File size: 23,063 Bytes
4b6d5de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
1
00:00:01,140 --> 00:00:03,520
ุจุงุณู… ุงู„ู„ู‡ ูˆ ุงู„ุญู…ุฏ ู„ู„ู‡ ูˆ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ูŠ ุฑุณูˆู„

2
00:00:03,520 --> 00:00:08,140
ุงู„ู„ู‡ ู‡ุฐุง ุงู„ุชุณุฌูŠู„ ุงู„ุฃุฎูŠุฑ ุงู† ุดุงุก ุงู„ู„ู‡ ููŠ chapter ุงู„

3
00:00:08,140 --> 00:00:12,840
clustering ุนููˆุง ู‚ุจู„ ุงู„ุฃุฎูŠุฑ ุจูŠุถู„ู„ู†ุง ููŠ ุชุณุฌูŠู„ ุงู† ุดุงุก

4
00:00:12,840 --> 00:00:16,540
ุงู„ู„ู‡ ู‡ูŠูƒูˆู† ุนู…ู„ูŠ ุจุงุนุชู…ุงุฏ ุงู„ python ุงู„ุตุญูŠุญ ูุดูˆู ููŠ

5
00:00:16,540 --> 00:00:24,320
ุดุบู„ ุงู„ python ุจุนุถ ุงู„ุฅุจุฏุงุนุงุช ู…ู†ูƒู… ูˆ ุจุนุถูƒู… .. ุญู„ูˆ

6
00:00:24,320 --> 00:00:25,480
ุญู„ูˆ ุญู„ูˆ ุทุจุนูƒ ู…ุงุณุชูˆุฑ

7
00:00:28,370 --> 00:00:31,030
ุงู„ุจุฏุงูŠุฉ ุงู„ุดุจุชุฑ ุงู† ุงู„ cluster ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุนู…ู„ูŠุฉ

8
00:00:31,030 --> 00:00:34,230
ุชู‚ุณูŠู… ุงู„ instances ุจู†ุงุก ุนู„ู‰ ุชุดุงุจู‡ ุงูˆ similarities

9
00:00:34,230 --> 00:00:38,570
ู…ุง ุจูŠู†ู‡ู… ู„ู…ุฌู…ูˆุนุงุช ููŠ ุนู†ุฏ partition ุงู„ cluster ูˆ ุงู„

10
00:00:38,570 --> 00:00:41,070
partition ุงู„ cluster ุงู†ู‡ ู…ุงูŠูƒูˆู†ุด ููŠ ุนู†ุฏู‡ overlap

11
00:00:41,070 --> 00:00:44,550
clusters ูˆ ููŠ ุนู†ุฏู‡ hierarchical cluster ุงู†ู‡ ุงู†ุง

12
00:00:44,550 --> 00:00:48,870
ูุนู„ูŠุง ู…ู‚ุฏุฑ ุงุดูˆู ูƒู„ cluster ุจูŠู†ุชู…ูŠ ู„ุฃูŠ cluster ูˆ

13
00:00:48,870 --> 00:00:51,330
ุทุจุนุง ู‡ุงู† ุจุชุญูƒู… ููŠ ุนุฏุฏ ุงู„ clusters ุงู„ู„ูŠ ุงู†ุง ุจุฏูŠ

14
00:00:51,330 --> 00:00:55,310
ุงูŠุงู‡ุง ูƒู„ clusterุจุณุงุทุฉุŒ ุงู„ูŠูˆู… ุงู† ุดุงุก ุงู„ู„ู‡ ู†ุชูƒู„ู… ุนู†

15
00:00:55,310 --> 00:00:59,990
ุฌุฒุฆูŠุฉ evaluation ุทุจุนุงู‹ ู„ู…ุง ู†ุชูƒู„ู… ุนู† evaluation

16
00:00:59,990 --> 00:01:07,030
ูƒุชู‚ูŠูŠู… ุงู„ ..

17
00:01:07,030 --> 00:01:11,390
ู†ุชูƒู„ู… ุนู† ุงู„ุชู‚ูŠูŠู…ุŒ ู‡ู„ ุงู„ุชู‚ูŠูŠู… ูˆุงุฑุฏ ููŠ ุงู„

18
00:01:11,390 --> 00:01:16,990
clusteringุŸ ุงู„ุชู‚ูŠูŠู… ูƒุชู‚ูŠูŠู… ููŠ ุงู„ clustering ุฅุฐุง ุงู„

19
00:01:16,990 --> 00:01:21,650
data 6 ุจู‚ู‰ unlabeled ูˆู„ุง ุนู…ุฑู‡ ุจูŠูƒูˆู† ุตุญู„ุฃู† ุงู†ุง

20
00:01:21,650 --> 00:01:27,410
ูุนู„ูŠุง ู„ุงุฒู… ุงุชุฏุฎู„ ู„ human ุนููˆุง ุงู„ู…ู‚ุตูˆุฏ ุงู† ุงู„ุชู‚ูŠูŠู…

21
00:01:27,410 --> 00:01:35,220
ู…ุณุชุญูŠู„ ูŠูƒูˆู† ุตุญูŠุญ ุงูˆ ุญุงู„ูŠุง ุจุฏูŠ ุงู‚ูˆู„ ุงู†ู‡ ูŠูƒุงุฏ ูŠูƒูˆู†ู…ู†

22
00:01:35,220 --> 00:01:40,060
ุงู„ู…ุณุชุญูŠู„ ุชุทุจูŠู‚ ุงู„ุชู‚ูŠูŠู… ุฅู„ุง ู…ู† ุฎู„ุงู„ expert ู‚ุงุฏุฑ

23
00:01:40,060 --> 00:01:45,460
ูุนู„ูŠุง ุนู„ู‰ ุฏุฑุงุณุฉ ูƒู„ instance ูˆ ูุนู„ูŠุง ุฃู†ู‡ุง ุชู†ุชู…ูŠ ู„

24
00:01:45,460 --> 00:01:49,620
cluster ุฃูˆ ู…ุชุดุงุจู‡ ู…ุน ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ู„ูƒู†

25
00:01:49,620 --> 00:01:54,920
ุฅุญู†ุง ู‡ู„ุฃ ู„ู…ุง ู†ุชูƒู„ู… ุนู† ุงู„ clusteringุฃู†ุง ู„ุฏูŠ

26
00:01:54,920 --> 00:01:58,140
algorithm ูˆ data set ูˆ ุทุจู‚ุช ุนู„ู‰ ุงู„ data set ู‡ู„ ููŠ

27
00:01:58,140 --> 00:02:01,520
ู…ุฌุงู„ ุฃุนู…ู„ evaluation ู„ู„ algorithm ุฃูˆ ู„ู„ู†ุงุชุฌ ุงู„ู„ูŠ

28
00:02:01,520 --> 00:02:06,160
ู…ูˆุฌูˆุฏุŸ ุฃู‡ ููŠ ู…ุฌุงู„ ู„ูƒู† ููŠ ุญุงู„ุฉ ูˆุงุญุฏุฉ ูู‚ุท ุฅุฐุง ุงู†ุง

29
00:02:06,160 --> 00:02:10,720
ุงุนุชู…ุฏุช ุงู† ููŠ ุนู†ุฏูŠ labelled data set ุทุจ ุงุญู†ุง ู‚ู„ู†ุง

30
00:02:10,720 --> 00:02:15,020
ู…ู† ุงู„ุจุฏุงูŠุฉ ุงู†

31
00:02:15,020 --> 00:02:17,800
ุงู„ cluster ุจุชุดุชุบู„ ุนู„ู‰ ุงู„ test set ูŠุนู†ูŠ ุงู„ label ู…ุด

32
00:02:17,800 --> 00:02:22,580
ู…ูˆุฌูˆุฏ ุตุญูŠุญ ุงู„ููƒุฑุฉ ูˆูŠู† ุงู† ุงู†ุง ุจุฏูŠ ุงูุตู„ ุงู„ data set

33
00:02:22,580 --> 00:02:31,250
ุชุจุนุชูŠู…ุฌู…ูˆุนุฉ ุงู„ู€ attributes ู„ุญุงู„ ูˆ ุงู„ target label

34
00:02:31,250 --> 00:02:40,670
ู„ุญุงู„ูŠ ูˆุจุนุฏ ู‡ูŠูƒ ุงุนู…ู„ ู„ู‡ุงุฏูŠ clustering ุจุฏูŠ ุงุนู…ู„ ู‡ู†ุง

35
00:02:40,670 --> 00:02:44,590
clustering ู„ู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ู†ุง ูˆุจู†ุงุก

36
00:02:44,590 --> 00:02:48,270
ุนู„ู‰ ุงู„ clusters ุงู†ุง ุนุงุฑู ุงู† ูƒู„ instance ุจุชุชุจุน ุงูŠ

37
00:02:48,270 --> 00:02:54,960
label ูุจุตูŠุฑ ุงู†ุง ุจู‚ู‰ ุงู‚ุงุฑู† ุงู„ labelุงู„ู„ูŠ ุนู†ุฏูŠ ู…ุน ุงู„

38
00:02:54,960 --> 00:02:57,100
clusters ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุงู† ูˆุจู†ุงุกู‹ ุนู† ู‡ูŠูƒุช ุจุญุตู„

39
00:02:57,100 --> 00:03:02,660
ุนู„ู‰ ุชู‚ูŠูŠู… ูˆุจุงู„ุชุงู„ูŠ ู„ู…ุง ุงุญู†ุง ุจู†ุชูƒู„ู… ุนู„ู‰ ุงู„ ุงู„ ุงู„ ุงู„

40
00:03:02,660 --> 00:03:03,400
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

41
00:03:03,400 --> 00:03:04,060
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

42
00:03:04,060 --> 00:03:05,500
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

43
00:03:05,500 --> 00:03:06,460
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

44
00:03:06,460 --> 00:03:06,460
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

45
00:03:06,460 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

46
00:03:07,520 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

47
00:03:07,520 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

48
00:03:07,520 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

49
00:03:07,520 --> 00:03:07,520
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„

50
00:03:07,520 --> 00:03:07,620
ุงู„ ุงู„ ุงู„ ุงู„

51
00:03:22,210 --> 00:03:28,550
ู„ุฃู† ุงู„ู†ุชุงุฆุฌ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู…ุงุญุฏุด ุจูŠู‚ูˆู„ ุนู†ู‡ุง ุตุญ

52
00:03:28,550 --> 00:03:31,570
ุฃูˆ ุฎุทุฃ ูŠุนู†ูŠ ุงู†ุง ุงุณุชุฎุฏู…ุช two different algorithms

53
00:03:31,570 --> 00:03:36,930
ูˆู‚ู„ุชู„ู‡ู… ูˆุงู„ู„ู‡ ุฌุณู…ูˆู„ูŠ ุงู„ data set ูƒpartitional ู„

54
00:03:36,930 --> 00:03:46,770
three clusters ุทู„ุนูˆู„ูŠ three clustersู…ุด ุถุฑูˆุฑูŠ ู…ุด

55
00:03:46,770 --> 00:03:50,350
ุถุฑูˆุฑูŠ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููŠ ุงู„ cluster ุงู„ุฃูˆู„ ู‡ูŠ ู†ูุณู‡ุง

56
00:03:50,350 --> 00:03:51,970
ุงู„ู„ูŠ ููŠ ุงู„ุนู†ุงุตุฑ ุงู„ cluster ุงู„ุชุงู†ูŠ ู†ุงุชุฌ ุงู„

57
00:03:51,970 --> 00:04:00,600
algorithm ูˆุจุงู„ุชุงู„ูŠ ู…ู‚ุงุฑู†ุฉ ุงู„ output ุดุจู‡ ู…ุณุชุญูŠู„ุฉุฅุฐุง

58
00:04:00,600 --> 00:04:02,640
ูƒู†ุช ุฃู‚ูˆู„ ุฃู† ุงู„ู€ Algorithm ุฃุนุทุงู†ูŠ ู†ูุณ ุงู„ู†ุชูŠุฌุฉ ุฃูˆ

59
00:04:02,640 --> 00:04:05,880
ู†ูุณ ุงู„ู€ ุงู„ู€ ูุงูŠุฏุฉ ู…ู† ุงู„ุชุงู†ูŠุŒ ูู„ุง ุชุชู…ูŠุฒ ุงู„ุชุงู†ูŠ ุนู†ู‡

60
00:04:05,880 --> 00:04:10,360
ุชู…ุงู…ุŒ ุฅู„ุง ูุนู„ูŠู‹ุง ู„ูˆ ุงู„ู€ Data ูƒุงู†ุช ูุนู„ูŠู‹ุง ุงู„ู€ Data

61
00:04:10,360 --> 00:04:13,960
Discriminant ุงู„ู€ Instances ู…ูŠุงู„ุฉ ู„ู€ Different Tree

62
00:04:13,960 --> 00:04:18,180
Classes ูˆูƒู„ ูˆุงุญุฏุฉุŒ ูƒู„ Instance ุชู†ุชู…ูŠ ู„ ClassุŒ ูŠุนู†ูŠ

63
00:04:18,180 --> 00:04:22,100
ููŠ ุนู†ุฏูŠ Discriminant Attribute ูˆุฌุงุฏุฑูŠุงุด ุชูˆุตูู„ูŠู‡ู…

64
00:04:22,100 --> 00:04:25,100
ุฃูˆ ุชูˆุฏูŠู„ูŠู‡ู… ุนู„ู‰ ุงู„ู€ Certain Class ุฃูˆ ุงู„ู€ Target

65
00:04:25,100 --> 00:04:30,020
Cluster ุนููˆุงู‹ ุจุดูƒู„ ูƒูˆูŠุณุŒ ู„ูƒู† ู„ู…ุง ุฃู†ุง ูุนู„ูŠู‹ุงุจุทุจู‚

66
00:04:30,020 --> 00:04:34,000
ู…ู…ูƒู† ุจุงุนุชู…ุงุฏูŠ ุนู„ู‰ ุงู„ training set ุงู„ training set

67
00:04:34,000 --> 00:04:39,000
ุฅุฐุง ุฃู†ุง ุทุจู‚ุช ุงู„ cluster algorithm ุนู„ู‰ ุงู„ training

68
00:04:39,000 --> 00:04:43,020
set ุชู„ุงุญุธูŠู† ู…ุนุงูŠุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŸ ู„ู…ุง ุฃู†ุง ุจุฏูŠ ุฃุนู…ู„

69
00:04:43,020 --> 00:04:45,720
evaluation .. ุงู„ุขู† ูุนู„ูŠุง .. ูุนู„ูŠุง ู„ูŠู‡ clustering

70
00:04:45,720 --> 00:04:49,580
unsupervised learningุŸ ูŠุนู†ูŠ ุฃู†ุง ุจุชุฌุงู‡ู„ ุงู„ label ุฃูˆ

71
00:04:49,580 --> 00:04:53,560
ุงู„ label ู…ุด ู…ูˆุฌูˆุฏ ููŠ ุงู„ data set ู‡ุฐู‡ ูˆุงุญุฏุฉ ู„ู…ุง ุฃู†ุง

72
00:04:53,560 --> 00:04:59,370
ุจุฏูŠ ุฃุนู…ู„ู‡ evaluation ู„ู„ algorithm ุชู…ุงู…ุŸุจู‚ุฏุฑ ุงุนู…ู„

73
00:04:59,370 --> 00:05:03,170
evaluation ููŠ ุญุงู„ุฉ ูˆุงุญุฏุฉ ูู‚ุท ุงุฐุง ุงู†ุง ู‚ุฏุฑุช ุงุทุจู‚ู‡

74
00:05:03,170 --> 00:05:06,410
ุนู„ู‰ training set ุดูˆ training set ูŠุนู†ูŠ ููŠ ุนู†ุฏูŠ

75
00:05:06,410 --> 00:05:09,930
label ุทุจ ู‡ู„ ุงู„ูƒู„ุงู… ู‡ุฐุง ู…ูˆุฌูˆุฏุŸ ุงู‡ ู…ูˆุฌูˆุฏ ุจุตูŠุฑ ูƒู„

76
00:05:09,930 --> 00:05:15,670
label ูƒู„ class ุจู…ุซุงุจุฉ cluster ูƒู„ class ุจู…ุซุงุจุฉ

77
00:05:15,670 --> 00:05:21,910
cluster ูˆ ุจุฑูˆุญ ุจุงุฎู ุงู„ class ูˆ ุจุฌุณู… ุงู„ data set

78
00:05:21,910 --> 00:05:24,210
ุจุฏูˆู† ุงู„ cluster ุฒูŠ ู…ุง ูˆุงุฌู‡ุชูƒูˆุง ููŠ ุงู„ slide ุงู„ุณุงุจู‚ุฉ

79
00:05:24,210 --> 00:05:30,020
ุฒูŠ ู…ุง ุฑุณู„ู†ุงู‡ุง ูŠุนู†ูŠ ุงู†ุง ุงู„ุขู†ู‡ูŠ ุงู„ data set ุชุจุนูŠ

80
00:05:30,020 --> 00:05:37,920
ูƒู…ุงู† ู…ุฑุฉ ูุตู„ุช ุงู„ cluster

81
00:05:37,920 --> 00:05:40,940
ุฃูˆ ูุตู„ุช ุงู„ data set ุงู„ attribute ูˆุงู„ label ุฃูˆ ุงู„

82
00:05:40,940 --> 00:05:46,720
class ุฌุณู…

83
00:05:46,720 --> 00:05:49,200
ุงู„ data set ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ู‡ูŠ ุงู„ label ูˆู‡ูŠ ุงู„

84
00:05:49,200 --> 00:05:55,150
attribute ุงู„ุขู† ุจุงุฌุจ ุงุทุจู‚ ุงู„ clustering handุทุจู‚ ุงู„ู€

85
00:05:55,150 --> 00:05:57,170
Clustering ุนู„ู‰ ุงู„ู€ Attributes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง

86
00:05:57,170 --> 00:06:02,830
ุนู„ู‰ ุงู„ู€ Instances ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุชู…ุงู…ุŒ ุงู„ุขู† ูุนู„ูŠุงู‹ ูƒู„

87
00:06:02,830 --> 00:06:07,870
Instance ุจุชุจู‚ู‰ Class ูˆููŠ ุนู†ุฏู‰ ู…ุฌู…ูˆุนุฉ Instances ููŠ

88
00:06:07,870 --> 00:06:10,470
ู†ูุณ ุงู„ class ุจูŠู† ุฌุณูŠู† ุฃู†ู‡ ูุนู„ูŠุงู‹ ุงู„ data already

89
00:06:10,470 --> 00:06:15,590
ู…ู†ุฌุณู…ุฉ ูุฅุฐุง ุฃู†ุง ู‚ุฏุฑุช ุฃุฑุจุท ู…ุง ุจูŠู† ุงู„ true cluster

90
00:06:15,590 --> 00:06:21,890
ุงู„ู„ูŠ ู‡ูŠ ุงู„ label ูˆ ุงู„ predicted cluster ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ

91
00:06:21,890 --> 00:06:26,610
ุนู†ุฏู‡ุงุจู‚ุฏุฑ ุฃู†ุดุฆ ุดุบู„ ุงุณู…ู‡ุง ุงู„ู€ Contingency Matrix

92
00:06:26,610 --> 00:06:29,930
ูˆู…ู† ุงู„ู€ Contingency Matrix ู…ู…ูƒู† ุฃู† ุงุชูƒู„ู… ุนู„ู‰ ุดุบู„

93
00:06:29,930 --> 00:06:36,160
ุงูˆู„ metric ู‡ุณู…ูŠู‡ุง ุงู„ู€ Durityุชุนุงู„ู‰ ู†ุชูƒู„ู… ุนู† ุงู„ู€

94
00:06:36,160 --> 00:06:38,920
Contingency Matrix ุงูŠุด ุงู„ู€ Contingency Matrix

95
00:06:38,920 --> 00:06:43,720
ุจุชู‚ูˆู„ ุงู† ู„ุฏูŠ ุซู„ุงุซุฉ .. ุทุจุนุง ู„ุงุญุธูˆุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ

96
00:06:43,720 --> 00:06:47,960
ููŠ ู…ูˆู‚ุฒูŠ ุงู†ุง ุจุฏูŠ ุงุฎุชุจุฑ Clustering Algorithm ููŠ

97
00:06:47,960 --> 00:06:51,980
ุนู†ุฏูŠ label data set ุงู„ label data set ููŠู‡ุง ุนุฏุฏ

98
00:06:51,980 --> 00:06:55,800
classes ู…ุนูŠู† N ู„ู…ุง ุจุฏูŠ ุงุณุชุฎุฏู… ุงู„ Clustering

99
00:06:55,800 --> 00:06:59,020
Algorithm ุจุฏูŠ ุงู‚ูˆู„ ุฌุณู…ู„ูŠู‡ุง ู„ู€ N ู…ู† ุงู„ cluster ู„ุฃู†

100
00:06:59,020 --> 00:07:02,800
ูƒู„ cluster ุจุฏูŠ ู…ูŠุซู„ Classูุฃู†ุง ุจูุชุฑุถ ุฃู†ู‡ ุนู†ุฏูŠ data

101
00:07:02,800 --> 00:07:07,680
set ู…ูƒูˆู‘ู†ุฉ ู…ู† three classes label data set ู…ูƒูˆู‘ู†ุฉ

102
00:07:07,680 --> 00:07:13,080
ู…ู† three classes ุจุชุณู…ูŠู‡ู… T1 ูˆT2 ูˆT3 ู…ู† true true

103
00:07:13,080 --> 00:07:18,520
cluster ุฃูˆ true segment ุฃูˆ true partition ุณู…ูŠู‡ุง ุฒูŠ

104
00:07:18,520 --> 00:07:24,380
ู…ุง ุจุฏูƒ true label ุณู…ูŠู‡ุง ุฒูŠ ู…ุง ุจุฏูƒูˆุงูˆC1 ูˆC2 ูˆC3 ู‡ู…ุง

105
00:07:24,380 --> 00:07:28,060
ุงู„ู€ clusters ุงู„ู„ูŠ ุงู†ุดุบู„ูŠุงู‡ู… ู…ู† ุงู„ algorithm ุงู„ู„ูŠ

106
00:07:28,060 --> 00:07:31,580
ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุง ุงูŠุด ุฑุงุญ ุงุฌู„ุจุŸ ุงูŠุด ุจูู‡ู… ุงู„ contingency

107
00:07:31,580 --> 00:07:41,000
matrixุŸ ุงู†ู‡ ููŠ C1 C1 ุฎู…ุณุฉ ูˆุนุดุฑูŠู† element ุจูŠู†ุชู…ูŠ ู„

108
00:07:41,000 --> 00:07:45,020
T2 ูˆุฎู…ุณุฉ

109
00:07:45,020 --> 00:07:50,410
element ุจูŠู†ุชู…ูŠ ู„ T3 ูˆุฎู…ุณ ุนู†ุงุตุฑ ุจูŠู†ุชู…ูŠ ู„ T3ูŠุนู†ูŠ

110
00:07:50,410 --> 00:07:56,730
ุนู†ุฏูŠ 25 ุนู†ุตุฑ ู…ู† T ู†ุงุชุฌ

111
00:07:56,730 --> 00:08:06,470
ุงู„ clustering C1 ุจูŠุญุชูˆูŠ ุนู„ู‰ 30 ุนู†ุตุฑ 25 ู…ู†ู‡ู… ุญู‚ูŠู‚ุฉ

112
00:08:06,470 --> 00:08:12,550
ู…ู† ุงู„ class ุงู„ุชุงู†ูŠ ูˆ 5 ู…ู† ุงู„ class ุงู„ุชุงู„ุช ูˆ ู„ุง

113
00:08:12,550 --> 00:08:18,880
ูˆุงุญุฏ ู…ู† ุงู„ class ุงู„ุฃูˆู„T2 ุฃูˆ cluster C2 ุจูŠุญุชูˆูŠ ุนู„ู‰

114
00:08:18,880 --> 00:08:25,100
35 ุนู†ุตุฑ 15 ู…ู† ุงู„ class ุงู„ุฃูˆู„ ูˆ 20 ู…ู† ุงู„ class

115
00:08:25,100 --> 00:08:32,220
ุงู„ุชุงู„ุช cluster ุชู„ุงุชุฉ ุจูŠุญุชูˆูŠ ุนู„ู‰ ุนุดุฑ ุนู†ุงุตุฑ ูู‚ุท ูƒู„ู‡ู…

116
00:08:32,220 --> 00:08:40,100
ูƒู„ู‡ู… ุจูŠุชุจุนูˆุง T1 ุงู„ุขู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅุฐุง ุงู†ุง ุงูู‡ู…ุชู‡

117
00:08:41,270 --> 00:08:45,670
ู…ุนู†ุงุชู‡ ุฃู†ุง ู…ุด ุถุฑูˆุฑูŠ ุงู„ู€ Clustering algorithm ุชุจุนูŠ

118
00:08:45,670 --> 00:08:49,250
ูŠูƒูˆู† ุตุญ ู…ุงุฆุฉ ููŠ ุงู„ู…ุงุฆุฉ ู…ู…ุชุงุฒ ุทุจ ู…ุชู‰ ุจูŠูƒูˆู† ุตุญ ู…ุงุฆุฉ

119
00:08:49,250 --> 00:08:57,710
ููŠ ุงู„ู…ุงุฆุฉ ุฅุฐุง ูˆุงู„ู„ู‡ ุฃู†ุง ุฅุฌูŠุช ู‚ูˆู„ุช ู‡ูŠูƒ ู…ุซู„ู‹ุง

120
00:08:57,710 --> 00:09:00,830
ุญุตุฑุช ุนู„ู‰ ุตูˆุฑุฉ ูˆุงุญุฏุฉ ู…ู† ุงู„ุตูˆุฑ ุงู„ุชุงู„ูŠุฉ ูุงู†ุง ู‡ุชูƒู„ู… ุนู†

121
00:09:00,830 --> 00:09:08,150
ุงู„ matrix ู„ูˆ ุฃู†ุง ุฅุฌูŠุช ู‚ูˆู„ุช ู‡ู†ุง ูˆุงู„ู„ู‡ ุนู†ุฏูŠ

122
00:09:08,150 --> 00:09:08,990
ู‡ู†ุง ุชู„ุงุชูŠู†

123
00:09:12,600 --> 00:09:24,500
ูˆุนู†ุฏูŠ ู‡ู†ุง 20 ูˆุนู†ุฏูŠ ู‡ู†ุง 50 ูˆุงู†ุง

124
00:09:24,500 --> 00:09:28,740
C1 C2

125
00:09:28,740 --> 00:09:39,400
ูˆC3 ูˆุงู„ุจุงู‚ูŠ ุฃุตูุฑ ุทุจุนุง ู‡ู†ุง T1 T2 T3 ูˆุงู†ุง ุงุชุนู…ุฏุช ุงุญุท

126
00:09:39,400 --> 00:09:45,560
ุงู„ู‚ูŠู… ู†ูุณ ุงู„ูƒูŠููŠุฉู„ุญุธูˆุง ู…ุนุงูŠุง ุฅู†ู‡ ูุนู„ูŠุง ูƒู„ cluster

127
00:09:45,560 --> 00:09:50,720
completely pure ุตุงููŠ ู…ุงููŠุด ููŠู‡ ุฃูŠ .. ูŠุนู†ูŠ ูƒู„

128
00:09:50,720 --> 00:09:53,800
cluster ู…ุซู„ ูˆุงุญุฏุฉ ู…ู† ุงู„ classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰

129
00:09:53,800 --> 00:09:57,980
ูƒู„ cluster ู…ุซู„ ูˆุงุญุฏุฉ ูู‚ุท ู…ู† ุงู„ classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ

130
00:09:57,980 --> 00:10:01,920
ุนู†ุฏู‰ ูˆู‡ู†ุง ุจุชูƒู„ู… ุฅู†ู‡ ูุนู„ูŠุง ูƒู„ cluster ู†ู‚ูŠ ุชู…ุงู…ุง

131
00:10:01,920 --> 00:10:06,740
ุจูŠุญุชูˆูŠ ุนู†ุงุตุฑ ู…ู† ู†ูุณ ุงู„ class ูู‚ุท ุนุดุงู† ู‡ูŠ ูƒุงู†

132
00:10:06,740 --> 00:10:10,900
ุจู†ุชูƒู„ู… ุงุญู†ุง ุนู„ู‰ ุงู„ purity ู†ู‚ุงูˆุฉ ุฃูˆ ู†ู‚ุงุก ุฏุฑุฌุฉ

133
00:10:10,900 --> 00:10:17,700
ุงู„ู†ู‚ุงุกุทูŠุจุŒ ุจู…ุง ุฃู† ุงู„ุญุงู„ุฉ ุฏูŠ ู‡ูŠ ุงู„ู€ optimal case ุฃูˆ

134
00:10:17,700 --> 00:10:21,640
ุงู„ู€ ideal case ูˆุงู„ู„ูŠ ุฃู†ุง ูุนู„ุง ู…ุด ู‡ุญุตู„ ุนู„ูŠู‡ุงุŒ ุฃู†ุง

135
00:10:21,640 --> 00:10:24,400
ู‡ุญุตู„ ุนู„ู‰ ุดุบู„ ู…ุดุงุจู‡ ุฒูŠ ู‡ูŠูƒ ู…ู† ุฎู„ุงู„ ุงู„ู€ contingency

136
00:10:24,400 --> 00:10:28,020
matrix ูƒูŠู ุฃุญุณุจ ุงู„ู€ purityุŸ ุงู„ู€ purity ู‡ูŠ ุชุณุงูˆูŠ

137
00:10:28,020 --> 00:10:35,180
ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุน ุงู„ maximum ููŠ ูƒู„ ุตูุฑ ุงู„ maximum ุนุฏุฏ

138
00:10:35,180 --> 00:10:40,410
maximum ู„ู„ู€ Ti ุชู†ุชู…ูŠ ู„Cุนู„ู‰ ุงู„ุงู† ุงู„ maximum ุฎู…ุณุฉ ูˆ

139
00:10:40,410 --> 00:10:44,750
ุนุดุฑูŠู† ุงู„ maximum ุนุดุฑูŠู† ุงู„ maximum ุนุดุฑุฉ ูŠุนู†ูŠ ุฎู…ุณุฉ ูˆ

140
00:10:44,750 --> 00:10:49,430
ุนุดุฑูŠู† ุฒุงุฆุฏ ุนุดุฑูŠู† ุฒุงุฆุฏ ุนุดุฑุฉุนู†ุฏู…ุง ุงุชูƒู„ู… ุนู† ุฎู…ุณุฉ ูˆ

141
00:10:49,430 --> 00:10:53,550
ุฎู…ุณูŠู† ุนู„ู‰ ูƒู„ ุงู„ุงู† ุฎู…ุณุฉ ูˆ ุฎู…ุณูŠู† ูˆ ููŠ ุนู†ุฏู‰ ุงุถูŠูู‡ู…

142
00:10:53,550 --> 00:10:58,670
ู‡ู†ุง ุนู„ู‰ ุฎู…ุณุฉ ูˆ ุณุจุนูŠู† ุจุชูƒู„ู… ุนู„ู‰ ุงู„ purity ุงู„ุงู† ุงู†

143
00:10:58,670 --> 00:11:04,870
ุนู†ุฏูŠ ู‡ุงู† ุชู„ุงุชูŠู† ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ู‡ูŠ ุฎู…ุณุฉ ูˆ ุณุชูŠู† ุฎู…ุณุฉ

144
00:11:04,870 --> 00:11:10,750
ูˆ ุณุจุนูŠู† ู…ุนู†ุงุชู‡ ุนู†ุฏู‰ ุงู†ุง ู‡ุงู† ุฎู…ุณุฉุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ู†ุง

145
00:11:10,750 --> 00:11:13,830
ู†ุชูƒู„ู… .. ุงุญู†ุง ู‚ูˆู„ู†ุง ุงู„ maximum ุฎู…ุณุฉ ูˆ ุฃุฑุจุนูŠู† ..

146
00:11:13,830 --> 00:11:21,510
ุฎู…ุณุฉ ูˆ ุฎู…ุณูŠู† .. ุฎู…ุณุฉ ูˆ ุฎู…ุณูŠู† ุนู„ู‰ ุฎู…ุณุฉ ูˆ ุณุจุนูŠู† ู‡ุฐู‡

147
00:11:21,510 --> 00:11:23,970
ุงู„ purity ุชุจุน ุงู„ cluster ุฃูˆ ุชุจุน ุงู„ contingency

148
00:11:23,970 --> 00:11:29,990
matrix ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ

149
00:11:29,990 --> 00:11:34,250
ุทูŠุจ .. ุชุนุงู„ู‰ ู†ุดูˆู ุงู„ู…ุซุงู„ ุงู„ุจุณูŠุท ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุงุฏ

150
00:11:41,930 --> 00:11:45,370
ุฃู†ุง ู…ุด ุจู‚ูˆู„ุŒ ุจู‚ูˆู„ ุฅู† ุฃู†ุง ุงู„ู€Purity ุจู‚ุฏุฑ ุฃุญุณุจู‡ุง ุฅุฐุง

151
00:11:45,370 --> 00:11:50,690
ูƒุงู†ุช ุจุชุนุงู…ู„ ู…ุน test set ุจุชุญุชูˆูŠ ุนู„ู‰ target class

152
00:11:50,690 --> 00:11:56,970
ุชุฎูŠู„ุŒ ุนุดุงู† ูŠุฏู…ุฌ ุงู„ุชุนุฑูŠู ู‡ุฐุง ุงู„ู€definition ู‡ุฐุง ุนุดุงู†

153
00:11:56,970 --> 00:12:00,610
ูŠุฏู…ุฌ ู…ุง ุจูŠู† ุงู„ุดุบู„ุชูŠู† ุจูŠู† ุฅู†ู‡ ูุนู„ูŠุง ุงู„ู€clustering

154
00:12:00,610 --> 00:12:05,230
ุชุทุจู‚ ุนู„ู‰ test set ูˆุฃู†ุง ู…ู‚ุฏุฑุด ุฃุฑูˆุญ ุฃู‚ุฏุฑ ุฃุนู…ู„

155
00:12:05,230 --> 00:12:09,980
evaluation ุฅู„ุง ุบูŠุฑ ู„ูˆ ูƒุงู† ุงู„ label ู…ูˆุฌูˆุฏูุฌุงู„ูŠ ุงู„

156
00:12:09,980 --> 00:12:12,960
test set ุจุชุญุชูˆูŠ ุนู„ู‰ target ุงู„ุชูŠ ุจู†ุฌูˆุฒู†ูŠ training

157
00:12:12,960 --> 00:12:20,520
set ูˆ ู„ุง ุดูˆ ุฑุฃูŠูƒูˆุง training

158
00:12:20,520 --> 00:12:25,220
set ุจูŠุจู‚ู‰ ุงู„ุงู† ุจู‚ูˆู„ ุงูุชุฑุถ ุงู† ุงู†ุง ููŠ ุนู†ุฏู‰ test set

159
00:12:25,220 --> 00:12:29,900
ู…ูƒูˆู†ุฉ ู…ู† 24 element ุจุชู†ุชู…ูŠ ู„ three different

160
00:12:29,900 --> 00:12:39,530
classes ุงู„ O ุงูˆ ุงู„ circleTriangle ูˆSquare ูˆู…ุฌุณู…

161
00:12:39,530 --> 00:12:45,490
ุงู„ุนู†ุงุตุฑ ุจุงู„ุชุณุงูˆูŠ 8888 ุจุนุฏ ู…ุง ุทุจู‚ุช ุงู„ clustering

162
00:12:45,490 --> 00:12:50,510
ุชุจุนุช ุงู„ cluster C1 ููŠู‡ุง ุงู„ุนู†ุงุตุฑ ุงู„ุชุงู„ูŠุฉ ุงู„ cluster

163
00:12:50,510 --> 00:12:55,650
C2 ูˆ ุงู„ cluster C3 ุทุจุนุง ู‡ู†ุง ููŠ ู…ุตุทู„ุญ ุฌุฏูŠุฏ ุงุถูŠูู‡

164
00:12:55,650 --> 00:13:01,630
ู†ู‚ุงุก ูƒู„ cluster ู†ู‚ุงุก ูƒู„ cluster ุจุดูƒู„ ู…ุณุชู‚ู„ ุงุฐุง

165
00:13:01,630 --> 00:13:07,380
ุณุฃู„ุชูƒ ุงู„ cluster ุงู„ุฃูˆู„ ุจู…ุซู„ ุงูŠุดุŸู…ุนุธู…ูƒู… ุญูŠู‚ูˆู„ูˆุง ูˆ

166
00:13:07,380 --> 00:13:12,880
ุงู„ู„ู‡ ู‡ุฐุง ุจูŠู…ุซู„ ุงู„ู…ุซู„ุซุงุช ุงู„ triangles ูˆ ุงู„ู„ูŠ ุชุญุช

167
00:13:12,880 --> 00:13:16,480
ุงู„ุชุงู†ูŠ ู‡ูŠู…ุซู„ ุงู„ู…ุฑุจุนุงุช ุงู„ุญู…ุฑุงุก ูˆ ู‡ุฐู‡ ู‡ูŠู…ุซู„ ุงู„ุฏูˆุงุฆุฑ

168
00:13:16,480 --> 00:13:19,340
ุงู„ุฎุถุฑุงุกุŒ ู…ุธุจูˆุทุŸ ูุจุงู„ุชุงู„ูŠ ุฃู†ุง ุจู‚ุฏุฑ ุฃุญุณุจ ุงู„ purity

169
00:13:19,340 --> 00:13:22,300
ุชุจุน ูƒู„ cluster ุงู„ cluster ุงู„ุฃูˆู„ ุจูŠุญุชูˆูŠ ุนู„ู‰ 9 ุนู†ุงุตุฑ

170
00:13:22,300 --> 00:13:26,420
ูˆ ุงู„ maximum ูƒุงู†ุช ู„ู…ูŠู†ุŸ ู„ู„ู…ุซู„ุซุงุชุŒ ู…ุนู†ุงุชู‡ 6 ุนู„ู‰ 9

171
00:13:26,420 --> 00:13:29,880
ู„ูƒู† ู…ุด ู‡ูŠ ุงู„ target ุชุจุนุชูŠุŒ ุฃู†ุง ู…ุงุจู‡ู…ู†ูŠุด ุงู„ purity

172
00:13:29,880 --> 00:13:34,820
ุชุจุน ูƒู„ class ุฃู†ุง ุงู„ู„ูŠ ุจูŠู‡ู…ู†ูŠ ุงู„ purity ู„ูƒู„ output

173
00:13:34,820 --> 00:13:40,340
ู…ุฑุฉ ูˆุงุญุฏุฉู„ู„ู€ algorithm ุงู„ element 24 element ู‡ุฑูˆุญ

174
00:13:40,340 --> 00:13:44,920
ุฃุฏูˆุฑ ู‡ุงู†ุงู„ู€ maximum ู‡ู†ุง 6 ุงู„ู€ maximum ู‡ู†ุง 5 ุงู„ู€

175
00:13:44,920 --> 00:13:49,980
maximum ู‡ู†ุง 5 6 ุฒุงุฆุฏ 5 ุฒุงูŠุฏ 5 ุนู„ู‰ 24 16 ุนู„ู‰ 24

176
00:13:49,980 --> 00:13:53,660
ุฏุฑุฌุฉ ุงู„ู†ู‚ุงุก ุงู„ู„ูŠ ุจูŠุนุทูŠู†ุง ุฅูŠุงู‡ุง ุงู„ cluster ู‡ุฐุง ุจุดูƒู„

177
00:13:53,660 --> 00:14:00,460
ุนุงู… 76.67% ูˆ ู‡ูŠูƒ ุจุชุชู… ุญุณุจุฉ ุงู„ purity ุชุจุนุชู†ุง ู‡ู†ุง

178
00:14:00,460 --> 00:14:04,220
ุทุจุนุง ูƒู…ุงู† ู…ุฑุฉ ุจุฑุฌุน ุจู‚ูˆู„ ุฃู†ุง ุจู‚ุฏุฑ ุฃุชูƒู„ู… ุจุดูƒู„ ู…ุจุฏุฆูŠ

179
00:14:04,220 --> 00:14:09,910
ุงู„ majority ุชุจุน ูƒู„ cluster ูƒุฐุงุบุงู„ุจูŠุฉ ุชุจุนุช ูƒู„

180
00:14:09,910 --> 00:14:13,370
cluster ูƒุฏู‡ ู„ูƒู† ุงู„ purity ุชุจุนุชู‡ุง ู‡ุชูƒูˆู† ู‡ุฐู‡ ู…ุด

181
00:14:13,370 --> 00:14:17,330
ูˆุงุถุญุฉ ูุนู„ูŠุง ู„ูˆ ู‚ู„ุน ุนู†ุฏูŠ cluster ู…ุงุฏุฉ ู†ุณูˆุดูŠ ูˆ

182
00:14:17,330 --> 00:14:22,150
ุจูŠู†ุชู…ูŠ ู…ุซู„ุง ูู‚ุท ู„ two clusters ู„ two classes ูŠุนู†ูŠ

183
00:14:22,150 --> 00:14:25,770
ู…ู† ู†ูˆุนูŠู† ู…ุฎุชู„ููŠู† ู‡ู‚ูˆู„ ุงู„ purity ู„ู…ูŠู† ูุจุชุตูŠุฑ ุงู„

184
00:14:25,770 --> 00:14:29,990
purity ู‡ุฐู‡ ุบูŠุฑ ูˆุงุถุญุฉ ุฃูˆ ุจุชุตูŠุฑ ู…ูู‡ูˆู…ู‡ุง ุบูŠุฑ ุฏู‚ูŠู‚ ุฃู†ุง

185
00:14:29,990 --> 00:14:34,770
ุงู„ู„ูŠ ุจู‡ู…ู†ูŠ ุงู„ purity ุชุจุนุช ุงู„ cluster ุจุดูƒู„ ุนุงู…ุทุจุนุงู‹

186
00:14:34,770 --> 00:14:38,790
ุฃู†ุง ููŠู‡ ู…ุชุฑูŠูƒุฒ ุชุงู†ูŠุฉ ู…ู…ูƒู† ุชุณุชุฎุฏู… ู†ูุณ ุงู„ู…ุจุฏุฃ ุงู„ู€

187
00:14:38,790 --> 00:14:41,230
Ground Truth ุฅู† ุฃู†ุง ูุนู„ูŠุงู‹ ู„ุงุฒู… ูŠูƒูˆู† ููŠู‡ training

188
00:14:41,230 --> 00:14:44,710
data set ูˆู‡ุฐุง ู…ูู‡ูˆู… Ground Truth ูŠุนู†ูŠ ุงู„ุญู‚ูŠู‚ุฉ

189
00:14:44,710 --> 00:14:47,690
ุงู„ุฃู…ุฑ ุงู„ูˆุงู‚ุนุŒ ุฅูŠุด ุงู„ุฃู…ุฑ ุงู„ูˆุงู‚ุนุŸ ุงู„ุฃู…ุฑ ุงู„ูˆุงู‚ุน ุงู„

190
00:14:47,690 --> 00:14:51,510
class ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุงุŒ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุณุงุณุŒ ุชู…ุงู…ุŸ ูˆู‡ุฐุง

191
00:14:51,510 --> 00:14:57,250
ูุนู„ูŠุงู‹ ุฃู†ุง ู„ู…ุง ุจุทุจู‚ ุงู„ data setุฃูˆ Clustering ุนู„ู‰

192
00:14:57,250 --> 00:14:59,690
ุงู„ู€ Training Set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ููŠ ุนู†ุฏูŠ ุงู„ู€

193
00:14:59,690 --> 00:15:04,710
Adjusted Random Index ูˆููŠ ุนู†ุฏูŠ Normalized Mutual

194
00:15:04,710 --> 00:15:09,450
Information ูˆู‡ุฐู‡ ุจุชุฏูŠู†ูŠ ู‚ูŠู… ู…ู† ุตูุฑ ู„ูˆุงุญุฏ ูˆูƒู„ ู…ุง

195
00:15:09,450 --> 00:15:15,390
ูƒุงู†ุช ุงู„ู‚ูŠู…ุฉุฃู‚ุฑุจ ู„ู„ูˆุงุญุฏ ู…ุนูŠู†ุชู‡ ุงู„ู€ purity ุชุจุนุชูŠ ุฃูˆ

196
00:15:15,390 --> 00:15:19,830
ุงู„ู€ scale ุชุจุนูŠ ุงู„ algorithm ุชุจุนุชูŠ ุฃูุถู„ ุงู„ุตุญูŠุญ ุฃู†ุง

197
00:15:19,830 --> 00:15:25,010
ู…ุด ู‡ุงุทู„ุจ ู…ู†ูƒูˆุง ุงู„ุนู…ู„ูŠุงุช ุงู„ุญุณุงุจูŠุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏ

198
00:15:25,010 --> 00:15:28,810
ู‡ุงู† ู†ูุณ ุงู„ูƒู„ุงู… ู‡ูŠ ููŠ ุนู†ุฏ contingency matrix ุนู†ุฏ ุงู„

199
00:15:28,810 --> 00:15:30,890
actual class

200
00:15:32,410 --> 00:15:38,490
ุนู† ุทุฑูŠู‚ ุงู„ู€ Predicted Cluster ููŠ ู†ูุณ ุงู„ุญุณุจุฉ ู„ูƒู†

201
00:15:38,490 --> 00:15:43,770
ู‡ู†ุง ุจุชูƒู„ู… ุนู† ุฌุฏุงุด ุงู„ู€ elements ู…ู† ูƒู„ ุนู†ุตุฑ ุชู…ุงู…ุง

202
00:15:43,770 --> 00:15:47,710
ุงู„ุญุณุจุฉ ู…ุด ู…ุทู„ูˆุจุฉ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ู„ูƒู† ู‡ูˆุฑูŠูƒู… ุฅูŠุงู‡ุง

203
00:15:47,710 --> 00:15:51,830
ุฅู† ุดุงุก ุงู„ู„ู‡ ููŠ ุงู„ุนู…ู„ ูˆุจู‡ูŠูƒ ู†ู‡ูŠู†ุง ุดุจุชุฑู†ุง ูŠุนู†ูŠ ุฃู†ุง

204
00:15:51,830 --> 00:15:55,630
ุงู„ุขู† ู„ู…ุง ุฃุชูƒู„ู… ุนู„ู‰ ุงู„ evaluation ู…ู…ูƒู† ุฃุชูƒู„ู… ุนู„ู‰

205
00:15:55,630 --> 00:15:59,590
three different metrics3 ู…ุชุฑุงุช ู…ุฎุชู„ูุฉ ู„ู€ Purity

206
00:15:59,590 --> 00:16:03,710
ูˆู‡ูŠ ู…ุทู…ูˆุนุฉ ู…ู†ูƒูˆุง ุญุณุงุจูŠุชู‡ุง ู„ุฃู†ู‡ุง ุณู‡ู„ุฉ ุงู„ maximum ุงู„

207
00:16:03,710 --> 00:16:06,390
summation ู„ู„ู…ุงูƒุณูŠู…ู…ู… ููŠ ูƒู„ cluster ุนู„ู‰ ุนุฏุฏ ุงู„

208
00:16:06,390 --> 00:16:09,130
elements ูƒู„ู‡ุง ููŠ ุงู„ data set ูˆู‡ูŠ ุจุชู…ุซู„ ุงู„ purity

209
00:16:09,130 --> 00:16:14,890
ููŠ ุนู†ุฏูŠ ู…ุฌุฑุฏ ู…ุตุทู„ุญูŠู† ุฃุฎุฑูŠู† ุฃุฎุฑูŠู† ุจุฏูŠ ุฃุณู…ุนู‡ู… ุจุฏูŠ

210
00:16:14,890 --> 00:16:19,810
ุฃุญุฑูู‡ู… ุงู„ู„ูŠ ู‡ูˆ adjusted rank index ูˆnormalize

211
00:16:19,810 --> 00:16:25,010
mutual information ู‡ูŠ ุนุจุงุฑุฉ ุนู† rank ุจุญุณุจ ุงู„

212
00:16:25,010 --> 00:16:30,060
similarity between any two clustersุญุณุจุฉ ู…ุด ู…ุทู„ูˆุจุฉ

213
00:16:30,060 --> 00:16:33,520
ู„ูƒู† ูุนู„ูŠุงู‹ ู‡ูŠ ุนุจุงุฑุฉ ุนู† evaluation metric ุงู†ุง ู…ู…ูƒู†

214
00:16:33,520 --> 00:16:36,580
ุงูˆ ุฌุฏ ุงุณุชุฎุฏู…ู‡ุง ู…ุน ุงู„ clustering ุงู„ู„ูŠ ูŠุนุทูŠูƒูˆุง

215
00:16:36,580 --> 00:16:39,320
ุงู„ุนุงููŠุฉ ูˆ ุจุชู…ู†ุงู„ูƒูˆุง ุงู„ุชูˆููŠู‚ ุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ

216
00:16:39,320 --> 00:16:39,440
ุงู„ู„ู‡