abdullah's picture
Add files using upload-large-folder tool
b4e65c0 verified
raw
history blame
48.9 kB
1
00:00:21,580 --> 00:00:26,400
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ููŠ ู†ู‡ุงูŠุฉ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ
2
00:00:26,400 --> 00:00:31,940
ุฃุฎุฐู†ุง ู†ุธุฑูŠุฉ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู„ูˆ ุนู†ุฏูŠ ุฑู‚ู…ูŠู† S ูˆ T are
3
00:00:31,940 --> 00:00:37,970
relatively prime ูŠุจู‚ู‰ ุงู„ู€ U<sub>S</sub>T isomorphic ู„ู„ู€ U<sub>S</sub>
4
00:00:37,970 --> 00:00:43,470
External Product ู…ุน ู…ู† ู…ุน ุงู„ู€ U<sub>T</sub> ูŠุนู†ูŠ ุจู‚ุฏุฑ ุฃูƒุชุจ
5
00:00:43,470 --> 00:00:48,230
ุงู„ู€ U<sub>N</sub> ุนู„ู‰ ุตูŠุบุฉ External Product ู„ู…ู†ุŸ ู„ู€ two
6
00:00:48,230 --> 00:00:52,070
groups ู„ู€ three groups ู„ู€ four groups ูˆู…ุง ุฅู„ู‰ ุฐู„ูƒ
7
00:00:52,070 --> 00:00:57,840
ุจุดุฑุท ูŠูƒูˆู† ุงู„ S ูˆ ุงู„ T are relatively prime ูˆุฃุฎุฐู†ุง
8
00:00:57,840 --> 00:01:06,060
ูƒู…ุงู† ู†ู‚ุทุฉ ุฃู† U<sub>S</sub>T ุนู„ู‰ S isomorphic ู„ U<sub>T</sub> ูˆูƒุฐู„ูƒ U
9
00:01:06,060 --> 00:01:12,820
T ู„ U<sub>S</sub>T isomorphic ู„ U<sub>S</sub> ูˆุฒูŠุงุฏุฉ ุนู„ู‰ ุฐู„ูƒ ุฑูˆู„ุฑ
10
00:01:12,820 --> 00:01:18,300
ุนู„ูŠู‡ุง ุจู†ู‚ูˆู„ ู„ูˆ ุนู†ุฏู†ุง ุงู„ุฑู‚ู… M ูˆุงุณุชุทุนู†ุง ุงู„ู€ M ู†ูƒุชุจู‡
11
00:01:18,300 --> 00:01:23,100
ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰ M ุจุฏู‡ ูŠุณุงูˆูŠ N ูˆุงุญุฏ
12
00:01:26,550 --> 00:01:32,090
ุจุญูŠุซ ุฃูŠ ุงุซู†ูŠู† ู…ู† ู‡ุฐู‡ ุงู„ุฃุฑู‚ุงู… are relatively prime
13
00:01:32,090 --> 00:01:37,790
ูŠุนู†ูŠ n<sub>i</sub> ู…ุน n<sub>j</sub> ุงุซู†ูŠู† are relatively prime ู„ูƒู„ i ู„ุง
14
00:01:37,790 --> 00:01:43,440
ุชุณุงูˆูŠ j ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุฃู† ุงู„ู€ U<sub>M</sub>
15
00:01:43,440 --> 00:01:54,000
ุงูŠุฒูˆ ู…ูˆุฑููŠูƒ ูƒู„ู…ุฉ ู„ู€ U<sub>N<sub>1</sub></sub> U<sub>N<sub>2</sub></sub> U<sub>N<sub>3</sub></sub> U<sub>N</sub> ู„ุบุงูŠุฉ ุงู„ู€
16
00:01:54,000 --> 00:02:02,330
U<sub>N<sub>N</sub></sub> ุงู„ุขู† ุฅู† ูˆุงู„ู„ู‡ ุฅู† ูƒู‡ุฐู‡ ุนู…ู„ู‡ุง ู„ู€ ุฅู† ูƒู‡ุฐู‡ ูŠุจู‚ู‰ ู‡ุฐู‡
17
00:02:02,330 --> 00:02:07,890
ุจุงู„ุตุบูŠุฑุฉ ุฅู† ูƒู‡ุฐู‡ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุทุจุนู‹ุง ุงู„ุขู†
18
00:02:07,890 --> 00:02:13,210
ุจุฏูŠ ุงู„ุขู† ุฃุดุชุบู„ ุนู…ู„ูŠู‹ุง ุจูŠู‚ูˆู„ ู„ูŠ ู‡ุงูŠ ุนู†ุฏูƒ ุงู„ูŠูˆู… 105
19
00:02:13,210 --> 00:02:17,990
ุจุชู‚ุฏุฑ ุชูƒุชุจู‡ุง ู„ูŠ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏูƒ ูƒุฏู‡ุŸ ุจู…ุนู†ู‰ ู‡ู„
20
00:02:17,990 --> 00:02:23,410
ุจุชู‚ุฏุฑ ุชูƒุชุจ ุงู„ู€ 105 ุนู„ู‰ ุดูƒู„ isomorphic ู„ two groupsุŸ
21
00:02:23,410 --> 00:02:29,370
ุงู„ุฅุฌุงุจุฉ ู†ุนู… ู†ุนู… ูƒูŠูุŸ ุจุชุฏูˆุฑ ุนู„ู‰ ุฑู‚ู…ูŠู† ุงู„ relative
22
00:02:29,370 --> 00:02:34,330
to prime ูˆุญุงุตู„ ุถุฑุจู‡ู…ุง ูŠุณุงูˆูŠ 105 ุจุชู‚ุฏุฑ ุชุนุทูˆู†ูŠ
23
00:02:34,330 --> 00:02:43,090
ุฑู‚ู…ูŠู†ุŸ 21 ูˆุฎู…ุณุฉ ูƒูˆูŠุณ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ
24
00:02:43,090 --> 00:02:54,010
ุนู† U ุงู„ู„ูŠ ู‡ูˆ 21 ู…ุถุฑูˆุจุฉ ููŠ 5
25
00:02:54,010 --> 00:02:59,620
ูŠุจู‚ู‰ ู‡ุฐู‡ isomorphic ู„ U<sub>21</sub> External
26
00:02:59,620 --> 00:03:11,640
Product ู…ุน U<sub>5</sub> ูƒู…ุงู† ุงู„ู€ U<sub>105</sub> ุนุจุงุฑุฉ ุนู† U<sub>15</sub>
27
00:03:11,640 --> 00:03:19,260
ููŠ 7 ููŠ 15 ร— ุฃูˆ 5 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… isomorphic
28
00:03:19,260 --> 00:03:27,060
ู„ู…ู†ุŸ ู„ู€ U<sub>15</sub> Extended like product ู…ุน ู…ูŠู†ุŸ ู…ุน U<sub>7</sub>
29
00:03:27,060 --> 00:03:34,950
ุฃุฌูˆุงุญ ุงู„ุชุงู„ุช ู…ู†ูƒู… ุณู…ุนุช ุจูŠู‚ูˆู„ ุงู„ู€ U<sub>105</sub> ู‡ูŠ ุนุจุงุฑุฉ ุนู†
30
00:03:34,950 --> 00:03:41,990
U<sub>35</sub> ููŠ 3 ุจู‚ูˆู„ู‡ ูƒู„ุงู…ูƒ ุตุญ ูŠุจู‚ู‰ ู‡ุฐู‡
31
00:03:41,990 --> 00:03:47,510
isomorphic ู„ู€ U<sub>35</sub> external product ู…ุน
32
00:03:47,510 --> 00:03:54,550
U<sub>3</sub> ู‡ุฌูˆุง ุนู„ู‰ ุงู„ุชุงู„ุช ู‚ุงู„ ุงู„ู€ U<sub>105</sub> ู‡ุฐู‡ ุงู„ู€ U
33
00:03:54,550 --> 00:04:03,020
105 ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู€ U<sub>3</sub> ููŠ 5 ููŠ 7 3 ูˆ
34
00:04:03,020 --> 00:04:06,760
ูƒู„ู‡ู… ุชู„ุงุชุฉ are relatively prime ูŠุจู‚ู‰ ู‡ุฐูŠ
35
00:04:06,760 --> 00:04:12,360
isomorphic ู„ู…ูŠู†ุŸ ู„ูŠู‡<sub>3</sub> external direct product
36
00:04:12,360 --> 00:04:17,500
ู„ูŠู‡<sub>5</sub> external direct product ู„ู…ูŠู†ุŸ ู„ูŠู‡<sub>7</sub>
37
00:04:17,500 --> 00:04:21,140
ูŠุนู†ูŠ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ูŠูƒูˆู† two groups ูˆู‡ู†ุง ู…ู…ูƒู†
38
00:04:21,140 --> 00:04:27,850
ูŠูƒูˆู† ุซู„ุงุซุฉ ู…ู…ูƒู† ุฃุฑุจุนุฉ ู…ู…ูƒู† ูŠูƒูˆู† K ู…ู† ุงู„ุฃุฑู‚ุงู… ุงู„ู„ูŠ
39
00:04:27,850 --> 00:04:31,770
ูƒู„ู‡ุง relative ู„ุฃู† ุฅุฐุง ุฃุฎุฐุช ุฃูŠ ุงุซู†ูŠู† ู…ุน ุจุนุถ ุจูŠูƒูˆู†ูˆุง
40
00:04:31,770 --> 00:04:35,890
relatively main ูˆ relatively prime ู‡ุฐุง ุจุงู„ู†ุณุจุฉ
41
00:04:35,890 --> 00:04:40,950
ู„ู…ู†ุŸ ู„ู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ ู„ูˆ ุฌูŠุช ู„ู„ู†ู‚ุทุฉ
42
00:04:40,950 --> 00:04:48,430
ุงู„ุซุงู†ูŠุฉ ูˆุจุฏูŠ ุฃุญุณุจ ู„ุฃูŠ ุฑู‚ู… ู…ู†ู‡ู… ุจุฏูŠ ุฃุญุณุจ U ู…ุซู„ุงู‹
43
00:04:48,430 --> 00:04:55,200
15 ู„ 105 ูŠุณุงูˆูŠ ุชุนุฑู ู…ูŠู† ุนู†ุงุตุฑู‡ุง
44
00:04:55,200 --> 00:05:00,540
ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฃุนุทูŠู†ุงูƒู… ุชุนุฑูŠู ู„ู‡ุง ูˆู‚ู„ู†ุง ูƒู„
45
00:05:00,540 --> 00:05:05,640
ุงู„ุนู†ุงุตุฑ X ุจุญูŠุซ ุฃู† ุงู„ู€ X modulo K ุจุฏูŠ ูŠุนุทูŠู†ูŠ ุงู„ูˆุงุญุฏ
46
00:05:05,640 --> 00:05:10,220
ุงู„ุตุญูŠุญ ุชุนุฑูŠู ูƒุชุจู†ุงู‡ ู…ุนุงูƒู… ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฅุฐุง ุจุฏูŠ
47
00:05:10,220 --> 00:05:17,680
ุฃุฏูˆุฑ ุนู„ู‰ ุนู†ุงุตุฑ ุงู„ู€ 105 ูˆุฃุฑูˆุญ ุฃุฌูŠุจ ุนู†ุงุตุฑ ุงู„ู€ U<sub>15</sub> ุนู„ู‰
48
00:05:17,680 --> 00:05:23,610
105 ุฃุธู† ู„ูˆ ุจุฏูŠ ุฃู‚ุนุฏ ุฃูƒุชุจ ุนู†ุงุตุฑ ุงู„ู€ 105 ูƒู„ู‡ู… ู‡ุชุฃุฎุฐู†ุง
49
00:05:23,610 --> 00:05:27,350
ุฎู…ุณ ุฏู‚ุงุฆู‚ ูˆู†ุญู† ู‚ุงุนุฏูŠู† ู†ุณุชู†ุชุฌ ู…ูŠู† ุงู„ู„ูŠ ุฑุชุจ ุงู„ู€
50
00:05:27,350 --> 00:05:33,530
prime ู…ุน 105 ู„ุฐู„ูƒ ุจู‚ูˆู„ ู„ุง ุจุฏูŠ ุฃุญุณุจ ู…ุจุงุดุฑุฉ
51
00:05:33,530 --> 00:05:39,750
ููŠ U<sub>15</sub> 105 ุงู„ูˆุงุญุฏ ู…ู†ู‡ู… ู„ุฃู† ุงู„ูˆุงุญุฏ ู†ุงู‚ุต
52
00:05:39,750 --> 00:05:45,190
ูˆุงุญุฏ ูŠุณุงูˆูŠ ุตูุฑ ู…ุถุงุนูุงุช ุงู„ู€ 15 ุทูŠุจ ุงู„ู€ 16
53
00:05:45,190 --> 00:05:50,660
ู…ู†ู‡ู… ูŠุนู†ูŠ ุฃู†ุช ุงู„ุฎุงู…ุณ ูˆุงู„ู€ 16 ุฏู‡ ู…ุง ู†ุญุท ุฑู‚ู… ู‚ุฏุงู…ู‡ ูˆู„ู…ุง
54
00:05:50,660 --> 00:05:54,460
ุชุญุท ุฑู‚ู… ู‚ุฏุงู…ู‡ ุชุชุฃูƒุฏ ุฃู† ุงู„ุฑู‚ู… ู‡ุฐุง relatively
55
00:05:54,460 --> 00:05:58,160
prime ุนู„ู‰ ุงู„ู€ 105 ูˆู„ุง ู„ุง ุชู…ุงู…ุŸ ุญุชู‰ ูŠูƒูˆู† ู…ู†
56
00:05:58,160 --> 00:06:02,200
ุนู†ุงุตุฑ ุงู„ู€ 105 ุงู„ู€ 16 ู…ู† ุนู†ุงุตุฑ ุงู„ู€ 105
57
00:06:02,200 --> 00:06:05,340
ู„ุฃู†ู‡ู… ุจูŠู‚ุณู…ุด ุบูŠุฑ ุนู„ู‰ 2 ูˆ 4 ูˆ 8 ูˆู‡ุฐู‡
58
00:06:05,340 --> 00:06:10,480
ูƒู„ู‡ุง relatively prime ุนู„ู‰ ุงู„ู€ 105 ูŠุจู‚ู‰ 16
59
00:06:10,480 --> 00:06:16,330
ุดุฑูŠูƒ 31 ู…ู†ู‡ู…ุŸ ูˆ31 ูˆ15 ููŠ
60
00:06:16,330 --> 00:06:20,630
32 ูˆ1 31 ูˆุงู„ู€ 31
61
00:06:20,630 --> 00:06:24,210
is a prime ูˆุจุงู„ุชุงู„ูŠ relative to the prime ู…ุน ุฃูŠ
62
00:06:24,210 --> 00:06:30,630
ู…ู†ู‡ุง ุทูŠุจ 46 46 relative to the
63
00:06:30,630 --> 00:06:35,590
prime ู…ุน ุงู„ู€ 105 ู„ู‡ 2 ููŠ 23
64
00:06:35,590 --> 00:06:38,590
2 relative to the prime ูˆุงู„ู€ 23 ูŠุจู‚ู‰
65
00:06:38,590 --> 00:06:43,900
ูุนู„ุงู‹ ุงู„ู€ 46 ู…ู†ู‡ู… ุทูŠุจ ุงู„ู€ 61 ุฃู†ุง ุจุถูŠู
66
00:06:43,900 --> 00:06:48,380
ูƒู„ู‡ 5 ุนุดุงู† ุชู…ุงู… ุงู„ู€ 61 ู…ู†ู‡ู… ู„ุฃู† 1 ูˆ
67
00:06:48,380 --> 00:06:54,060
60 is a prime ูƒุฐู„ูƒ ุทูŠุจ ุงู„ุขู† ู„ูˆ ุฌูŠุช ุนู„ู‰ ุงู„ู€ 6 ูˆ
68
00:06:54,060 --> 00:07:00,300
70 6 ูˆ70 ุงู‡ ู‡ุฐุง ู„ู…ุง ู†ุดูŠู„ ู…ู† 15 ู…ุถู„
69
00:07:00,300 --> 00:07:03,580
ุฌุฏุงุด ู…ุถู„ 1 ูƒู„ุงู… ุตุญูŠุญ ู„ูƒู† ู‡ู„ ุงู„ู€ 6 ูˆ70
70
00:07:03,580 --> 00:07:08,000
relative ู„ prime ู…ุน ุงู„ู€ 105 ุนู„ู‰ 5 ุจุชุฌูŠุด
71
00:07:08,000 --> 00:07:13,920
ูˆุนู„ู‰ 7 ุจุชุฌูŠุด ูˆุนู„ู‰ 3 ุจุฑุถู‡ ุจุชุฌูŠุด ูˆูŠุจู‚ู‰ ุงู„ู€ 6
72
00:07:13,920 --> 00:07:20,600
ูˆ70 ูƒุฐู„ูƒ ู…ู†ู‡ู… ุทูŠุจ ุงู„ู€ 91 75
73
00:07:20,600 --> 00:07:25,280
ูˆ15 90 ูƒู…ุงู† 1 91 ู…ุนุงู‡ู… ุญุท ูŠุนู†ูŠ
74
00:07:25,280 --> 00:07:33,410
ุทุจ 7 ููŠ 13 ุจู‚ุฏุงุดุŸ ูˆ91 ุทุจ ุงู„ู€ 7 ุจุชูƒุณุจ ุนู„ู‰
75
00:07:33,410 --> 00:07:38,070
7 ูˆุงู„ู€ 105 ุจุชูƒุณุจ ุนู„ู‰ 7 ูŠุจู‚ู‰ ุงู„ู€ 91 ู…ุด ู…ู†ู‡ู…
76
00:07:38,070 --> 00:07:43,910
ุจุฏูŠ ูƒู…ุงู† 15 ุจูƒูˆู† ููŠ ุงู„ุชูˆุงุตู„ 105,106 ุจุฑุง ุงู„ุฑู‚ู…
77
00:07:43,910 --> 00:07:50,630
ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ ูŠุจู‚ู‰ ู„ุง ูŠูˆุฌุฏ ุฅู„ุง ู‡ุฐู‡ ุงู„ุฃุฑู‚ุงู… ุชู…ุงู… ุดูˆูุช
78
00:07:50,630 --> 00:07:55,630
ูƒูŠู ุจู†ุญุณุจู‡ุง ุงุฎุชุงุฑ ู„ูŠ ุฃูŠ ุฑู‚ู… ู…ู† ุนู†ุฏูƒ ู…ู† ุงู„ุฃุฑู‚ุงู… ุงู„ู„ูŠ
79
00:07:55,630 --> 00:08:01,470
ู‡ูŠ ุงู„ู„ูŠ ุจุชู‚ุณู… 105 ุญุชู‰ ู†ุญุณุจู‡ุง ุทูŠุจ ู‡ุฏู‡ุง ุงู„ู„ูŠ ู‡ูˆ 15
80
00:08:01,470 --> 00:08:11,800
ุฃู„ูŠุณ isomorphic ู„ู€ 7 ู„ุฃู† 7 ููŠ 15 ุจ 105
81
00:08:11,800 --> 00:08:16,340
ูˆ5 ูˆู†ุญู† ู‚ู„ู†ุง ู‡ู†ุง ุงู„ู€ U<sub>S</sub> ุนู„ู‰ S<sub>T</sub> isomorphic
82
00:08:16,340 --> 00:08:21,360
ู„ู…ูŠู†ุŸ ู„ู€ U<sub>T</sub> ูŠุจู‚ู‰ ู†ุญู† ู‡ู†ุง ู‚ู„ู†ุง U<sub>15</sub> ูˆู‡ุฐุง
83
00:08:21,360 --> 00:08:25,000
ุนุจุงุฑุฉ ุนู† 15 ููŠ 7 ูŠุจู‚ู‰ isomorphic ู„ู€ U<sub>7</sub>
84
00:08:25,000 --> 00:08:30,170
U<sub>7</sub> ูƒู… ุนู†ุตุฑ ููŠู‡ุŸ 6 ุนู†ุงุตุฑ ู‡ุฏูˆู„ 6 1 2
85
00:08:30,170 --> 00:08:34,490
3 4 5 6 ูƒู„ู‡ุง ู…ู†ุงุตุนูŠุฉ 100 ู„ 100 ุชู…ุงู…
86
00:08:34,490 --> 00:08:39,450
ุงุฎุชุงุฑ ู„ูŠ ูƒู…ุงู† ุฑู‚ู… ุขุฎุฑ ู†ุญุณุจู‡ ู„ูƒ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ
87
00:08:39,450 --> 00:08:48,470
ุจุฏูƒ ุฅูŠุงู‡ุง ูŠูˆู…ูŠู† ู†ุญุณุจ ู†ุญุณุจ ูƒู…ุงู† ูˆุงุญุฏ ุจูƒููŠ ูŠูˆู… 15
88
00:08:48,470 --> 00:08:54,730
35 35 ุฃู†ุช ุฌุจุช ุฃุณู‡ู„ ุญุงุฌุฉ ุทุจ
89
00:08:54,730 --> 00:08:57,270
ู…ู† ุฃู†ุง ู…ุง ุฃุนุฑู ูŠุนุทูŠู†ูŠ ุงู„ุดู…ุงู„ ุงู„ู„ูŠ ููŠู‡ ูŠู„ุง ูŠุง ุฃุจูˆ
90
00:08:57,270 --> 00:09:02,170
ูˆุงุญุฏ ุฃูˆู„ ูˆุงุญุฏ ู…ู†ู‡ู… 36 ุงู„ูˆุงุญุฏ ุงู‡ ู…ุนุฑูˆู
91
00:09:02,170 --> 00:09:06,310
ุฃุฌู†ุจ ุนู„ูŠู‡ 36 36 ู…ู†ู‡ู… ู…ุฎุชู„ู ู…ู†ู‡ู…
92
00:09:06,310 --> 00:09:11,550
ุจุต ุจุต ุจุต 36 ู…ู†ู‡ู… 36 ุงู„ู„ูŠ ุชุจู„ู‰
93
00:09:11,550 --> 00:09:15,850
prime ู…ุน 105 ู…ุด ุจูŠูƒุณุจ ู…ุน 3 36
94
00:09:15,850 --> 00:09:20,170
ุงูŠู‡ ุฏู‡ ู…ุด ู…ู†ู‡ู… ุญุทู‡ ุนู„ู‰ ุดุฌุฑุฉ ูŠู„ุง 71 71
95
00:09:20,170 --> 00:09:30,240
71 ู…ู†ู‡ู… ุฃูƒูŠุฏุŸ ุงุณู…ู‡ุง ูŠุง ุฑุงุฌู„ ูŠุนู†ูŠ
96
00:09:30,240 --> 00:09:37,060
ู…ุด ู…ู†ู‡ู… ุทุจ ุฃู†ุง ุจุฏุฃ ุฃุญุท ู…ู†ู‡ู… ู‡ุฐุง ู‡ูˆ ุทุจ ุฎู„ุตู†ุง ูˆู„ุง
97
00:09:37,060 --> 00:09:43,860
ููŠู‡ ูƒู…ุงู†ุŸ ูƒุฏู‡ ุฅูŠุด ุจุตูŠุฑุŸ
98
00:09:43,860 --> 00:09:48,760
ุจุฑู‡ ูŠุจู‚ู‰ ู…ุง ุนู†ุฏูŠุด ุฅู„ุง ุฑู‚ู…ูŠู†ุŒ ุชู…ุงู…ุŸ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†
99
00:09:48,760 --> 00:09:56,340
ุงู„ู„ูŠ ู‡ูˆ U<sub>35</sub> ูˆู‡ุฐุง isomorphic ู„ู…ู†ุŸ ู„ูŠู‡<sub>3</sub>
100
00:09:56,340 --> 00:10:02,120
ู„ู…ุง ู‚ู„ู†ุง ู‡ู†ุง isomorphic ู„ู€ U<sub>3</sub> ูˆู‡ูƒุฐุง
101
00:10:02,120 --> 00:10:07,060
ุชู…ุงู…ุŸ ุงู„ุฎุทุฑ ุฃู† ู†ุฌูŠุจ ุฑู‚ู… ูƒุจูŠุฑ ู„ุฃู† ู‡ุฐุง ุณู‡ู„ ูŠุนู†ูŠ ุฌูŠุจ
102
00:10:07,060 --> 00:10:13,540
ุนู†ุฏูŠ ุฃุนุฏุงุฏ ูƒุซูŠุฑุฉ ุฒูŠ ุฅูŠุด ู…ุซู„ุงู‹ ุฒูŠ U<sub>105</sub> ุฃุจุตุงุฑ
103
00:10:13,540 --> 00:10:18,640
ู‚ุฏูŠุด ูŠู„ุง ุฃุฎุชุงุฑ ู„ูƒ 7 15 15 ุฎุฏู†ุงู‡ ูŠุจู‚ู‰
104
00:10:18,640 --> 00:10:22,640
ุจุฏูƒ 21 5 ุงู‡ 21
105
00:10:44,500 --> 00:10:48,020
ู…ูŠู† ุงู„ุฑู‚ู… ุงู„ู„ูŠ ู„ูˆ ุถุฑุจุชู‡ ููŠ 35 ุจูŠุนุทูŠูƒ 105
106
00:10:48,020 --> 00:10:52,880
ุงู„ู„ูŠ ู‡ูˆ 3 ู…ุตุจูˆุท ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง isomorphic
107
00:10:52,880 --> 00:10:58,740
ู„ู€ U<sub>3</sub> ูˆู‡ูƒุฐุง ุทูŠุจ ู„ูˆ ู‚ู„ู†ุง ุฑู‚ู… ุซุงู†ูŠ U ู‚ุฏุงุด ู‚ู„ุชูˆุง
108
00:10:58,740 --> 00:11:06,060
21 21 ูŠูุฌู„ ูˆุงุญุฏ ู…ู†ู‡ู… ุจุนุฏูƒ
109
00:11:06,060 --> 00:11:11,880
22 ู…ู†ู‡ู… ุฃูƒูŠุฏ ูˆู„ุง ู„ุง ู…ุด 22
110
00:11:11,880 --> 00:11:13,780
ุงู„ู„ูŠ ู‡ูˆ 2 ููŠ 21 ุงู„ู„ูŠ ููŠ ุงู„ prime ู‡ูˆ
111
00:11:13,780 --> 00:11:18,900
105 ุงู„ู„ูŠ ู‡ูˆ 22 ุทุจ 3 ูˆ
112
00:11:18,900 --> 00:11:27,800
40 ู…ู†ู‡ู… 21 ููŠ 2 ุจ 42 ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
113
00:11:27,800 --> 00:11:27,960
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
114
00:11:27,960 --> 00:11:33,820
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
115
00:11:33,820 --> 00:11:34,800
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
116
00:11:34,800 --> 00:11:36,780
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
117
00:11:36,780 --> 00:11:46,880
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบ
118
00:11:47,650 --> 00:11:53,250
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุงู„ู€ 64 ุทุจ ู„ูˆ ุถุฑุจุชู‡ ููŠ
119
00:11:53,250 --> 00:11:59,390
4 ุจุตูŠุฑ 81 85 ู„ูŠุณ
120
00:11:59,390 --> 00:12:01,850
relatively prime ู…ุน ู…ูŠู†ุŸ ู…ุน 105 ู„ุฃู† ู‡ูˆ
121
00:12:01,850 --> 00:12:06,910
ุจูŠูƒุณุจ ุนู„ู‰ 5 ูŠุจู‚ู‰ ุญุทู‡ ุนู„ู‰ ุดุฌุฑุฉ ุงู„ุขู† ุจุนุฏ ุงู„ู€ 4
122
00:12:06,910 --> 00:12:13,350
ูˆ80 ู„ูˆ ุถุฑุจุช ููŠ 5 ุจุตูŠุฑ ุงู„ู€ 105 ูŠุจู‚ู‰
123
00:12:13,350 --> 00:12:18,170
ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ ู…ุธุจูˆุท ูŠุจู‚ู‰ ู„ุง ูŠูˆุฌุฏ ุนู†ุฏูŠ ุฅู„ุง ู‡ุฐู‡
124
00:12:18,170 --> 00:12:25,630
ุงู„ุฃุฑู‚ุงู… ูˆู‡ุฐุง isomorphic ู„ูŠู‡<sub>5</sub> ุชู…ุงู… ู„ุฃู†ู‡ 5 ููŠ
125
00:12:25,630 --> 00:12:31,050
21 ู‡ูˆ ุงู„ู„ูŠ ุจ 105 .. 105 ุชุทู„ุน ูŠู‡<sub>5</sub>
126
00:12:31,050 --> 00:12:35,070
ููŠู‡ุง ูˆุงุญุฏ ูˆุงุชู†ูŠู† ูˆุชู„ุงุชุฉ ูˆุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑู‚ุงู… ูˆู…ุงุนู†ุงุด
127
00:12:35,070 --> 00:12:41,100
ู‡ู†ุง ุฅู„ุง ู…ูŠู† ุฅู„ุง ุฃุฑุจุนุฉ ุฃุฑู‚ุงู… ูˆูˆุถุน ุงู„ุดุบู„ ู‡ุฐุง ูƒุฏู‡ ูŠุจู‚ู‰
128
00:12:41,100 --> 00:12:46,320
ุงู„ู€U ุงู„ู„ูŠ ุนู†ุฏูŠ ุฌุฏุฑ ุชุฌูŠุจู‡ุง isomorphic ู„ู…ูŠู† ู„ู€groups
129
00:12:46,320 --> 00:12:51,460
ุฃูˆ ุงู„ู€external product ู„ู…ูŠู† ู„ู€groups ู…ุฎุชู„ูุฉ ูˆู„ุณู‡
130
00:12:51,460 --> 00:12:57,100
ููŠ ูƒู„ุงู… ููŠ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุงู„ูƒู„ุงู… ู…ุงุดูŠ ุจุฏูŠ ุฃู†ุชู‚ู„ ู…ู†
131
00:12:57,100 --> 00:13:03,120
ุงู„ู€U groups ุฃุญูˆู„ู‡ุง ุฅู„ู‰ isomorphic ู„ู€cyclic ุงู„ู„ูŠ ู‡ูˆ
132
00:13:03,120 --> 00:13:09,240
ู„ู€groups ุงู„ู„ูŠ ู‡ูŠ Z2 ูˆZ3 ูˆZ4 ูˆZ5 ูˆZ10 ูˆZ30 ูˆู…ุง ุฅู„ู‰
133
00:13:09,240 --> 00:13:14,770
ุฐู„ูƒ ููŠ ุนู†ุฏู†ุง .. ุงู„ู„ูŠ ู‡ูˆ .. ุงู„ู„ูŠ ู‡ูˆ ู‚ุงุนุฏุฉ ุงู„ู‚ุงุนุฏุฉ
134
00:13:14,770 --> 00:13:19,430
ู‡ุฐู‡ ุทุจุนุง ุจุฑู‡ู†ุช ููŠ ุฅุญุฏู‰ ุงู„ู…ุฑุงุฌุน ุงู„ุชูŠ ุงุนุชู…ุฏ ุนู„ูŠู‡ุง
135
00:13:19,430 --> 00:13:28,230
ู‡ุฐุง ุงู„ูƒุชุงุจ ูˆู„ุฐู„ูƒ ุจุฏู†ุง ู†ุงุฎุฏู‡ุง ูƒุญู‚ุงุฆู‚ we have the
136
00:13:28,230 --> 00:13:36,170
following notes ุฃูˆ the following facts ุฏูŠ ุนู†ุฏูŠ
137
00:13:36,170 --> 00:13:45,210
ุญู‚ุงุฆู‚ ู…ู‡ู…ุฉ ุฌุฏุง ุงู„ุญู‚ูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ุฃู† ุงู„ U2 isomorphic
138
00:13:45,210 --> 00:13:51,430
ูู‚ุท ู„ุณุช ู„ูุด ููŠู‡ุง ุงู„ูˆุงุญุฏ ุฅู„ุง ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ูˆ ุงู„
139
00:13:51,430 --> 00:14:04,550
U4 isomorphic ู„ู…ุงู… ู„ U isomorphic ู„ U2 ุชุฑุจูŠุน ุฃูˆ
140
00:14:04,550 --> 00:14:13,770
ุชุณุงูˆูŠุฉ U2 ุชุฑุงุจูŠุน ูˆุงู„ู„ูŠ ู‡ูŠ isomorphic ู„ Z2 ุงู„ู†ู‚ุทุฉ
141
00:14:13,770 --> 00:14:25,110
ุงู„ุซุงู†ูŠุฉ ุงู„ U2 ุฃูุณ N isomorphic ู„ Z2 External
142
00:14:25,110 --> 00:14:36,130
Direct Product ู…ุน Zุฒุฏ ุงุซู†ูŠู† ุฃูุณ N ู†ุงู‚ุต ุงุซู†ูŠู† ุฃูุณ
143
00:14:36,130 --> 00:14:43,630
N four N ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ ุซู„ุงุซุฉ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ
144
00:14:43,630 --> 00:14:51,230
ูˆุงู„ุฃุฎูŠุฑุฉ ุงู„ U P to the power N isomorphic ู„ู…ูŠู† ู„
145
00:14:51,230 --> 00:15:08,110
Z P N ู†ุงู‚ุต P ุฃุณ N ู†ุงู‚ุต ูˆุงุญุฏ for P and N prime ุงู„ู€ P
146
00:15:08,110 --> 00:15:13,090
and odd a prime so
147
00:15:13,090 --> 00:15:25,230
we can write we can write ุงู„ U-groups ุงู„ U-groups
148
00:15:25,230 --> 00:15:31,490
as an external direct product as an external
149
00:15:31,490 --> 00:15:36,970
direct product
150
00:15:39,750 --> 00:15:52,890
external product of cyclic groups ู†ุนุทูŠ
151
00:15:52,890 --> 00:15:59,750
ู…ุซุงู„ example write
152
00:16:03,490 --> 00:16:13,370
ูŠูˆ ุณุจุนู…ุงุฆุฉ ูˆุนุดุฑูŠู† ูŠูˆ ุณุจุนู…ุงุฆุฉ ูˆุนุดุฑูŠู† as
153
00:16:13,370 --> 00:16:21,070
an external direct product as an external direct
154
00:16:21,070 --> 00:16:28,950
product external
155
00:16:28,950 --> 00:16:31,610
direct product of
156
00:16:34,130 --> 00:16:50,950
cyclic groups ู†ุฑุฌุน
157
00:16:50,950 --> 00:16:56,230
ู„ู‡ุฐู‡ ุงู„ุญู‚ุงุฆู‚ ู…ุฑุฉ ุฃุฎุฑู‰ ูˆู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุดุชุบู„ ุนู„ูŠู‡ุง
158
00:16:56,230 --> 00:17:02,010
ุฃูˆ ู…ุงุฐุง ู†ุณุชููŠุฏ ู…ู† ู‡ุฐู‡ ุงู„ุญู‚ุงุฆู‚ ุงู„ุซู„ุงุซ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
159
00:17:02,010 --> 00:17:08,350
ุฌุงู„ ุงู„ U2 isomorphic ู„ู„ุนุฏุฏ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ as a set
160
00:17:08,350 --> 00:17:12,510
ุทุจุนุง U2 ู…ุงููŠุด ููŠู‡ุง ุฅู„ุง element ู„ู„ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ูˆุงุญุฏ
161
00:17:12,510 --> 00:17:18,370
ูŠุจู‚ู‰ ู‡ุฐุง ูˆุถุน ุทุจูŠุนูŠ ู„ู„ trivial case ุงู„ุญุงู„ุฉ ุงู„ุจุฏูŠู‡ูŠุฉ
162
00:17:18,370 --> 00:17:26,850
U4 ู„ U2 ุชุฑุจูŠุน isomorphic ู„ Z2 ู„ุฃู† U4 ููŠู‡ุง ูƒุงู… ุนู†ุตุฑ
163
00:17:28,400 --> 00:17:31,100
ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ
164
00:17:31,100 --> 00:17:31,580
ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ
165
00:17:31,580 --> 00:17:33,480
ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ
166
00:17:33,480 --> 00:17:36,180
ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ
167
00:17:36,180 --> 00:17:44,480
ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ
168
00:17:44,480 --> 00:17:45,540
ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ
169
00:17:45,540 --> 00:17:53,960
ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ูŠูˆ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ
170
00:17:53,960 --> 00:18:00,350
ูŠูˆ ุฃุฑุจุนุฉ ุงุซู†ูŠู† ู†ุงู‚ุต ุงุซู†ูŠู† ู…ู† ุงู„ุขู† ูุตุงุนุฏุง ู†ุดุชุบู„ ุจุดูƒู„
171
00:18:00,350 --> 00:18:06,610
ู‡ุฐุง ูŠุนู†ูŠ ุงู„ N ู†ุงู‚ุต ุงุซู†ูŠู† ู‡ูˆ ุฃูุณ ู„ู…ูŠู† ู„ู„ุงุซู†ูŠู† ุงู„ุขู†
172
00:18:06,610 --> 00:18:15,470
ุงู„ UPN isomorphic ู„ุฒุฏ P ุฃุณ N ู…ุทุฑูˆุญุง ู…ู†ู‡ P ุฃุณ N
173
00:18:15,470 --> 00:18:21,030
ู†ุงู‚ุต ูˆุงุญุฏ ูˆุฅู†ู…ุง ูŠูƒูˆู† P prime ูˆ P ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู†
174
00:18:21,030 --> 00:18:24,620
ุงู„ุงุซู†ูŠู† ูŠุนู†ูŠ ุฃู†ุช ุซู„ุงุซุฉ ูุตุงุนุฏุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
175
00:18:24,620 --> 00:18:29,060
ู‚ุฏุงู…ู†ุง ู…ูˆุฌูˆุฏ ุจุงู„ุดูƒู„ ู‡ู†ุง ู‡ุฐุง ุฅูŠุด ูุงุฆุฏุชู‡ุŸ ูุงุฆุฏุชู‡
176
00:18:29,060 --> 00:18:34,420
ุฃู† ุงู„ group UN ู…ู‡ู…ุง ูƒุงู† ุดูƒู„ู‡ุง ู…ู…ูƒู† ุฃุฎู„ูŠู‡ุง
177
00:18:34,420 --> 00:18:40,300
isomorphic ู„ู…ูŠู† ู„ cyclic groups ุดูˆ ุงู„ cyclic
178
00:18:40,300 --> 00:18:44,560
groups ุงู„ู„ูŠ ูƒู„ู‡ุง ุจุฏูŠ ุฃูƒุชุจู‡ุง ุจุฏู„ุงู„ุฉ z ูˆุงู„ุฃุนุฏุงุฏ ุงู„ู„ูŠ
179
00:18:44,560 --> 00:18:50,160
ู…ูˆุฌูˆุฏุฉ ููŠ z2 ููŠ z3 ููŠ z4 ุณู‡ู„ ุญุณุงุจุชู‡ู… ู„ูƒู† ู„ูˆ ุฌุช ู„ูŠ
180
00:18:50,160 --> 00:18:55,300
720 ุจุฏูŠ ุฃูƒุชุจ ุฃุฑู‚ุงู…ู‡ุง ู…ู† ู‡ู†ุง ู„ู„ุฏู‡ุฑ ุฏูˆุจ ู†ุฎู„ุต ูˆุงุญู†ุง
181
00:18:55,300 --> 00:18:59,320
ุจุฏู†ุง ู†ุฌูŠุจ ุงู„ุฃุฑู‚ุงู… ุงู„ู„ูŠ relative ู„ prime ู…ุน ู…ูŠู† ู…ุน
182
00:18:59,320 --> 00:19:04,000
ุงู„ 720 ู‚ุตุชู†ุง ุทูˆูŠู„ุฉ ูˆุญุฒูŠู†ุฉ ู„ูƒู† ู„ู…ุง ุฃู†ุง ุฃูƒุชุจู‡ุง ุจู‡ุฐุง
183
00:19:04,000 --> 00:19:08,480
ุงู„ุดูƒู„ ุจุฏุงูŠุฉ ุงู„ Z ุจุตูŠุฑ ุณู‡ู„ ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง ูŠุจู‚ู‰ ูุงุฆุฏุฉ
184
00:19:08,480 --> 00:19:14,800
ู‡ุฐู‡ ุงู„ุญู‚ูŠู‚ุฉ ุชุณู‡ูŠู„ ุงู„ุชุนุงู…ู„ ู…ุน ู…ูŠู† ู…ุน ุงู„ U-groups
185
00:19:15,040 --> 00:19:20,560
ู†ุนุทูŠูƒ ู…ุซุงู„ ุชูˆุถูŠุญูŠ ุนู„ู‰ ุฐู„ูƒ ุงู„ู„ูŠ ุฃูƒุชุจ ู„ U720 as a
186
00:19:20,560 --> 00:19:25,600
product of cyclic groups ุจู‚ู‰ ุฏูŠ ุจู‚ูˆู„ ู„ู‡ ุงู„ุญู„
187
00:19:25,600 --> 00:19:31,060
ูƒุชุงุจุฉ solution ูŠุจู‚ู‰
188
00:19:31,060 --> 00:19:34,620
ุฃู†ุง ุจุฏูŠ ุฃุฑูˆุญ ู„ U720
189
00:19:35,530 --> 00:19:42,230
ู‡ุฐู‡ ุงู„ู„ูŠ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง Uly ุจุฏูŠ ุฃุญุทู‡ุง ุนู„ู‰ ุญุงุตู„ ุถุฑุจ
190
00:19:42,230 --> 00:19:52,190
ุฃุนุฏุงุฏ ู„ูˆ ู‚ู„ุช ู„ูƒ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† 16ร—9ร—5 5ร—16 ุจู€ 80 80ร—9
191
00:19:52,190 --> 00:19:58,260
ุจู€ 8ร—9 ุจู€ 72 ูŠุนู†ูŠ 720 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ุจุงู„ู…ุฆุฉ
192
00:19:58,260 --> 00:20:05,660
ุจุงู„ู…ุฆุฉ ู‡ุฐู‡ ุงู„ุขู† ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู…ูŠู† ู„ู€ 16
193
00:20:05,660 --> 00:20:11,260
ุงูƒุณุชูŠุฑู†ุงู„ ุฏุงูŠูƒุง product ู…ุนุงู‡ ุชุณุนุฉ ุงูƒุณุชูŠุฑู†ุงู„ ุฏุงูŠูƒุง
194
00:20:11,260 --> 00:20:19,020
product ู…ุนุงู‡ ุฎู…ุณุฉ ุทูŠุจ ู‡ุฐู‡ ู…ูŠู† ู‡ูŠุŸ ุฃู„ูŠุณุช U2 ุฃูุณ
195
00:20:19,020 --> 00:20:25,200
ุฃุฑุจุนุฉ Extended product ุซู„ุงุซุฉ ุชุฑุงุจูŠุน Extended
196
00:20:25,200 --> 00:20:33,380
product ู„ U ุฎู…ุณุฉ ุณุชุฉ ุนุดุฑ ุงู„ู„ูŠ ู‡ูŠ ุงุซู†ูŠู† ุฃูุณ ุฃุฑุจุนุฉ ูˆ
197
00:20:33,380 --> 00:20:36,880
ุซู„ุงุซุฉ ุชุฑุงุจูŠุน ุงู„ู„ูŠ ู‡ูŠ ุชุณุนุฉ ูˆุงู„ุฎู…ุณุฉ ุฒู…ุงู† ุทูŠุจ ุงู„ุณุคุงู„
198
00:20:36,880 --> 00:20:41,880
ู‡ูˆ ู„ูŠุด ูƒุชุจุชู‡ ุฒูŠ ู‡ูŠูƒุŸ ุณูˆู ุฃุญุงูˆู„ ุฃู† ุฃู‚ูˆู… ุจุงู„ุชุญูˆูŠู„ ุฅู„ู‰
199
00:20:41,880 --> 00:20:49,060
ุงู„ู€ Cyclic Group. ู„ูƒู† ุนู†ุฏู…ุง ุฃุญุงูˆู„ ุชุญูˆูŠู„ู‡ุง ุจุฏู„ุงู„ุฉ
200
00:20:49,060 --> 00:20:53,260
ุงู„ุฒุฏ ุงู„ู„ูŠ ู„ุฏูŠ ุญุณุจ ุงู„ู‚ูˆุงุนุฏ ุงู„ู„ูŠ ู„ุฏูŠ ุจู‚ุฏุฑ ุฃุชุฃูƒุฏ ุฃู†
201
00:20:53,260 --> 00:20:56,760
ูƒู„ุงู…ูŠ ู…ุงุฆุฉ ููŠ ุงู„ู…ุงุฆุฉ ูƒู„ู‡ external product ู„ู„
202
00:20:56,760 --> 00:20:57,700
Cyclic Group
203
00:21:02,550 --> 00:21:08,190
ู…ุงุดูŠ ู…ุง ุงุญู†ุง ู‚ู„ู†ุง ู…ุดุงู† ู‡ูŠูƒ ุจุฏู†ุง ู†ุจุณุท ู‡ุงู„ุดุบู„ ู‡ุฐู‡
204
00:21:08,190 --> 00:21:14,710
ุจุฏู†ุง ู†ุจุณุท ู‡ุงู„ุดุบู„ ู‡ุฐู‡ ูˆ .. ูˆ ู†ุฑูˆุญ ู†ูƒุชุจู‡ุง ุจู‡ุฐุง ุงู„ุดูƒู„
205
00:21:14,710 --> 00:21:22,410
ุทูŠุจ ูŠุจู‚ู‰ ู„ุฃู† ูƒุชุจุช ุงู„ู€ U 720 ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏูŠ
206
00:21:22,410 --> 00:21:29,400
ูˆู‡ุฐู‡ ูƒุชุจุชู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ุงู„ุขู† ู‡ุฐู‡ U2 ุฃู‚ุตู‰ 4 ู‡ู†ุง U2
207
00:21:29,400 --> 00:21:35,560
ุฃู‚ุตู‰ N ูˆ N ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ 3 isomorphic ู„ู‡ุฐู‡ ุฅุฐุง
208
00:21:35,560 --> 00:21:41,320
ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ isomorphic ู„ุฒุฏ ุงุซู†ูŠู† external
209
00:21:41,320 --> 00:21:47,700
direct product ู…ุน ุฒุฏ ุจูŠู‚ูˆู„ ู„ูŠ ู…ูŠู† ุงุซู†ูŠู† ู‡ูŠ ุฒูŠ ู…ุง
210
00:21:47,700 --> 00:21:53,650
ู‡ูŠ ุงู„ n ุงู„ู„ูŠ ู‡ูŠ ุฃุฑุจุนุฉ ู†ุงู‚ุต ุงุซู†ูŠู† ูŠุจู‚ู‰ ุทุจู‚ุช ู‡ุฐู‡
211
00:21:53,650 --> 00:21:58,210
ุนู„ู‰ main ุนู„ู‰ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงุซู†ูŠู† ุฃู‚ุตู‰ ุฃุฑุจุนุฉ ูˆ
212
00:21:58,210 --> 00:22:04,370
ูˆุตู„ู†ุง ู‡ุฐู‡ ุฒูŠ ุงู„ n ุงู„ุซู„ุงุซุฉ ู‡ุฐุง prime ู…ุธุจูˆุท ุฅุฐุง
213
00:22:04,370 --> 00:22:09,490
ุจูŠุฏุฑูˆุญ ู„ู…ูŠู† ู„ู„ุญุงู„ุฉ ุงู„ุซุงู„ุซุฉ ูŠุจู‚ู‰ isomorphic ู„ู…ูŠู†
214
00:22:09,490 --> 00:22:18,300
ู„ุฒู‰ P ุงู„ุชูŠ ู‡ูŠ ุซู„ุงุซุฉ ูˆ N ุงุซู†ูŠู† ู†ุงู‚ุต ุซู„ุงุซุฉ ุฃุณ ุงุซู†ูŠู†
215
00:22:18,300 --> 00:22:23,920
ู†ุงู‚ุต ูˆุงุญุฏ ุซู… ุฎู„ุตู†ุง ู‡ุฐุง ุงู„ุฃู…ุฑ ูˆู‡ู†ุงูƒ ุงุณุชูŠู‚ุธู†ุง ุถุงูŠู‚
216
00:22:23,920 --> 00:22:30,900
ูƒุชุงุจุฉ ู…ุน U ุฎู…ุณุฉ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† Z ูƒุฏู‡
217
00:22:30,900 --> 00:22:39,380
ุฅูŠุด ู‚ู„ู†ุง ZP ูŠุนู†ูŠ Z ุฎู…ุณุฉ ุฃุณ ูˆุงุญุฏ ู†ุงู‚ุต ุฎู…ุณุฉ ุฃุณ ูˆุงุญุฏ
218
00:22:39,380 --> 00:22:46,500
ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰ ุฃูˆุทุฉ ูˆูŠุฏ ู…ุจุงุดุฑุฉ ู‡ุฐุง P ุจุซู„ุงุซุฉ ูˆ P
219
00:22:46,500 --> 00:22:52,960
ุจุฎู…ุณุฉ ูˆ N ุจูˆุงุญุฏ ุฎู…ุณุฉ ูˆ S ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุดูˆู ู‡ุฐู‡
220
00:22:52,960 --> 00:22:59,920
ุฅูŠุด ุตุงุฑุช ุตุงุฑุช ู‡ุฐู‡ Z ุงุซู†ูŠู† external product ู…ุน Z
221
00:22:59,920 --> 00:23:06,470
ุฃุจุตุฑ ุฌุฏุงุด ุฃุฑุจุนุฉ ู†ุงู‚ุต ุงุซู†ูŠู† ุจุงุซู†ูŠู† ุงุซู†ูŠู† ุชุฑุจูŠุน ุจุฃุฑุจุนุฉ
222
00:23:06,470 --> 00:23:13,110
ูŠุจู‚ู‰ ู‡ุฐู‡ isomorphic ู„ุฒุงุฏ ุฃุฑุจุนุฉ ู†ุฌูŠ ู„ู‡ุฐู‡ ุซู„ุงุซุฉ ุชุฑุจูŠุน
223
00:23:13,110 --> 00:23:19,270
ุชุณุนุฉ ูˆู‡ู†ุง ุซู„ุงุซุฉ ุฃุณ ูˆุงุญุฏ ุจุซู„ุงุซุฉ ุชุณุนุฉ ู†ุงู‚ุต ุซู„ุงุซุฉ
224
00:23:19,270 --> 00:23:26,640
ุจุณุชุฉ ูŠุจู‚ู‰ isomorphic ู„ุฒุงุฏ ุณุชุฉ ูˆู‡ุฐู‡ ุงู„ุขู† ุฎู…ุณุฉ ุฃุณ
225
00:23:26,640 --> 00:23:32,880
ุตูุฑ ุจูˆุงุญุฏ ูˆู‡ู†ุง ุฎู…ุณุฉ ุฃุณ ูˆุงุญุฏ ุจุฎู…ุณุฉ ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰
226
00:23:32,880 --> 00:23:39,580
ุฒุฏ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู„ุฃู† ูƒุชุงุจุฉ ุฒุฏ ุณุจุนู…ุงุฆุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ุตูŠุบุฉ
227
00:23:39,580 --> 00:23:42,840
ุฒุฏ ุงุซู†ูŠู† external product ู„ุฒุฏ ุฃุฑุจุนุฉ external
228
00:23:42,840 --> 00:23:48,220
product ู„ุฒุฏ ุณุชุฉ external product ู„ุฒุฏ ุฃุฑุจุนุฉ ูˆุงู„ุฃุฑุจุนุฉ
229
00:23:48,220 --> 00:23:53,580
cyclic groups ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ group ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠูˆ
230
00:23:53,580 --> 00:23:58,840
ุณุจุนู…ูŠุฉ ูˆุนุดุฑูŠู† ุฌุจุช group ุจุชุนู…ู„ ู…ุนุงู‡ุง isomorphism
231
00:23:58,840 --> 00:24:03,460
ูˆุจุงู„ุชุงู„ูŠ ุฎูˆุงุต ุงู„ ูŠูˆ ุณุจุนู…ุงุฆุฉ ูˆุนุดุฑูŠู† ู‡ูŠ ู†ูุณ ุงู„ุฎูˆุงุต
232
00:24:03,460 --> 00:24:06,940
ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู„ูˆ ุฌุงู„ูŠ ู‡ุงุชู„ูŠ element ุงู„
233
00:24:06,940 --> 00:24:12,020
order ุงู„ูˆ ูƒุฐุง ููŠ ุณุจุนู…ุงุฆุฉ ูˆุนุดุฑูŠู† ุจุฑูˆุญ ุนู„ู‰ ู‡ุฐู‡ ู‡ุฐู‡ ุณู‡ู„
234
00:24:12,020 --> 00:24:16,840
ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง ุจุณ ู„ูŠู‡ 720 ุตุนุจ ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง ุฅุฐุง
235
00:24:16,840 --> 00:24:22,600
ุจุฌูŠุจ ู‡ุฐู‡ ุงู„ู…ูƒุงูุฆุฉ ู„ู‡ุง ูˆู…ู† ุฎู„ุงู„ู‡ุง ุจู‚ุฏุฑ ุฃุฌูŠุจ ู…ู† ุงู„ู„ูŠ
236
00:24:22,600 --> 00:24:28,160
ู‡ูˆ ุงู„ element ุงู„ู„ูŠ ุงู„ order ุนู†ุฏู‡ ูŠุนุทูŠู†ูŠ ุฅูŠุงู‡ ููŠ
237
00:24:28,160 --> 00:24:28,960
ุงู„ุณุคุงู„
238
00:24:31,410 --> 00:24:38,470
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„ ูˆุถุน ู„ุชุจุณูŠุท ุงู„ุญุณุงุจุงุช ุงู„ุนู…ู„ูŠุฉ ููŠ ุงู„
239
00:24:38,470 --> 00:24:42,270
groups ุงู„ู…ุฎุชู„ูุฉ
240
00:24:42,270 --> 00:24:49,730
ู†ุนุทูŠูƒ
241
00:24:49,730 --> 00:24:55,230
ู…ุซุงู„ ุนู„ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูˆุจุงู„ุชุงู„ูŠ ุงู„ู…ุซุงู„ ุฃู†ุช ุชุนูˆุฏุช ุนู„ู‰
242
00:24:55,230 --> 00:25:00,750
external product ู…ูƒูˆู† ู…ู† ุฑู‚ู…ูŠู† ุงุญู†ุง ู‡ู†ุนุทูŠูƒ ุณู†ุฉ ู…ู†
243
00:25:00,750 --> 00:25:06,910
ุซู„ุงุซุฉ ู…ู† ุฃุฑุจุนุฉ ุฃูƒุซุฑ ู…ู† ุฐู„ูƒ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ example
244
00:25:06,910 --> 00:25:11,430
how
245
00:25:11,430 --> 00:25:16,950
many elements
246
00:25:16,950 --> 00:25:20,290
of
247
00:25:20,290 --> 00:25:21,930
order
248
00:25:51,070 --> 00:25:57,340
ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ุฅูŠู‡ุŸ ุจูŠู‚ูˆู„ ูƒู… ุนู†ุตุฑ ุงู„
249
00:25:57,340 --> 00:26:03,080
order ุงู„ูˆ 12 ููŠ ุงู„ U ุณุจุนู…ุงุฆุฉ ูˆุนุดุฑูŠู† ุทุจุนุง ุจุฏู†ุง
250
00:26:03,080 --> 00:26:07,160
ู†ู‚ุนุฏ ู†ุญุณุจ ูƒู„ element ู„ุญุงู„ู‡ ุชุทู„ุน ุฑูˆุญู†ุง ู…ุด ู‡ู†ู‚ุฏุฑ
251
00:26:07,160 --> 00:26:10,800
ู†ุญุณุจู‡ู… ู„ูƒู† ู‡ุฐู‡ ุณุจุนู…ุงุฆุฉ ูˆุนุดุฑูˆู† ุงู„ุชูŠ ุฌุงุกุชู‡ุง
252
00:26:10,800 --> 00:26:15,580
isomorphic ู„ู…ู†ุŸ ู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ุŒ ุจูŠุจู‚ู‰ ุงู„ุญุณุงุจุงุช ู‡ู†ุง
253
00:26:15,580 --> 00:26:22,700
ุฃุณู‡ู„ ูƒุซูŠุฑู‹ุง ุฌุฏู‹ุง ู…ู† ุงู„ุญุณุงุจุงุช ู‡ู†ุงูƒุŒ ุฃูŠูˆุฉ ุทุจ ุจุชุฎู„ุต ุจุงู„ู„ู‡
254
00:26:22,700 --> 00:26:26,580
ููŠ ุงู„ุณุงุนุชูŠู† ุงู„ู„ูŠ ุจุชู‚ุฏุฑ ุชุฌูŠุจู‡ู…ุŸ ุทุจ ูˆูƒู…ุงู† ุณุงุนุชูŠู† ู…ู†
255
00:26:26,580 --> 00:26:31,460
9D ูˆุงุญุณุจ ู„ูŠ ูƒู„ ุงู„ู€ elements ุงู„ู„ูŠ relatively prime ู…ุน
256
00:26:31,460 --> 00:26:38,780
720ุŒ ูˆุงุฏูˆุฑ ุนู„ูŠู‡ู… ู…ู† ุงู„ู€ order ุงู„ู„ูŠ ูŠุณุงูˆูŠ 12ุŒ ุฃู†ุช ุญุฑ
257
00:26:38,780 --> 00:26:43,120
ุฌูŠุจ ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ุŒ ุฃู†ุง ู…ุด ุฒุนู„ุงู†ุŒ ุจุณ ู‡ุชุงุฎุฏ ูˆู‚ุช ุฑู‡ูŠุจ
258
00:26:43,120 --> 00:26:48,550
ุฌุฏุงู‹ุŒ ุณุงุนุชูŠู†ูƒ ู…ุด ู‡ูŠูƒููˆ ู„ุญุณุงุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุคุงู„ ู‡ุฐุง ุงู„ุขู†
259
00:26:48,550 --> 00:26:57,170
solution from the above example
260
00:26:58,670 --> 00:27:07,090
ู…ู† ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ููˆู‚ุŒ ุงู„ู€ U720 ุฃูŠุฒูˆ ู…ูˆุฑููƒ ู„ู€ Z2
261
00:27:07,090 --> 00:27:13,590
Extended like product ู…ุน Z4ุŒ Extended like product
262
00:27:13,590 --> 00:27:19,470
ู…ุน Z6ุŒ Extended like product ู…ุน Z4
263
00:27:22,860 --> 00:27:31,920
ุฃูŠ element ู‡ู†ุงุŒ ุงู„ู€ order ุฅู„ูŠู‡ ูŠุณุงูˆูŠ ุงุซู†ุง ุนุดุฑุŒ ูŠุจู‚ู‰ ุจู†ุงุก
264
00:27:31,920 --> 00:27:41,380
ุนู„ูŠู‡ ูŠุจุฏูˆ ู„ูˆ ุญุณุจู†ุง ููŠู‡ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ so the number of
265
00:27:41,380 --> 00:27:52,660
elements of order ุงุซู†ุง ุนุดุฑ in u ุณุจุนู…ุงุฆุฉ ูˆุนุดุฑูˆู†
266
00:27:54,980 --> 00:28:07,680
equal of the number of elements of
267
00:28:07,680 --> 00:28:09,280
order
268
00:28:26,260 --> 00:28:32,140
ุทุจ ุงุญู†ุง ุฃุฎุฐู†ุง ุฃูˆู„ ู†ุธุฑูŠุฉ ููŠ ู‡ุฐุง section ูˆูƒุงู† ู…ุดุงู†
269
00:28:32,140 --> 00:28:38,950
ุฃุฌูŠุจ ุงู„ู€ order ู„ู„ู€ element ุงู„ู…ุฑูƒุจ ู…ุซู„ู‹ุง ู…ู† ู…ุฑูƒุจุฉ
270
00:28:38,950 --> 00:28:43,370
ู‡ู†ุง ุจุฌูŠุจ ุงู„ู€ list common multiple ู„ู…ู†ุŸ ู„ู„ู€ two
271
00:28:43,370 --> 00:28:47,330
orders ุงู„ู„ูŠ ุนู†ุฏู‡ ูˆุจุงู„ุชุงู„ูŠ ุจูƒูˆู† ุฌุงุจุช ุงู„ู€ order ู„ู„ู€
272
00:28:47,330 --> 00:28:50,690
element ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ external direct product
273
00:28:50,690 --> 00:28:57,210
ู„ุฐู„ูƒ ุจุฑูˆุญ ุขุฎุฐ element ู‡ู†ุงุŒ ูˆุงูุชุฑุถ ุฃู† ู‡ุฐุง ุงู„ู€ element
274
00:28:57,210 --> 00:29:03,010
ุงู„ู€ order ู„ู‡ ูŠุณุงูˆูŠ 12ุŒ ูˆุฃุจุญุซ ุนู† ุงู„ู€ orders ุงู„ู…ุฎุชู„ูุฉ
275
00:29:03,010 --> 00:29:09,530
ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุฃู‚ูˆู„ ู„ู‡ let ุงู„ู€ a ูˆุงู„ู€ b ูˆุงู„ู€
276
00:29:09,530 --> 00:29:18,610
c ูˆุงู„ู€ d ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ Z2 similar product ู…ุน Z4
277
00:29:18,610 --> 00:29:26,570
similar product ู…ุน Z6ุŒ similar product ู…ุน Z4 such
278
00:29:26,570 --> 00:29:37,490
that ุจุญูŠุซ ุฃู† ุงู„ู€ order ู„ู„ู€ a ูˆุงู„ู€ b ูˆุงู„ู€ c ูˆุงู„ู€ d ูƒู„ู‡
279
00:29:37,490 --> 00:29:43,740
ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุง ุดุงุก ุงู„ู„ู‡ุŒ ุทูŠุจ ุงู„ุขู† ู„ู…ุง ู†ู‚ุงุฏูŠ
280
00:29:43,740 --> 00:29:49,060
ู„ู€ Z2ุŒ Z2 ูƒู… ุนู†ุตุฑ ููŠู‡ุงุŸ ุงุซู†ูŠู† ูŠุนู†ูŠ ุงู„ู€
281
00:29:49,060 --> 00:29:53,520
order ูˆุงุญุฏ ูˆุงู„ู€ order ู„ู„ุนู†ุตุฑ ุงู„ุซุงู†ูŠ ุงุซู†ูŠู†ุŒ ุตุญ ูˆู„ุง ู„ุงุŸ
282
00:29:53,520 --> 00:29:57,980
ูŠุจู‚ู‰ ุฃูŠ element ููŠ Z2 ุงู„ู€ order ู„ู‡ ูŠุง ุฅู…ุง
283
00:29:57,980 --> 00:30:02,280
ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ identity ูŠุง ุฅู…ุง ุงุซู†ูŠู†ุŒ ุทูŠุจ ุฎุฐ ู„ูŠ
284
00:30:02,280 --> 00:30:09,080
Z4 ุงู„ู€ order ุงู„ู„ูŠ ููŠู‡ุง ูˆุงุญุฏ ูˆูƒุฏู‡ ูˆุงุซู†ูŠู†
285
00:30:09,740 --> 00:30:14,620
ุซู„ุงุซุฉุŒ ุจุชุฌุณู… ุงู„ุฃุฑุจุนุฉุŒ ุจุชุชูƒู„ู…
286
00:30:14,620 --> 00:30:17,820
ุนู„ู‰ order ุจุชุชูƒู„ู…ุด ุนู„ู‰ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠู‡ุง
287
00:30:17,820 --> 00:30:20,900
ูˆุงุญุฏ ูˆุงุซู†ูŠู† ูˆุฃุฑุจุนุฉุŒ ูˆุงุญุฏ ูˆุงุซู†ูŠู† ูˆุฃุฑุจุนุฉุŒ ูˆููŠู‡ ุบูŠุฑู‡ู…ุŸ
288
00:30:20,900 --> 00:30:25,140
ู…ุธุจูˆุทุŒ ู„ุฅู† ุงู„ู€ order ู„ู„ู€ element ุจูŠุฌุณู… ู„ู„ู€ order ู„ู„ู€
289
00:30:25,140 --> 00:30:28,280
group Z4 ููŠ ุฃุฑุจุนุฉ ุนู†ุงุตุฑุŒ ุฅุฐุง ู‚ุณู…ู†ุง ูˆุงุญุฏ ุงุซู†ูŠู†
290
00:30:28,280 --> 00:30:33,550
ุฃุฑุจุนุฉ ูู‚ุทุŒ ู„ุบูŠุฑ ููŠุด ุญุงุฌุฉ ุงุณู…ู‡ุง ุซู„ุงุซุฉุŒ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
291
00:30:33,550 --> 00:30:41,750
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Z6ุŒ ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุณุชุฉุŒ ููŠ ุดุบู„ู‡ู… ุงู„ู€
292
00:30:41,750 --> 00:30:46,770
Z4 ู‚ุจู„ ู‚ู„ูŠู„ุŒ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุน ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ ุฏูŠ ูˆุจู†ุงุก
293
00:30:46,770 --> 00:30:53,970
ุนู„ูŠู‡ ุจุฏูŠ ุฃุจุฏุฃ ุฃุญุฏุฏ ูƒู… ุนู†ุตุฑ ุนู†ุฏูŠุŒ ูŠุจู‚ู‰ ู‡ู†ุง any
294
00:30:53,970 --> 00:30:55,850
element
295
00:30:57,770 --> 00:31:09,390
ููŠ Z4 has order ูˆุงุญุฏ ูˆุงุซู†ูŠู†ุŒ Any element in Z4 has
296
00:31:09,390 --> 00:31:19,910
order 1,2,4ุŒ ุฃูŠ element ููŠ Z6 has order 1,2,3,6ุŒ ุฃูŠ
297
00:31:19,910 --> 00:31:27,930
element ููŠ Z4ุŒ ููŠ Z4 has element 1,2,4
298
00:31:30,490 --> 00:31:34,090
ุทูŠุจ ุฃู†ุง ู„ู…ุง ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ order ู„ู„ู€ element ุจุฏูŠ
299
00:31:34,090 --> 00:31:38,870
ุฃุฌูŠุจ ุงู„ู€ least common multiples ู„ู…ูŠู†ุŸ ู„ู„ู€ ุฃุฑุจุนุฉ orders
300
00:31:38,870 --> 00:31:43,390
ู…ุด ู‡ูŠูƒุŸ ุจู‚ูˆู„ ูƒูˆูŠุณุฉุŒ ุทู„ุน ู„ูŠ ุงู„ู€ order ุงู„ุฃูˆู„ ูˆุงุญุฏ ูˆ
301
00:31:43,390 --> 00:31:48,290
ุงุซู†ูŠู† ู…ูˆุฌูˆุฏ ู…ุน ู‡ุฏูˆู„ ูˆู„ุง ู„ุฃุŸ ู…ูˆุฌูˆุฏ ู…ุน ู‡ุฐู‡ุŒ ู…ูˆุฌูˆุฏ ู…ุน
302
00:31:48,290 --> 00:31:53,850
ู‡ุฐู‡ุŒ ูŠุนู†ูŠ ูˆุฌูˆุฏ ุฅูŠุดุŸ ุจุณ ุจูŠุฎุฑ ุจุดูƒู„ ุจูŠุฎู„ูŠู‡ุง ูƒุจูŠุฑุฉุŒ ูŠุจู‚ู‰
303
00:31:53,850 --> 00:31:58,330
ููŠ ุงู„ุญู‚ูŠู‚ุฉ ุฃู†ุง ุจุฏูŠ ุฃุจุญุซ ุจุณ ุนู† A ูˆB ูˆC ุชู…ุงู…ุŸ ู„ูƒู†
304
00:31:58,330 --> 00:32:01,970
ู‡ุฏุงูƒ ุจุฏูŠ ุฃุฎู„ูŠู‡ ููŠ ุญุณุงุจูŠ ู…ุด ุจุงู‡ูŠู… ู„ู‡ุŒ ูŠุจู‚ู‰ ุงู„ุฐูŠ
305
00:32:01,970 --> 00:32:06,390
ูŠุชุญูƒู… ููŠ ุงู„ู€ order ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ 12 ุงู„ู„ูŠ ู‡ูˆ ุงู„ุซู„ุงุซ
306
00:32:06,390 --> 00:32:12,520
ุงู„ุฃุฎูŠุฑุฉ ู‡ุฏูˆู„ุŒ ูˆุงู„ู‡ุฏุง 1 ูˆ2 ู…ุด ู…ุดูƒู„ุฉุŒ ูŠุจู‚ู‰ ุนู†ุฏูŠ
307
00:32:12,520 --> 00:32:18,140
ุนู†ุตุฑูŠู† ุจุฏุฎู„ู‡ู… ููŠ ุงู„ุญุณุงุจ ุจุนุฏ ุฐู„ูƒุŒ ูŠุจู‚ู‰ ุจุฏุงู„ูŠ ู„ู„ู€ 2 ูˆ
308
00:32:18,140 --> 00:32:23,420
4 ุงู„ู„ูŠ ุนู†ุฏูŠุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ element A ุงู„ู€ order ุฅูŠู‡ุŸ 1
309
00:32:23,420 --> 00:32:31,450
ูˆ2ุŒ ุงู„ู€ element B 1,2,4ุŒ ุงู„ู€ element C 1,2,3,6ุŒ ุงู„ู€
310
00:32:31,450 --> 00:32:38,570
element D 1,2,4ุŒ ุทุจ ุงู„ุขู† ุฃู†ุง ุจุฏูŠ ุฃุฏูˆุฑ ุงู„ู€ main ุงู„ู€
311
00:32:38,570 --> 00:32:42,910
least common multiple ุงู„ู„ูŠ ู‡ู… ุจุฏู‡ ูŠุนุทูŠู†ูŠ ู‚ุฏุงุดุŸ 12
312
00:32:42,910 --> 00:32:49,670
ูˆุจุญูŠุซ ู‡ุง ุทู„ุน ู„ูŠ ู‡ู†ุง ุงู„ุขู† ุงู„ูˆุงุญุฏ ูˆุงู„ุงุซู†ูŠู† ู…ูƒุฑุฑุฉ
313
00:32:49,670 --> 00:32:54,210
ู…ุงู„ูˆุงุญุฏ ูˆุงู„ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰ ู„ุง ู‚ูŠู…ุฉ ู„ู‡ุงุŒ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ู‡ู†ุง
314
00:32:54,210 --> 00:32:58,690
ุถุงู„ ุนู†ุฏ ู…ูŠู†ุŸ ุงู„ุฃุฑุจุนุฉุŒ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู† ุงู„ู€ order ุงู„ู„ูŠ ุจูŠู‡
315
00:32:58,690 --> 00:33:04,170
ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุฃุฑุจุนุฉุŒ ูˆุงู„ู€ order ุงู„ู„ูŠ ูŠุณูŠู‡ ูƒุงู† ุซู„ุงุซุฉ
316
00:33:04,170 --> 00:33:08,830
ุฃูˆ ุณุชุฉุŒ ุทุจ ู„ูŠุด ุซู„ุงุซุฉ ุฃูˆ ุณุชุฉุŸ ู„ุฃู† ุซู„ุงุซุฉ ุฃูˆ ุฃุฑุจุนุฉ
317
00:33:08,830 --> 00:33:12,730
ู„ูŠุณ ูƒู… ุงู„ู€ multiple ุงู„ู„ูŠ ู‚ู„ู‡ู… ู‚ุฏุงุดุŸ ุงุซู†ุง ุนุดุฑุŒ ูˆุงู„ุณุชุฉ
318
00:33:12,730 --> 00:33:15,290
ูˆุงู„ุฃุฑุจุนุฉ ู„ูŠุณ ูƒู… ุงู„ู€ multiple ุงู„ู„ูŠ ู‚ู„ู‡ู… ูƒู…ุงู† ู…ูŠู†ุŸ
319
00:33:15,290 --> 00:33:21,820
ุงุซู†ุง ุนุดุฑุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ูŠ ูŠุณุงู‡ ูŠุชุญูƒู… ููŠ ู…ู†ุŸ ููŠ ุงู„ู€ order
320
00:33:21,820 --> 00:33:25,900
ุทุจ ูˆุงู„ู„ูŠ ุชุญุช ู‡ุฐุงุŸ ู„ุชุญุช ู…ุง ู‡ูˆ ุฏุงุฎู„ ููŠ ุงู„ุญุณุงุจ ู„ุฅู†
321
00:33:25,900 --> 00:33:30,920
ูˆุงุญุฏ ุงุซู†ูŠู† ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ูˆุงู„ุฃุฑุจุนุฉ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุงุŒ ูŠุจู‚ู‰ ุงู„ู€ D
322
00:33:30,920 --> 00:33:36,140
ู…ุด ู‡ุชุฃุซุฑ ุนู†ุฏูŠุŒ ู…ุด ู‡ุชุฌูŠุจ ู„ูŠ ู…ุนู„ูˆู…ุงุช ุฌุฏูŠุฏุฉุŒ ูŠุจู‚ู‰ ุจุฅุถุงูุฉ
323
00:33:36,140 --> 00:33:41,240
ุชุญุตูŠู„ ุญุงุตู„ุŒ ู‡ูŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ุŒ ูŠุจู‚ู‰ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰
324
00:33:41,240 --> 00:33:44,040
ุงู„ู„ูŠ ุงู„ู€ order ุงู„ู€ list common multiple ุงู„ู„ูŠ ุจุฏู‡
325
00:33:44,040 --> 00:33:48,460
ูŠุทู„ุน ุงุซู†ุง ุนุดุฑุŒ ุฎุฐ ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉุŒ ู…ู…ูƒู† ูŠูƒูˆู† ุงู„ู€ order
326
00:33:48,460 --> 00:33:54,180
ุงู„ู„ูŠ ุฏูŠ ู‡ูˆ ุฃุฑุจุนุฉุŒ ูˆุงู„ู€ C ู„ู‡ ุซู„ุงุซุฉ ูˆุณุชุฉุŒ ู…ุด ู‡ูŠูƒ ูˆุงุฑุฏุŸ
327
00:33:54,180 --> 00:33:59,180
ุชู…ุงู…ุŒ ูˆุงู„ุจุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจูŠุชุญุตูŠู„ ุญุงุตู„ ุจุณูŠุทุŒ ุชู…ุงู…ุŸ
328
00:33:59,180 --> 00:34:03,200
ูŠุจู‚ู‰ ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุดุชุบู„ ุงู„ุดุบู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุงุฏูŠ
329
00:34:13,770 --> 00:34:18,010
ุงู„ุขู† ู‚ู„ู†ุง ุจุงู„ู†ุณุจุฉ ู„ู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ุงุณู…ู‡ุง multipleุŒ ุชุญุตูŠู„
330
00:34:18,010 --> 00:34:24,210
ุญุงุตู„ุŒ ูŠุจู‚ู‰ ุฏูŠ ู…ุด ู‡ุชุฏุฎู„ ููŠ ุงู„ุญุณุงุจ ุนู†ุฏู†ุงุŒ ูŠุจู‚ู‰ we have
331
00:34:24,210 --> 00:34:30,050
two cases
332
00:34:30,050 --> 00:34:35,910
ู‡ูŠ ุนู†ุฏูŠ ุญุงู„ุชูŠู†ุŒ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ุฃู† ุงู„ู€ order ู„ู„ู€ B ุจุฏู‡
333
00:34:35,910 --> 00:34:41,150
ูŠุณุงูˆูŠ ุงู„ุฃุฑุจุนุฉุŒ ูˆุงู„ู€ order ู„ู€ C ูŠุง ุฅู…ุง ุซู„ุงุซุฉ ูŠุง ุฅู…ุง
334
00:34:41,150 --> 00:34:45,350
ุณุชุฉุŒ ูŠุจู‚ู‰ ุซู„ุงุซุฉ ูˆุฃุฑุจุนุฉ ุงู„ู€ least common multiple
335
00:34:45,350 --> 00:34:48,730
ูŠุจู‚ู‰ 12ุŒ ุงู„ุณุชุฉ ูˆุงู„ุฃุฑุจุนุฉ ุงู„ู€ least common multiple
336
00:34:48,730 --> 00:34:53,290
ูŠุจู‚ู‰ 12ุŒ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ูŠุฌูŠุจูˆุง ู„ูŠ ุงู„ู€ element ุงู„ู€ order ูŠุณุงูˆูŠ
337
00:34:53,290 --> 00:35:00,190
ูƒู…ุŸ ุงู„ู€ 12ุŒ ุทุจ ูƒู… ุนู†ุตุฑ ููŠ Z4 ุงู„ู€ order ูŠุณุงูˆูŠ
338
00:35:00,190 --> 00:35:08,630
ุฃุฑุจุนุฉุŸ ุจุณ ุงุซู†ูŠู†ุŒ ู‡ูˆ ุงู„ูˆุงุญุฏ ูˆุงู„ุซู„ุงุซุฉุŒ ุงู„ูˆุงุญุฏ ูˆุงู„ุซู„ุงุซุฉ
339
00:35:08,630 --> 00:35:14,850
ููŠ Z4 ุงู„ู€ order ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุงู„ุฃุฑุจุนุฉุŒ ูŠู…ุฌู‰ ุจูŠู‡
340
00:35:14,850 --> 00:35:20,890
ู‡ู†ุง ูŠุง ุจุฏู‡ุง ุชุณุงูˆูŠ ูˆุงุญุฏ ูŠุง ุจุฏู‡ุง ุชุณุงูˆูŠ ุซู„ุงุซุฉุŒ ุทูŠุจ C
341
00:35:20,890 --> 00:35:27,370
ู‡ู†ุง ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู€ order ู„ู‡ ุซู„ุงุซุฉ ุฃูˆ ุงู„ู€ order ู„ู‡
342
00:35:27,370 --> 00:35:34,150
ุณุชุฉุŒ ุฃุธู† ุงู„ูˆุงุญุฏ ุงู„ู€ order ู„ู‡ ุณุชุฉุŒ ุทุจ ูˆุงุซู†ูŠู†ุŸ ุทุจ ูˆ
343
00:35:34,150 --> 00:35:41,700
ุงู„ุฃุฑุจุนุฉุŸ ุงู„ู€ order ู…ุงุฐุงุŸ ุซู„ุงุซุฉุŸ ุซู„ุงุซุฉุŸ ุทุจ ูˆุงู„ุณุชุฉุŸ ูˆุงุญุฏ
344
00:35:41,700 --> 00:35:45,780
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
345
00:35:45,780 --> 00:35:48,240
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
346
00:35:48,240 --> 00:35:48,920
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
347
00:35:48,920 --> 00:35:49,520
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
348
00:35:49,520 --> 00:35:50,300
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
349
00:35:50,300 --> 00:35:50,340
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
350
00:35:50,340 --> 00:35:53,380
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
351
00:35:53,380 --> 00:35:58,440
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
352
00:35:58,440 --> 00:36:03,500
ูˆุงุญุฏุŒ
353
00:36:03,500 --> 00:36:04,480
ูˆุง
354
00:36:11,410 --> 00:36:17,450
ุงู„ุฑู‚ู… ูŠุง ุจุงุฎุฏ C ุจูˆุงุญุฏ ูŠุง ุจุงุฎุฏ ุงู„ุณุชุฉ ูŠุนู†ูŠ ุงุซู†ูŠู†ุŒ ู‡ุฐุง
355
00:36:17,450 --> 00:36:21,650
ุงู„ู€ component ูŠุง ุจุชูƒูˆู† ูˆุงุญุฏ ูŠุง ุจุชูƒูˆู† ุณุชุฉุŒ ุตูุฑ ู…ุงุดูŠุŸ
356
00:36:21,650 --> 00:36:25,790
ุงู„ุญุงุฌุฉ ุจุชุฒุนู„ ู„ูŠู‡ุŸ ู‡ุฐุง
357
00:36:25,790 --> 00:36:31,450
ุงุญู†ุง ุจู†ุญูƒูŠ ุงู„ุขู† ููŠ order ูƒุจูŠุฑ ู…ุด ู„ุญุงู„ู‡ุŒ ุชู…ุงู…ุŸ ุงุญู†ุง
358
00:36:31,450 --> 00:36:36,310
ุจู†ุญูƒูŠ ุงู„ุขู† ุงู„ู€ order ู„ู„ู€ element ุจุฏู‡ ูŠุณุงูˆูŠ ุณุชุฉุŒ ู…ูŠู†
359
00:36:36,310 --> 00:36:40,550
ุงู„ู€ elements ุงู„ู„ูŠ ุงู„ู€ order ุงู„ู„ูŠ ู‡ู… ูŠุณุงูˆูŠ .. ุฏู‡ ู…ุด
360
00:36:40,550 --> 00:36:46,770
ุณุชุฉ .. ุฏู‡ ุฎู…ุณุฉ .. ุฏู‡ ุฎู…ุณุฉุŒ ุงู„ูˆุงุญุฏ ูˆุงู„ุฎู…ุณุฉ ุงู„ู€ order
361
00:36:46,770 --> 00:36:52,470
ุงู„ู„ูŠ ู‡ู… ุณุชุฉ ุตุญูŠุญุŸ ุงุซู†ูŠู† ูˆุงู„ุฃุฑุจุนุฉ ู‡ู… ุงู„ู€ order ุงู„ู„ูŠ
362
00:36:52,470 --> 00:37:01,030
ู‡ู… ุซู„ุงุซุฉุŒ ุทูŠุจ ู‡ุฐุง ุงู„ู€ B ูˆุงู„ู€ CุŒ ุทุจ ูˆุงู„ู€ DุŸ ู„ุง ุฎุฐู‡ุง ุฃูŠ
363
00:37:01,030 --> 00:37:11,890
ุดูŠุกุŒ ุฃูŠ ู†ุนู…ุŒ and ุงุฏูŠ arbitrary ูŠุนู†ูŠ ุฎุฐู‡ุง ุฒูŠ ู…ุง ุจุฏูƒ
364
00:37:12,760 --> 00:37:17,280
ูƒูˆูŠุณุŸ ุทูŠุจ ู„ู…ุง ุขุฎุฐู‡ุง ุฒูŠ ุงู„ู…ุจุฏุฃ ุจู‚ูˆู„ ุขุฎุฐ ุงู„ุฃุฑุจุนุฉุŒ ู„ู…ุง
365
00:37:17,280 --> 00:37:21,700
ุฃู†ุง ุขุฎุฐ ูŠุนู†ูŠ ุงู„ุฃุฑุจุนุฉ ู…ุด ู‡ูŠุชุบูŠุฑุŒ ู„ูŠุดุŸ ู„ุฃู† ุงู„ู€ order
366
00:37:21,700 --> 00:37:24,960
ุณุจุนุฉ ู‡ูŠ ูˆุงุญุฏุŒ ู‡ูŠ ุงุซู†ูŠู†ุŒ ู‡ูŠ ุฃุฑุจุนุฉุŒ ู‡ูŠ ูˆู…ุงุฎุฐู†ุงู‡ู…
367
00:37:24,960 --> 00:37:31,340
ู…ุนุงู‡ุฏูŠ ูŠุนู†ูŠ ู…ุด ู‡ูŠุฌูŠุจูˆุง ู„ูŠ ุฅูŠุดุŸ ู„ูŠุด ุฏูŠุŸ ูŠุจู‚ู‰ ุงู„ุขู† the
368
00:37:31,340 --> 00:37:40,380
number of elements of order
369
00:37:45,070 --> 00:37:52,890
ุงู„ุญูŠู† ุงู„ู€ A ูƒู… ุนู†ุตุฑ ููŠู‡ุงุŸ ุงุซู†ูŠู†ุŒ ุงู„ู€ B ูƒู… ุนู†ุตุฑุŸ ุงุซู†ูŠู†
370
00:37:52,890 --> 00:37:59,590
ุงู„ู€ C ูƒู… ุนู†ุตุฑุŸ ุฃุฑุจุนุฉุŒ ุงู„ู€ D ุฎุฐ ุฒูŠ ู…ุง ุจุฏูƒุŒ ู‚ุฏุงุดุŸ ุฃุฑุจุนุฉ
371
00:37:59,590 --> 00:38:04,370
ูŠุจู‚ู‰ ุฃุฑุจุนุฉ ููŠ ุฃุฑุจุนุฉ ููŠ ุณุชุฉ ุนุดุฑ ููŠ ุฃุฑุจุนุฉุŒ ุฃุฑุจุนุฉ ูˆุณุชูŠู†
372
00:38:04,370 --> 00:38:11,490
ูŠุจู‚ู‰ ุฃุฑุจุนุฉ ูˆุณุชูŠู† elementุŒ ู‡ุฐูˆู„ ุงู„ู€ order ูŠุณุงูˆูŠ 12ุŒ ู„ูˆ
373
00:38:11,490 --> 00:38:12,090
ูƒุงู†
374
00:38:19,370 --> 00:38:23,850
ู‡ุฏูˆู„ ุงู„ู€ ordersุŒ ู„ูƒู† ุฃู†ุง ูƒู… ุนู†ุตุฑ ู‡ุฏูˆู„ ุนู†ุฏูŠุŸ ุฃุฑุจุนุฉุŒ ู†ุต
375
00:38:23,850 --> 00:38:27,330
ุฎุฐ ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ุŒ ุงู„ู€ orders ูˆุงุญุฏ ูˆุงุซู†ูŠู† ูˆุฃุฑุจุนุฉ ุฒูŠ
376
00:38:27,330 --> 00:38:30,630
ุงู„ูˆุงุญุฏ ูˆุงุชู†ูŠู† ูˆุงุฑุจุนุฉ ุฅุฐุง ู‡ุฏูˆู„ ู‚ู„ุช ู…ุตููˆูุฉ ุดุฌุนูˆู†
377
00:38:30,630 --> 00:38:36,590
ุงุดุชุบู„ุช ููŠ ู‡ุฏูˆู„ ุชู…ุงู… ู‡ุฏูˆู„ ุงู„ุขู† ู‡ุฐุง ุจุถูŠู ุชุญุตูŠู„ ุญุงุตู„
378
00:38:36,590 --> 00:38:40,590
ูŠุนู†ูŠ ุฃูŠุด ู…ุง ูƒุงู† ูŠูƒูˆู† ูƒุงู† ุงู„ zero ูƒุงู† ุงู„ูˆุงุญุฏ ูƒุงู†
379
00:38:40,590 --> 00:38:44,350
ุงู„ุงุชู†ูŠู† ูƒุงู† ุงู„ุชู„ุงุชุฉ ู„ู† ูŠุบูŠุฑ ููŠ ุงู„ู†ุชูŠุฌุฉ ุดูŠุฆุง ูˆูƒุงู†
380
00:38:44,350 --> 00:38:48,990
ุฃู†ุช ุจุชูƒุชุจ element ู…ูƒูˆู† ู…ู† ุฃุฑุจุน ู…ุฑูƒุจุงุช ูŠุนู†ูŠ ุนู†ุฏูƒ
381
00:38:48,990 --> 00:38:54,110
ุจุฏุงุฆู„ ุงุชู†ูŠู† ู„ู„ A ูˆุจุฏุงุฆู„ ุงุชู†ูŠู† ู„ู„ B ู„ุฃู† ุงู„ order
382
00:38:54,110 --> 00:38:59,190
ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ูˆุนู†ุฏูƒ ุฃุฑุจุน ุจุฏุงุฆู„ ู„ู„ C ูˆุฃุฑุจุน ุจุฏุงุฆู„ ู„ู„ D
383
00:38:59,190 --> 00:39:03,210
ุตุญูŠุญ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰ ุนู„ู‰ ุจุนุถู‡ู… ูƒู„ู‡ ู…ุตูŠุฑู‡ ุฌุฏุงุด ุฃุฑุจุนุฉ
384
00:39:03,210 --> 00:39:09,590
ูˆุณุชูŠู† ุนู†ุตุฑ ู‡ุฐุง ู‡ูŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ
385
00:39:09,590 --> 00:39:16,150
ุงู„ order ุงู„ู„ูŠ ุฏูŠ ู…ู…ูƒู† ูŠูƒูˆู† ุฃุฑุจุนุฉ and ุงู„ order ู„ุณู‡ ูŠุง
386
00:39:16,150 --> 00:39:26,910
ุฅู…ุง ุชู„ุงุชุฉ ูŠุง ุฅู…ุง ุณุชุฉ ูŠุจู‚ู‰
387
00:39:26,910 --> 00:39:31,650
ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู„ู…ุง ุงู„ order ุงู„ู„ูŠ ุฏูŠ ุจุฏูŠ ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ
388
00:39:31,650 --> 00:39:38,600
ูƒู… element ุจูŠุนุทูŠู†ุง ุงุชู†ูŠู† ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ู†ุง ููŠ ุนู†ุฏูŠ
389
00:39:38,600 --> 00:39:46,080
ุงุชู†ูŠู† elements ุทูŠุจ ู„ู…ุง ูŠูƒูˆู† ู‡ู†ุง ููŠ ุนู†ุฏูŠ ุฌุฏุงุดุŸ
390
00:39:46,080 --> 00:39:52,440
ุฌุฏุงุดุŸ ุฃุฑุจุน elements ุทูŠุจ
391
00:39:52,440 --> 00:39:59,200
ู†ูŠุฌูŠ ู„ู„ a ุฌุฏุงุดุŸ ุฃุฑุจุน elements ุงุชู†ูŠู† elements ู†ูŠุฌูŠ
392
00:39:59,200 --> 00:40:03,240
ู„ู„ b ุฌุฏุงุด ุนู†ุฏูŠุŸ ุงุชู†ูŠู† elements
393
00:40:05,800 --> 00:40:12,760
ูŠุจู‚ู‰ ุตุบุฑ ุงู„ุขู† ุงุชู†ูŠู† ุฃุฎุฐู†ุงู‡ุง
394
00:40:12,760 --> 00:40:16,240
ุฃุฑุจุนุฉ ู…ุน ุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ู‚ุจู„ู‡ุง ุขู‡ ุฃุฎุฐู†ุงู‡ุง ุฃุฑุจุนุฉ ู…ุน
395
00:40:16,240 --> 00:40:19,580
ุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ู‚ุจู„ู‡ุง ู„ุง ู†ูƒุฑุฑู‡ุง ู„ุฃู† ุงู„ุชูƒุฑุงุฑ ู‡ุฐุง ุจูŠุฌูŠุจ
396
00:40:19,580 --> 00:40:24,300
ุดุบู„ุงุช ุฃูƒุซุฑ ู…ู† ุงู„ู„ุงุฒู… ูŠุจู‚ู‰ so we have ุงู„ุนู†ุตุฑ
397
00:40:24,300 --> 00:40:28,400
ุงู„ุฃูˆู„ุงู†ูŠ ุงุชู†ูŠู† ูˆุงู„ุชุงู†ูŠ ุฃุฑุจุนุฉ ูˆุงู„ู„ูŠ ุจุนุฏู‡ ุงุชู†ูŠู†
398
00:40:28,400 --> 00:40:33,370
ูˆุงู„ู„ูŠ ุจุนุฏู‡ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุชู…ุงู†ูŠุฉ ููŠ ุฃุฑุจุนุฉ ุจุฌุฏุงุด ุจุงุชู†ูŠู† ูˆ
399
00:40:33,370 --> 00:40:41,650
ุชู„ุงุชูŠู† element of order ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ุงุดุฑ ุทุจ ุฅุฐุง ุนู„ู‰
400
00:40:41,650 --> 00:40:43,210
ุจุนุถู‡ู… ุฌุฏุงุด
401
00:40:45,410 --> 00:40:52,270
ูŠูˆ ุณุจุนู…ูŠุฉ ูˆุนุดุฑูŠู† has ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด ููŠ ุงู„ุฃูˆู„ ุฃุฑุจุนุฉ
402
00:40:52,270 --> 00:41:00,330
ูˆุณุชูŠู† ุฒุงุฆุฏ ุงุชู†ูŠู† ูˆุชู„ุงุชูŠู† ูˆูŠุณุงูˆูŠ ุณุชุฉ ูˆุชุณุนูŠู† element
403
00:41:00,330 --> 00:41:08,010
of order ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ุงุดุฑ
404
00:41:17,690 --> 00:41:22,970
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ุง ู…ู† ุงู„ุขู† ูุตุงุนุฏุง ู„ูˆ ู‚ุงู„ ู„ูŠ ุดูˆู ู„ู‚ุฏุงุด
405
00:41:22,970 --> 00:41:29,050
ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุงู„ order ู„ู‡ู… ูŠุณุงูˆูŠ ุฑู‚ู… ู…ุนูŠู† ููŠ
406
00:41:29,050 --> 00:41:34,770
UN ุงู„ UN ุงู„ N ู…ู‡ู…ุง ูƒุงู†ุช ุชูƒูˆู† ุจุฏูŠ ุฃุญูˆู„ู‡ุง ุฅู„ู‰ ู…ูŠู†ุŸ
407
00:41:34,770 --> 00:41:41,160
ุจุฏูŠ ุฃุญูˆู„ู‡ุง ุฅู„ู‰ ุงู„ cyclic groups ู…ุฏุงู„ุฉ z2 ูˆ z3 ูˆ z4
408
00:41:41,160 --> 00:41:45,840
ูˆ z5 ูˆ z6 ูˆ ุจูŠุจู‚ูˆุง ุฃุญุณุจ ู…ู† ู…ูŠู† ู…ู† ู‡ุฐู‡ ุงู„ z ุงู„ู„ูŠ ู‡ูˆ
409
00:41:45,840 --> 00:41:51,000
ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ ุนู„ู‰ ู‡ูŠูƒ ุจูŠูƒูˆู† ุงู†ุชู‡ู‰ ุงู„ section ุทูŠุจ ููŠ
410
00:41:51,000 --> 00:41:57,800
ุนู†ุฏูƒ ุณุคุงู„ ุฒูŠ ุณุคุงู„ ุชู„ุงุชุฉ ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุณุคุงู„
411
00:41:57,800 --> 00:42:06,820
ุชู„ุงุชุฉ ุจูŠู‚ูˆู„ ุงู„ู€ G group with identity ูˆุงู„ู€ H ุจูŠู‡
412
00:42:06,820 --> 00:42:12,440
group with identity prove that ุงู„ู€ G isomorphic
413
00:42:12,440 --> 00:42:20,340
ุงู„ู€ G isomorphic ู„ู…ูŠู†ุŸ ู„ู„ external direct product
414
00:42:20,730 --> 00:42:26,850
ู„ู„ู€ G external like product ู…ุน ุงู„ identity element
415
00:42:26,850 --> 00:42:38,850
ุชุจุน ุงู„ H and ุงู„ H is isomorphic ู„ู…ู†ุŸ
416
00:42:38,850 --> 00:42:45,570
ู„ู„ identity ุชุจุน ุงู„ G external like product ู…ุน ู…ู†ุŸ
417
00:42:45,570 --> 00:42:48,350
ู…ุน ุงู„ H
418
00:42:56,050 --> 00:43:04,540
ุฎู„ู‘ูŠ ุจุงู„ูƒ ุฃู†ูŠ ุฃู†ุง ุนู†ุฏูŠ ุงู„ู€ G ูˆ ุงู„ H are groups ู…ุด
419
00:43:04,540 --> 00:43:07,580
ู‡ุชู‚ูˆู„ ุงู„ู€H subgroup ู…ู† G ุงู„ู„ูŠ ู…ุง ู„ู‡ ุนุงุด ุนู„ุงู‚ุฉ ู‡ุฐู‡
420
00:43:07,580 --> 00:43:12,880
group ูˆู‡ุฐู‡ group ุซุงู†ูŠ ุจู‚ูˆู„ ุงุซุจุช ุฃู† ุงู„ู€G ู‡ูŠ
421
00:43:12,880 --> 00:43:17,580
isomorphic ู„ู…ูŠู† ู„ู€G ูˆุงู„ external direct product
422
00:43:17,580 --> 00:43:23,680
ูŠุจู‚ู‰ ู‡ู†ุง ุจุชุฑูˆุญ ุชุนุฑู ู„ู‡ Phi ู…ู† ุงู„ู€G ุฅู„ู‰ ุงู„ู€G
423
00:43:23,680 --> 00:43:31,520
external direct product ู…ุน E H Pi ูุงูŠ ุงู ุฌูŠ ู…ู…ูƒู†
424
00:43:31,520 --> 00:43:37,900
ุฃุฎุฐ ุตูˆุฑุชู‡ ู‡ู†ุง ู…ู…ูƒู† ุฃุฎุฐู‡ุง ุฌูŠ ูˆุงู„ุงูŠ ุชุจุน ุงู„ H
425
00:43:44,530 --> 00:43:52,370
ู„ูˆ ุฌูŠุช ุฃุฎุฐุช ุจุฏู„ ููŠ ุฃุฎุฐุช ู…ุซู„ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ F ู…ู† ุงู„ H
426
00:43:52,370 --> 00:44:01,290
ุฅู„ู‰ ุงู„ identity element ุชุจุน ุงู„ G across ุงู„ H by ุงู„
427
00:44:01,290 --> 00:44:09,030
F of H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ external direct product ู„ู„
428
00:44:09,030 --> 00:44:16,920
E ุชุจุน ุงู„ G ู„ู„ู€ A ุชุงุจุน ุงู„ู€ G ูˆ H ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
429
00:44:16,920 --> 00:44:25,020
ู‡ู†ุง ุฃูˆ ุจู„ุงุด ู‡ูˆู† ู‡ุฐุง ุงูŠู‡ ุฌูˆุฒ ูˆู‡ุฐุง ุงูŠู‡ ุฌูŠ ูˆ H ุฌูˆุฒ
430
00:44:25,020 --> 00:44:29,540
ู…ุจุงุดุฑุฉ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุซุจุช ู…ู† ู‡ุฐุง ุทุจุนุง ุฅุฐุง ุฃุซุจุชู†ุง ุงู„ุฃูˆู„
431
00:44:29,540 --> 00:44:36,510
ุจูŠุตูŠุฑ ุงู„ุชุงู†ูŠ ุญุฑููŠุง ุฒูŠู‡ ุทูŠุจ ู„ูˆ ุฌูŠุช ู„ู‡ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ุจุฏูŠ
432
00:44:36,510 --> 00:44:41,830
ุฃุซุจุช ู„ู‡ ุฃู† ุงู„ู€ Phi is one to one ูŠุจู‚ู‰ ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡
433
00:44:41,830 --> 00:44:50,310
assume ุงูุชุฑุถ ุฃู† Phi of G1 ุจุฏูŠ ูŠุณุงูˆูŠ Phi of G2 ู‡ุฐุง
434
00:44:50,310 --> 00:44:56,050
ู…ุนู†ุงุชู‡ ุฃู† ุงู„ู€ G1 ูˆ ุงู„ identity ุชุจุน ุงู„ H ุจุฏูŠ ูŠุณุงูˆูŠ
435
00:44:56,050 --> 00:45:03,780
G2 ูˆ ุงู„ identity ุชุจุน ุงู„ H ุทุจุนุง two order pair are
436
00:45:03,780 --> 00:45:07,220
equal ูŠุจู‚ู‰ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฃูˆู„ู‰ ุณูˆุงุก ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฃูˆู„ู‰ ุฃูˆ
437
00:45:07,220 --> 00:45:12,540
ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุซุงู†ูŠุฉ ุณูˆุงุก ู…ูŠู† ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ G1
438
00:45:12,540 --> 00:45:19,400
ุณูˆุงุก G2 ูˆู‡ุฐุง ุงู„ู€EH ู‡ูˆ ู†ูุณู‡ ุงู„ู€EH ุฃุธู† ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ
439
00:45:19,400 --> 00:45:26,030
ุงู„ุขู† ู…ุฏู‘ุงุฌูŠ ุฃุซุจุช ู„ู‡ ุฃู† ูุงูŠ is onto ูŠุจู‚ู‰ ุจุงู„ุฏุฑุฌุฉ
440
00:45:26,030 --> 00:45:32,190
ุฃู‚ูˆู„ู‡ ุงูุชุฑุถ ุฃู† ุงู„ X ู…ูˆุฌูˆุฏ ููŠ ุงู„ G external product
441
00:45:32,190 --> 00:45:40,210
ู…ุน ุงู„ identity ุชุจุน ุงู„ H ุซู… ุดูƒู„ ุงู„ X ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ
442
00:45:40,210 --> 00:45:47,120
element ู…ู† G ูˆ ุงู„ identity element ุชุจุน ุงู„ H ุทูŠุจ ู‡ุฐุง
443
00:45:47,120 --> 00:45:53,980
ุญุณุจ ุงู„ุชุนุฑูŠู ู‡ูˆ ู…ูŠู†ุŸ Phi of G ู„ุฐู„ูƒ Phi is ุฃู†ุชู… ุจู‚ู‰
444
00:45:53,980 --> 00:45:59,380
ู„ุฏูŠู†ุง Phi is an isomorphism ูŠุจู‚ู‰ Phi is an
445
00:45:59,380 --> 00:46:09,480
isomorphism ูŠุจู‚ู‰ ุจุฏูŠ ุฃู‚ุนุฏ ุฃุฎุฐ ุงู„ Phi of G ูˆ G2
446
00:46:09,480 --> 00:46:15,750
ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ูŠ
447
00:46:15,750 --> 00:46:24,070
ู‡ูˆ ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ five of g one g two ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ูŠ
448
00:46:24,070 --> 00:46:33,170
ู‡ูˆ g one g two ูˆุงู„ ุฅูŠู‡ h ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุจุฏู‡
449
00:46:33,170 --> 00:46:39,370
ุฃุญุงูˆู„ ุฃูƒุชุจ ู‡ุฐุง ุนู„ู‰ ุตูŠุบุฉ ุญุงุตู„ ุถุฑุจ ู‚ูˆุณูŠู† ุฅุฐุง ู„ูˆ ุฌูŠุช
450
00:46:39,370 --> 00:46:49,530
ู‚ู„ุช ุฌูŠ ูˆุงุญุฏ ู…ุน ุงู„ E H ูˆู‡ู†ุง ุฌูŠ ุงุชู†ูŠู† ู…ุน ุงู„ E H ู„ูˆ
451
00:46:49,530 --> 00:46:53,370
ุถุฑุจุช ุถุฑุจ component wise ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุฌูŠ ูˆู† ุฌูŠ ุชูˆู†
452
00:46:53,370 --> 00:46:59,060
ูˆุงู„ E H ููŠ ุงู„ E H ู‡ูŠ ุจุงู„ E H itself ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
453
00:46:59,060 --> 00:47:07,300
ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐุง Phi of G1 ูˆ ู‡ุฐุง Phi of G2 ูŠุจู‚ู‰ ู‡ู†ุง
454
00:47:07,300 --> 00:47:17,080
Phi is an isomorphism ูˆู‡ูƒุฐุง ุจุงู„ู†ุณุจุฉ ู„ู…ู†ุŸ ุจุงู„ู†ุณุจุฉ
455
00:47:17,080 --> 00:47:17,900
ู„ู„ุซุงู†ูŠ