู„ู€ F 

15
00:01:19,200 --> 00:01:22,960
DifferentiableุŒ ุงู„ู€ F Differentiable ูˆุงู„ู€ Alpha

16
00:01:22,960 --> 00:01:26,560
ุนุจุงุฑุฉ ุนู† Constant ุจูŠุนุทูŠู†ุง ุงู„ู€ Alpha F ุจุฑุถู‡ is

17
00:01:26,560 --> 00:01:30,200
Differentiable. ูˆู„ูˆ ูƒุงู†ุช ุงู„ู€ F ูˆุงู„ู€ G

18
00:01:30,200 --> 00:01:32,700
Differentiable ุจูŠุนุทูŠู†ุง ุงู„ู€ F ุฒุงุฆุฏ G is

19
00:01:32,700 --> 00:01:35,660
Differentiable. ูˆุงุญู†ุง ุจุฑู‡ู†ู†ุง ุญุงู„ุฉ ุงู„ุถุฑุจ ูˆุญุงู„ุฉ

20
00:01:35,660 --> 00:01:41,500
ุงู„ู‚ุณู…ุฉุŒ ูˆู‡ุฏูˆู„ ุญุงู„ุงุช ุชุนุชุจุฑ ุณู‡ู„ุฉ ู…ุจุงุดุฑุฉ ุนู„ู‰ ุงู„ุชุนุฑูŠู

21
00:01:41,500 --> 00:01:45,900
ู„ุฐู„ูƒ ู‡ู†ุจุฏุฃ ุฅู† ุดุงุก ุงู„ู„ู‡ ููŠ ุงู„ุญุฏูŠุซ ุฃูˆ ููŠ ุญู„ ุงู„ุฃุณุฆู„ุฉ 

22
00:01:45,900 --> 00:01:52,540
ุนู„ู‰ ุงู„ุณุคุงู„ ุงู„ุฑุงุจุน ุงู„ู„ูŠ ู‡ูˆ ุจู‚ูˆู„ ู„ูŠ ุนู†ุฏูŠ ู…ุนุทูŠู†ูŠ F

23
00:01:52,540 --> 00:02:01,760
ู…ู† R ู„ู€ R ุจูŠ defined by F of X ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ X

24
00:02:01,760 --> 00:02:06,420
ุชุฑุจูŠุน ุฅุฐุง ูƒุงู†ุช X Rational ูˆุจุณุงูˆูŠ ุตูุฑ ุฅุฐุง ูƒุงู†ุช X 

25
00:02:06,420 --> 00:02:09,700
Irrational. ุงุซุจุช ุฅู† ุงู„ู€ F ุงู„ู€ Differential ุจุงู„ู‚ุฏุฑ X

26
00:02:09,700 --> 00:02:15,550
ุจุชุณุงูˆูŠ ุตูุฑ ุฃูˆ ุฌุฏ ุงู„ู„ูŠ ู‡ูŠ F prime of 0. ู„ุงุญุธ ุฃู† ุงู„ู€

27
00:02:15,550 --> 00:02:16,610
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€

28
00:02:16,610 --> 00:02:17,090
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€

29
00:02:17,090 --> 00:02:17,910
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€

30
00:02:17,910 --> 00:02:20,450
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€

31
00:02:20,450 --> 00:02:27,990
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€

32
00:02:27,990 --> 00:02:28,350
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€

33
00:02:28,350 --> 00:02:29,630
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€

34
00:02:29,630 --> 00:02:29,690
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€

35
00:02:29,690 --> 00:02:41,470
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ 

36
00:02:41,470 --> 00:02:52,150
Find this value. a proof ุงู„ุขู† ุนุดุงู† ู†ูˆุฌุฏ

37
00:02:52,150 --> 00:02:56,730
ุงู„ู„ูŠ ู‡ูŠ ู†ุซุจุช ุฃู† F prime of 0 ู…ูˆุฌูˆุฏุฉ. ุฎู„ู‘ูŠู†ูŠ ุฃู„ุงุญุธ 

38
00:02:56,730 --> 00:03:00,950
ู…ุงู„ูŠ ุนู†ุฏ ุงู„ู€ function ุงู„ู„ูŠ ู‡ูŠ X ุชุฑุจูŠุน ู„ู…ุง X

39
00:03:00,950 --> 00:03:07,150
Rational ูˆ Zero ู„ู…ุง X is Irrational. ุงู„ุขู† ุจุฏู†ุง

40
00:03:07,150 --> 00:03:11,770
ู†ุชูˆู‚ุน ุฃูˆู„ ุดูŠุก ุงู„ู„ูŠ ู‡ูˆ ู„ุฃู†ู‡ ู‡ุชู„ุฒู…ู†ูŠ ุฌุงูŠ ุงู„ู„ูŠ ุจุนุฏูŠู†

41
00:03:11,770 --> 00:03:15,890
Find this value. ุจุฏู†ุง ู†ุชูˆู‚ุน ุงูŠุด ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€

42
00:03:15,890 --> 00:03:20,950
Derivative ุนู†ุฏ ุงู„ุตูุฑ. ู„ุงุญุธ ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ .. ุงู„ู„ูŠ ..

43
00:03:20,950 --> 00:03:25,630
ุงู„ู„ูŠ ู„ูˆ ุจุฏู†ุง ู†ู‚ูˆู„ ุฅู†ู‡ ุงู„ู€ Derivative ู…ู…ูƒู† ุชูƒูˆู† Zero

44
00:03:25,630 --> 00:03:30,510
ูƒูˆู† ุฅู† F of X ุตูุฑ. ุฃูˆ ู„ูˆ ุจุฏู‡ุง ุชูƒูˆู† ูˆุงู„ู€ 

45
00:03:30,510 --> 00:03:36,560
Derivative ู‡ู†ุง ู„ูˆ ู‚ู„ู†ุง ุฑูู„ุง 2X ุจุฏูˆ ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ

46
00:03:36,560 --> 00:03:40,820
ุจุฏูˆ ูŠูƒูˆู† ุงู„ู„ูŠ ุนู†ุฏ ุงู„ู€ Zero ุงู„ู„ูŠ ู‡ูŠ F prime ุจุฏูˆ ููŠ

47
00:03:40,820 --> 00:03:47,220
ุงู„ู†ู‡ุงูŠุฉ ุชุฑูˆุญ ู„ู€ ุงู„ู„ูŠ ู‡ูŠูƒูˆู† ุจุฑุถู‡ ู‚ุฑูŠุจุฉ ู…ู† ุฅู†ู‡ ู†ู‚ูˆู„

48
00:03:47,220 --> 00:03:52,580
ุฃูˆ ู†ุฃูƒุฏ ุฅู†ู‡ุง ุตูุฑ ุนุดุงู† ู‡ูŠ ูƒุงู„ุธู† ุงู„ุบุงู„ุจ ุฅู† F prime

49
00:03:52,580 --> 00:03:58,660
ู‡ุชูƒูˆู† ุงูŠุดุŸ ุตูุฑ. ู‡ุฐู‡ ู…ุฌุฑุฏ ุชููƒูŠุฑุงุช. ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ู„ูƒ ุฅู†ู‡

50
00:03:58,660 --> 00:04:03,080
ูุนู„ู‹ุง ู‡ูŠ ุงู„ู€ Derivative ุจุชุณุงูˆูŠ 0. ูƒูŠู ุจุฏูŠ ุฃุซุจุชู‡ุงุŸ

51
00:04:03,080 --> 00:04:11,280
ุจุฏูŠ ุฃุซุจุช ู„ูƒ ุฅู†ู‡ ุงู„ู€ Limit ู„ู€ F of X ู†ู‚ุต F of 0 ุนู„ู‰

52
00:04:11,280 --> 00:04:17,600
X minus 0 ู„ู…ุง X ุชุฑูˆุญ ู„ู€ 0 ุจุชุณุงูˆูŠ 0. ุจุฏูŠ ุฃุซุจุช ู„ูƒ 

53
00:04:17,600 --> 00:04:24,240
ู‡ูŠู‡ุง. ุงู„ุขู† ูˆุงุถุญ ุฅู† X ุชู‚ูˆู„ ุฅู„ู‰ ุงู„ุตูุฑ. X ุชู‚ูˆู„ ุฅู„ู‰ ุงู„ุตูุฑ

54
00:04:24,240 --> 00:04:29,200
ู‡ุชู…ุฑ ุจุงู„ู€ Rational ูˆุงู„ู€ Irrational ุนุดุงู† ู‡ูŠูƒ ุตุนุจ ุฅู† ุฃู†ุง

55
00:04:29,200 --> 00:04:32,600
ุฃุชุญุฏุซ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุฌุงุฏ ุงู„ู€ Derivative ู…ุจุงุดุฑุฉ ู…ู† 

56
00:04:32,600 --> 00:04:36,130
ุงู„ุขู† ุฃูˆ ู…ู† ุงู„ู€ Two Branches ุงู„ู„ูŠ ุนู†ุฏูŠ. ู„ุง ุจู‚ุฏุฑ ุฃุฎุฏ ู…ู†

57
00:04:36,130 --> 00:04:40,030
ุงู„ูŠู…ูŠู† ูˆู„ุง ุฃุฎุฏ ู…ู† ุงู„ูŠุณุงุฑ ู„ุฅู†ู‡ ุนู†ุฏูŠ ู…ู† ุงู„ูŠู…ูŠู† ุฃูˆ ู…ู† 

58
00:04:40,030 --> 00:04:44,130
ุงู„ูŠุณุงุฑ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‚ุงุจู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุนุฏุงุฏ ุงู„ู€

59
00:04:44,130 --> 00:04:48,110
Rational ู„ู„ู€ Rational. ูุนุดุงู†ูƒ ุฃุณู„ู… ุดูŠุก ุฅู†ู‡ ู†ุณุชุฎุฏู…

60
00:04:48,110 --> 00:04:52,650
ุงู„ุชุนุฑูŠู ููŠ ุฅุซุจุงุช ู‡ุฐุง. ูŠุนู†ูŠ ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ู‡ุฐุง ุงู„ูƒู„ุงู…

61
00:04:53,270 --> 00:04:58,090
ูƒูŠู ุจุฏูŠ ุฃุซุจุชู‡ุŸ ุจุฏูŠ ุฃุซุจุช ู…ุง ูŠุนู†ูŠ ุจุฏูŠ ุฃุตู„ ู„ูƒู„ ุฅุจุณู„ูˆู† 

62
00:04:58,090 --> 00:05:03,190
ุฃูƒุจุฑ ู…ู† 0 ุจุฏู„ุงุฌ ุฏู„ุชุง ุฃูƒุจุฑ ู…ู† 0. ุจุฏู„ุงุฌูŠุฉ ุญุงุฌูŠู„ูƒ ุฏู„ุชุง

63
00:05:03,190 --> 00:05:08,350
ุจุญูŠุซ ุฃู†ู‡ ู„ู…ุง ูŠูƒูˆู† ุงู„ู€ Absolute Value ู„ู€ F of X ู†ุงู‚ุต

64
00:05:08,350 --> 00:05:14,630
F of Zero ุนู„ู‰ X minus Zero ูŠูƒูˆู† ู†ุงู‚ุต Zero ุทุจุนุง

65
00:05:14,630 --> 00:05:19,790
Zero ู‡ุฐูŠ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†. ู‡ุฐุง ู…ุชู‰ุŸ Whenever

66
00:05:22,670 --> 00:05:28,470
x-0 ุฃูƒุจุฑ ู…ู† 0 ูˆุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฏู„ุชุง. ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู‡ 

67
00:05:28,470 --> 00:05:33,150
ุฃุซุจุชู‡ ุฃูˆ ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู‡ ุฃุซุจุชู‡. ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ุฅุฐุง ุฎู„ู‘ูŠู†ุง

68
00:05:33,150 --> 00:05:36,530
ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ูˆุฌุฏู‡ ุนุดุงู† ุฃุซุจุช ุฅู† ุงู„ู€ Limit ู‡ุฐุง

69
00:05:36,530 --> 00:05:43,110
ุจุณุงูˆูŠ 0. ู„ุงุญุธ ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ุฃูˆู„ ุดูŠุก ุงู„ู€ Absolute

70
00:05:43,110 --> 00:05:50,530
Value of F of X ู†ุงู‚ุต F of 0 ุนู„ู‰ X-0 ุงูŠุด ู‡ุชุณุงูˆูŠุŸ

71
00:05:51,590 --> 00:05:57,390
ู‡ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Absolute Value of F of X ุนู†ุฏูŠ ูŠุง X

72
00:05:57,390 --> 00:06:01,070
ุชุฑุจูŠุน ูŠู…ูŠู† ูŠุง ุตูุฑ. ุฎู„ู‘ูŠู†ู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ุฃูˆู„ ุดูŠุก. F of X

73
00:06:01,070 --> 00:06:06,010
ู†ุงู‚ุต F of Zero ุงู„ู„ูŠ ู‡ูˆ ุฌุฏุงุด ุจูŠุณุงูˆูŠ Zero ู„ุฅู†ู‡ F 

74
00:06:06,010 --> 00:06:10,130
of Zero ุจูŠุณุงูˆูŠ Zero ู„ุฅู†ู‡ Zero Rational. ุนู„ู‰ ุฅุฐู† ู‡ุฐุง

75
00:06:10,130 --> 00:06:16,230
ุตูุฑ ุนู„ู‰ X ู†ุงู‚ุต ุตูุฑ ุงู„ู„ูŠ ู‡ูˆ X. Absolute Value ู‡ุฐุง 

76
00:06:16,230 --> 00:06:22,790
ุงู„ู‚ูŠู…ุฉ ุงู„ุขู† ู„ุงุญุธ ุจุชุณุงูˆูŠ ูŠุง ุฅู…ุง ุงู„ู„ูŠ ู‡ูˆ X ุชุฑุจูŠุน ุนู„ู‰

77
00:06:22,790 --> 00:06:30,750
X Absolute Value ููŠ ุญุงู„ุฉ X is Rational ุฃูˆ ุจุชุณุงูˆูŠ

78
00:06:30,750 --> 00:06:37,450
ุงู„ู„ูŠ ู‡ูˆ ุตูุฑ ููŠ ุญุงู„ุฉ X ุดู…ุงู„ู‡ุง is Irrational. ู„ุฃู† 

79
00:06:37,450 --> 00:06:42,030
ู‚ูŠู… F of X ูŠุง X ุชุฑุจูŠุน ูŠุง ุตูุฑ ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ ูƒุชุจู†ุงู‡

80
00:06:42,030 --> 00:06:46,790
ุญุงู„ูŠู‹ุง. ุงู„ุขู† ู‡ุฐุง ุจุงู„ุธุจุท ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ Absolute 

81
00:06:46,790 --> 00:06:57,590
Value ู„ู„ X if X is Rational Zero if X is

82
00:06:57,590 --> 00:07:03,950
Irrational. ุงู„ุขู† ุงู„ุตูˆุฑุฉ ูˆุถุญุช. ุฎู„ู‘ูŠู†ุง ู†ุณู…ูŠ ู‡ุฐุง ุงู„ู„ูŠ

83
00:07:03,950 --> 00:07:09,900
ู‡ูˆ ูˆุงุญุฏ. ุงู„ุขู† ุญุถุฑุช ุนุดุงู† ุฃุตู„ ู„ู„ู†ู‡ุงูŠุฉ ุงู„ู„ูŠ ุฃู†ุง ูƒุงุชุจู‡ุง

84
00:07:09,900 --> 00:07:13,800
ู‡ู†ุง ูˆุงุดูˆู ุงูŠุด ุงู„ู€ Delta ุงู„ู„ูŠ ุจุชุทู„ุน ุนู†ุฏูŠ. ุงู„ุขู† ุจุชุฏุนูŠ

85
00:07:13,800 --> 00:07:17,380
ู…ุงู„ูŠ For every Epsilon ุฃูƒุจุฑ ู…ู† ุตูุฑ ุฃู†ุง ุจู‚ูˆู„ There

86
00:07:17,380 --> 00:07:21,800
exists Delta ู‡ุชุณุงูˆูŠ ู…ู† ุงู„ู€ Epsilon. ู‡ุชุฌุฏ ุชุดูˆููˆุง ู„ูŠุด 

87
00:07:21,800 --> 00:07:26,980
There exists Delta ุจุณุงูˆูŠ Epsilon Such that if X

88
00:07:26,980 --> 00:07:35,210
minus 0 ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† Delta Then ู‡ุฐุง ู…ุนู†ุงุชู‡

89
00:07:35,210 --> 00:07:37,870
ุงูŠุดุŸ ุฅู† ุฅุจุณู„ ูŠูˆุช ููŠู‡ุง ุงู„ู€ X ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† 

90
00:07:37,870 --> 00:07:41,870
ู…ูŠู†ุŸ ู…ู† ุฏู„ุชุง. ุฅุฐุง ุงุฎุชุฑุช ุฏู„ุชุง ุงูŠุด ุจุชุณุงูˆูŠ ูˆู‡ูŠ ุงู„ู„ูŠ 

91
00:07:41,870 --> 00:07:47,850
ู‡ุชุฎู„ุต ู…ู† ุงู„ู…ูˆุถูˆุน Then ุงู„ู„ูŠ ู‡ูˆ F of X ู†ู‚ุต F of Zero

92
00:07:47,850 --> 00:07:50,970
ุนู„ู‰ 

93
00:07:50,970 --> 00:07:57,790
X minus Zero ู‡ูˆ ุทุจุนู‹ุง ู†ู‚ุต ุงู„ุตูุฑ ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡ุง ุงู„ู€

94
00:07:57,790 --> 00:08:01,520
Derivative ุงู„ู…ุชูˆู‚ุน ุนู„ูŠุง ู‡ุฐู‡ ุจุงู„ุธุจุท ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ู‡ูˆ

95
00:08:01,520 --> 00:08:05,920
ุงู„ู„ูŠ ููˆู‚ ุทู„ุน ุงูŠุด ุนู†ุฏูŠุŸ ู‡ุฐุง ุจุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฅุฐุง 

96
00:08:05,920 --> 00:08:09,760
ูƒุงู†ุช X Rational ูˆ 0 ุฅุฐุง ูƒุงู†ุช X Irrational ูŠุนู†ูŠ

97
00:08:09,760 --> 00:08:15,400
ุจู…ุนู†ู‰ ุขุฎุฑ ุจุณุงูˆูŠ Absolute Value ู„ู€ X if X is

98
00:08:15,400 --> 00:08:23,530
Rational ูˆ 0 if X is Irrational. In both cases ุงู„ู„ูŠ 

99
00:08:23,530 --> 00:08:27,590
ู‡ูŠ ุฅุฐุง ูƒุงู† ุจุณุงูˆูŠ Absolute Value ู„ู„ู€ X ู‡ูŠูƒูˆู† ุฃุตุบุฑ 

100
00:08:27,590 --> 00:08:31,250
ู…ู† Delta ุงู„ู„ูŠ ุฃู†ุง ุงุฎุชุฑุชู‡ุง ุดู…ุงู„ู‡ุง Epsilon ู‡ูŠูƒูˆู† 

101
00:08:31,250 --> 00:08:34,570
ุฃุตุบุฑ ู…ู† Epsilon. ูˆุฃูŠุถุง ู‡ุฐู‡ ู…ุชุญู‚ู‚ุฉ ู„ุฅู† ุงู„ู€ Epsilon 

102
00:08:34,570 --> 00:08:38,850
ุฏุงุฆู…ุง ุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† 0. ุฅุฐุง ุงู„ู„ูŠ ุญุตู„ุชู‡ ุฅู†ู‡ ู„ูƒู„

103
00:08:38,850 --> 00:08:42,490
Epsilon ุฃูƒุจุฑ ู…ู† 0 ุงู„ู„ูŠ ุฌูŠุช Delta ู„ู…ุง ูŠูƒูˆู† ู‡ุฐุง ุฃุตุบุฑ

104
00:08:42,490 --> 00:08:47,130
ู…ู† Delta ุจูŠุนุทูŠู†ูŠ ู‡ุฐุง ุฃุตุบุฑ ู…ู† Epsilon. ูˆู‡ุฐุง ูŠุนู†ูŠ 

105
00:08:47,130 --> 00:08:54,370
Hence Limit ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ F of X ู†ุงู‚ุต F of 0 

106
00:08:54,370 --> 00:09:01,690
ุนู„ู‰ X minus 0 ู„ู…ุง X ุชุฑูˆุญ ู„ู„ุตูุฑ ุจุณุงูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ

107
00:09:01,690 --> 00:09:12,870
ุงู„ุตูุฑ. ูˆู‡ุฐุง ู‡ูˆ ุชุนุฑูŠู ู…ู† ุงู„ู€ F prime ุนู†ุฏ 0 That is F

108
00:09:12,870 --> 00:09:18,740
prime at 0 ุจุณุงูˆูŠุฉ 0. ูˆููŠ ู†ูุณ ุงู„ูˆุงุฌุจ ุทุจุนู‹ุง ุฃุซุจุชู†ุง ุงู„ู€

109
00:09:18,740 --> 00:09:25,960
Existence ู„ู„ู€ F prime ุนู†ุฏ ุงู„ู€ Zero. ุฃูŠ ุณุคุงู„ุŸ ุทูŠุจ

110
00:09:25,960 --> 00:09:30,840
ู†ูŠุฌูŠ ุงู„ุขู† ู†ุดูˆู ุงู„ุณุคุงู„ ุงู„ุซุงู†ูŠ. ุฎู„ูŠู†ุง ู†ู‚ูˆู„ ุงู„ุณุคุงู„ ุงู„ุฑุงุจุน

111
00:09:30,840 --> 00:09:44,220
ู†ูŠุฌูŠ ู„ุณุคุงู„ 7 ุงู„ุขู†.

112
00:09:44,220 --> 00:09:48,100
ุณุคุงู„ 7 ุงูŠุด ุงู„ู„ูŠ ุจูŠู‚ูˆู„ู‡ุŸ ุณุคุงู„ 7 ุงู„ู„ูŠ ุจูŠู‚ูˆู„ู‡ ุณุคุงู„ 

113
00:09:48,100 --> 00:09:52,420
7 ู…ุงู„ูŠ ุนู†ุฏูŠ

114
00:09:52,420 --> 00:09:55,740
Suppose

115
00:09:55,740 --> 00:09:59,320
that F ู…ู† R ู„ู€ R is Differentiable at C. ูŠุนู†ูŠ ู†ูุชุฑุถ

116
00:09:59,320 --> 00:10:04,520
ุฃู†ู‡ F ู‚ุงุจู„ ู„ู„ุงุดุชู‚ุงู‚ ุนู†ุฏ C. ูˆู†ูุชุฑุถ ุฅู† F of C ู‚ูŠู…ุฉ ุงู„ู€

117
00:10:04,520 --> 00:10:07,920
Function ุนู†ุฏ C ุจุณุงูˆูŠุฉ 0. ู„ุฃู† ุจู‚ูˆู„ ู„ุดู‡ุฏุงุช ุงู„ู€ Absolute 

118
00:10:07,920 --> 00:10:10,960
Value ู„ู„ F of X ุงู„ู„ูŠ ู‡ูŠ ู†ุณู…ูŠู‡ุง G of X is 

119
00:10:10,960 --> 00:10:14,080
Differentiable at C If and only if F

120
00:10:14,080 --> 00:10:21,740
prime of C ุจุชุณุงูˆูŠ 0. ุฅุฐุง ู†ุงุฎุฏ ู„ูƒ F ู…ู† R ู„ุนู†ุฏ R ูˆ

121
00:10:21,740 --> 00:10:30,810
ุฌุงูŠู„ูƒ ุฅู† F prime ุนู†ุฏ C Exist ู…ุนุทูŠูƒ ุฅูŠุงู‡ุง ุฃูˆ ูˆู…ุนุทูŠูƒ

122
00:10:30,810 --> 00:10:37,390
ุงู„ู„ูŠ ู‡ูˆ F of C ุจุชุณุงูˆูŠ ุตูุฑ ูˆุจู‚ูˆู„ ู„ูŠ Prove that ุฃู†ู‡

123
00:10:37,390 --> 00:10:42,370
G of X ุจุณุงูˆูŠ ุงู„ู€ Absolute Value ู„ู„ู€ F of X is 

124
00:10:42,370 --> 00:10:49,810
Differentiable at C If and only if F prime ุนู†ุฏ ุงู„ู€ 

125
00:10:49,810 --> 00:10:57,880
C ุงูŠุด ุจุชุณุงูˆูŠุŸ ุจุชุณุงูˆูŠ ุตูุฑุŒ ู…ุธุจูˆุทุŸ ุทูŠุจ ุดูˆู. ุงู„ุขู† ุฎู„ูŠู†ุง

126
00:10:57,880 --> 00:11:03,380
ุงูุชุฑุถ ุฃูˆู„ ุดูŠุก ุฅู† F prime ุนู†ุฏ C ุงูŠุด ุจุชุณุงูˆูŠุŸ ุตูุฑ. ู†ู‚ูˆู„

127
00:11:03,380 --> 00:11:09,320
Suppose proof. Suppose

128
00:11:09,320 --> 00:11:15,580
Suppose 

129
00:11:15,580 --> 00:11:23,120
that F prime at C ุจุชุณุงูˆูŠ ุตูุฑ. ุงูŠุด ู‡ุฐุง ุจูŠุนู†ูŠุŸ ุฅู† Then

130
00:11:23,120 --> 00:11:25,940
Limit

131
00:11:27,220 --> 00:11:36,680
F of X ู†ุงู‚ุต F of C ุนู„ู‰ X minus C ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ C

132
00:11:36,680 --> 00:11:40,240
ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ ุตูุฑ ู„ุฃู† ู‡ุฐุง ุชุนุฑูŠู ู…ูŠู†ุŸ F ุจุฑุงูŠู†

133
00:11:40,240 --> 00:11:46,000
ุจูŠุณุงูˆู‰ ุตูุฑ. ูˆ F of C ุงูŠุด ู…ุนุทูŠู†ูŠ ุฅูŠุงู‡ุŸ ุจูŠุณุงูˆูŠ ุตูุฑ ู„ุฃู†

134
00:11:46,000 --> 00:11:53,260
ุจูŠุณุงูˆู‰ Limit F of X ุนู„ู‰ X minus C ู„ู…ุง X ุชุฑูˆุญ ู„ู…ูŠู†ุŸ 

135
00:11:53,260 --> 00:11:58,730
ู„ู„ู€ C. ู…ุฏุงู…ุฉ ุงู„ู€ Limit ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ุฅุฐุง ุงู„ู€ Limit ู…ู† 

136
00:11:58,730 --> 00:12:02,270
ุงู„ูŠู…ูŠู† ูˆุงู„ู€ Limit ู…ู† ุงู„ูŠุณุงุฑ ุฃูŠุด ุจุฑุถู‡ ู…ุงู„ู‡ุงุŸ ู…ูˆุฌูˆุฏุฉ

137
00:12:02,270 --> 00:12:06,710
ู…ุงุดูŠ ุงู„ุญุงู„. ุฃู†ุง ุงู„ุขู† ุบุฑุถูŠ ุฅู† ุฃูˆ ุฃุซุจุช ุฅู† G of X ุจุณุจุจ

138
00:12:06,710 --> 00:12:09,190
Absolute Value of F of X ุฃูŠุด ู…ุงู„ู‡ุงุŸ Is

139
00:12:09,190 --> 00:12:14,110
Differentiable at C. ู…ุงุดูŠ. ุงู„ุขู† ุงูŠุด ุงู„ู„ูŠ ุจุฏูŠ ุฃุซุจุชู‡

140
00:12:14,110 --> 00:12:22,370
ุจู…ุนู†ู‰ ุขุฎุฑ ุจุฏูŠ ุฃุซุจุช ู„ูƒ ุฅู†ู‡ Limit ุงู„ู€ G of X ู†ุงู‚ุต G of C 

141
00:12:22,370 --> 00:12:29,430
C ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C exist ุจุดูŠุก ุฅุฐุง

142
00:12:29,430 --> 00:12:31,930
ุฃุซุจุชูˆุง ู…ุนู†ุงุชู‡ ุฃุซุจุชุชูˆุง ุฅู† ุงู„ู€ G is differentiable

143
00:12:31,930 --> 00:12:36,970
at C ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ุจุงู„ุฏุซุจุช limit ู„ู„ู€ absolute value 

144
00:12:36,970 --> 00:12:42,660
ู„ู„ู€ F of X ู†ุงู‚ุต ุงู„ู€ g of x ู†ุงู‚ุต ุงู„ู€ absolute value of f

145
00:12:42,660 --> 00:12:48,960
of c ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุจุชุฑูˆุญ ู„ู„ู€ C exist ุจุฏูŠ ุฃุดูˆู

146
00:12:48,960 --> 00:12:53,240
ู‡ุฏุง ู„ุณู‡ exist ูˆู„ุง ู„ุฃ ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช ุงู„ู„ูŠ ู‡ูˆ limit

147
00:12:53,240 --> 00:12:58,900
absolute value of f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C as X ุจุชุฑูˆุญ

148
00:12:58,900 --> 00:13:07,520
ู„ู„ู€ C ุฃุดู…ุงู„ู‡ exist ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ ุงู„ุขู† ูˆุงุถุญ

149
00:13:08,360 --> 00:13:13,000
ุนู†ุฏูŠ ู…ู† ุงู„ู„ูŠ ููˆู‚ ุงู„ู€ limit ู„ู„ู€ F of X ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C

150
00:13:13,000 --> 00:13:19,160
as X ุจุชุฑูˆุญ ู„ู„ู€ C ุฅู†ู‡ ุฅูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ ุตูุฑุŒ ู…ุธุจูˆุทุŸ

151
00:13:19,160 --> 00:13:27,160
ุฅุฐุง ู‡ูŠูƒูˆู† ุนู†ุฏูŠ limit ุงู„ู„ูŠ ู‡ูˆ limit absolute value

152
00:13:27,160 --> 00:13:33,400
ู„ู„ู€ limit ุฎู„ูŠู†ูŠ ุฃูƒุชุจู‡ุง ุจุณ ููŠ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ุงู„ุตูุฑ ู‡ุฐุง

153
00:13:33,400 --> 00:13:43,200
ุงู„ู„ูŠ ุจุฏุฃุชุจุชู‡ ุงู‡ ุฅู†ู‡ exist ุนู†ุฏูŠ ุงู„ู€ absolute value ู„

154
00:13:43,200 --> 00:13:52,020
limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ุงู„ู„ูŠ ู‡ูˆ

155
00:13:52,020 --> 00:13:58,020
ู…ู† ุงู„ูŠู…ูŠู† ูˆู…ู† ุงู„ูŠุณุงุฑ existุŒ ู…ุธุจูˆุทุŸ ูˆุงุถุญุฉ ูˆูŠุณุงูˆูŠ

156
00:13:58,020 --> 00:14:05,160
ุงู„ู„ูŠ ู‡ูˆ limit absolute value ู„ู„ู€ F of X ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต

157
00:14:05,160 --> 00:14:12,420
C as X ุจุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ู€ C ุจุดูŠุก

158
00:14:12,420 --> 00:14:16,820
ุงู„ุญุงู„ ุงู„ุขู† ู…ู† ุงู„ูŠู…ูŠู† ูˆู…ู† ุงู„ูŠุณุงุฑ ูƒู„ู‡ ู‡ูŠูƒูˆู† ู…ูˆุฌูˆุฏ

159
00:14:16,820 --> 00:14:20,480
ุจู†ุงุก ุนู„ู‰ ู‡ุฐุง ุฅู†ู‡ ู…ูˆุฌูˆุฏ ุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏ ู…ู† ุงู„ูŠู…ูŠู† ูˆู‡ู†ุง

160
00:14:20,480 --> 00:14:25,860
ู…ู† ุงู„ูŠู…ูŠู† ูุจุตูŠุฑ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† limit absolute value

161
00:14:25,860 --> 00:14:32,140
ู„ู€ F of X ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุจุชุฑูˆุญ ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู†

162
00:14:32,140 --> 00:14:38,330
ุงู„ูŠู…ูŠู† ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑุตุงุฑ ู…ูˆุฌูˆุฏ ูˆุฅูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ

163
00:14:38,330 --> 00:14:42,350
ุตูุฑ ู‡ุฐุง ุฎู„ู‘ูŠู‡ ู„ุฅู†ู‡ ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู†ุง ู†ุตู„ู‘ู‡ ู„ุฃู† limit

164
00:14:42,350 --> 00:14:47,310
ุตุงุฑ ุนู†ุฏูŠ ู…ุนู†ู‰ ุขุฎุฑ limit absolute value of f of x

165
00:14:47,310 --> 00:14:53,850
ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ ุตูุฑ

166
00:14:53,850 --> 00:14:58,360
existู„ุงุญุธูˆุง ู‚ุงุนุฏ ุฑุงูŠุญ ู„ุฃุซุจุช ุฃู† ู‡ุฐุง exist ุฏู‡ ุฎุฏ ุงู„ุขู†

167
00:14:58,360 --> 00:15:03,520
ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ุฎุฏ ู„ุฃู† ุฃุญุณุจ similarly ุนู†ุฏูŠ ุตูุฑ

168
00:15:03,520 --> 00:15:08,840
ุจูŠุณุงูˆูŠ absolute value of limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C

169
00:15:08,840 --> 00:15:15,100
ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ูˆูŠุณุงูˆูŠ ุนุจุงุฑุฉ ุนู†

170
00:15:15,100 --> 00:15:19,960
limit absolute value of f of x ุนู„ู‰ absolute value

171
00:15:19,960 --> 00:15:25,900
of X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ู‡ุฐู‡

172
00:15:25,900 --> 00:15:34,580
ู†ูุณู‡ุง ุจูŠุณุงูˆูŠ limit ุฃูˆ ุจูŠุณุงูˆูŠ ุณุงู„ุจ limit f of x

173
00:15:34,580 --> 00:15:42,270
absolute value ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู…ู†

174
00:15:42,270 --> 00:15:47,030
ุงู„ูŠุณุงุฑุŒ ู„ูŠุดุŸ ู„ุฃู† X ุฃุตุบุฑ ู…ู† CุŒ ุฅุฐุง X ู†ุงู‚ุต C ุณุงู„ุจุฉ

175
00:15:47,030 --> 00:15:50,230
ุฅุฐุง ุงู„ู€ absolute value ุณุงู„ุจ ุฅู„ูŠู‡ุง ูˆุงุฎุฏุช ุงู„ุณุงู„ุจ ุจุฑุง

176
00:15:50,230 --> 00:15:54,990
ู‡ุฐุง ุงู„ุขู† ุงู„ู…ุฎุถุฑ ุจูŠุณุงูˆูŠ ุตูุฑุŒ ุฅุฐุง ู‡ุฐุง ู„ุญุงู„ู‡ ุจุฑุถู‡ ุฅูŠุด

177
00:15:54,990 --> 00:16:01,270
ู…ุงู„ู‡ุŸ ุตูุฑุŒ ุฅุฐุง limit absolute value ู„ู„ู€ F of X ุนู„ู‰

178
00:16:01,270 --> 00:16:04,870
X ู†ุงู‚ุต CุŒ ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ C ู…ู† ุงู„ูŠุณุงุฑุŒ ุจุฑุถู‡ ุฅูŠุด

179
00:16:04,870 --> 00:16:10,450
ุจูŠุณุงูˆูŠุŸ ุจูŠุณุงูˆูŠ ุตูุฑุŒ ู„ุงุญุธ ุฅู† ุงู„ู€ limit ู…ู† ุงู„ูŠู…ูŠู† ูˆุงู„ู€

180
00:16:10,450 --> 00:16:15,890
limit ู…ู† ุงู„ูŠุณุงุฑ ู…ูˆุฌูˆุฏ ูˆุจุณุงูˆูŠ 0 ู…ุชุณุงูˆูŠูŠู† ูŠุนู†ูŠ ุงู„ุขู†

181
00:16:15,890 --> 00:16:23,130
ุงู„ู€ limit ู‡ุฐุง ุตุงุฑ ุฅูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ 0 ุฅุฐุง ุงู„ุขู† ู‡ุฐุง

182
00:16:23,130 --> 00:16:29,870
ุงู„ุขู† ุจู†ู‚ูˆู„ู‡ ูƒู„ู‡ ุชุญุช ู‡ุฐุง ูˆุจู‚ูˆู„ hence ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ G

183
00:16:29,870 --> 00:16:38,310
prime of C ุจูŠุณุงูˆูŠ limit of g of x ู†ู‚ุต g of c ุนู„ู‰ ุงู„ู€ X

184
00:16:38,310 --> 00:16:46,870
ู†ุงู‚ุต C as X โ†’ C ุจูŠุณุงูˆูŠ ุญุณุจ ุงู„ู„ูŠ ุนู†ุฏูŠ ู…ู† ู‡ู†ุง ูˆู…ู†

185
00:16:46,870 --> 00:16:55,310
ู‡ู†ุง ูˆู…ู† ู‡ู†ุง ู‡ูŠุณุงูˆูŠ ุตูุฑ ุงู„ุขู† conversely ุจุชูุชุฑุถ

186
00:16:55,310 --> 00:16:58,090
ุทุจุนุงู‹ ุฅู† ุงู„ู€ conversely ู‡ูŠูƒูˆู† ุงู„ุฎุทูˆุงุช ูƒุซูŠุฑ ู…ุดุงุจู‡ุฉ

187
00:16:58,090 --> 00:17:03,350
ู„ู„ูŠ ู‡ู†ุง ูŠุนู†ูŠ ูƒุซูŠุฑ ุงู„ู„ูŠ ุงุณุชุฎุฏู…ุชู‡ ู‡ู†ุง ู‡ุณุชุฎุฏู…ู‡ ููŠ

188
00:17:03,350 --> 00:17:03,930
ุงู„ู„ูŠ ุจุนุฏู‡ุง

189
00:17:12,670 --> 00:17:17,790
Conversely suppose that

190
00:17:17,790 --> 00:17:25,890
g of x ุณูˆุงุก absolute value ุฃูˆ f of x ุงู„ู„ูŠ

191
00:17:25,890 --> 00:17:33,550
ู‡ูˆ is differentiable at C ุจุฏุง ูˆุฌุฏู„ูƒ ุงู„ุขู† ุฃุซุจุชู„ูƒ ุฅู†

192
00:17:33,550 --> 00:17:39,650
f prime of C ุฅูŠุด ู…ุง ู„ู‡ุง ุจุชุณุงูˆูŠ ุตูุฑ ูŠุนู†ูŠ ุจุฏุง ุฃุซุจุช

193
00:17:39,650 --> 00:17:46,880
limit f of x ู†ุงู‚ุต f of C ุงู„ู„ูŠ ู‡ูŠ ุตูุฑ ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C

194
00:17:46,880 --> 00:17:51,160
ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ุฅูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ ุตูุฑ ุจูƒูˆู† ุฎู„ุตุช

195
00:17:51,160 --> 00:17:58,500
ุงู„ุขู† issue ู…ุดุงุจู‡ ุนู†ุฏ ุงู„ุขู† limit

196
00:17:58,500 --> 00:18:05,180
ู‡ุฐุง exist ุนู†ุฏ ุงู„ู€ C ุฅุฐุง ุนู†ุฏูŠ ุตุงุฑ ุงู„ู€ g prime of C exist

197
00:18:05,180 --> 00:18:10,430
ูˆูŠุณุงูˆูŠ ุญุณุจ ุงู„ุญุฏูŠุซ ุงู„ู„ูŠ ู‡ู†ุง limit absolute value of

198
00:18:10,430 --> 00:18:18,570
f of x ู†ุงู‚ุต ุงู„ู€ absolute value of f of C ุตูุฑ ุนู„ู‰ ุงู„ู€ X

199
00:18:18,570 --> 00:18:26,310
ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ุฃุดู…ุงู„ู‡ exist ู…ุนูŠู‘ุŸ ุทูŠุจ ุดูˆู

200
00:18:26,310 --> 00:18:34,960
ุงู„ุขู† ุนู†ุฏูŠ ุฅุฐุง ุงุญุณุจ ู„ูŠ limit f of x ุงู„ู„ูŠ ุญุณุจู†ุงู‡ุง ู‚ุจู„

201
00:18:34,960 --> 00:18:39,660
ุจุดูˆูŠุฉ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ู…ู†

202
00:18:39,660 --> 00:18:47,020
ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ limit ู„ู„ู€ absolute value ู„ู€ f

203
00:18:47,020 --> 00:18:53,780
of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ู…ู† ุงู„ูŠู…ูŠู† ู„ุฃู† ุงู„ู€

204
00:18:53,780 --> 00:19:01,840
X ุฃูƒุจุฑ ู…ู† ุงู„ู€ C ูˆุงุถุญุฉ ุงู„ุขู† ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ุงุญุณุจ ู„ูŠ ุงู„ู€

205
00:19:01,840 --> 00:19:08,060
absolute value ู„ู„ู€ limit ู„ู„ู€ F of X ุทุจุนุงู‹ ู‡ุฐุง ุฅูŠุด

206
00:19:08,060 --> 00:19:15,620
ู‡ูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ g prime of CุŒ ู…ุธุจูˆุทุŸ ุจูŠุณุงูˆูŠ g prime of

207
00:19:15,620 --> 00:19:23,290
CุŒ ู…ูˆุฌูˆุฏุŒ limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C

208
00:19:23,290 --> 00:19:28,570
ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ุจูŠุณุงูˆูŠ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุดูˆูŠุฉ ุณุงู„ุจ

209
00:19:28,570 --> 00:19:33,530
limit absolute value of f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X

210
00:19:33,530 --> 00:19:41,050
ุชุฑูˆุญ ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ุงู„ุขู† ูˆุงุถุญ ุจู…ุง ุฃู† ู‡ุฐู‡

211
00:19:41,050 --> 00:19:51,470
exist ุฅุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูˆู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฒูŠ ุจุนุถ ุงู„ุขู† ู‡ุฐุง

212
00:19:51,470 --> 00:19:56,590
ุจูŠุณุงูˆูŠ ู†ุงู‚ุต ู‡ุฐุง ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ู†ุดูŠู„ ุงู„ู†ุงู‚ุต ู…ู† ู‡ู†ุง ูˆู†

213
00:19:56,590 --> 00:20:03,390
ุถุฑุจู‡ ู‡ู†ุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ู…ู‚ุฏุฑูŠู† ู‡ุฏูˆู„ุฉ ุจู…ุง ุฅู†ู‡ ู…ุชุณุงูˆูŠูŠู†

214
00:20:03,390 --> 00:20:10,310
ู„ุฅู† ุงู„ุงุชู†ูŠู† ุฅูŠุด ุจูŠุณุงูˆูŠู† ุงู„ู€ g prime of C ู…ุธุจูˆุท ุฅุฐุง

215
00:20:10,310 --> 00:20:13,390
ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฅุฐุง ุตุงุฑ

216
00:20:13,390 --> 00:20:20,940
ุนู†ุฏูŠ ุงู„ู€ limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C

217
00:20:20,940 --> 00:20:29,560
ู…ู† ุงู„ูŠู…ูŠู† absolute value ุจูŠุณุงูˆูŠ ู†ุงู‚ุต limit f of x

218
00:20:29,560 --> 00:20:34,600
ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ

219
00:20:34,600 --> 00:20:41,500
ูˆุงุถุญุฉุŸ ู„ูƒู† ุฃุตู„ุงู‹ ุนู†ุฏูŠ ู‡ุฐุง

220
00:20:43,370 --> 00:20:49,010
ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุชู†ูŠู† ุจูŠุณุงูˆูŠ ู†ูุณ ุงู„ู‚ูŠู…ุฉ ู…ุงุดูŠ ุงู„ุญุงู„

221
00:20:49,010 --> 00:20:55,850
ุฅุฐุง ู„ุงุฒู… ุนู†ุฏูŠ ู…ู† ู‡ู†ุง g prime ูˆ g prime ุงู„ู„ูŠ ู‡ูˆ

222
00:20:55,850 --> 00:21:00,210
ุตุงุฑ ุจูŠุณุงูˆูŠ ู†ูุณ ุงู„ู‚ูŠู…ุฉ ุฅุฐุง ู‡ูŠุทู„ุน ุงู„ู€ g prime ุฅูŠุด

223
00:21:00,210 --> 00:21:05,530
ู…ุงู„ู‡ ุจูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุตุงุฑ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ูƒู„ู‡ ุฅูŠุด ุจุฏู‡ ูŠุณุงูˆูŠ

224
00:21:05,530 --> 00:21:08,650
ุตูุฑ ูˆู‡ุฐุง ุจูŠุณุงูˆูŠ ุตูุฑ ูŠุนู†ูŠ ุงู„ู€ limit ู…ู† ุงู„ูŠู…ูŠู† ูˆุงู„ู€

225
00:21:08,650 --> 00:21:12,070
limit ู…ู† ุงู„ูŠุณุงุฑ ู…ุชุณุงูˆูŠูŠู† ุฅุฐุง ุตุงุฑุช limit f of x ุนู„ู‰

226
00:21:12,070 --> 00:21:23,310
X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ุจุฏู‡ุง ุชุณุงูˆูŠ ุตูุฑ ุฃูŠ ุณุคุงู„ุŸ

227
00:21:23,310 --> 00:21:31,130
ุฒูŠ ู…ุง ุญูƒูŠู†ุงุŒ ุงู„ุขู† ุฅุญู†ุง ู‚ู„ู†ุง ุฅู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€ D ุจุฏูŠู†ุง D

228
00:21:31,130 --> 00:21:34,600
ุจูŠุณุงูˆูŠ f of x ุงู„ู€ differential ุจุงู„ุฃุฏ C ุฌุจู†ุง g prime

229
00:21:34,600 --> 00:21:37,500
ูˆูƒุชุจู†ุงู‡ุง ุจุงู„ุตูˆุฑุฉ ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ุจุนุฏูŠู† ุฃุฎุฏู†ุง ุงู„ู€

230
00:21:37,500 --> 00:21:40,120
absolute value ู„ู€ limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู… X

231
00:21:40,120 --> 00:21:45,200
ุชุฑูˆุญ ู„ู€ C positive ุทู„ุนุช ุนู†ุฏูŠ ุจูŠุณุงูˆูŠ g prime of C ูˆ

232
00:21:45,200 --> 00:21:48,680
ุฃุฎุฏู†ุง ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต ู‡ุฐู‡ ุทู„ุนุช ุนู†ุฏูŠ ุจุฑุถู‡ g prime

233
00:21:48,680 --> 00:21:53,920
ุงู„ุงุชู†ูŠู† ุงู„ู€ C ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุจูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูˆุงุญู†ุง

234
00:21:53,920 --> 00:21:57,640
ุจู†ุนุฑู ููŠ ุงู„ุฃุตู„ ุฅู† f prime of C exist ูŠุนู†ูŠ

235
00:21:57,640 --> 00:22:01,900
differentiable ูŠุนู†ูŠ ุงู„ู€ limit ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู…ูˆุฌูˆุฏ ูˆู…ู†

236
00:22:01,900 --> 00:22:05,100
ุงู„ูŠู…ูŠู† ูˆู…ู† ุงู„ูŠุณุงุฑ ุฒูŠ ุจุนุถ ูŠุนู†ูŠ ูŠุนู†ูŠ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ

237
00:22:05,100 --> 00:22:07,500
ู‡ุฐุง ู…ู† ุงู„ูŠู…ูŠู† ูˆู‡ุฐุง ู…ู† ุงู„ูŠุณุงุฑ ูŠุนู†ูŠ ููŠ ุงู„ูˆุงู‚ุน ู‡ุฐุง

238
00:22:07,500 --> 00:22:10,960
ุงู„ู„ูŠ ุฌูˆุง ู‡ูˆ ู†ูุณู‡ ุงู„ู„ูŠ ุฌูˆุง ุจูŠุณุงูˆูŠ limit of f of x ูŠุนู†ูŠ

239
00:22:10,960 --> 00:22:15,780
ุจู…ุนู†ู‰ ุขุฎุฑ absolute value ู„ู€ limit of f of x ุนู„ู‰ ุงู„ู€ X

240
00:22:15,780 --> 00:22:22,100
ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู‡ูˆ ู†ูุณู‡ ุณุงู„ุจ limit ู„ู„ู€ f of

241
00:22:22,100 --> 00:22:27,400
x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู…ู† ูˆูŠู† ู…ู†

242
00:22:27,400 --> 00:22:31,540
ุงู„ูŠุณุงุฑ ู‡ูˆ ู†ูุณู‡ ู„ู„ู€ C ู…ู† ูˆูŠู† ุชุจุช ู‡ุฐู‡ ู„ุฃู† ุงุญู†ุง ุจู†ู‚ูˆู„

243
00:22:31,540 --> 00:22:34,560
f prime of C exist ูŠุนู†ูŠ ุงู„ู€ limit ู‡ุฐุง ู…ูˆุฌูˆุฏ ูˆู…ู†

244
00:22:34,560 --> 00:22:37,360
ุงู„ูŠู…ูŠู† ูˆู…ู† ุงู„ูŠุณุงุฑ ุฒูŠ ุจุนุถ ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู†ูุณ

245
00:22:37,360 --> 00:22:41,200
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅุฐุง ุตุงุฑ ุนู†ุฏ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจูŠุณุงูˆูŠ

246
00:22:41,200 --> 00:22:46,800
ุตูุฑ ู„ุฃู† ุงู„ุงุชู†ูŠู† ุจูŠุณุงูˆูŠุง ุจูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ limit f

247
00:22:46,800 --> 00:22:50,880
of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ absolute value as X

248
00:22:50,880 --> 00:22:56,100
ุจุชุฑูˆุญ ู„ู„ู€ C ุจูŠุณุงูˆูŠ ุตูุฑ ูˆู…ู† ุซู… ุงู„ู„ูŠ ุฌูˆุง ุจูŠุณุงูˆูŠ ุตูุฑ ู‡ูˆ

249
00:22:56,100 --> 00:22:58,740
ู…ูŠู† ู‡ูˆ ุงู„ู„ูŠ ุฌูˆุง ู‡ุฐุง ุงู„ู„ูŠ ูƒู†ุง ุจุฏู†ุง ู†ุตู„ู‡ ู…ู† ุงู„ุฃูˆู„

250
00:22:58,740 --> 00:23:04,260
ุงู„ู„ูŠ ู‡ูˆ f prime of C ุจุชุณุงูˆูŠ ุตูุฑ ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู‡ุฐุง

251
00:23:04,260 --> 00:23:10,300
ุชูˆุถูŠุญ ุจุดูƒู„ ูƒุงู…ู„ ู„ู„ูŠ ุตุงุฑ ููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุชุฌุงู‡

252
00:23:10,300 --> 00:23:16,200
ุงู„ุซุงู†ูŠ ู†ูŠุฌูŠ ู„ุณุคุงู„ ุจุนุฏ ู…ุง ุฎู„ุตู†ุง ุงู„ุณุคุงู„ ุณุจุนุฉ ู†ูŠุฌูŠ

253
00:23:16,200 --> 00:23:23,420
ู„ุณุคุงู„ ุชุณุนุฉ ุชุณุนุฉ ุฅูŠุด ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ุชุณุนุฉ ู†ุดูˆู ุฅูŠุด ุณุคุงู„

254
00:23:23,420 --> 00:23:31,360
ุชุณุนุฉ ุจู‚ูˆู„ ูˆู†ุญู„ ุณุคุงู„ ุชุณุนุฉ ุณุคุงู„ ุชุณุนุฉ ุจู‚ูˆู„ ู„ูŠู‡

255
00:23:31,360 --> 00:23:39,110
ุจุงุฎุชุตุงุฑ ุฅู†ู‡ ู„ูˆ ูƒุงู† ุนู†ุฏู‡ ุงู„ู€ function of ุนุจุงุฑุฉ ุนู† ู…ู†

256
00:23:39,110 --> 00:23:43,130
R ู„ู€ R even function ุทุจุนุงู‹ ุนุงุฑููŠู† ุฅูŠุด ุงู„ู€ even ุงู„ู„ูŠ

257
00:23:43,130 --> 00:23:49,130
ู‡ูˆ f ู†ุงู‚ุต x ุจูŠุณุงูˆูŠ f x ู„ูƒู„ x ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ R and

258
00:23:49,130 --> 00:23:54,310
has a derivative at every point then f prime is an

259
00:23:54,310 --> 00:23:58,190
odd function ูŠุนู†ูŠ ุจูŠู‚ูˆู„ ู„ูŠ ู„ูˆ ูƒุงู†ุช ุจุงุฎุชุตุงุฑ ูŠุนู†ูŠ ู„ูˆ

260
00:23:58,190 --> 00:24:01,730
ูƒุงู†ุช ุงู„ู€ f even ูˆุงู„ู€ derivative ู…ูˆุฌูˆุฏุฉ ุจุชูƒูˆู† ุงู„ู€

261
00:24:01,730 --> 00:24:07,010
derivative odd ูˆู„ูˆ ูƒุงู†ุช ุงู„ู€ derivative odd ุจุชูƒูˆู†

262
00:24:07,010 --> 00:24:11,350
ุงู„ู€ function ุงู„ู€ f prime ุฅูŠู‡ ุดู…ุงู„ู‡ุง is even ุงู†ุญู„

263
00:24:11,350 --> 00:24:16,970
ูˆุงุญุฏุฉ ู…ู† ู‡ู†ุง ูˆุงู„ุชุงู†ูŠุฉ similarly ุฒูŠู‡ุง ุงู„ุขู† ู„ู†ูุชุฑุถ f

264
00:24:16,970 --> 00:24:29,890
ู…ู† ุนู†ุฏ R ู„ุนู†ุฏ R be an odd differentiable function

265
00:24:29,890 --> 00:24:34,970
ู…ุงุดูŠ ุงู„ุญุงู„ show that

266
00:24:36,040 --> 00:24:44,360
f' is even a proof ุจุฏู†ุง ู†ุซุจุช ุฅู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€ f

267
00:24:44,360 --> 00:24:49,940
ุงู„ู„ูŠ ู‡ูŠ odd function ุจุฏูˆ ูŠูƒูˆู† ุนู†ุฏู‡ ูˆ

268
00:24:49,940 --> 00:24:52,320
differentiable ุจุฏูˆ ูŠูƒูˆู† ุนู†ุฏู‡ derivative ุฅู„ู‡ุง ุฅูŠู‡

269
00:24:52,320 --> 00:25:03,000
ุฅูŠุด even ู„ุฃู† let C element in R be arbitrary and

270
00:25:03,000 --> 00:25:04,180
fixed

271
00:25:06,310 --> 00:25:15,930
ู†ุงุฎุฏ ุงู„ู€ R ู†ุงุฎุฏ ุงู„ู€ C ุฃูŠ ุงู„ู„ูŠ ู‡ูˆ real number in

272
00:25:15,930 --> 00:25:23,360
R ู„ูƒู† ู†ุญูƒูŠ ุนู† ุฃูŠ ุดูŠุก ู…ุญุฏุฏ ุงู„ุขู† f prime of C ุจุฏุฃ

273
00:25:23,360 --> 00:25:29,060
ุฃุซุจุช ู„ูƒ ุฅู†ู‡ ู‡ูˆ ุจูŠุณุงูˆูŠ f prime of ู†ุงู‚ุต C ูŠุนู†ูŠ f prime

274
00:25:29,060 --> 00:25:34,920
is even ุฅุฐุง ุฎุฏ f prime ู†ุงู‚ุต C ูˆุงุจุฏุฃ ุญุณุจ ูˆูˆุงุตู„ูƒ ููŠ

275
00:25:34,920 --> 00:25:39,140
ุงู„ู†ู‡ุงูŠุฉ ุจูŠุณุงูˆูŠ f prime of C ุฅุฐุง f prime is even ุจูŠุณุงูˆูŠ

276
00:25:39,140 --> 00:25:49,380
limit ุงู„ู„ูŠ ู‡ูŠ f of x ู†ุงู‚ุต f of ู†ุงู‚ุต C ุนู„ู‰ x ู†ุงู‚ุต

277
00:25:50,570 --> 00:25:57,070
ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ x ุชุฑูˆุญ ู„ู…ูŠู† ู„ู€ ู†ุงู‚ุต C ู…ุธุจูˆุท

278
00:25:57,070 --> 00:26:05,550
ุทูŠุจ ูˆุจูŠุณุงูˆูŠ limit ุงู„ู€ f ุฅูŠุด ู…ุนุทูŠู†ุง ุฅูŠุงู‡ุง ุนุจุงุฑุฉ ุนู† odd

279
00:26:05,550 --> 00:26:12,250
ุฅูŠุด ูŠุนู†ูŠ odd ูŠุนู†ูŠ f of ู†ุงู‚ุต x ุจูŠุณุงูˆูŠ ู†ุงู‚ุต f of x

280
00:26:12,250 --> 00:26:16,590
ู…ุธุจูˆุท ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ู…ุง ู„ู‡ุง odd function ุงู„ู„ูŠ ู‡ูˆ 

281
00:26:16,590 --> 00:26:28,550
ุจูŠุณุงูˆูŠ limit F of x ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต f of ู†ุงู‚ุต x

282
00:26:28,550 --> 00:26:34,150
ูˆุงุถุญ ุฃู‡ุŸ

283
00:26:34,150 --> 00:26:37,150
f of ู†ุงู‚ุต x ุจูŠุณุงูˆูŠ ู†ุงู‚ุต f of x ูŠุนู†ูŠ f of x ุจูŠุณุงูˆูŠ

284
00:26:37,150 --> 00:26:41,230
ู†ุงู‚ุต f of ู†ุงู‚ุต x ูุงู„ุฌุฏ ุชุนุฑููˆุง ู„ูŠุด ุนู…ู„ุช ู‡ูŠูƒ ู„ุฃู†

285
00:26:41,230 --> 00:26:48,570
ู†ุงู‚ุต f of ู†ุงู‚ุต c ุงู„ุขู† f is odd ู…ุธุจูˆุท ุจูŠุตูŠุฑ ุฒุงุฆุฏ f 

286
00:26:48,570 --> 00:26:49,330
of c

287
00:26:52,220 --> 00:26:58,060
ุนู„ู‰ ุฎุฏ ุงู„ุขู† ู†ุงู‚ุต ู…ู† ู‡ู†ุง ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู†

288
00:26:58,060 --> 00:27:08,220
ู†ุงู‚ุต x ุงู„ุขู† ู†ุงู‚ุต ุงู„ c ู„ู…ุง x ุชุฑูˆุญ ู„ู…ูŠู† ู„ุณุงู„ุจ ุงู„ c

289
00:27:08,220 --> 00:27:14,040
ุงู„ x ุจุชุฑูˆุญ ู„ุณุงู„ุจ ุงู„ c ุฅุฐุง ูˆ ูู‚ุท ุฅุฐุง ุณุงู„ุจ ุงู„ x

290
00:27:14,040 --> 00:27:22,160
ุจุชุฑูˆุญ ู„ู…ูŠู† ุฅู„ู‰ ุงู„ c ุงู„ุขู† ุฎุฏ ู„ูŠ y ุจูŠุณุงูˆูŠ ุณุงู„ุจ ุงู„ x

291
00:27:22,160 --> 00:27:29,240
ูˆุงุณุชุจุฏู„ ุนุดุงู† ู†ูˆุถุญ ู„ูƒ ุฅูŠุงู‡ ุจูŠุณุงูˆูŠ limit ุงู„ุขู† ุฎุฏ ุงู„ุขู†

292
00:27:29,240 --> 00:27:38,320
ุนู†ุฏูŠ f  ุญูƒู…ุง ูƒุงู† ู†ู‚ุต  x  ุณู…ู‘ูŠู†ุง ุงู„ y limit ู†ุงู‚ุต F of y

293
00:27:38,320 --> 00:27:49,390
ุฒุงุฆุฏ f of c ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ y ุจุชุฑูˆุญ ุฅู„ู‰ ุงู„ c ูˆู‡ู†ุง y

294
00:27:49,390 --> 00:27:57,430
ู†ุงู‚ุต ุงู„ c ูˆู‡ู†ุง ููŠ ุนู†ุฏูŠ ุงูŠุด ุจุฑุถู‡ ู†ุงู‚ุต ุจุฑุง ู„ุฃู† ุฎุฏ ู…ู†

295
00:27:57,430 --> 00:28:01,670
ู‡ู†ุง ู†ุงู‚ุต ุนุงู…ู„ ู…ุดุชุฑูƒ ุฃูˆ ุถูŠุนู‡ ู…ุน ุงู„ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ู†ุง

296
00:28:01,670 --> 00:28:11,160
ู…ุง ูˆุงุถุญ ุฃู‡ ุจูŠุตูŠุฑ ุนู†ุฏูŠ y ุจูŠุณุงูˆูŠ limit f of y ู†ุงู‚ุต f of c 

297
00:28:11,160 --> 00:28:16,800
ุนู„ู‰ y ู†ุงู‚ุต c ู„ู…ุง y ุชุฑูˆุญ ู„ู„ c ูˆู‡ุฐุง ุนุจุงุฑุฉ ุนู† f

298
00:28:16,800 --> 00:28:22,440
prime ู„ู…ูŠู† ู„ู„ c ุจุฏุฃู†ุง ุจ f prime ู†ุงู‚ุต c ูˆุงู†ุชู‡ูŠู†ุง ุจ f

299
00:28:22,440 --> 00:28:31,520
prime ู„ู„ c ู„ุฐุง therefore f prime is even whenever

300
00:28:31,520 --> 00:28:37,160
f is odd and f is differentiable

301
00:28:40,710 --> 00:28:56,810
ุงู„ุณุคุงู„ ุงู„ุฃุฎูŠุฑ ุงู„ุณุคุงู„ 13 ุงู„ุณุคุงู„

302
00:28:56,810 --> 00:29:03,990
13 ู‡ูˆ ูƒู…ุง ูŠู„ูŠ  ุงูŠุด

303
00:29:03,990 --> 00:29:09,200
ุงู„ู„ูŠ ุจู‚ูˆู„ ุงู„ุณุคุงู„ 13 ุณุคุงู„ 13 ุจูŠู‚ูˆู„ ุฅุฐุง ูƒุงู†ุช f ู…ู† R

304
00:29:09,200 --> 00:29:12,380
ู„ู€ R is differentiable at c element in R show that

305
00:29:12,380 --> 00:29:16,840
f prime of c ูŠุณุงูˆูŠ limit N ููŠ f of c ุฒุงุฆุฏ 1 ุนู„ู‰ N ู†ุงู‚ุต

306
00:29:16,840 --> 00:29:20,620
f of c as N goes to infinity ูŠุนู†ูŠ ู„ูˆ ูƒุงู†ุช f

307
00:29:20,620 --> 00:29:24,900
differentiable ุนู†ุฏ ุงู„ู€ c element in R ุจู†ู‚ุฏุฑ ู†ูƒุชุจ

308
00:29:24,900 --> 00:29:27,920
ุงู„ derivative ุงู„ู„ูŠ ู‡ูŠ f prime of c ุนู„ู‰ ุตูˆุฑุฉ limit

309
00:29:27,920 --> 00:29:32,320
N f of c ุฒุงุฆุฏ 1 ุนู„ู‰ N ู†ุงู‚ุต f of c as N goes to

310
00:29:32,320 --> 00:29:38,120
infinity ู„ูƒู† ุจูŠู‚ูˆู„ ู„ูŠ by example show that the

311
00:29:38,120 --> 00:29:44,000
existence of this limit this limit need not ุงู„ู„ูŠ

312
00:29:44,000 --> 00:29:52,300
ู‡ูˆ imply the existence of the derivative ู†ูŠุฌูŠ

313
00:29:52,300 --> 00:30:03,960
ุงู„ุขู† ู„ู„ุฌุฒุก ุงู„ุฃูˆู„ ุนู†ุฏูŠ f ู…ู† R ู„ู€ R ูˆ f prime of c

314
00:30:03,960 --> 00:30:12,120
exist ู„ุฃู†ู‡ ูŠู‚ูˆู„ ู„ูŠ prove that f prime of c can be

315
00:30:12,120 --> 00:30:20,760
written as limit N ููŠ f of c ุฒุงุฆุฏ 1 ุนู„ู‰ N ู†ุงู‚ุต f

316
00:30:20,760 --> 00:30:26,180
of c as N goes to infinity ู‡ุฐุง ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงู„ุฌุฒุก

317
00:30:26,180 --> 00:30:32,400
ุงู„ุซุงู†ูŠ ุญู†ุฌูŠ ุงู„ุขู† ู†ู‚ูˆู„ prove ู„ู„ุฌุฒุก ุงู„ุฃูˆู„ ู‚ุจู„ ู…ุง ู†ู‚ูˆู„

318
00:30:32,400 --> 00:30:37,700
ุงู„ู€ proof ู†ุฐูƒุฑูƒู… ุจุณ ุจู†ุธุฑูŠุฉ ุณุงุจู‚ุฉ ููŠ ุงู„ู€ real ูˆุงุญุฏ

319
00:30:37,700 --> 00:30:43,840
ุฅู†ู‡ ู„ูˆ ุนู†ุฏูŠ limit f of x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ c ู„ูˆ ูƒุงู†ุช

320
00:30:43,840 --> 00:30:52,780
ุจุชุณุงูˆูŠ l ุจูƒูˆู† ุนู†ุฏูŠ ุฃูŠ sequence xโ‚™ ุจุชุฑูˆุญ ู„ู„ู€ c ู„ุงุฒู…

321
00:30:52,780 --> 00:30:59,020
ูŠุชุญู‚ู‚ ู„ู‡ุง limit f of xโ‚™ as n goes to infinity

322
00:30:59,020 --> 00:31:05,530
ุจูŠุณุงูˆูŠ ุจุฑุถู‡ ุงู„ู€ ูƒู†ุง ู†ุชุญุฏุซ ุจุงู„ุญุฏูŠุซุŒ ุจุงุณุชุจุฏุงุก ุงู„ุญุฏูŠุซ

323
00:31:05,530 --> 00:31:08,670
ุนู† ุงู„ู€ limit ุงู„ุนุงุฏูŠุฉ ู„ู„ู€ function S x ุจุชุฑูˆุญ ู„ู„ู€ c

324
00:31:08,670 --> 00:31:13,470
ุฅู„ู‰ limit ู„ู…ูŠู† ู„ู„ู€ sequence ุฃูˆ limit ู„ู„ู€ sequences

325
00:31:13,470 --> 00:31:17,290
ุงู„ุขู† ุจู†ุณุชุฎู„ุต ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนู„ูˆู…ุฉ ููŠ ุฅุซุจุงุช ุงู„ู„ูŠ

326
00:31:17,290 --> 00:31:22,630
ุจุฏู†ุง ุฅูŠุงู‡ ุนู†ุฏ ุงู„ุขู† since f prime of c exist ุจู…ุง ุฃู†ู‡

327
00:31:22,630 --> 00:31:29,250
ุงู„ derivative ุนู†ุฏ c ู…ูˆุฌูˆุฏุฉ ุฅุฐุง ุฃูƒูŠุฏ ุนู†ุฏูŠ ุตุงุฑ f 

328
00:31:29,250 --> 00:31:37,010
prime of c ุจุณู‡ูˆู„ุฉ f of x ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ x ุนู†ุฏ c

329
00:31:38,080 --> 00:31:46,140
ุฒุงุฆุฏ h ู†ุงู‚ุต f of c ุนู„ู‰ h as h goes to mean to zero

330
00:31:46,140 --> 00:31:49,860
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุนุฑูŠู ุงู„ุชุนุฑูŠู ุงู„ derivative ุฃูˆ ุงู„ุดูƒู„

331
00:31:49,860 --> 00:31:52,980
ุงู„ุขุฎุฑ ู„ู„ุชุนุฑูŠู ุงู„ derivative f of c ุฒุงุฆุฏ ุงู„

332
00:31:52,980 --> 00:31:55,560
increment ู†ุงู‚ุต f of c ุนู„ู‰ ุงู„ increment as ุงู„

333
00:31:55,560 --> 00:32:01,600
increment goes to mean to zero ู…ุงุดูŠ ุงู„ุญู„ ุงู„ l ุจู…ุง

334
00:32:01,600 --> 00:32:07,480
ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ 1 ุนู„ู‰ N sequence ุจุชุฑูˆุญ ู„ู„ุตูุฑ ูˆู‡ุฐุง

335
00:32:07,480 --> 00:32:11,440
ุงู„ู€ limit exist ู„ุฃู† ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุญูƒูŠุชู‡ุง ู‚ุจู„

336
00:32:11,440 --> 00:32:21,100
ุจุดูˆูŠุฉ ุจูƒูˆู† ุนู†ุฏูŠ ู„ุฃู† butูƒุฐุง then f prime of c can

337
00:32:21,100 --> 00:32:26,580
be ุงู„ู„ูŠ ู‡ูˆ ุฅุนุงุฏุฉ ุงู„ู„ูŠ ู‡ูŠ rewritten as a limit of a

338
00:32:26,580 --> 00:32:36,800
sequence f of ุงู„ู„ูŠ ู‡ูˆ limit limit f of c ุฒุงุฆุฏ but

339
00:32:36,800 --> 00:32:40,000
ุงู„ู€ h ุงู„ู„ูŠ ู‡ูŠ ุชุฑูˆุญ ู„ู„ุตูุฑ ุตุงุฑุช mean ุงู„ sequence

340
00:32:40,000 --> 00:32:46,380
ูˆุงุญุฏุฉ ุนู„ู‰ N ุชุฑูˆุญ ู„ู„ุตูุฑ ูˆุงุญุฏุฉ ุนู„ู‰ N ู†ุงู‚ุต f of c ุนู„ู‰

341
00:32:46,380 --> 00:32:52,640
ูˆุงุญุฏุฉ ุนู„ู‰ N as N goes to infinity ู…ุฏุงู…ุช ุงู„ sequence

342
00:32:52,640 --> 00:32:57,100
ูˆุงุญุฏุฉ ุนู„ู‰ N ุจุชุฑูˆุญ ู„ู„ุตูุฑ ุตุงุฑุช ุงู„ f of ูˆุงุญุฏุฉ ุนู„ู‰ N ุงู„ู„ูŠ

343
00:32:57,100 --> 00:33:00,900
ู‡ูŠ ุนุจุงุฑุฉ ุนู† f of c ุฒุงุฆุฏ ูˆุงุญุฏุฉ ุนู„ู‰ N ู„ุฃู† ุงู„ู€ c ุนุจุงุฑุฉ

344
00:33:00,900 --> 00:33:07,740
ุนู† ุฅูŠุงุด ูุงู„ุชุฉ ูˆุงุถุญ ุฃู‡ุŸ ุงู„ุขู† ู‡ุฐุง ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ

345
00:33:07,740 --> 00:33:14,600
limit ุงู„ุขู† as n goes to infinity ุงู„ู„ูŠ ู‡ูˆ ุฃูƒูŠุฏ ุงู„ู„ูŠ

346
00:33:14,600 --> 00:33:21,920
ู‡ูˆ ุจูŠุตูŠุฑ ุนู†ุฏูŠ f n ููŠ ุงู„ุฌูˆุณ f of c ุฒุงุฆุฏ 1 ุนู„ู‰ n

347
00:33:21,920 --> 00:33:28,260
ู†ุงู‚ุต f of c ุงู„ู„ูŠ ู‡ูˆ as n goes to infinity ู‡ูˆ ู‡ุฐุง

348
00:33:28,260 --> 00:33:35,150
ุตุงุฑ f prime of c ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุงู„ุขู† conversely the

349
00:33:35,150 --> 00:33:37,890
converse need not to be true in general ู‡ูŠูƒ ุจูŠู‚ูˆู„

350
00:33:37,890 --> 00:33:45,390
ู„ูŠู‡ ูŠุนู†ูŠ ุจูŠู‚ูˆู„ ู„ูŠ if if ุจูŠู‚ูˆู„ ู„ูŠ ุฃูˆ ุงู„ู„ูŠ ุจูŠู‚ูˆู„ if f

351
00:33:45,390 --> 00:33:53,670
ุจุฑุง ุงู„ู„ูŠ ู‡ูˆ limit f of c ุฒุงุฆุฏ 1 ุนู„ู‰ n ู†ุงู‚ุต f of c

352
00:33:53,670 --> 00:34:01,610
ุงู„ูƒู„ ู…ุถุฑูˆุจ ููŠ n as n goes to infinity exist if ูƒุฏู‡

353
00:34:02,500 --> 00:34:12,640
then f prime at c need not be exist ุฃุตู„ุง ู…ุด ุฃู†ู‡

354
00:34:12,640 --> 00:34:16,180
ูŠูƒูˆู† ุจูŠุณุงูˆูŠ ู‡ุฐุง ุฃูˆ ู„ุง need not to be  ุงุดู…ู„  exist

355
00:34:16,180 --> 00:34:19,640
ู„ุฃู† ู„ูˆ ูƒุงู† exist ุนู„ู‰ ุทูˆู„ ุจูŠุณุงูˆูŠ ุงู…ุง need not to be

356
00:34:19,640 --> 00:34:28,200
exist ูˆู…ุง ุฃุฎุฐ ู…ุซุงู„ ุฌุงู„ูŠ consider consider consider

357
00:34:28,200 --> 00:34:37,000
f of x ุจูŠุณุงูˆูŠ ุงู„ absolute value ู„ู„ x ูˆุฎุฏ ุนู†ุฏ ุงู„ c ุงูŠุด

358
00:34:37,000 --> 00:34:46,440
ุจุชุณุงูˆูŠ ุตูุฑ ูˆุงุถุญ f prime of 0 does not exist ู„ุฃู†ู‡ุง

359
00:34:46,440 --> 00:34:48,780
ุนุจุงุฑุฉ ุนู† corner pointุŒ ุฃู†ุชูˆ ุนุงุฑููŠู† ุงุญู†ุง ุงู„ู„ูŠ ู‡ูˆ

360
00:34:48,780 --> 00:34:52,480
ุงู„ f prime ุนู†ุฏ ุงู„ zero ู„ู„ absolute value does not

361
00:34:52,480 --> 00:34:59,740
exist ู„ูƒู† ู‡ุฐู‡ ู…ุชุญู‚ู‚ุฉุŒ ู„ูŠุดุŸ but limit

362
00:35:01,280 --> 00:35:10,900
N ููŠ f of 0 ุฒุงุฆุฏ 1 ุนู„ู‰ N ู†ุงู‚ุต f of 0 as N goes to

363
00:35:10,900 --> 00:35:18,840
infinity ุจูŠุณุงูˆูŠ limit N f of 0 ุฒุงุฆุฏ 1 ุนู„ู‰ N ูŠุนู†ูŠ f

364
00:35:18,840 --> 00:35:23,560
of 1 ุนู„ู‰ N f of x ุจูŠุณุงูˆูŠ absolute value x ู 1 ุนู„ู‰ N

365
00:35:23,560 --> 00:35:28,960
ู…ุธุจูˆุท ุฃู‡ as N goes to infinity ุทุจุนุง ุงู„ู€ N ุจุชุฑูˆุญ

366
00:35:29,220 --> 00:35:35,100
ูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† ash ูˆุงุญุฏ ุฅุฐุง ูุนู„ุง ุฌุจู†ุง ู…ุซุงู„ ุฃู† ุงู„

367
00:35:35,100 --> 00:35:39,720
limit ู‡ุฐู‡ ุชูƒูˆู† exist ูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ but ุงู„ f prime ุนู†ุฏ

368
00:35:39,720 --> 00:35:42,640
ู‡ุฐุง ุงู„ู†ู‚ุทุฉ c ุงู„ู„ูŠ ู‡ูŠ 00 ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ does not

369
00:35:42,640 --> 00:35:47,320
exist ุจูŠูƒูˆู† ู‡ูŠูƒ ุงุญู†ุง ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู†

370
00:35:47,320 --> 00:35:54,870
ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฎุงู…ุณุฉ ุงู„ู„ูŠ ู‡ูˆ discussion ู„ุฃูˆ ู…ู†ุงู‚ุดุฉ ู„

371
00:35:54,870 --> 00:35:59,910
section 6-1 ุงู„ู„ูŠ ู‡ูˆ the derivative ูˆุงู„ุขู† ุณู†ูƒู…ู„

372
00:35:59,910 --> 00:36:05,690
ุงู„ุญุฏูŠุซ ููŠ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ู‡ูˆ ุนู† ุงู„ู„ูŠ

373
00:36:05,690 --> 00:36:09,250
ู‡ูˆ the mean value theorem ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ ู†ูƒู…ู„

374
00:36:09,250 --> 00:36:11,910
applications ุนู„ู‰ mean value theorem ูˆู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ

375
00:36:11,910 --> 00:36:12,030
ุงู„