File size: 31,462 Bytes
b3368b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1
00:00:23,230 --> 00:00:28,870
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ููŠ ุงู„ุณุงุนุฉ ู‡ุฐู‡ ุทุจุนุง ู‡ูŠูƒูˆู†

2
00:00:28,870 --> 00:00:34,770
ููŠุงู†ุง ู…ู†ุงู‚ุดุฉ ู†ุดูˆู 

3
00:00:34,770 --> 00:00:39,790
ุงู„ู€ section ุงู„ุฃุฎูŠุฑุฉ ููŠ chapter ุชู„ุงุชุฉ ู†ุจุฏุฃ section

4
00:00:39,790 --> 00:00:43,610
ุชู„ุงุชุฉ ุณุชุฉ ููŠุงู†ูƒู… ุฃูŠ ุณุคุงู„ ููŠ section ุชู„ุงุชุฉ ุณุชุฉุŸ

5
00:00:51,050 --> 00:00:56,790
ุงู„ุชุงู„ูŠ ู‡ุฐุง ู†ู‚ุดู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุทูŠุจ

6
00:00:56,790 --> 00:01:02,630
ููŠ section ุชู„ุงุชุฉ ุณุจุนุฉ ููŠ ุนู†ุฏูƒู… ุฃูŠ ุฃุณุฆู„ุฉ ููŠ section

7
00:01:02,630 --> 00:01:08,970
ุชู„ุงุชุฉ ุณุจุนุฉ ุณุคุงู„ ุฑู‚ู… ุงุญุฏุงุดุฑ ู†ุนู… ุฑู‚ู… ุงุญุฏุงุดุฑ

8
00:01:22,550 --> 00:01:35,490
ุจุณ ุงู„ุฑู‚ู… 11 ุชู„ุงุชุฉ ุณุงุจุนุฉ if 

9
00:01:35,490 --> 00:01:42,950
the series sigma a n with

10
00:01:42,950 --> 00:01:46,270
a 

11
00:01:46,270 --> 00:01:51,070
n ุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ is convergent

12
00:01:54,210 --> 00:02:01,230
is convergent then

13
00:02:01,230 --> 00:02:14,890
is the series sigma ู„ู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ูˆู„ุง 

14
00:02:14,890 --> 00:02:15,410
ู„ุฃุŸ

15
00:02:24,900 --> 00:02:29,340
is the series and

16
00:02:29,340 --> 00:02:39,240
if and

17
00:02:39,240 --> 00:02:52,300
if BN BN ุจูŠุณุงูˆูŠ A ูˆุงุญุฏ ุฒุงุฆุฏ ุฅู„ู‰ AN ูƒู„ ู‡ุฐุง ู…ุฌุณูˆู… ุนู„ู‰

18
00:02:52,300 --> 00:02:52,720
N

19
00:02:55,990 --> 00:03:03,350
ู…ุน ุงู„ู€ n ูŠุดุจู‡ ุงู„ู€ n ุซู… 

20
00:03:03,350 --> 00:03:08,310
ุงุธู‡ุฑ .. ุงุธู‡ุฑ

21
00:03:08,310 --> 00:03:15,590
ุงู† ุงู„ุณูŠุฑูŠุฒ ุณูŠุฌู…ุง bn ุฏุงุฆู…ุง

22
00:03:15,590 --> 00:03:19,510
.. ุฏุงุฆู…ุง

23
00:03:19,510 --> 00:03:21,290
ู…ุชุญุฑุฑ

24
00:03:33,740 --> 00:03:34,160
Okay

25
00:03:51,610 --> 00:03:56,550
ุจู†ุซุจุช ุงู† ู„ูˆ ูƒุงู†ุช ุงู„ series ู‡ุฐู‡ ุญุฏูˆุฏู‡ุง ูƒู„ู‡ุง ู…ูˆุฌุจุฉ ูˆ

26
00:03:56,550 --> 00:04:02,670
convergent ูˆุนุฑูู†ุง Pn ุนู„ู‰ ุงู† ุงู„ average ู„ู…ุฌู…ูˆุนุฉ ุฃูˆ

27
00:04:02,670 --> 00:04:09,750
ุงู„ average ู„ุฃูˆู„ n ู…ู† ุญุฏูˆุฏ ุงู„ series An ูุจู†ุซุจุช ุงู†

28
00:04:09,750 --> 00:04:12,790
ุงู„ series ู‡ุฐู‡ ุจุชุทู„ุน ุฏุงุฆู…ุง divergent

29
00:04:18,290 --> 00:04:21,610
ูˆุงุฑุฌูŠ ุงู„ unbounded ุงู„ series ู„ู…ุง ุชูƒูˆู† unbounded

30
00:04:21,610 --> 00:04:25,710
ุชุชุทูŠุฑ ู…ูŠู† ู‡ูŠ ุงู„ unboundedุŸ ุงู„ุฃุณุฆู„ุฉ ุงู„ sequence of

31
00:04:25,710 --> 00:04:36,990
partial sums ุตุญูŠุญ ูŠุนู†ูŠ

32
00:04:36,990 --> 00:04:42,710
ุฃู†ุง ุนู†ุฏูŠ ุฃูˆู„ ุดูŠ not

33
00:04:42,710 --> 00:04:43,290
first

34
00:04:47,630 --> 00:05:00,050
ุฑุญุฒูŠ ุฃูˆู„ุง ุฃู†ู‡ ู„ูƒู„ K ูŠู†ุชู…ูŠ ุฅู„ู‰ N EK

35
00:05:00,050 --> 00:05:12,590
ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ A1 ุฒุงูŠุฏ EK ุนู„ู‰ N ุนู„ู‰ K ู‡ุฐุง

36
00:05:12,590 --> 00:05:15,870
ุจูŠูƒูˆู† ุฏุงูŠู…ุง ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ

37
00:05:20,590 --> 00:05:25,570
A1 ุนู„ู‰ K ู„ุฃู†

38
00:05:25,570 --> 00:05:32,410
ุงู„ .. ุงู„ sum ุงู„ู„ูŠ ู‡ู†ุง ุฃูƒุจุฑ ู…ู† A1 ู„ุฃู† ุงู„ุฃุนุฏุงุฏ ู‡ู†ุง

39
00:05:32,410 --> 00:05:37,150
ุงู„ู„ูŠ ููŠ ุงู„ sum ูƒู„ ุฃุนุฏุงุฏ ู…ูˆุฌุจุฉ ูุงู„ sum ุงู„ู„ูŠ ู‡ู†ุง

40
00:05:37,150 --> 00:05:40,930
ุฃูƒุจุฑ ู…ู† ุงู„ sum ุงู„ู„ูŠ ู‡ู†ุงูƒ ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ุฏุงูŠู…ุง ุตุญูŠุญ

41
00:05:40,930 --> 00:05:45,650
ู„ูƒู„ K ููŠ N hence

42
00:05:45,650 --> 00:05:46,790
ูˆุจุงู„ุชุงู„ูŠ

43
00:05:48,890 --> 00:05:57,350
ู„ูˆ ุฃุฎุฏุช ุงู„ู€ nth partial sum ู„ู„ุณูŠุฑูŠุฒ ุณูŠุฌู…ุง BN

44
00:06:05,920 --> 00:06:10,120
ุฅุฐู† ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ู€ nth partial sum ู„ู„ series sigma

45
00:06:10,120 --> 00:06:17,480
bn ุงู„ุขู† ุนู†ุฏูŠ bk ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ู‡ุงูŠ summation ู…ู†

46
00:06:17,480 --> 00:06:24,380
k ุจุณุงูˆูŠ ูˆุงุญุฏ ุฅู„ู‰ n ูˆ ุงู„ bk ู‡ุงุฏูŠ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ a

47
00:06:24,380 --> 00:06:29,640
ูˆุงุญุฏ ุนู„ู‰ k ุงู„ a ูˆุงุญุฏ ุซุงุจุช ุจุงู„ู†ุณุจุฉ ู„ k ุฏู‡ ุชู…ู„ูŠุด ุนู„ู‰

48
00:06:29,640 --> 00:06:36,860
k ูุจุทู„ู‘ู‡ ุจุฑุง ู‡ุงูŠ a ูˆุงุญุฏ ุถุฑุจSummation ู…ู† K ุจูŠุณุงูˆูŠ

49
00:06:36,860 --> 00:06:44,400
ูˆุงุญุฏ ุฅู„ู‰ N ู„ูˆุงุญุฏ ุนู„ู‰ K ูˆุงุญู†ุง

50
00:06:44,400 --> 00:06:50,140
ุฃุซุจุชู†ุง ู‚ุจู„ ู‡ูŠูƒ ุฃู†ู‡ ุงู„ sequence of partial sums ู„ู„

51
00:06:50,140 --> 00:06:57,620
harmonic series is unbounded

52
00:06:57,620 --> 00:07:03,380
ููŠ ูƒุงู† ู…ุซุงู„ ุณุงุจู‚ ุจูŠู‚ูˆู„ ุฅู†ู‡

53
00:07:07,390 --> 00:07:14,970
ุฅู† ุงู„ู€ sequence ู‡ุฐู‡ ู…ู† n ุจุณุงูˆูŠ ูˆุงุญุฏ to infinity is

54
00:07:14,970 --> 00:07:18,590
unbounded

55
00:07:18,590 --> 00:07:25,010
is unbounded ุญุณุจ

56
00:07:25,010 --> 00:07:31,030
ู…ุซุงู„ ุณุฃู„ุช ุฅุฐุง ู„ู…ุง ุฃุถุฑุจู‡ุง ุงู„ sequence ู‡ุฐู‡ ู„ู…ุง ุฃุถุฑุจ

57
00:07:31,030 --> 00:07:35,350
ุญุฏูˆุฏู‡ุง ุฃูˆ ุฃุถุฑุจู‡ุง ููŠ ุซุงุจุช ู…ูˆุฌุจ ุชุจู‚ู‰ unbounded

58
00:07:39,070 --> 00:07:48,770
ูˆุจุงู„ุชุงู„ูŠ ุฅุฐุง SM ู‡ุฐุง ุจูŠู‚ุฏูŠ ุงู† ุงู„ sequence SM is

59
00:07:48,770 --> 00:07:52,610
unbounded

60
00:07:52,610 --> 00:07:59,870
therefore ุงู„

61
00:07:59,870 --> 00:08:08,950
limit ู„ SM ู„ู…ุง ุงู†ุชู‚ู„ ู„ infinity does not exist and

62
00:08:08,950 --> 00:08:16,510
therefore the series sigma dn diverges ู„ุงู† ุงุญู†ุง

63
00:08:16,510 --> 00:08:19,970
ู‚ู„ู†ุง ู‚ุจู„ูƒ ุงู† ุงูŠ infinite series ุจุชูƒูˆู† convergent

64
00:08:19,970 --> 00:08:24,570
if and only if the sequence of partial sums is

65
00:08:24,570 --> 00:08:32,870
convergent ู„ุงู† ู‡ุฐุง ู‡ูˆ ุงู„ุญู„ okay ุชู…ุงู… ููŠ

66
00:08:32,870 --> 00:08:35,730
ุฃูŠ ุฃุณุฆู„ุฉ ุชุงู†ูŠุฉ ููŠ section ุชู„ุงุชุฉ ุณุจุนุฉ

67
00:08:53,340 --> 00:08:58,320
ู…ูู‡ูˆู… ุงู„ุญู„ุŸ ููŠ 

68
00:08:58,320 --> 00:09:03,800
ุฃุณุฆู„ุฉ ุชุงู†ูŠุฉ ููŠ ุงู„ section ู‡ุฐุง ุฃูˆ ุฃูŠ section ุณุงุจู‚ุŸ

69
00:09:03,800 --> 00:09:11,180
ูุณุคุงู„ ุณุจุนุฉ ู‡ุฐุง

70
00:09:11,180 --> 00:09:16,210
ุงู„ู…ู…ุงุซู„ ุจูŠุดุจู‡ ู…ุซุงู„ ุชู„ุงุชุฉ ุณุจุนุฉ ุณุชุฉ ูุงู‚ุฑุฃูŠ ุงู„ู…ุซุงู„

71
00:09:16,210 --> 00:09:22,330
ุญุงูˆู„ูŠ ุชุทุจู‚ูŠ ู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ู…ุดุฑูˆุญู„ูŠูƒ ููŠ ุงู„ู…ุซุงู„ ูุญุงูˆู„ูŠ

72
00:09:22,330 --> 00:09:28,710
ุงุชุฌู„ุฏูŠ ุงู„ู…ุซุงู„ ููŠ ุงูŠ ุงุณุฆู„ุฉ ุชุงู†ูŠุฉุŸ

73
00:09:28,710 --> 00:09:35,950
ู…ุงู†

74
00:09:35,950 --> 00:09:37,170
ู„ุฏูŠู‡ุง ุณุคุงู„ุŸ

75
00:09:56,850 --> 00:10:11,850
ููŠ ุนู†ุฏูƒู… ุฃุณุฑุฉ ุทูŠุจ

76
00:10:11,850 --> 00:10:14,790
ู„ู…ุง ุชููƒุฑูˆุง ููŠ ุฃุณุฑุฉ ุจุฏูŠ ุฃู†ุง ุจุงุฑู‡ู†ูƒู… Cauchy

77
00:10:14,790 --> 00:10:21,390
condensation test ู„ุฃู† ู‡ุฐุง ููŠ ุนู„ูŠู‡ ุฃุณุฑุฉ ูˆู…ู‡ู…

78
00:10:38,680 --> 00:10:56,660
ุณุคุงู„ ุงุชู…ุงุดูŠ section ุชู„ุงุชุฉ .. ุณุงุจุนุฉ Cauchy

79
00:10:56,660 --> 00:11:00,760
condensation

80
00:11:00,760 --> 00:11:01,180
test

81
00:11:13,290 --> 00:11:19,130
ูุงู„ test ู‡ุฐุง ุจูŠู‚ูˆู„ let sigma

82
00:11:19,130 --> 00:11:29,970
an be a series .. a series of

83
00:11:29,970 --> 00:11:42,270
monotone .. of monotone decreasing positive

84
00:11:45,320 --> 00:11:54,260
ู…ุฌู…ูˆุนุงุช ุงุซู†ูŠู† ุงุซู†ูŠู†

85
00:11:54,260 --> 00:11:54,340
ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู†

86
00:11:54,340 --> 00:11:58,160
ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู†

87
00:11:58,160 --> 00:11:59,760
ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู†

88
00:11:59,760 --> 00:12:03,980
ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู†

89
00:12:03,980 --> 00:12:05,320
ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู†

90
00:12:05,320 --> 00:12:08,420
ุงุซู†ูŠู† ุงุซู†ูŠู† ุงุซู†ูŠู†

91
00:12:08,420 --> 00:12:14,380
ุงุซู†ูŠู†

92
00:12:14,380 --> 00:12:14,820
ุงุซู†

93
00:12:42,930 --> 00:12:48,630
ูˆู‡ูŠ ุงู„ุจุฑู‡ุงู† ุฃูˆู„ุง

94
00:12:48,630 --> 00:13:02,350
ุฎู„ู‘ูŠู†ุง ู†ู„ุงุญุธ note that ู„ุงุญุธูŠ ุงู†ู‡ ู„ูˆ ุฃุฎุฏุช ู†ุต ููŠ

95
00:13:02,350 --> 00:13:12,530
summation ู…ู† k ุจุณุงูˆูŠ zero to infinity ู„ two ุฃูุณ k

96
00:13:12,530 --> 00:13:18,930
ููŠ a two to k ู‡ุฐุง

97
00:13:18,930 --> 00:13:20,830
ุจูŠุทู„ุน ุจุณุงูˆูŠ ู†ุต

98
00:13:23,540 --> 00:13:33,720
ููŠ A1 ุงูˆู„ ุญุฏ ู„ู…ุง ูƒุฏุง ุณุงูˆู‰ ุณูุฑ ูุจุทู„ุน ู†ุต A1 ุงู„ุญุฏ

99
00:13:33,720 --> 00:13:43,940
ุงู„ู„ูŠ ุจุนุฏู‡ ู‡ูŠุทู„ุน A2 ุงู„ู„ูŠ ุจุนุฏู‡ ุงุชู†ูŠู† A4 ูˆุงู„ู„ูŠ ุจุนุฏู‡

100
00:13:43,940 --> 00:13:52,020
ุงุฑุจุนุฉ ููŠ A8 ูˆู‡ูƒุฐุง ู†ุณุชู…ุฑ ุนู„ู‰ ู‡ุฐุง ุงู„ู†ู…ุท ุฅู„ู‰

101
00:13:55,470 --> 00:14:00,650
ุฃุชู†ูŠู† ุฎู„ู‘ูŠู†ุง ู†ุงุฎุฏ ุงู„ู…ุฌู…ูˆุนุฉ ู…ู† K ุจุณุงูˆูŠ ุณูุฑ ุฅู„ู‰ M

102
00:14:00,650 --> 00:14:08,290
ุญูŠุซ M ุนุฏุฏ ุทุจูŠุนูŠ ู…ุง ูุฃุฎุฑ ุญุฏ ู‡ูŠูƒูˆู† ุงุชู†ูŠู† ุฃุณ M ุณุงู„ุจ

103
00:14:08,290 --> 00:14:15,670
ูˆุงุญุฏ ููŠ A ุงุชู†ูŠู† ุฃุณ M ุงู„ุขู†

104
00:14:15,670 --> 00:14:21,770
ู‡ุฐุง ุงู„ู…ุฌู…ูˆุน ุฃุตุบุฑ ู…ู† A ูˆุงุญุฏ ู†ุต A ูˆุงุญุฏ ุจุงู„ุชุฃูƒูŠุฏ ุฃุตุบุฑ

105
00:14:21,770 --> 00:14:32,160
ู…ู† A ูˆุงุญุฏ ูˆุทุจุนุง ุงู„ .. ุงู„ .. ุงู„ุฃุนุฏุงุฏ ู‡ุฐู‡ ูƒู„ู‡ุง ู…ูˆุฌุจุฉ

106
00:14:32,160 --> 00:14:38,600
ูˆ ุจุชูƒูˆู† decrease in sequence ูู†ุต a1 ุฃุตุบุฑ ู…ู† a1 ูˆ

107
00:14:38,600 --> 00:14:59,570
a2 ุจุณุงูˆูŠ a2 ูˆ 2 a4 ุฃุตุบุฑ ู…ู† a3 ุฒุงุฆุฏ a4 ุตุญุŸA4 ุฃุตุบุฑ

108
00:14:59,570 --> 00:15:07,110
ู…ู† A3 ู„ุฃู† ุงู„ sequence A N decreasing ูุนู†ุฏูŠ A4 ุฒุงุฆุฏ

109
00:15:07,110 --> 00:15:17,350
A4 ุฃุตุบุฑ ู…ู† A3 ุฒุงุฆุฏ A4 ูˆ ู‡ูƒุฐุง ุจุฑุถู‡ ุนู†ุฏูŠ A8 ุฃุตุบุฑ ู…ู†

110
00:15:17,350 --> 00:15:25,190
A5 ูˆ ุฃุตุบุฑ ู…ู† A6 ูˆ ุฃุตุบุฑ ู…ู† A7ูˆุจุงู„ุชุงู„ูŠ ู‡ุฏุง ู‡ูŠูƒูˆู†

111
00:15:25,190 --> 00:15:30,470
ุงุฑุจุนุฉ A8 ุงุตุบุฑ ู…ู† ู…ุฌู…ูˆุนุฉ ุงุฑุจุนุฉ ุญุฏูˆุฏ ุงู„ู„ูŠ ู‡ู… a

112
00:15:30,470 --> 00:15:42,270
ุฎู…ุณุฉ ุฒุงุฆุฏ a ุณุชุฉ ุฒุงุฆุฏ a ุณุจุนุฉ ุฒุงุฆุฏ a ุชู…ุงู†ูŠุฉ ูˆ ู‡ูƒุฐุง

113
00:15:42,270 --> 00:15:48,830
ุงุณุชู…ุฑ ุนู„ู‰ ู‡ุฐุง ุงู„ู†ู…ุท ุงู„ู‰ ุงู† ู†ุตู„ ู„ุงุฎุฑ

114
00:15:51,230 --> 00:15:58,170
ู‡ุฏูˆู„ ุงู„ุญุฏูˆุฏ ู‡ูŠูƒูˆู† ุงุตุบุฑ ู…ู† .. ุงูˆ ู„ุญุฏ ู‡ุฐุง ุงู„ุฃุฎูŠุฑ

115
00:15:58,170 --> 00:16:04,530
ุงุตุบุฑ ู…ู† ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ู„ูŠ ู‡ูˆ a ุงุชู†ูŠู† ุฃูุณ ุงู… ุณุงู„ุจ ูˆุงุญุฏ

116
00:16:04,530 --> 00:16:11,430
ุฒุงุฆุฏ ูˆุงุญุฏ ุฒุงุฆุฏ a

117
00:16:11,430 --> 00:16:18,920
ุงุชู†ูŠู† ุฃูุณ ุงู… ุณุงู„ุจ ูˆุงุญุฏ ุฒุงุฆุฏ ุงุชู†ูŠู† ุฒุงุฆุฏ ูˆ ู‡ูƒุฐุงุจู‚ุช

118
00:16:18,920 --> 00:16:24,700
ุฃุตุบุฑ ู…ู† ู…ุฌู…ูˆุนุฉ ูƒู„ ุงู„ series ู„ุฃู† ู‡ุฐู‡ ูƒู„ู‡ุง ุญุฏูˆุฏ

119
00:16:24,700 --> 00:16:29,680
ู…ูˆุฌุจุฉุŒ ุฃุนุฏุงุฏ ู…ูˆุฌุจุฉ ูˆู‡ุฐุง

120
00:16:29,680 --> 00:16:38,540
ุงู„ูƒู„ุงู… ุตุญูŠุญ ู„ูƒู„ MุŒ ู„ูƒู„ M ุนุฏุฏ ุทุจูŠุนูŠ ุฃูƒุจุฑ

121
00:16:38,540 --> 00:16:47,240
ู…ู† ุฃูˆ ูŠุณุงูˆูŠุŒ ูŠุนู†ูŠ ุนุฏุฏ ุทุจูŠุนูŠ ูˆุจุงู„ุชุงู„ูŠ

122
00:16:47,240 --> 00:16:48,120
and so

123
00:16:50,890 --> 00:17:01,690
ูˆุจุงู„ุชุงู„ูŠ ู†ุถุฑุจ sum ู…ู† k ุจุณุงูˆูŠ ุณูุฑ ุฅู„ู‰ m ู„ุชูˆ ุฃุณ ูƒ

124
00:17:01,690 --> 00:17:10,490
ุจุฅุชู†ูŠู† ุฃูุณ ูƒ ุฏู‡ ู‡ูŠุทู„ุน ุฃุตุบุฑ ู…ู† ุฃูˆ ุณุงูˆูŠ ู†ุถุฑุจ ุงู„ุทุฑููŠู†

125
00:17:10,490 --> 00:17:15,470
ููŠ ุงุชู†ูŠู† ุนุดุงู† ู†ุชุฎู„ุต ู…ู† ุงู„ู†ุตู ุจุตูŠุฑ ุงู„ู…ุฌู…ูˆุน ู‡ุฐุง ุฃุตุบุฑ

126
00:17:15,470 --> 00:17:21,410
ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงุชู†ูŠู† ููŠ summation ู…ู† n equals zero to

127
00:17:21,410 --> 00:17:27,750
infinity ู„ a n ุชู…ุงู…ุŸ

128
00:17:27,750 --> 00:17:34,330
ูˆู‡ุฐุง

129
00:17:34,330 --> 00:17:39,650
ุตุญูŠุญ ู„ูƒู„ m belonging to N

130
00:17:44,360 --> 00:18:02,120
ุจู†ุณู…ูŠ ุงู„ quality ู‡ุฐู‡ ูˆุงุญุฏ ุทูŠุจ

131
00:18:02,120 --> 00:18:05,680
now next

132
00:18:09,650 --> 00:18:21,350
given any m ุฃูƒุจุฑ ู…ู† ุฃูˆ ุณูˆู‰ ุงู„ูˆุงุญุฏ choose using

133
00:18:21,350 --> 00:18:34,050
Archimedean property choose

134
00:18:34,050 --> 00:18:44,810
k ุจุญูŠุซ ุฃู†ู‡ two to K ุฃูƒุจุฑ ู…ู† M ู„ุฃูŠ ุนุฏุฏ ุทุจูŠุนูŠ ู…ู…ูƒู†

135
00:18:44,810 --> 00:18:58,530
ุฃู„ุงู‚ูŠ ุนุฏุฏ ุทุจูŠุนูŠ ุจุญูŠุงุชูŠ two to K ุฃูƒุจุฑ ู…ู† M then ุงู„

136
00:18:58,530 --> 00:19:06,690
summation from N equals zero to M ู„ุงู† ู‡ุฐุง ุจูŠุทู„ุน

137
00:19:06,690 --> 00:19:12,630
ุฃุตุบุฑ ู…ู† a0

138
00:19:12,630 --> 00:19:19,710
ุฒุงุฆุฏ a1 ุฒุงุฆุฏ a2

139
00:19:19,710 --> 00:19:31,150
ุฒุงุฆุฏ a3 ุฒุงุฆุฏ a4 ุฒุงุฆุฏ a5 ุฒุงุฆุฏ a6 ุฒุงุฆุฏ a7 ุฒุงุฆุฏ a8

140
00:19:35,390 --> 00:19:47,670
ู…ุน ุจุนุถ ุฒุงุฆุฏ ูˆ ู‡ูƒุฐุง ุฅู„ู‰ ุงุชู†ูŠู† 

141
00:19:47,670 --> 00:19:55,190
ุฃุณ 2 ุฒุงุฆุฏ 2 ุฃุณ 2 ุฒุงุฆุฏ 1 ุฒุงุฆุฏ ูˆู‡ูƒุฐุง ุฅู„ู‰ 

142
00:19:55,190 --> 00:19:59,330
2 

143
00:19:59,330 --> 00:20:03,950
ุฃุณ 2 ุฒุงุฆุฏ 1 ุณุงู„ุจ 1

144
00:20:12,500 --> 00:20:17,840
ุฃู†ุง ุนู†ุฏ ุงู„ู€ M ู‡ุฐุง ุงู„ู€ M ุฃุตุบุฑ ู…ู† 2 ุฃุณ K ููŠ ุขุฎุฑ 

145
00:20:17,840 --> 00:20:26,460
ุญุฏ ุงู„ู„ูŠ ู‡ูˆ A<sub>M</sub> ู‡ูŠูƒูˆู† ุฃุตุบุฑ ู…ู† A ุฑู‚ู… 2 ุฃุณ K ุฃูˆ

146
00:20:26,460 --> 00:20:34,180
ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ 2 ุฑู‚ู… A ุฃุณ 2K ุฒูŠ ูˆุงุญุฏ 

147
00:20:34,180 --> 00:20:35,780
ู†ุงู‚ุต 1

148
00:20:43,450 --> 00:20:52,190
ูˆุงู„ู…ุฌู…ูˆุน ู‡ุฐุง .. ู‡ุฐุง ุงู„ู…ุฌู…ูˆุน ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ a<sub>0</sub>

149
00:20:52,190 --> 00:20:57,490
ุฒุงุฆุฏ a<sub>1</sub> ุฒุงุฆุฏ

150
00:20:57,490 --> 00:21:06,710
2 a<sub>2</sub> ู„ุฃู† a<sub>3</sub> ุฃุตุบุฑ ู…ู† a<sub>2</sub> ุตุญุŸ ุนุดุงู† ุงู„ู€ sequence a<sub>n</sub> is

151
00:21:06,710 --> 00:21:13,030
decreasing ูˆู‡ุฐุง ุงู„ู…ุฌู…ูˆุน ุฃุตุบุฑ ู…ู† 4 a

152
00:21:14,740 --> 00:21:26,420
4 ุตุญ ูˆู‡ูƒุฐุง ุฅู„ู‰ ุงู„ู…ุฌู…ูˆุน ู‡ุฐุง ู‡ูŠูƒูˆู† ุฃุตุบุฑ ู…ู† 2

153
00:21:26,420 --> 00:21:37,280
ุฃุณ K ู‡ุฐูˆู„ ุนุฏุฏ ุงู„ุญุฏูˆุฏ ููŠ a 2 ุฃุณ K ูŠุนู†ูŠ ู‡ุฐูˆู„

154
00:21:37,280 --> 00:21:41,860
ุนุฏุฏ ุงู„ุญุฏูˆุฏ ุนุฏุฏู‡ู… 2 ุฃุณ K ูˆูƒู„ ูˆุงุญุฏ ู…ู†ู‡ู…

155
00:21:45,050 --> 00:21:55,350
ุฃุตุบุฑ ู…ู† 2 ุฃูˆู„ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ 2 ุฃุณ 2K ูˆู‡ุฐุง 

156
00:21:55,350 --> 00:22:01,830
ุจุฏูˆุฑู‡ ุฃุตุบุฑ ู…ู† 2 ุฃุณ 2K ุฒุงุฆุฏ summation ู…ู† K

157
00:22:01,830 --> 00:22:09,730
ุจุณุงูˆูŠ 0 to infinity ู„ู€ 2 ุฃุณ K ููŠ 2 ุฃุณ 

158
00:22:09,730 --> 00:22:17,540
K ู‡ุงูŠ ุฃูˆู„ ุญุฏ 2 ุฃุณ K ู„ู…ุง K ุจูŠุณุงูˆูŠ 0 ุจูŠุทู„ุน

159
00:22:17,540 --> 00:22:25,640
1 ูˆุงุญุฏ ูˆุจุนุฏูŠู† ุงู„ู„ูŠ ุจุนุฏู‡ ุจูŠุทู„ุน 2 2 ู„ู…ุง K 

160
00:22:25,640 --> 00:22:33,480
ุจูŠุณุงูˆูŠ 1 ูˆุงู„ู„ูŠ ุจุนุฏู‡ 4 4 ูˆู‡ูƒุฐุง ุทุจุนุง

161
00:22:33,480 --> 00:22:37,400
ู‡ุฐุง ุจูˆู‚ู ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐุง finite ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุงู„ู…ุฌู…ูˆุนุฉ

162
00:22:37,400 --> 00:22:41,400
ู…ู† K ุจูŠุณุงูˆูŠ 0 ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐุง ุทุจุนุง ููŠ ุญุฏูˆุฏ 

163
00:22:41,400 --> 00:22:41,820
ุฃูƒุซุฑ

164
00:22:44,960 --> 00:22:53,040
ุชู…ุงู…ุŸ ูˆุจุงู„ุชุงู„ูŠ ุฅุฐุง ู†ุณุชู†ุชุฌ and so ู†ุณุชู†ุชุฌ 

165
00:22:53,040 --> 00:23:02,980
ุฅู†ู‡ ุงู„ู…ุฌู…ูˆุนุฉ โˆ‘ from n equal 0 to infinity ู„ู€

166
00:23:02,980 --> 00:23:12,050
a<sub>n</sub> ุจุทู„ุน ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ a<sub>0</sub> ุฒุงุฆุฏ โˆ‘ from k equals

167
00:23:12,050 --> 00:23:20,790
0 to infinity ู„ู€ 2<sup>k</sup> a<sub>2<sup>k</sup></sub> ู„ุฃู†

168
00:23:20,790 --> 00:23:26,810
ู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ M ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ 1 ู„ุฃู† ู‡ุฐุง

169
00:23:26,810 --> 00:23:33,330
ุนุจุงุฑุฉ ุนู† ู‡ุฐุง ุนุจุงุฑุฉ ุนู† upper bound ู‡ุฐุง ุงู„ุนุฏุฏ ุฃูˆ ู‡ุฐุง

170
00:23:33,330 --> 00:23:39,530
ุงู„ุนุฏุฏ upper bound ู„ู„ู€ sequence of partial sums ู‡ู†ุง

171
00:23:39,530 --> 00:23:44,190
ูู…ุง 

172
00:23:44,190 --> 00:23:47,210
ู‡ุฐู‡ ุงู„ู€ sequence of partial sums is increasing

173
00:23:47,210 --> 00:23:50,750
ู…ุชุฒุงูŠุฏุฉ

174
00:23:50,750 --> 00:23:55,110
ูˆ bounded above by this number ุฅุฐุง ุงู„ู€ limit ุชุจุนุช

175
00:23:55,110 --> 00:23:58,650
ุงู„ู€ sequence of partial sums exist ูˆุจุงู„ุณุงูˆูŠ

176
00:23:58,650 --> 00:24:04,990
supremum ู„ู„ู€ sequence of partial sums ุงู„ู€ supremum

177
00:24:04,990 --> 00:24:11,150
ู„ู„ู€ sequence of partial sums ุฃู‚ู„ ู…ู† ุงู„ู€ upper bound

178
00:24:11,150 --> 00:24:13,670
ู‡ุฐุง upper bound ู„ู„ู€ sequence of partial sums ุงู„ู€ 

179
00:24:13,670 --> 00:24:17,050
supremum ุฃุตุบุฑ upper bound ูˆุจุงู„ุชุงู„ูŠ ุฅุฐุง ุงู„ู€ supremum

180
00:24:17,050 --> 00:24:21,690
ู„ู„ู€ sequence of partial sums ู‡ูˆ ุนุจุงุฑุฉ ุนู† limit ู„ู„ู€

181
00:24:21,690 --> 00:24:23,730
sequence of partial sums ุงู„ู„ูŠ ู‡ูˆ ู…ุฌู…ูˆุนุฉ ุงู„ู€

182
00:24:23,730 --> 00:24:29,190
infinite series ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ upper bound by

183
00:24:29,190 --> 00:24:34,290
monotone convergence theorem ุงู„ุณูŠุฑูŠุฒ 

184
00:24:34,290 --> 00:24:39,610
ู‡ุฐูŠ convergence ูˆู…ุฌู…ูˆุนุฉ ุจุณุงูˆูŠ limit ู„ู„ู€ sequence of 

185
00:24:39,610 --> 00:24:44,710
partial sums ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู† ุฃูˆ ุณุงูˆูŠ ุนุฏุฏู‡ุง okay

186
00:24:44,710 --> 00:24:54,170
ุฅุฐุง ู†ุณู…ูŠ ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ 2 ุฅุฐุง ู…ู† ุงู„ู…ุชุจุงูŠู†ุฉ 1 

187
00:24:54,170 --> 00:24:54,870
ูˆ2

188
00:25:11,870 --> 00:25:19,130
ุงู„ุขู† ุจู…ู‚ุงุฑู†ุฉ ู…ุจุงุดุฑุฉ ุงู„ุงุฎุชู„ุงูุงุช

189
00:25:19,130 --> 00:25:30,640
ุงู„ู…ุชุจุงูŠู†ุงุช 1 ูˆ 2 ุจูŠู‚ุฏูˆุง ุงู„ุณูŠุฑูŠุฒ โˆ‘ a<sub>n</sub>

190
00:25:30,640 --> 00:25:39,720
converges if and only if ุงู„ุณูŠุฑูŠุฒ โˆ‘ 2<sup>2</sup>

191
00:25:39,720 --> 00:25:47,820
a<sub>2<sup>2</sup></sub> converges ุชุนุงู„ู‰ 

192
00:25:47,820 --> 00:25:54,680
ู†ุดูˆู ู„ูˆ ูƒุงู†ุช ุงู„ุณูŠุฑูŠุฒ ู‡ุฐู‡ convergent ูุงู„ุณูŠุฑูŠุฒ

193
00:25:54,680 --> 00:25:55,780
ู‡ุฐู‡ convergent

194
00:25:58,080 --> 00:26:03,500
ูˆุจุงู„ุชุงู„ูŠ ุทุจุนุง ุฃู† ู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ M ุจุงู„ู…ู†ุงุณุจุฉ ุจู‚ุฏุฑ ุฃู†

195
00:26:03,500 --> 00:26:08,880
ู‡ุฐู‡ ุฃูŠุถุง sequence of partial sums ู‡ุฐู‡ ุงู„ู€ limit

196
00:26:08,880 --> 00:26:19,460
ุชุจุนุชู‡ุง exist ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ infinite series ู‡ุฐู‡ ุฅุฐุง

197
00:26:19,460 --> 00:26:27,250
ุฃู† ุงู„ ู…ู…ูƒู† ู†ู‚ูˆู„ ุฃู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ุงู„ุขู† ู„ูˆ ูƒุงู†ุช ุงู„ู€

198
00:26:27,250 --> 00:26:31,430
series ู‡ุงุฏูŠ convergent ูู†ุถุฑุจู‡ุง ููŠ ุซุงุจุช 2 ุชุทู„ุน

199
00:26:31,430 --> 00:26:35,270
convergent ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ series ู‡ุงุฏูŠ convergent by 

200
00:26:35,270 --> 00:26:40,170
direct comparison test ุงู„ุนูƒุณ ู„ูˆ ูƒุงู†ุช ุงู„ู€ series

201
00:26:40,170 --> 00:26:41,670
ู‡ุงุฏูŠ convergent

202
00:26:44,460 --> 00:26:50,840
ูู„ู…ุง ุฃุถูู„ู‡ุง ุญุฏ ุนุฏุฏ ู…ูˆุฌุจ ุจูŠุจู‚ู‰ conversion ูˆุจุงู„ุชุงู„ูŠ

203
00:26:50,840 --> 00:26:54,080
by direct comparison test ุงู„ู€ series ุงู„ุฃุตุบุฑ ุจุชุทู„ุน

204
00:26:54,080 --> 00:26:58,160
conversion okay ุชู…ุงู…ุŸ ู„ุฃู† ู‡ุฐุง ุจุซุจุช Cauchy

205
00:26:58,160 --> 00:27:03,600
condensation test ู‡ุฐุง ุงู„ู€ test ู‚ูˆูŠ ูƒุชูŠุฑ ูˆู„ู‡ ููˆุงุฆุฏ

206
00:27:03,600 --> 00:27:13,000
ูƒุชูŠุฑุฉ ูู…ู† ุงู„ููˆุงุฆุฏ ุชุจุนุชู‡ุง ูŠุนู†ูŠ

207
00:27:13,000 --> 00:27:13,800
ู‡ุฐู‡ ู…ุซุงู„

208
00:27:22,170 --> 00:27:37,410
ู…ู…ูƒู† ู†ุณุชู†ุชุฌ ุงู„ู€ P-series test ู…ุซุงู„ุŒ 

209
00:27:37,410 --> 00:27:46,290
ุฃู†ุง ู…ูˆุฌูˆุฏ ููŠ ุฅุญุฏู‰ ุงู„ุชู…ุงุฑูŠู† ุงู„ุชู…ุฑูŠู† 13

210
00:27:53,040 --> 00:28:05,440
ุชุนู…ู„ูŠู† ุชู„ุชุงุด ุณูŠูƒุดู† 3 7 ุงูŠุด ุจูŠู‚ูˆู„ ู‡ุฐุง if if

211
00:28:05,440 --> 00:28:16,600
P ุฃูƒุจุฑ ู…ู† ุงู„ู€ 0 is a real number discuss

212
00:28:16,600 --> 00:28:20,940
the 

213
00:28:20,940 --> 00:28:21,680
convergence

214
00:28:42,640 --> 00:28:44,720
ุชุนุงู„ูˆุง ู†ูุญุต

215
00:28:49,400 --> 00:28:58,120
โˆ‘ from n equals 1 to infinity ู„ู€ 2 ุฃุณ

216
00:28:58,120 --> 00:29:08,700
n ููŠ 1 ุนู„ู‰ ู‡ุงูŠ ุฃูˆ ุฎู„ูŠู†ูŠ ุฃู‚ูˆู„ 2 ุฃุณ n ููŠ a

217
00:29:08,700 --> 00:29:16,120
and a 2 ุฃุณ m ุงูŠุด ุจูŠุณุงูˆูŠ ู‡ุฐุง ุทุจุนุง ู‡ุงูŠ ุนู†ุฏูŠ a<sub>n</sub>

218
00:29:16,120 --> 00:29:24,230
ู‡ุฐุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† a<sub>m</sub> ุงู„ุญุฏ ุงู„ุนุงู… ู„ู„ู€ series ูุงู† ุจูŠุณุงูˆูŠ 

219
00:29:24,230 --> 00:29:30,290
1 ุนู„ู‰ n<sup>p</sup> ูุจุชุจุญุซ ู‡ู„ ุงู„ู€ series ู‡ุฐูŠ convergent ุฃูˆ

220
00:29:30,290 --> 00:29:33,990
ู…ุชู‰ ุจุชูƒูˆู† ู‡ุฐูŠ ุงู„ู€ series convergent ูˆุจุงู„ุชุงู„ูŠ ุจู‚ุฏุฑ

221
00:29:33,990 --> 00:29:37,890
ุฃุทุจู‚ ุงู„ู„ูŠ ู‡ูˆ Cauchy condensation test ูู‡ุฐู‡ ุนุจุงุฑุฉ

222
00:29:37,890 --> 00:29:43,970
ุนู† โˆ‘ from n equals 1 to infinity ุงู„ุขู† ุงูŠู‡

223
00:29:43,970 --> 00:29:53,550
2 ุฃุณ n ุจุทู„ุน 1 ุนู„ู‰ 2 ุฃุณ n ุงู„ูƒู„ ุฃุณ P

224
00:29:53,550 --> 00:30:03,810
ุชู…ุงู…ุŸ ูˆู‡ุฐุง ุจูŠุณุงูˆูŠ โˆ‘ from n equals 1 to

225
00:30:03,810 --> 00:30:18,940
infinity ู„ู€ 2 ุฃุณ 1โˆ’P ุงู„ูƒู„ ุฃุณ n ูˆู‡ุฏูŠ 

226
00:30:18,940 --> 00:30:27,020
is a geometric series is a geometric series

227
00:30:27,020 --> 00:30:33,680
ูˆุจุงู„ุชุงู„ูŠ

228
00:30:33,680 --> 00:30:38,320
ู…ุธุจูˆุท ู‡ุฐุง ุนุจุงุฑุฉ ุนู† geometric series ู„ูˆ ุจุฏู‰ ุฃูƒุชุจ

229
00:30:38,320 --> 00:30:40,620
ุญุฏูˆุฏ ุชุจุนุชู‡ุง

230
00:30:43,100 --> 00:30:52,660
ูุฃูˆู„ ุญุฏ ุนุจุงุฑุฉ ุนู† 2 ุฃุณ 1โˆ’P ุงู„ุญุฏ ุงู„ุซุงู†ูŠ

231
00:30:52,660 --> 00:31:00,940
2 ุฃุณ 1โˆ’P ุงู„ูƒู„ ุชุฑุจูŠุน ูˆู‡ูƒุฐุง ูุงู„ุญุฏ 

232
00:31:00,940 --> 00:31:05,480
ุงู„ุฃูˆู„ 2 ุฃุณ 1โˆ’P ุงู„ุญุฏ ุงู„ุซุงู†ูŠ 2 ุฃุณ

233
00:31:05,480 --> 00:31:09,980
1โˆ’P ูˆู‡ูƒุฐุง with ratio

234
00:31:14,090 --> 00:31:28,710
with ratio with 

235
00:31:28,710 --> 00:31:34,830
ratio R

236
00:31:34,830 --> 00:31:41,790
ุจูŠุณุงูˆูŠ 2 ุฃุณ 1โˆ’P 

237
00:31:48,590 --> 00:31:58,790
So by geometric series test it converges if

238
00:31:58,790 --> 00:32:06,450
and only if |R| ุจูŠุณุงูˆูŠ 2 ุฃุณ 1โˆ’P

239
00:32:06,450 --> 00:32:16,670
ุฃุตุบุฑ ู…ู† 1 ูˆู‡ุฐุง ุจุชุญู‚ู‚ 2 ุฃุณ 1โˆ’P ุฃุตุบุฑ

240
00:32:16,670 --> 00:32:25,590
ู…ู† 1 ูู†ู‚ูˆู„ if 1โˆ’P ุฅุฐุง 

241
00:32:25,590 --> 00:32:36,910
ูƒุงู† 1โˆ’P ุฃุตุบุฑ ู…ู† ุงู„ู€ 0 ุณุงู„ุจ ู„ุฃู† ู„ูˆ ูƒุงู†

242
00:32:36,910 --> 00:32:41,430
1โˆ’P ู…ูˆุฌุจ ูู€ 2 ุฃุณ ุฃูŠ ุนุฏุฏ ู…ูˆุฌุจ ุนู…ุฑู‡ ู…ุง

243
00:32:41,430 --> 00:32:47,440
ุจูŠูƒูˆู† ุฃุตุบุฑ ู…ู† 1 ู†ุตููˆุช ู„ูƒู† ู„ูˆ ูƒุงู† ุงู„ุฃุณ ุณุงู„ุจ ูุจูŠุตูŠุฑ

244
00:32:47,440 --> 00:32:52,620
ู‡ุฐุง 1 ุนู„ู‰ 2 ุฃุณ ูˆู…ูˆุฌุจ ูุจูŠุตูŠุฑ ุฃุตุบุฑ ู…ู† 1 ุฅุฐุง

245
00:32:52,620 --> 00:32:57,020
ู‡ุฐุง ุตุญูŠุญ if and only if ุงู„ุฃุณ ุชุงุจุน ุงู„ู€ 2 ุงู„ู„ูŠ ู‡ูˆ

246
00:32:57,020 --> 00:33:06,240
1โˆ’P ุฃุตุบุฑ ู…ู† 0 if and only if 1 ุฃุตุบุฑ 

247
00:33:06,240 --> 00:33:12,920
ู…ู† P ุฃูˆ P ุฃูƒุจุฑ ู…ู† 1 okay ุชู…ุงู… ูˆู‡ุฐุง ู‡ูˆ ุงู„ู€ P

248
00:33:12,920 --> 00:33:19,120
series test ู„ุฃู† ุงุญู†ุง ุงุณุชู†ุชุฌู†ุง ุงู„ู€ P series test ู…ู†

249
00:33:19,120 --> 00:33:26,200
Cauchy Condensation test ูุงูƒุฑูŠู† ุงู„ู€ P series ู‡ุฐูŠ ุฃูˆ

250
00:33:26,200 --> 00:33:29,840
ุงู„ู€ P series test ุงุซุจุชู†ุง ุฃู† Convergent if and only 

251
00:33:29,840 --> 00:33:35,200
if P ุฃูƒุจุฑ ู…ู† 1 ูˆDivergent ุฅุฐุง ูƒุงู†ุช P ุฃุตุบุฑ ู…ู†ู‡ุง

252
00:33:35,200 --> 00:33:35,960
ูˆุณุงุฆู„ 1

253
00:33:42,110 --> 00:33:51,730
Okay ุฅุฐุง ุงู„ู€ .. ู‡ุฐุง ุงู„ู…ุนู†ู‰ So by Cauchy Cauchy's

254
00:33:51,730 --> 00:34:01,910
Condensation Test The series โˆ‘

255
00:34:01,910 --> 00:34:07,830
from N equals 1 to infinity ุงู„ู€ 1 over N<sup>P</sup>

256
00:34:08,830 --> 00:34:16,530
convergence if and only if P ุฃูƒุจุฑ ู…ู† 1 ูˆู‡ุฐุง ู‡ูˆ

257
00:34:16,530 --> 00:34:23,030
ุงู„ู€ P-series test ุฅุฐู† ู‡ุฐุง ุจูˆุฑุฌูŠู†ุง ู‚ูˆุฉ Cauchy 

258
00:34:23,030 --> 00:34:29,530
Condensation Test okay ุชู…ุงู…ุŸ ููŠ ุทุจุนุง ุฃุณุฆู„ุฉ ุฃุฎุฑู‰ 

259
00:34:29,530 --> 00:34:33,430
ุนู„ู‰ Cauchy Condensation Test ูˆุฃู†ุง ุทุงู„ุจ ู…ู†ูƒู… ุชุญู„ูˆู‡ุง

260
00:34:33,430 --> 00:34:41,340
ุฒูŠ ุงู„ุณุคุงู„ 14 ูˆ15 ุตุญุŸ ูููŠ ุฃูŠ ุดูŠุก ููŠ ุงู„ุฃุณุฆู„ุฉ ุฏูŠ ุฃูˆ

261
00:34:41,340 --> 00:34:47,160
ุฃุณุฆู„ุฉ ุซุงู†ูŠุฉุŸ

262
00:34:47,160 --> 00:34:56,500
ููŠ

263
00:34:56,500 --> 00:34:58,180
ุนู†ุฏูƒู… ุฃูŠ ุฃุณุฆู„ุฉุŸ

264
00:35:13,000 --> 00:35:19,560
ุฅุฐุง ุณูŠูƒุดู† 1 3 7 ููŠ ุฃูŠ ุณุคุงู„ ุซุงู†ูŠ ุนู†ุฏูƒู… ููŠ

265
00:35:19,560 --> 00:35:25,540
ุงู„ุฃุณุฆู„ุฉ ู‡ุฐู‡ ุฃูˆ

266
00:35:25,540 --> 00:35:31,860
ุงู„ุณูŠูƒุงุดู† ุงู„ุณุงุจู‚ุฉ ุฃูˆ ุณูŠูƒุดู† 4 1 ุฅุฐุง ุจุชุญุจู‡

267
00:35:31,860 --> 00:35:35,560
ุณูŠูƒุดู† 4 1

268
00:36:06,090 --> 00:36:13,070
ู…ุงููŠุด ุฃุณุฆู„ุฉุŸ ุทูŠุจ ุงู„ู€ .. ู…ุฏุงู… ู…ุงููŠุด ุฃุณุฆู„ุฉ ู†ูˆุงุตู„ ..

269
00:36:13,070 --> 00:36:16,190
ู†ูƒู…ู„

270
00:36:16,190 --> 00:36:17,490
ุงู„ู…ุญุงุถุฑุฉ ููŠ ุงู„ุณุงุจู‚ุฉ

271
00:36:49,090 --> 00:36:53,250
ุงู„ู…ุฑุฉ ุงู„ุฃุฎุฑู‰ ุชุญุฏุซู†ุง ุนู† ุงู„ู€ two-sided limits ูˆุนู†

272
00:36:53,250 --> 00:37:00,350
ุงู„ู€ one-sided limits ูˆุฃุฎุฐู†ุง ุจุนุถ ุงู„ู†ุธุฑูŠุงุช ูˆู‚ู„ู†ุง ุฅู†

273
00:37:00,350 --> 00:37:05,090
ุฌู…ูŠุน ุงู„ู†ุธุฑูŠุงุช ุงู„ู„ูŠ ุจุฑู‡ู†ุงู‡ุง ู‡ูˆ one-sided limit

274
00:37:05,090 --> 00:37:12,990
ุตุญูŠุญุฉ ู„ู„ู€ two-sided limits ุฃูˆ ุงู„ู†ุธุฑูŠุงุช ุงู„ุตุญูŠุญุฉ ู„ู€ 

275
00:37:12,990 --> 00:37:17,070
two-sided limits ุจุชูƒูˆู† ุฃูŠุถุง ุตุญูŠุญุฉ ู„ู€ one-sided

276
00:37:17,070 --> 00:37:26,650
limit ูู†ุงุฎุฏ 

277
00:37:26,650 --> 00:37:31,350
ู…ุซุงู„ show

278
00:37:31,350 --> 00:37:31,950
that

279
00:37:35,020 --> 00:37:55,100
Limit ู„ู€ Signum X ู„ุฅู† X ุชู‚ูˆู„ ู„ู€ 0 ู„ุง ูŠูˆุฌุฏ ูู†ู„ุงุญุธ

280
00:37:55,100 --> 00:37:59,600
ุฃู† Limit ู„ุฃูˆู„ ุดูŠุก Signum X

281
00:38:03,790 --> 00:38:11,230
ุจุณุงูˆูŠ x ุนู„ู‰ absolute x ู„ูƒู„ x ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ู„ู…ุง 

282
00:38:11,230 --> 00:38:15,010
ุฃุนุฑูู†ุง ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ ู‚ู„ุช ู„ู‡ุง ุจุณ ู‡ูŠ ู†ูุณู‡ุง x ุนู„ู‰

283
00:38:15,010 --> 00:38:20,690
absolute x ู„ูˆ ูƒุงู† x ุจุณุงูˆูŠ ุตูุฑ ุงู„ุขู† ุงู„ limit ู„

284
00:38:20,690 --> 00:38:30,890
sigma x ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰ ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ ุงู„

285
00:38:30,890 --> 00:38:31,310
limit

286
00:38:35,810 --> 00:38:41,530
ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰ ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰ ุตูุฑ ู…ู†

287
00:38:41,530 --> 00:38:50,190
ุงู„ูŠู…ูŠู† ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰ ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰ 

288
00:38:50,190 --> 00:38:55,650
ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰ ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† ู„ู…ุง x

289
00:38:55,650 --> 00:38:57,330
ุชู‚ูˆู„ ุฅู„ู‰ ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰ ุตูุฑ ู…ู†

290
00:38:57,330 --> 00:39:02,560
ุงู„ูŠู…ูŠู† ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰ ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† ู„ู…ุง x ุชู‚ูˆู„ ุฃุตุบุฑ

291
00:39:02,560 --> 00:39:21,640
ู…ู† ุงู„ูŠุณุงุฑ ู„ู…ุง x ุฃุตุบุฑ ู…ู† ุตูุฑ ู„ู…ุง

292
00:39:21,640 --> 00:39:28,560
x ุฃุตุบุฑ ู…ู† ุตูุฑ ู„ู…ุง x ุฃุตุบุฑ ู…ู† ุตูุฑ ู„ู…ุง x ุฃุตุบุฑ ู…ู† ุตูุฑ

293
00:39:28,560 --> 00:39:33,950
ู„ู…ุง x ุฃุตุบุฑ ู…ู† ุตูุฑุŒ ุงู„ุณุงู„ุจ ูˆุงุญุฏ ุจูŠุทู„ุน ุงู„ุณุงู„ุจ ูˆุงุญุฏ ุฅู†

294
00:39:33,950 --> 00:39:37,670
ุฃู†ุง ุนู†ุฏูŠ ุงู„ limit ู…ู† ุงู„ูŠู…ูŠู† ูŠุณุงูˆูŠ ูˆุงุญุฏุŒ ุงู„ limit

295
00:39:37,670 --> 00:39:44,230
ู…ู† ุงู„ูŠุณุงุฑ ูŠุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏุŒ ู…ุด ู…ุชุณุงูˆูŠูŠู† ุงู„ุงุซู†ูŠู†ุŒ so by

296
00:39:44,230 --> 00:39:50,150
theoremุŒ ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ุง theorem ุฃุฑุจุนุฉ

297
00:39:50,150 --> 00:39:55,630
ุซู„ุงุซุฉุŒ ุจูŠุทู„ุน

298
00:39:55,630 --> 00:40:01,080
ุนู†ุฏูŠ ุงู„ limit ุฃูˆ ุงู„ two sided limit ู„ู„ู€ signal

299
00:40:01,080 --> 00:40:09,560
function ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰ ุงู„ุตูุฑ does not exist ุชู…ุงู…ุŸ

300
00:40:09,560 --> 00:40:22,280
ุทูŠุจ ุฎู„ู‘ูŠู†ูŠ ุฃู†ุง ุขุฎุฏ show

301
00:40:22,280 --> 00:40:27,380
that ุงู„

302
00:40:27,380 --> 00:40:32,350
limit ู„ู„ function e ูˆุงู„ูˆุงุญุฏ ุนู„ู‰ x ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰

303
00:40:32,350 --> 00:40:40,550
ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† does not exist and

304
00:40:40,550 --> 00:40:43,910
ู…ู†

305
00:40:43,910 --> 00:40:51,170
ุงู„ limit ู„ู†ูุณ ุงู„ function e to ูˆุงุญุฏ ุนู„ู‰ x ู„ู…ุง x

306
00:40:51,170 --> 00:40:58,710
ุชู‚ูˆู„ ุฅู„ู‰ ุตูุฑ ู…ู† ุงู„ูŠุณุงุฑ ุชุทู„ุน ู…ูˆุฌูˆุฏุฉ ูˆ ุจุณุงูˆูŠ ุตูุฑ

307
00:41:23,830 --> 00:41:31,010
ุทูŠุจ ุงู„ ...

308
00:41:31,010 --> 00:41:34,050
ู†ุญุงูˆู„ ู†ุจุฑู‡ู† ุงู„ุฌุฒุก ุงู„ุฃูˆู„

309
00:41:56,420 --> 00:42:03,380
ุจู†ุงุฎุฏ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ let

310
00:42:03,380 --> 00:42:13,540
z of x ุจุณุงูˆูŠ e to 1 ุนู„ู‰ xุŒ ุญูุฉ x ู„ุง ุชุณุงูˆูŠ 0ุŒ ูˆุจุฏู†ุง

311
00:42:13,540 --> 00:42:19,260
ู†ุซุจุช to

312
00:42:19,260 --> 00:42:28,130
show ุฅู† ุงู„ limit ู„ู€ g of x ู„ู…ุง x ุชู‚ูˆู„ ู„ุตูุฑ ู…ู†

313
00:42:28,130 --> 00:42:38,750
ุงู„ูŠู…ูŠู† does not existุŒ it suffices to

314
00:42:38,750 --> 00:42:42,710
show ูŠูƒููŠ

315
00:42:42,710 --> 00:42:52,650
ุฅุซุจุงุช ุฃู† ุงู„ function g of x is not bounded on

316
00:42:56,170 --> 00:43:05,850
on a right ... on a right neighborhood

317
00:43:05,850 --> 00:43:13,670
... on a right neighborhood ุงู„ู„ูŠ ู‡ูˆ ุตูุฑ ุฏู„ุชุง of

318
00:43:13,670 --> 00:43:15,230
zero

319
00:43:25,230 --> 00:43:28,670
ุฃุฎุฐู†ุง ู‚ุจู„ ุฐู„ูƒ ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ุฅูŠู‡ุŸ ุฏู‡ ุนุดุงู† ุฃุซุจุช ุฃู†ู‡ ุงู„

320
00:43:28,670 --> 00:43:35,710
limit ู„ function ุนู† ู†ู‚ุทุฉ ู…ุนูŠู†ุฉ ู…ุด ู…ูˆุฌูˆุฏุฉ ูŠูƒููŠ ุฃุซุจุช

321
00:43:35,710 --> 00:43:43,910
ุฃู†ู‡ ุฃู†ู‡ ุงู„ุฏุงู„ุฉ unbounded ุนู†ุฏ ุฃูŠ unbounded

322
00:43:43,910 --> 00:43:48,650
ุนู†ุฏ ุฃูŠ neighborhood

323
00:43:48,650 --> 00:43:56,210
ู„ู„ู†ู‚ุทุฉ ุงู„ุขู† ุจุงู„ู†ุณุจุฉ ู„ู„ one-sided limit ุนุดุงู† ุฃู‚ูˆู„ ุฅู†

324
00:43:56,210 --> 00:44:02,230
ุงู„ limit ู„ function ุฒูŠ ู‡ุฐู‡ g of x ู„ู…ุง x ุชู‚ูˆู„ ุฅู„ู‰

325
00:44:02,230 --> 00:44:09,430
ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† does not exist ูู‡ูŠ

326
00:44:09,430 --> 00:44:16,390
ุงู„ุตูุฑ ูˆ ุงู„ x ุชู‚ูˆู„ ู„ุณูุฑ ู…ู† ุงู„ูŠู…ูŠู† ูุจุฏู„ ู…ุง ุฃุฎุฏ delta

327
00:44:16,390 --> 00:44:20,290
neighborhood ู„ู„ุตูุฑ

328
00:44:20,290 --> 00:44:29,960
ูุจุงุฎุฏ right neighborhood right neighborhood ู„ู„ุตูุฑ

329
00:44:29,960 --> 00:44:35,960
ููŠูƒููŠ ุฅู† ุงู„ function ู‡ุฐู‡ ู…ุงู‡ูŠุงุด bounded ุนู† ูƒู„

330
00:44:35,960 --> 00:44:41,780
right neighborhood ูŠุนู†ูŠ ุฌูˆุงุฑ ู…ู† ุงู„ูŠู…ูŠู† ู„ู„ุตูุฑ ู„ุฃู†

331
00:44:41,780 --> 00:44:46,000
ุฃู†ุง ุจุชุนุงู…ู„ ู…ุน ู†ู‡ุงูŠุฉ ู…ู† ุงู„ูŠู…ูŠู† ู„ูƒู† ู„ู…ุง ูƒู†ุช ุงุชุนุงู…ู„

332
00:44:46,000 --> 00:44:51,240
ู…ุน ู†ู‡ุงูŠุฉ ู…ู† ุงู„ุทุฑููŠู† ููƒู†ุช ุขุฎุฏ delta neighborhood

333
00:44:51,240 --> 00:44:56,840
ูƒุงู…ู„ุŒ ูˆู„ูˆ ุฃุซุจุชุช ุฅู† ุงู„ู€ function ู‡ุฐู‡ ู…ุงู‡ูŠุงุด bounded

334
00:44:56,840 --> 00:45:01,280
ุนู†ุฏ ุฃูŠ right neighborhood ู„ู„ุตูุฑ ุนู„ู‰ ุงู„ุตูˆุฑุฉ ู‡ุฐู‡

335
00:45:01,280 --> 00:45:06,220
ูุญุณุจ ู†ุธุฑูŠุฉ ุณุงุจู‚ุฉ ุงู„ุฏุงู„ุฉ ู…ุด ู…ู…ูƒู† ูŠูƒูˆู† ู„ู‡ุง limit ู…ู†

336
00:45:06,220 --> 00:45:09,960
ุงู„ูŠู…ูŠู† ุนู†ุฏ ุงู„ุตูุฑ ู„ุฃู† ู„ูˆ ูƒุงู† ู„ู‡ุง limit ุนู†ุฏ ุงู„ุตูุฑ ู…ู†

337
00:45:09,960 --> 00:45:15,820
ุงู„ูŠู…ูŠู† ูู„ุงุฒู… ุชูƒูˆู† bounded ุนู„ู‰ some neighborhood ...

338
00:45:15,820 --> 00:45:25,650
right neighborhood ู„ู„ุตูุฑ Okay ุชู…ุงู… ูˆ ู„ุฅุซุจุงุช ุฐู„ูƒ to

339
00:45:25,650 --> 00:45:29,270
see

340
00:45:29,270 --> 00:45:39,290
this we use ุงู„ inequality ุงู„ุชุงู„ูŠุฉ ูˆู‡ูŠ T ุฃูƒุจุฑ ู…ู†

341
00:45:39,290 --> 00:45:47,010
ุตูุฑ ุฏุงูŠู…ุง ุฃุตุบุฑ ู…ู† E ุฃุณ T for all T ุฃูƒุจุฑ ู…ู† ุตูุฑ ู‡ุฐู‡

342
00:45:47,010 --> 00:45:54,200
ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ ุงู„ู…ุชุจุงูŠู†ุฉ ู…ูˆุฌูˆุฏุฉ

343
00:45:54,200 --> 00:46:01,780
ุจุฑู‡ุงู†ู‡ุง ููŠ Chapter 8 ุจุฑู‡ุงู†ู‡ุง

344
00:46:01,780 --> 00:46:07,600
ู…ูˆุฌูˆุฏุฉ ููŠ Chapter 8 ุงู„ู„ูŠ ู‡ุชุงุฎุฏูˆู‡ ู„ุงุญู‚ุง ูู‡ู†ุณุชุฎุฏู…

345
00:46:07,600 --> 00:46:11,460
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ ููŠ ุฅุซุจุงุช ุฅู† ุงู„ function

346
00:46:11,460 --> 00:46:17,420
ู…ุงู‡ูŠุงุด bounded ุนู„ู‰ neighborhood ุฃูˆ right

347
00:46:17,420 --> 00:46:25,130
neighborhood ู„ู„ุตูุฑ Okay ุนุดุงู† ุงู„ูˆุฌุฏ ุฎู„ุต ุจู†ูˆู‚ู ูˆ

348
00:46:25,130 --> 00:46:29,590
ุจู†ุงุฎุฏ ุฎู…ุณ ุฏู‚ุงูŠู‚ break ูˆุจุนุฏูŠู† ุจู†ูƒู…ู„ ุฅู† ุดุงุก ุงู„ู„ู‡

349
00:46:29,590 --> 00:46:35,550
ุงู„ุจุฑู‡ุงู† ูุญู†ูˆู‚ู ูˆู†ูƒู…ู„ ููŠ ุงู„ุฌุฒุก ุงู„ุชุงู„ูŠ ู…ู† ุงู„ู…ุญุงุถุฑุฉ