abdullah's picture
Add files using upload-large-folder tool
02a43a2 verified
raw
history blame
49.8 kB
1
00:00:21,580 --> 00:00:26,400
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ููŠ ู†ู‡ุงูŠุฉ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ
2
00:00:26,400 --> 00:00:31,940
ุฃุฎุฏู†ุง ู†ุธุฑูŠุฉ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู„ูˆ ุนู†ุฏูŠ ุฑู‚ู…ูŠู† S ูˆ T are
3
00:00:31,940 --> 00:00:37,970
relatively prime ูŠุจู‚ู‰ ุงู„ U S T isomorphicู„ู„ู€ US
4
00:00:37,970 --> 00:00:43,470
External Product ู…ุน ู…ู† ู…ุน ุงู„ู€ UT ูŠุนู†ูŠ ุจู‚ุฏุฑ ุฃูƒุชุจ
5
00:00:43,470 --> 00:00:48,230
ุงู„ู€ UN ุนู„ู‰ ุตูŠุบุฉ External Product ู„ู…ู†ุŸ ู„ู€ two
6
00:00:48,230 --> 00:00:52,070
groups ู„ู€ three groups ู„ู€ four groups ูˆู…ุง ุฅู„ู‰ ุฐู„ูƒ
7
00:00:52,070 --> 00:00:57,840
ุจุดุฑุท ูŠูƒูˆู† ุงู„ S ูˆ ุงู„ T are relatively a primeูˆุงุฎุฏู†ุง
8
00:00:57,840 --> 00:01:06,060
ูƒู…ุงู† ู†ู‚ุทุฉ ุงู† U S T ุนู„ู‰ S isomorphic ู„ U T ูˆูƒุฐู„ูƒ U
9
00:01:06,060 --> 00:01:12,820
T ู„ U S T isomorphic ู„ U S ูˆุฒูŠุงุฏุฉ ุนู„ู‰ ุฐู„ูƒ ุฑูˆู„ุฑ
10
00:01:12,820 --> 00:01:18,300
ุนู„ูŠู‡ุง ุจู†ู‚ูˆู„ ู„ูˆ ุนู†ุฏู†ุง ุงู„ุฑู‚ู… M ูˆุงุณุชุทุนู†ุง ุงู„ M ู†ูƒุชุจู‡
11
00:01:18,300 --> 00:01:23,100
ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰ M ุจุฏู‡ ูŠุณูˆู‰ N ูˆุงุญุฏ
12
00:01:26,550 --> 00:01:32,090
ุจุญูŠุซ ุงูŠ ุงุชู†ูŠู† ู…ู† ู‡ุฐู‡ ุงู„ุฃุฑู‚ุงู… are relatively prime
13
00:01:32,090 --> 00:01:37,790
ูŠุนู†ูŠ ni ู…ุน ng ุงุชู†ูŠู† are relatively prime ู„ูƒู„ i ู„ุง
14
00:01:37,790 --> 00:01:43,440
ุชุณุงูˆูŠ ุงู„ุฌูŠูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู‚ุฏุฑ ุงู‚ูˆู„ ุงู† ุงู„ UM
15
00:01:43,440 --> 00:01:54,000
ุงูŠุฒูˆ ู…ูˆุฑู ูƒู„ู…ุฉ ู„ ุงู„ UN 1 UN 2 UN 3 UN UN ู„ุบุงูŠุฉ ุงู„
16
00:01:54,000 --> 00:02:02,330
UUNุงู„ุงู† ุงู† ูˆุงู„ู„ู‡ ุงู† ูƒู‡ุฐู‡ ุนู…ู„ู‡ุง ู„ ุงู† ูƒู‡ุฐู‡ ูŠุจู‚ู‰ ู‡ุฐู‡
17
00:02:02,330 --> 00:02:07,890
ุจุงู„ุตุบูŠุฑุฉ ุงู† ูƒู‡ุฐู‡ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุทุจุนุง ุงู„ุงู†
18
00:02:07,890 --> 00:02:13,210
ุจุฏูŠ ุงู„ุงู† ุงุดุชุบู„ ุนู…ู„ูŠุงุจูŠู‚ูˆู„ ู„ูŠ ู‡ุงูŠ ุนู†ุฏูƒ ุงู„ูŠูˆู… 105
19
00:02:13,210 --> 00:02:17,990
ุจุชู‚ุฏุฑ ุชูƒุชุจู‡ุง ู„ูŠ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏูƒ ูƒุฏู‡ุŸ ุจู…ุนู†ู‰ ู‡ู„
20
00:02:17,990 --> 00:02:23,410
ุจุชู‚ุฏุฑ ุชูƒุชุจ ุงู„ 105 ุนู„ู‰ ุดูƒู„ isomorphic ู„ two groupsุŸ
21
00:02:23,410 --> 00:02:29,370
ุงู„ุฅุฌุงุจุฉ ู†ุนู… ู†ุนู… ูƒูŠููŠุŸ ุจุชุฏูˆุฑ ุนู„ู‰ ุฑู‚ู…ูŠู† ุงู„ relative
22
00:02:29,370 --> 00:02:34,330
to prime ูˆุญุงุตู„ ุถุฑุจู‡ ู…ุง ูŠุณุงูˆู…ูŠู† 105 ุจุชู‚ุฏุฑ ุชุนุทูˆู†ูŠ
23
00:02:34,330 --> 00:02:43,090
ุฑู‚ู…ูŠู†ุŸูˆุญุฏ ูˆุนุดุฑูŠู† ูˆุฎู…ุณุฉ ูƒูˆูŠุณ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ
24
00:02:43,090 --> 00:02:54,010
ุนู† U ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ูˆุนุดุฑูŠู† ู…ุถุฑูˆุจุฉ ููŠ ุฎู…ุณุฉ
25
00:02:54,010 --> 00:02:59,620
ูŠุจู‚ู‰ ู‡ุฐู‡ isomorphic ู„ U ูˆุงุญุฏ ูˆุนุดุฑูŠู†External
26
00:02:59,620 --> 00:03:11,640
Product ู…ุน U5 ูƒู…ุงู† ุงู„ U 105 ุนุจุงุฑุฉ ุนู† U ุงู„ุฎู…ุณ ุนุดุฑ
27
00:03:11,640 --> 00:03:19,260
ููŠ ุณุจุนุฉ7 ููŠ 15% ุฃูˆ 5 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… isomorphic
28
00:03:19,260 --> 00:03:27,060
ู„ู…ู†ุŸ ู„ U 15 Extended like product ู…ุน ู…ูŠู†ุŸ ู…ุน U 7
29
00:03:27,060 --> 00:03:34,950
ุฃุฌูˆุงุญ ุงู„ุชุงู„ุช ู…ู†ูƒู… ุณู…ุนุช ุจูŠู‚ูˆู„ุงู„ู€ U 105 ู‡ูŠ ุนุจุงุฑุฉ ุนู†
30
00:03:34,950 --> 00:03:41,990
U ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ููŠ ุชู„ุงุชุฉ ุจู‚ูˆู„ู‡ ูƒู„ุงู…ูƒ ุตุญ ูŠุจู‚ู‰ ู‡ุฐู‡
31
00:03:41,990 --> 00:03:47,510
isomorphic ู„ู€ U ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† external product ู…ุน
32
00:03:47,510 --> 00:03:54,550
U ุชู„ุงุชุฉ ู‡ุฌูˆุง ุนู„ู‰ ุงู„ุชุงู„ุช ู‚ุงู„ ุงู„ู€ U 105 ู‡ุฐู‡ ุงู„ู€ U
33
00:03:54,550 --> 00:04:03,020
105 ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู€ U ุชู„ุงุชุฉ ููŠ ุฎู…ุณุฉ ููŠ ุณุจุนุฉุชู„ุงุชุฉ ูˆ
34
00:04:03,020 --> 00:04:06,760
ูƒู„ู‡ู… ุชู„ุงุชุฉ are relatively prime ูŠุจู‚ู‰ ู‡ุฐูŠ
35
00:04:06,760 --> 00:04:12,360
isomorphic ู„ู…ูŠู†ุŸ ู„ูŠู‡ ุชู„ุงุชุฉ external direct product
36
00:04:12,360 --> 00:04:17,500
ู„ูŠู‡ ุฎู…ุณุฉ external direct product ู„ู…ูŠู†ุŸ ู„ูŠู‡ ุณุจุนุฉ
37
00:04:17,500 --> 00:04:21,140
ูŠุนู†ูŠ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ูŠูƒูˆู† two groups ูˆ ู‡ู†ุง ู…ู…ูƒู†
38
00:04:21,140 --> 00:04:27,850
ูŠูƒูˆู† ุชู„ุงุชุฉ ู…ู…ูƒู† ุฃุฑุจุนุฉู…ู…ูƒู† ูŠูƒูˆู† K ู…ู† ุงู„ุฃุฑู‚ุงู… ุงู„ู„ูŠ
39
00:04:27,850 --> 00:04:31,770
ูƒู„ู‡ุง relative ู„ุฃู† ุงุฐุง ุฃุฎุฐุช ุงูŠ ุงุชู†ูŠู† ู…ุน ุจุนุถ ุจูŠูƒูˆู†ูˆุง
40
00:04:31,770 --> 00:04:35,890
relatively main ูˆ relatively prime ู‡ุฐุง ุจุงู„ู†ุณุจุฉ
41
00:04:35,890 --> 00:04:40,950
ู„ู…ู†ุŸ ู„ู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ูˆ ุงู„ู†ู‚ุทุฉ ุงู„ุชุงู„ุชุฉ ู„ูˆ ุฌู‡ุช ู„ู„ู†ู‚ุทุฉ
42
00:04:40,950 --> 00:04:48,430
ุงู„ุซุงู†ูŠุฉ ูˆ ุจุฏูŠ ุฃุญุณุจ ู„ุฃูŠ ุฑู‚ู… ู…ู†ู‡ู… ุจุฏูŠ ุฃุญุณุจ U ู…ุซู„ุง
43
00:04:48,430 --> 00:04:55,200
ุฎู…ุณ ุชุงุดุฑ ู„ู…ูŠู† ู„ู…ูŠุฉ ูˆุฎู…ุณุฉ ูŠุณุงูˆูŠุจุชุนุฑู ู…ูŠู† ุนู†ุงุตุฑู‡ุง
44
00:04:55,200 --> 00:05:00,540
ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุชุช ุงุนุทูŠู†ุงูƒูˆุง ุชุนุฑูŠู ู„ู‡ุง ูˆู‚ู„ู†ุง ูƒู„
45
00:05:00,540 --> 00:05:05,640
ุงู„ุนู†ุงุตุฑ X ุจุญูŠุซ ุงู† ุงู„ X modulo K ุจุฏูŠ ุงุนุทูŠู†ูŠ ุงู„ูˆุงุญุฏ
46
00:05:05,640 --> 00:05:10,220
ุงู„ุตุญูŠุญ ุชุนุฑูŠู ูƒุชุจู†ุงู‡ ู…ุนุงูƒูˆุง ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุชุช ุงุฐุง ุจุฏูŠ
47
00:05:10,220 --> 00:05:17,680
ุงุฏูˆุฑ ุนู„ู‰ ุนู†ุงุตุฑ ุงู„ 105 ูˆุงุฑูˆุญ ุงุฌูŠุจ ุนู†ุงุตุฑ ุงู„ U15 ุนู„ู‰
48
00:05:17,680 --> 00:05:23,610
105 ุงุธู† ู„ูˆ ุจุฏูŠ ุงู‚ุนุฏ ุงูƒุชุจ ุนู†ุงุตุฑ ุงู„ 105 ูƒู„ู‡ู…ู‡ุชุงุฎุฏู†ุง
49
00:05:23,610 --> 00:05:27,350
ุฎู…ุณ ุฏู‚ุงูŠู‚ ูˆ ุงุญู†ุง ู‚ุงุนุฏูŠู† ู†ุณุชู†ุชุฌ ู…ูŠู† ุงู„ู„ูŠ ุฑุชุจ ุงู„
50
00:05:27,350 --> 00:05:33,530
prime ู…ุน ู…ูŠุฉ ูˆ ุฎู…ุณุฉ ู„ุฐู„ูƒ ุจู‚ูˆู„ ู„ุฃ ุจุฏูŠ ุงุญุณุจ ู…ุจุงุดุฑุฉ
51
00:05:33,530 --> 00:05:39,750
ููŠูˆ ุฎู…ุณุชุงุดุฑ ู…ูŠุฉ ูˆ ุฎู…ุณุฉ ุงู„ูˆุงุญุฏ ู…ู†ู‡ู… ู„ุฅู† ุงู„ูˆุงุญุฏ ู†ุงู‚ุต
52
00:05:39,750 --> 00:05:45,190
ูˆุงุญุฏ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู…ุถุงุนูุงุช ุงู„ุฎู…ุณุชุงุดุฑ ุทูŠุจ ุงู„ุณุช ุนุดุฑ
53
00:05:45,190 --> 00:05:50,660
ู…ู†ู‡ู…ูŠุนู†ูŠ ุงู†ุช ุงู„ุฎุงู…ุณ ูˆ ุงู„ุณุชุงุดุฑ ุฏู‡ ู…ุงู†ุญุท ุฑู‚ู… ู‚ุฏุงู…ู‡ ูˆ
54
00:05:50,660 --> 00:05:54,460
ู„ู…ุง ุชุญุท ุฑู‚ู… ู‚ุฏุงู…ู‡ ุชุชุฃูƒุฏ ุงู† ุงู„ุฑู‚ู… ู‡ุฐุง relatively
55
00:05:54,460 --> 00:05:58,160
prime ุนู„ู‰ ุงู„ู…ูŠุฉ ูˆ ุฎู…ุณุฉ ูˆู„ุง ู„ุง ุชู…ุงู…ุŸ ุญุชู‰ ูŠูƒูˆู† ู…ู†
56
00:05:58,160 --> 00:06:02,200
ุนู†ุงุตุฑ ุงู„ู…ูŠุฉ ูˆ ุฎู…ุณุฉ ุงู„ุณุชุงุดุฑ ู…ู† ุนู†ุงุตุฑ ุงู„ู…ูŠุฉ ูˆ ุฎู…ุณุฉ
57
00:06:02,200 --> 00:06:05,340
ู„ุฃู†ู‡ู… ุจูŠู‚ุณู…ุด ุบูŠุฑ ุนู„ู‰ ุงุชู†ูŠู† ูˆ ุงุฑุจุนุฉ ูˆ ุชู…ุงู†ูŠุฉ ูˆู‡ุฐู‡
58
00:06:05,340 --> 00:06:10,480
ูƒู„ู‡ุง relatively prime ุนู„ู‰ ุงู„ู…ูŠุฉ ูˆ ุฎู…ุณุฉ ูŠุจู‚ู‰ ุณุชุงุดุฑ
59
00:06:10,480 --> 00:06:16,330
ุดุฑูŠูƒ ูˆุงุญุฏ ูˆ ุชู„ุงุชูŠู† ู…ู†ู‡ู…ุŸูˆุฃุญุฏ ูˆุซู„ุงุซูŠู† ูˆุฎู…ุณ ุนุดุฑ ููŠ
60
00:06:16,330 --> 00:06:20,630
ุงุชู†ูŠู† ูˆุซู„ุงุซูŠู† ูˆูˆุงุญุฏ ูˆุงุญุฏ ูˆุซู„ุงุซูŠู† ูˆุงู„ูˆุงุญุฏ ูˆุซู„ุงุซูŠู†
61
00:06:20,630 --> 00:06:24,210
is a prime ูˆุจุงู„ุชุงู„ูŠ relative to the prime ู…ุน ุฃูŠ
62
00:06:24,210 --> 00:06:30,630
ู…ู†ู‡ุง ุทูŠุจ ุณุชุฉ ูˆุงุฑุจุนูŠู† ุณุชุฉ ูˆุงุฑุจุนูŠู† relative to the
63
00:06:30,630 --> 00:06:35,590
prime ู…ุน ุงู„ู…ูŠุฉ ูˆุฎู…ุณุฉ ู„ู‡ ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ ูˆุนุดุฑูŠู†
64
00:06:35,590 --> 00:06:38,590
ุงุชู†ูŠู† relative to the prime ูˆุงู„ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ูŠุจู‚ู‰
65
00:06:38,590 --> 00:06:43,900
ูุนู„ุง ุงู„ุณุชุฉ ูˆุงุฑุจุนูŠู† ู…ู†ู‡ู… ุทูŠุจ ุงู„ูˆุงุญุฏ ูˆุงู„ุณุชูŠู†ุงู†ุง ุจุถูŠู
66
00:06:43,900 --> 00:06:48,380
ูƒู„ู‡ ุฎู…ุณุฉ ุนุดุงู† ุชู…ุงู… ุงู„ูˆุงุญุฏ ูˆ ุณุชูŠู† ู…ู†ู‡ู… ู„ุงู† ูˆุงุญุฏ ูˆ
67
00:06:48,380 --> 00:06:54,060
ุณุชูŠู† is a prime ูƒุฐู„ูƒ ุทูŠุจ ุงู„ุฃู† ู„ูˆ ุฌูŠุช ุนู„ู‰ ุงู„ุณุชุฉ ูˆ
68
00:06:54,060 --> 00:07:00,300
ุณุจุนูŠู† ุณุชุฉ ูˆ ุณุจุนูŠู† ุงู‡ ู‡ุฐุง ู„ู…ุง ู†ุดูŠู„ ู…ู† ุฎู…ุณ ุนุดุฑ ู…ุถู„
69
00:07:00,300 --> 00:07:03,580
ุฌุฏุงุด ู…ุถู„ ูˆุงุญุฏ ูƒู„ุงู… ุตุญูŠุญ ู„ูƒู† ู‡ู„ ุงู„ุณุชุฉ ูˆ ุณุจุนูŠู†
70
00:07:03,580 --> 00:07:08,000
relative ู„ prime ู…ุน ุงู„ู…ูŠุฉ ูˆ ุฎู…ุณุฉุนู„ู‰ ุฎู…ุณุฉ ุจุชุฌูŠุด
71
00:07:08,000 --> 00:07:13,920
ูˆุนู„ู‰ ุณุจุนุฉ ุจุชุฌูŠุด ูˆุนู„ู‰ ุชู„ุงุชุฉ ุจุฑุถู‡ ุจุชุฌูŠุด ูˆูŠุจู‚ู‰ ุงู„ุณุชุฉ
72
00:07:13,920 --> 00:07:20,600
ูˆุณุจุนูŠู† ูƒุฐู„ูƒ ู…ู†ู‡ู… ุทูŠุจ ุงู„ูˆุงุญุฏ ูˆุชุณุนูŠู† ุฎู…ุณุฉ ูˆุณุจุนูŠู†
73
00:07:20,600 --> 00:07:25,280
ูˆุฎู…ุณุชุงุดุฑ ุชุณุนูŠู† ูƒู…ุงู† ูˆุงุญุฏ ูˆุงุญุฏ ูˆุชุณุนูŠู† ู…ุนุงู‡ู… ุญุท ูŠุนู†ูŠ
74
00:07:25,280 --> 00:07:33,410
ุทุจ ุณุจุนุฉ ููŠ ุชู„ุงุชุงุดุฑ ุจู‚ุฏุงุดุŸูˆ 91 ุทุจ ุงู„ุณุจุนุฉ ุจุชูƒุณุจ ุนู„ู‰
75
00:07:33,410 --> 00:07:38,070
ุณุจุนุฉ ูˆ ุงู„ 105 ุจุชูƒุณุจ ุนู„ู‰ ุณุจุนุฉ ูŠุจู‚ู‰ ุงู„ 91 ู…ุด ู…ู†ู‡ู…
76
00:07:38,070 --> 00:07:43,910
ุจุฏูŠ ูƒู…ุงู† ุฎู…ุณุงุด ุจูƒูˆู† ูู‰ ุงู„ุชูˆุงุตู„ 105,106 ุจุฑุง ุงู„ุฑู‚ู…
77
00:07:43,910 --> 00:07:50,630
ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ูŠุจู‚ู‰ ู„ุง ูŠูˆุฌุฏ ุงู„ุง ู‡ุฐู‡ ุงู„ุฃุฑู‚ุงู… ุชู…ุงู… ุดูˆูุช
78
00:07:50,630 --> 00:07:55,630
ูƒูŠู ุจู†ุญุณุจู‡ุง ุงุฎุชุงุฑู„ูŠ ุงูŠ ุฑู‚ู… ู…ู† ุนู†ุฏูƒ ู…ู† ุงู„ุฃุฑู‚ุงู… ุงู„ู„ูŠ
79
00:07:55,630 --> 00:08:01,470
ู‡ูŠ ุงู„ู„ูŠ ุจุชู‚ุณู… 105 ุญุชู‰ ู†ุญุณุจู‡ุง ุทูŠุจ ู‡ุฏู‡ุง ุงู„ู„ูŠ ู‡ูˆ 15
80
00:08:01,470 --> 00:08:11,800
ุฃู„ูŠุณ isomorphic ู„ูŠู‡ 7ู„ุฃู† ุณุจุนุฉ ููŠ ุฎู…ุณุชุงุดุฑ ุจู…ูŠุฉ
81
00:08:11,800 --> 00:08:16,340
ูˆุฎู…ุณุฉ ูˆ ุงุญู†ุง ู‚ู„ู†ุง ู‡ู†ุง ุงู„ U S ุนู„ู‰ ST isomorphic
82
00:08:16,340 --> 00:08:21,360
ู„ู…ูŠู†ุŸ ู„ U T ูŠุจู‚ู‰ ุงุญู†ุง ู‡ู†ุง ู‚ู„ู†ุง U ุฎู…ุณุชุงุดุฑ ูˆ ู‡ุฐุง
83
00:08:21,360 --> 00:08:25,000
ุนุจุงุฑุฉ ุนู† ุฎู…ุณุชุงุดุฑ ููŠ ุณุจุนุฉ ูŠุจู‚ู‰ isomorphic ู„ U ุณุจุนุฉ
84
00:08:25,000 --> 00:08:30,170
U ุณุจุนุฉ ูƒู… ุนู†ุตุฑ ููŠู‡ุŸุณุช ุนู†ุงุตุฑ ู‡ุฏูˆู„ ุณุชุฉ ูˆุงุญุฏ ุงุชู†ูŠู†
85
00:08:30,170 --> 00:08:34,490
ุชู„ุงุชุฉ ุงุฑุจุน ุฎู…ุณุฉ ุณุชุฉ ูƒู„ู‡ุง ู…ู†ุงุตุนูŠุฉ ู…ูŠุฉ ู„ู…ูŠุฉ ุชู…ุงู…
86
00:08:34,490 --> 00:08:39,450
ุงุฎุชุงุฑ ู„ูŠ ูƒู…ุงุฑ ุฑู‚ู… ุงุฎุฑ ู†ุญุณุจู‡ ู„ูƒ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ
87
00:08:39,450 --> 00:08:48,470
ุจุฏูƒ ู‡ูŠู‡ุง ูŠูˆู…ูŠู† ู†ุญุณุจ ุชุญุณุจ ูƒู…ุงู† ูˆุงุญุฏ ุจูƒููŠ ูŠูˆู… ู‚ุฏุงุดุฑ
88
00:08:48,470 --> 00:08:54,730
ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ุงู†ุช ุฌูŠุจุช ุงุณู‡ู„ ุญุงุฌุฉุทุจ
89
00:08:54,730 --> 00:08:57,270
ู…ู† ุงู†ุง ู…ุงุนุฑู ูŠุนุทูŠู†ูŠ ุงู„ุดู…ุงู„ ุงู„ู„ู‰ ููŠู‡ ูŠุงู„ู„ู‡ ูŠุง ุฃุจูˆ
90
00:08:57,270 --> 00:09:02,170
ูˆุงุญุฏ ุงูˆู„ ูˆุงุญุฏ ู…ู†ู‡ู… ุณุช ูˆ ุชู„ุงุชูŠู† ุงู„ูˆุงุญุฏ ุงู‡ ู…ุนุฑูˆู
91
00:09:02,170 --> 00:09:06,310
ุงุฌู†ุจ ุนู„ูŠู‡ ุณุช ูˆ ุชู„ุงุชูŠู† ุณุช ูˆ ุชู„ุงุชูŠู† ู…ู†ู‡ู… ู…ุงุฎุชู„ู ู…ู†ู‡ู…
92
00:09:06,310 --> 00:09:11,550
ุจุต ุจุต ุจุต ุณุช ูˆ ุชู„ุงุชูŠู† ู…ู†ู‡ู… ุณุช ูˆ ุชู„ุงุชูŠู† ุงู„ู„ู‰ ุชุจู„ู‰
93
00:09:11,550 --> 00:09:15,850
prime ู…ุน ู…ูŠุฉ ูˆ ุฎู…ุณุฉ ู…ุด ุจูŠูƒุณุจ ู…ุน ุชู„ุงุชุฉ ุณุช ูˆ ุชู„ุงุชูŠู†
94
00:09:15,850 --> 00:09:20,170
ุงูŠู‡ ุฏู‡ ู…ุด ู…ู†ู‡ู… ุญุทู‡ ุน ุดุฌุฉ ูŠุงู„ู„ู‡ ุณุจุนูŠู† ูˆุงุญุฏ ูˆ ุณุจุนูŠู†
95
00:09:20,170 --> 00:09:30,240
ูˆุงุญุฏ ูˆ ุณุจุนูŠู† ู…ู†ู‡ู…ุฃูƒูŠุฏุŸ ุงุณู…ู‡ุง ูŠุง ุฑุงุฌู„ ูŠุนู†ูŠ
96
00:09:30,240 --> 00:09:37,060
ู…ุด ู…ู†ู‡ู… ุทุจ ุงู†ุง ุจุฏุฃ ุฃุญุท ู…ู†ู‡ู… ู‡ุฐุง ู‡ูˆ ุทุจ ุฎู„ุตู†ุง ูˆู„ุง
97
00:09:37,060 --> 00:09:43,860
ููŠู‡ ูƒู…ุงู†ุŸ ูƒุฏู‡ ุงูŠุด ุจุตูŠุฑุŸ
98
00:09:43,860 --> 00:09:48,760
ุจุฑู‡ ูŠุจู‚ู‰ ู…ุงุนู†ุฏูŠุด ุฅู„ุง ุฑู‚ู…ูŠู†ุŒ ุชู…ุงู…ุŸู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†
99
00:09:48,760 --> 00:09:56,340
ุงู„ู„ูŠ ู‡ูˆ ูŠูˆ ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ูˆู‡ุฐุง isomorphic ู„ู…ู†ุŸ ู„ูŠู‡ูˆ
100
00:09:56,340 --> 00:10:02,120
ุชู„ุงุชุฉู„ู…ุง ู‚ู„ู†ุง ู‡ู†ุง isomorphic ู„ู€ U ุชู„ุงุชุฉ ูˆ ู‡ูƒุฐุง
101
00:10:02,120 --> 00:10:07,060
ุชู…ุงู…ุŸ ุงู„ุฎุทุฑ ุงู† ู†ุฌูŠุจ ุฑู‚ู… ูƒุจูŠุฑ ู„ุงู† ู‡ุฐุง ุณู‡ู„ ูŠุนู†ูŠ ุฌูŠุจ
102
00:10:07,060 --> 00:10:13,540
ุนู†ุฏูŠ ุงุนุฏุงุฏ ูƒุชูŠุฑุฉ ุฒูŠ ุงูŠุด ู…ุซู„ุง ุฒูŠ U ู…ูŠุฉ ูˆ ุฎู…ุณุฉ ุฃุจุตุงุฑ
103
00:10:13,540 --> 00:10:18,640
ู‚ุฏูŠุด ูŠู„ุง ุงุฎุชุงุฑู„ูƒ ุณุจุนุฉ ุฎู…ุณุชุงุดุฑ ุฎู…ุณุชุงุดุฑ ุฎุฏู†ุงู‡ ูŠุจู‚ู‰
104
00:10:18,640 --> 00:10:22,640
ุจุฏูƒ ูˆุงุญุฏ ูˆ ุนุดุฑูŠู† ุฎู…ุณุฉ ุงู‡ ูˆุงุญุฏ ูˆ ุนุดุฑูŠู†
105
00:10:44,500 --> 00:10:48,020
ู…ูŠู† ุงู„ุฑู‚ู… ุงู„ู„ูŠ ู„ูˆ ุถุฑุจุช ููŠ ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ุจูŠุนุทูŠูƒ ู…ูŠุฉ
106
00:10:48,020 --> 00:10:52,880
ูˆ ุฎู…ุณุฉ ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉู…ุตุจูˆุท ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง isomorphic
107
00:10:52,880 --> 00:10:58,740
ู„ U ุชู„ุงุชุฉ ูˆ ู‡ูƒุฐุง ุทูŠุจ ู„ูˆ ู‚ู„ู†ุง ุฑู‚ู… ุชุงู†ูŠ U ู‚ุฏุงุด ู‚ู„ุชูˆุง
108
00:10:58,740 --> 00:11:06,060
ูˆุงุญุฏ ูˆ ุนุดุฑูŠู† ูˆุงุญุฏ ูˆ ุนุดุฑูŠู† ูŠูุฌู„ ูˆุงุญุฏ ู…ู†ู‡ู… ุจุนุฏูƒ
109
00:11:06,060 --> 00:11:11,880
ุงุชู†ูŠู† ูˆ ุนุดุฑูŠู† ู…ู†ู‡ู… ุงูƒูŠุฏ ูˆู„ุง ู„ุง ู…ุด ุงุชู†ูŠู† ูˆ ุนุดุฑูŠู†
110
00:11:11,880 --> 00:11:13,780
ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† ููŠ ุงุญุฏ ูˆ ุนุดุฑูŠู† ุงู„ู„ูŠ ููŠ ุงู„ prime ู‡ูˆ
111
00:11:13,780 --> 00:11:18,900
ุนู…ูŠุฉ ูˆ ุฎู…ุณุฉ ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† ูˆ ุนุดุฑูŠู† ุทุจ ุชู„ุงุชุฉ ูˆ
112
00:11:18,900 --> 00:11:27,800
ุงุฑุจุนูŠู† ู…ู†ู‡ู…21 ููŠ 2 ุจ 42 ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
113
00:11:27,800 --> 00:11:27,960
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
114
00:11:27,960 --> 00:11:33,820
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
115
00:11:33,820 --> 00:11:34,800
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
116
00:11:34,800 --> 00:11:36,780
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท
117
00:11:36,780 --> 00:11:46,880
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบ
118
00:11:47,650 --> 00:11:53,250
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุงู„ุฃุฑุจุนุฉ ูˆุณุชูŠู† ุทุจ ู„ูˆ ุถุฑุจุชู‡ ููŠ
119
00:11:53,250 --> 00:11:59,390
ุฃุฑุจุนุฉ ุจุตูŠุฑ ุฃุฑุจุนุฉ ูˆ ุชู…ุงู†ูŠู† ูˆ ูˆุงุญุฏ ุฎู…ุณุฉ ูˆ ุชู…ุงู†ูŠู† ู„ูŠุณ
120
00:11:59,390 --> 00:12:01,850
relatively prime ู…ุน ู…ูŠู† ู…ุนูŠ ู…ูŠุฉ ูˆ ุฎู…ุณุฉ ู„ุฅู† ู‡ูˆ
121
00:12:01,850 --> 00:12:06,910
ุจูŠูƒุณุจ ุนู„ู‰ ุฎู…ุณุฉ ูŠุจู‚ู‰ ุญุทู‡ ุนู„ู‰ ุดุฌุฑุฉ ุงู„ุขู† ุจุนุฏ ุงู„ุฃุฑุจุนุฉ
122
00:12:06,910 --> 00:12:13,350
ูˆ ุชู…ุงู†ูŠู† ู„ูˆ ุถุฑุจุช ููŠ ุฎู…ุณุฉ ุจุตูŠุฑ ุงู„ู…ูŠุฉ ูˆ ุฎู…ุณุฉูŠุจู‚ู‰
123
00:12:13,350 --> 00:12:18,170
ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ ู…ุธุจูˆุท ูŠุจู‚ู‰ ู„ุง ูŠูˆุฌุฏ ุนู†ุฏูŠ ุงู„ุง ู‡ุฐู‡
124
00:12:18,170 --> 00:12:25,630
ุงู„ุฃุฑู‚ุงู… ูˆู‡ุฐุง isomorphic ู„ูŠู‡ ุฎู…ุณุฉ ุชู…ุงู… ู„ุฅู†ู‡ ุฎู…ุณุฉ ููŠ
125
00:12:25,630 --> 00:12:31,050
ูˆุงุญุฏ ูˆุนุดุฑูŠู† ู‡ูˆ ุงู„ู„ูŠ ุจู…ูŠุฉ .. ู…ูŠุฉ ูˆุฎู…ุณุฉ ุชุทู„ุน ูŠู‡ ุฎู…ุณุฉ
126
00:12:31,050 --> 00:12:35,070
ููŠู‡ุง ูˆุงุญุฏ ูˆุงุชู†ูŠู† ูˆุชู„ุงุชุฉ ูˆุงุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑู‚ุงู… ูˆู…ุงุนู†ุงุด
127
00:12:35,070 --> 00:12:41,100
ู‡ู†ุง ุฅู„ุง ู…ูŠู† ุฅู„ุง ุฃุฑุจุนุฉ ุฃุฑู‚ุงู… ูˆูˆุถุน ุงู„ุดุบู„ ู‡ุฐุง ูƒุฏู‡ูŠุจู‚ู‰
128
00:12:41,100 --> 00:12:46,320
ุงู„ู€U ุงู„ู„ู‰ ุนู†ุฏู‰ ุฌุฏุฑ ุชุฌูŠุจู‡ุง isomorphic ู„ู…ูŠู† ู„ู€groups
129
00:12:46,320 --> 00:12:51,460
ุงูˆ ุงู„ู€external product ู„ู…ุงูŠู† ู„ู€groups ู…ุฎุชู„ูุฉ ูˆู„ุณู‡
130
00:12:51,460 --> 00:12:57,100
ูู‰ ูƒู„ุงู… ูู‰ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุงู„ูƒู„ุงู… ู…ุงุดูŠ ุจุฏูŠ ุฃู†ุชู‚ู„ ู…ู†
131
00:12:57,100 --> 00:13:03,120
ุงู„ู€U groups ุฃุญูˆู„ู‡ุง ุฅู„ู‰ isomorphic ู„ู€cyclic ุงู„ู„ู‰ ู‡ูˆ
132
00:13:03,120 --> 00:13:09,240
ู„ู€groups ุงู„ู„ู‰ ู‡ู‰ Z2 ูˆZ3 ูˆZ4 ูˆZ5 ูˆZ10 ูˆZ30 ูˆู…ุง ุฅู„ู‰
133
00:13:09,240 --> 00:13:14,770
ุฐู„ูƒููŠ ุนู†ุฏู†ุง .. ุงู„ู„ูŠ ู‡ูˆ .. ุงู„ู„ูŠ ู‡ูˆ ู‚ุงุนุฏุฉ ุงู„ู‚ุงุนุฏุฉ
134
00:13:14,770 --> 00:13:19,430
ู‡ุฐู‡ ุทุจุนุง ุจุฑู‡ู†ุช ููŠ ุฅุญุฏู‰ ุงู„ู…ุฑุงุฌุน ุงู„ุชูŠ ุงุนุชู…ุฏ ุนู„ูŠู‡ุง
135
00:13:19,430 --> 00:13:28,230
ู‡ุฐุง ุงู„ูƒุชุงุจ ูˆู„ุฐู„ูƒ ุจุฏู†ุง ู†ุงุฎุฏู‡ุง ูƒุญู‚ุงุฆู‚ we have the
136
00:13:28,230 --> 00:13:36,170
following notes ุฃูˆ the following facts ุฏูŠ ุนู†ุฏูŠ
137
00:13:36,170 --> 00:13:45,210
ุญู‚ุงุฆู‚ ู…ู‡ู…ุฉ ุฌุฏุงุงู„ุญู‚ูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ุงู† ุงู„ U2 isomorphic
138
00:13:45,210 --> 00:13:51,430
ูู‚ุท ู„ุณุช ู„ูุด ููŠู‡ุง ุงู„ูˆุงุญุฏ ุฅู„ุง ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ and ุงู„
139
00:13:51,430 --> 00:14:04,550
U4 isomorphic ู„ู…ุงู… ู„ U isomorphic ู„ U2 ุชุฑุจูŠุนุฃูˆ
140
00:14:04,550 --> 00:14:13,770
ุชุณุงูˆูŠุฉ U2 ุชุฑุงุจูŠุน ูˆุงู„ู„ูŠ ู‡ูŠ isomorphic ู„ Z2 ุงู„ู†ู‚ุทุฉ
141
00:14:13,770 --> 00:14:25,110
ุงู„ุซุงู†ูŠุฉ ุงู„ U2 ุฃูุณ N isomorphic ู„ Z2 External
142
00:14:25,110 --> 00:14:36,130
Direct Product ู…ุน Zุฒุฏ ุงุชู†ูŠู† ุงูˆุณ ุงู† ู†ุงู‚ุต ุงุชู†ูŠู† ุงูˆุณ
143
00:14:36,130 --> 00:14:43,630
ุงู† fourู† ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ ุชู„ุงุชุฉ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ
144
00:14:43,630 --> 00:14:51,230
ูˆุงู„ุงุฎูŠุฑุฉ ุงู„ U P to the power in isomorphic ู„ู…ูŠู† ู„
145
00:14:51,230 --> 00:15:08,110
Z P N ู†ุงู‚ุต P ุฃุณ N ู†ุงู‚ุต ูˆุงุญุฏ for P and D primeุงู„ู€ P
146
00:15:08,110 --> 00:15:13,090
and odd a prime so
147
00:15:13,090 --> 00:15:25,230
we can write we can write ุงู„ U-groups ุงู„ U-groups
148
00:15:25,230 --> 00:15:31,490
as an external direct product as an external
149
00:15:31,490 --> 00:15:36,970
direct product
150
00:15:39,750 --> 00:15:52,890
external product of cyclic groups ู†ุนุทูŠ
151
00:15:52,890 --> 00:15:59,750
ู…ุซุงู„ example write
152
00:16:03,490 --> 00:16:13,370
ูŠูˆ ุณุจุนู…ูŠุฉ ูˆุนุดุฑูŠู† ูŠูˆ ุณุจุนู…ูŠุฉ ูˆุนุดุฑูŠู† as
153
00:16:13,370 --> 00:16:21,070
an external direct product as an external direct
154
00:16:21,070 --> 00:16:28,950
product external
155
00:16:28,950 --> 00:16:31,610
direct product of
156
00:16:34,130 --> 00:16:50,950
cyclic growth ู†ุฑุฌุน
157
00:16:50,950 --> 00:16:56,230
ู„ู‡ุฐู‡ ุงู„ุญู‚ุงุฆู‚ ู…ุฑุฉ ุฃุฎุฑู‰ ูˆู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุดุชุบู„ ุนู„ูŠู‡ุง
158
00:16:56,230 --> 00:17:02,010
ุฃูˆ ู…ุงุฐุง ู†ุณุชููŠุฏ ู…ู† ู‡ุฐู‡ ุงู„ุญู‚ุงุฆู‚ ุงู„ุซู„ุงุซุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
159
00:17:02,010 --> 00:17:08,350
ุฌุงู„ ุงู„ U2 isomorphic ู„ู„ุนุฏุฏ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ as a set
160
00:17:08,350 --> 00:17:12,510
ุทุจุนุง U2 ู…ุงููŠุด ููŠู‡ุง ุฅู„ุง man ู„ู„ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ูˆุงุญุฏ
161
00:17:12,510 --> 00:17:18,370
ูŠุจู‚ู‰ ู‡ุฐุง ูˆุถุน ุทุจูŠุนูŠ ู„ู„ trivial case ุงู„ุญุงู„ุฉ ุงู„ุจุฏูŠู‡ูŠุฉ
162
00:17:18,370 --> 00:17:26,850
U4 ู„ U2 ุชุฑุจูŠุฉ isomorphic ู„ Z2 ู„ุฃู† U4 ููŠู‡ุง ูƒุงู… ุนู†ุตุฑ
163
00:17:28,400 --> 00:17:31,100
ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ
164
00:17:31,100 --> 00:17:31,580
ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ
165
00:17:31,580 --> 00:17:33,480
ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ
166
00:17:33,480 --> 00:17:36,180
ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ
167
00:17:36,180 --> 00:17:44,480
ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ
168
00:17:44,480 --> 00:17:45,540
ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ
169
00:17:45,540 --> 00:17:45,540
ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ
170
00:17:45,540 --> 00:17:53,960
ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ูŠูˆ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ
171
00:17:53,960 --> 00:18:00,350
ูŠูˆ ุฃุฑุจุฃุชู†ูŠู† ู†ุงู‚ุต ุงุชู†ูŠู† ู…ู† ุงู„ุขู† ูุตุงุนุฏุง ู†ุดุชุบู„ ุจุดูƒู„
172
00:18:00,350 --> 00:18:06,610
ู‡ุฐุง ูŠุนู†ูŠ ุงู„ N ู†ุงู‚ุต ุงุชู†ูŠู† ู‡ูˆ ุฃุณ ู„ู…ูŠู† ู„ู„ุฅุชู†ูŠู† ุงู„ุขู†
173
00:18:06,610 --> 00:18:15,470
ุงู„ UPN isomorphic ู„ุฒุฏ P ุฃุณ N ู…ุทุฑูˆุญุง ู…ู†ู‡ P ุฃุณ N
174
00:18:15,470 --> 00:18:21,030
ู†ุงู‚ุต ูˆุงุญุฏ ูˆุฅู†ู…ุง ูŠูƒูˆู† P prime ูˆ P ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู†
175
00:18:21,030 --> 00:18:24,620
ุงู„ุฅุชู†ูŠู† ูŠุนู†ูŠ ุฃู†ุช ุชู„ุงุชุฉ ูุตุงุนุฏุงูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
176
00:18:24,620 --> 00:18:29,060
ู‚ุฏุงู…ู†ุง ู…ูˆุฌูˆุฏ ุจุงู„ุดูƒู„ ู‡ู†ุง ู‡ุฐุง ุงูŠุด ูุงูŠุฏูŠุชู‡ุŸ ูุงูŠุฏูŠุชู‡
177
00:18:29,060 --> 00:18:34,420
ุงู† ุงู„ group UN ู…ู‡ู…ุง ูƒุงู† ุดูƒู„ู‡ุง ู…ู…ูƒู† ุงุฎู„ูŠู‡ุง
178
00:18:34,420 --> 00:18:40,300
isomorphic ู„ู…ูŠู† ู„ cyclic groups ุดูˆ ุงู„ cyclic
179
00:18:40,300 --> 00:18:44,560
groups ุงู„ู„ูŠ ูƒู„ู‡ุง ุจุฏูŠ ุงูƒุชุจู‡ุง ุจุฏู„ุงู„ุฉ z ูˆุงู„ุงุนุฏุงุฏ ุงู„ู„ูŠ
180
00:18:44,560 --> 00:18:50,160
ู…ูˆุฌูˆุฏุฉ ููŠ z2 ููŠ z3 ููŠ z4 ุณู‡ู„ ุญุณุงุจุชู‡ู… ู„ูƒู† ู„ูˆ ุฌุชู„ู‰
181
00:18:50,160 --> 00:18:55,300
720 ุจุฏูŠ ุงูƒุชุจ ุฃุฑู‚ุงู…ู‡ุงู…ู† ู‡ู†ุง ู„ู„ุฏู‡ุฑ ุฏูˆุจ ู†ุฎู„ุต ูˆ ุงุญู†ุง
182
00:18:55,300 --> 00:18:59,320
ุจุฏู†ุง ู†ุฌูŠุจ ุงู„ุฃู„ู‚ุงู… ุงู„ู„ูŠ relative ู„ prime ู…ุน ู…ูŠู† ู…ุน
183
00:18:59,320 --> 00:19:04,000
ุงู„ 720 ู‚ุตุชู†ุง ุทูˆูŠู„ุฉ ูˆ ุญุฒูŠู†ุฉ ู„ูƒู† ู„ู…ุง ุงู†ุง ุงูƒุชุจู‡ุง ุจู‡ุฐุง
184
00:19:04,000 --> 00:19:08,480
ุงู„ุดูƒู„ ุจุฏุงูŠุฉ ุงู„ Z ุจุตูŠุฑ ุณู‡ู„ ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง ูŠุจู‚ู‰ ูุงุฆุฏุฉ
185
00:19:08,480 --> 00:19:14,800
ู‡ุฐู‡ ุงู„ุญู‚ูŠู‚ุฉ ุชุณู‡ูŠู„ ุงู„ุชุนุงู…ู„ ู…ุน ู…ูŠู† ู…ุน ุงู„ U-groups
186
00:19:15,040 --> 00:19:20,560
ู†ุนุทูŠูƒ ู…ุซุงู„ ุชูˆุถูŠุญูŠ ุนู„ู‰ ุฐู„ูƒ ุงู„ู„ูŠ ุงูƒุชุจ ู„ U720 as a
187
00:19:20,560 --> 00:19:25,600
product of cyclic aggregate ุจู‚ู‰ ุฏูŠ ุจู‚ูˆู„ู‡ ุงู„ุญู„
188
00:19:25,600 --> 00:19:31,060
ูƒุชุงู„ุฉ solution ูŠุจู‚ู‰
189
00:19:31,060 --> 00:19:34,620
ุงู†ุง ุจุฏู‡ ุงุฑูˆุญ ู„ U720
190
00:19:35,530 --> 00:19:42,230
ู‡ุฐู‡ ุงู„ู„ูŠ ุจู‚ุฏุฑ ุงูƒุชุจู‡ุง Uly ุจุฏูŠ ุงุญุทู‡ุง ุนู„ู‰ ุญุงุตู„ ุถุฑุจ
191
00:19:42,230 --> 00:19:52,190
ุงุนุฏุงุฏ ู„ูˆ ู‚ู„ุชู„ูƒ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† 16ร—9ร—5 5ร—16 ุจู€ 80 80ร—9
192
00:19:52,190 --> 00:19:58,260
8ร—9 ุจู€ 72 ูŠุนู†ูŠ 720ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ุจุงู„ู…ุงุฆุฉ
193
00:19:58,260 --> 00:20:05,660
ุจุงู„ู…ุงุฆุฉ ู‡ุฐู‡ ุงู„ุงู† ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู…ูŠู† ู„ูŠู‡ ุณุชุงุดุฑ
194
00:20:05,660 --> 00:20:11,260
ุงูƒุณุชูŠุฑู†ุงู„ ุฏุงูŠูƒุง product ู…ุนุงู‡ ุชุณุนุฉ ุงูƒุณุชูŠุฑู†ุงู„ ุฏุงูŠูƒุง
195
00:20:11,260 --> 00:20:19,020
product ู…ุนุงู‡ ุฎู…ุณุฉุทูŠุจ ู‡ุฐู‡ ู…ูŠู† ู‡ูŠ ุŸ ุฃู„ูŠุณุช U2 ุฃูุต
196
00:20:19,020 --> 00:20:25,200
ุฃุฑุจุน Extended product ุชู„ุงุชุฉ ุชุฑุงุจูŠุน Extended
197
00:20:25,200 --> 00:20:33,380
product ู„ U ุฎู…ุณุฉ ุณุช ุนุดุฑ ุงู„ู„ูŠ ู‡ูŠ ุงุชู†ูŠู† ุฃูุต ุฃุฑุจุน ูˆ
198
00:20:33,380 --> 00:20:36,880
ุชู„ุงุชุฉ ุชุฑุงุจูŠุน ุงู„ู„ูŠ ู‡ูŠ ุชุณุนุฉ ูˆ ุงู„ุฎู…ุณุฉ ุฒู…ุงู† ุทูŠุจ ุงู„ุณุคุงู„
199
00:20:36,880 --> 00:20:41,880
ู‡ูˆ ู„ูŠุด ูƒุชุจุชู‡ ุฒูŠ ู‡ูŠูƒุŸุณูˆู ุฃุญุงูˆู„ ุฃู† ุฃู‚ูˆู… ุจุงู„ุชุญูˆูŠู„ ุฅู„ู‰
200
00:20:41,880 --> 00:20:49,060
ุงู„ู€ Cyclic Group. ู„ูƒู† ุนู†ุฏู…ุง ุฃุญุงูˆู„ ุชุญูˆูŠู„ู‡ุง ุจุฏู„ุงู„ุฉ
201
00:20:49,060 --> 00:20:53,260
ุงู„ุฒุฏ ุงู„ู„ูŠ ู„ุฏูŠ ุญุณุจ ุงู„ู‚ูˆุงุนุฏ ุงู„ู„ูŠ ู„ุฏูŠ ุจู‚ุฏุฑ ุฃุชุฃูƒุฏ ุฃู†
202
00:20:53,260 --> 00:20:56,760
ูƒู„ุงู…ูŠ ู…ุงุฆุฉ ููŠ ุงู„ู…ุงุฆุฉ ูƒู„ู‡ external product ู„ู„
203
00:20:56,760 --> 00:20:57,700
Cyclic Group
204
00:21:02,550 --> 00:21:08,190
ู…ุงุดูŠ ู…ุง ุงุญู†ุง ู‚ู„ู†ุง ู…ุดุงู† ู‡ูŠูƒ ุจุฏู†ุง ู†ุจุณุท ู‡ุงู„ุดุบู„ ู‡ุฐู‡
205
00:21:08,190 --> 00:21:14,710
ุจุฏู†ุง ู†ุจุณุท ู‡ุงู„ุดุบู„ ู‡ุฐู‡ ูˆ .. ูˆ ู†ุฑูˆุญ ู†ูƒุชุจู‡ุง ุจู‡ุฐุง ุงู„ุดูƒู„
206
00:21:14,710 --> 00:21:22,410
ุทูŠุจ ูŠุจู‚ู‰ ู„ุงู† ูƒุชุจุช ุงู„ู€ U 720 ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏูŠ
207
00:21:22,410 --> 00:21:29,400
ูˆู‡ุฐู‡ ูƒุชุจุชู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุงุงู„ุงู† ู‡ุฐู‡ U2 ุฃู‚ุตู‰ 4 ู‡ู†ุง U2
208
00:21:29,400 --> 00:21:35,560
ุฃู‚ุตู‰ N ูˆ N ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณูˆู‰ 3 ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู‡ุฐู‡ ุฅุฐุง
209
00:21:35,560 --> 00:21:41,320
ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ุฒุฏ ุงุชู†ูŠู† external
210
00:21:41,320 --> 00:21:47,700
direct product ู…ุน ุฒุฏ ุจูŠู‚ูˆู„ ู„ูŠ ู…ูŠู† ุงุชู†ูŠู† ู‡ูŠ ุฒูŠ ู…ุง
211
00:21:47,700 --> 00:21:53,650
ู‡ูŠูˆ ุงู„ n ุงู„ู„ูŠ ู‡ูŠ ุงุฑุจุนุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุจู‚ู‰ ุทุจู‚ุช ู‡ุฐู‡
212
00:21:53,650 --> 00:21:58,210
ุนู„ู‰ main ุนู„ู‰ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงุชู†ูŠู† ุงู‚ุต ุงุฑุจุนุฉ ูˆ
213
00:21:58,210 --> 00:22:04,370
ูˆุตู„ู†ุง ู‡ุฐู‡ ุฒู‰ ุงู„ n ุงู„ุชู„ุงุชุฉ ู‡ุฐุง prime ู…ุธุจูˆุท ุงุฐุง
214
00:22:04,370 --> 00:22:09,490
ุจูŠุฏุฑูˆุญ ู„ู…ูŠู† ู„ู„ุญุงู„ุฉ ุงู„ุชุงู„ุชุฉ ูŠุจู‚ู‰ isomorphic ู„ู…ูŠู†
215
00:22:09,490 --> 00:22:18,300
ู„ุฒู‰P ุงู„ุชูŠ ู‡ูŠ ุซู„ุงุซุฉ ูˆ N ุงุชู†ูŠู† ู†ุงู‚ุต ุซู„ุงุซุฉ ุฃุณ ุงุชู†ูŠู†
216
00:22:18,300 --> 00:22:23,920
ู†ุงู‚ุต ูˆุงุญุฏ ุซู… ุฎู„ุตู†ุง ู‡ุฐู‡ ุงู„ุงู…ุฑ ูˆู‡ู†ุงูƒ ุงุณุชูŠู‚ุธู†ุง ุถุงูŠู‚
217
00:22:23,920 --> 00:22:30,900
ูƒุชุงุจุฉ ู…ุน U ุฎู…ุณุฉ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† Z ูƒุฏู‡
218
00:22:30,900 --> 00:22:39,380
ุงุด ู‚ู„ู†ุง ZP ูŠุนู†ูŠ Z ุฎู…ุณุฉ ุฃุณ ูˆุงุญุฏ ู†ุงู‚ุต ุฎู…ุณุฉ ุฃุณ ูˆุงุญุฏ
219
00:22:39,380 --> 00:22:46,500
ู†ุงู‚ุต ูˆุงุญุฏูŠุจู‚ู‰ ุงูˆุทุฉ ูˆูŠุฏ ู…ุจุงุดุฑุฉ ู‡ุฐุง P ุจุซู„ุงุซุฉ ูˆ P
220
00:22:46,500 --> 00:22:52,960
ุจุฎู…ุณุฉ ูˆ N ุจูˆุงุญุฏ ุฎู…ุณุฉ ูˆ S ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุดูˆู ู‡ุฐู‡
221
00:22:52,960 --> 00:22:59,920
ุงูŠุด ุตุงุฑุช ุตุฑุช ู‡ุฐู‡ Z ุฏูŠ ุงุชู†ูŠู† external product ู…ุน Z
222
00:22:59,920 --> 00:23:06,470
ุฃุจุตุฑ ุฌุฏุงุดุฃุฑุจุนุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ุจุงุชู†ูŠู† ุงุชู†ูŠู† ุชุฑุจูŠุน ุจุงุฑุจุน
223
00:23:06,470 --> 00:23:13,110
ูŠุจู‚ู‰ ู‡ุฐู‡ isomorphic ู„ุฒุงุฏ ุงุฑุจุน ู†ุฌูŠ ู„ู‡ุฐู‡ ุชู„ุงุชุฉ ุชุฑุจูŠุน
224
00:23:13,110 --> 00:23:19,270
ุชุณุนุฉ ูˆ ู‡ู†ุง ุชู„ุงุชุฉ ุฃุณ ูˆุงุญุฏ ุชู„ุงุชุฉ ุชุณุนุฉ ู†ุงู‚ุต ุชู„ุงุชุฉ
225
00:23:19,270 --> 00:23:26,640
ุจุณุชุฉ ูŠุจู‚ู‰ isomorphic ู„ุฒุงุฏ ุณุชุฉูˆู‡ุฐู‡ ุงู„ุขู† ุฎู…ุณุฉ ุฃุณ
226
00:23:26,640 --> 00:23:32,880
ุฒูŠุฑูˆ ุจูˆุงุญุฏ ูˆู‡ู†ุง ุฎู…ุณุฉ ุฃุณ ูˆุงุญุฏ ุจุฎู…ุณุฉ ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰
227
00:23:32,880 --> 00:23:39,580
ุฒุฏ ุฃุฑุจุน ูŠุจู‚ู‰ ู„ุงู† ูƒุชุงุจุฉ ุฒุฏ ุณุจุนู…ุงุฆุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ุตูŠุบุฉ
228
00:23:39,580 --> 00:23:42,840
ุฒุฏ ุงุชู†ูŠู† external product ู„ุฒุฏ ุฃุฑุจุน external
229
00:23:42,840 --> 00:23:48,220
product ู„ุฒุฏ ุณุชุฉ external product ู„ุฒุฏ ุฃุฑุจุน ูˆุงู„ุงุฑุจุน
230
00:23:48,220 --> 00:23:53,580
cyclic groupsูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ group ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠูˆ
231
00:23:53,580 --> 00:23:58,840
ุณุจุนู…ูŠุฉ ูˆุนุดุฑูŠู† ุฌุจุช group ุจุชุนู…ู„ ู…ุนุงู‡ุง isomorphism
232
00:23:58,840 --> 00:24:03,460
ูˆุจุงู„ุชุงู„ูŠ ุฎูˆุงุต ุงู„ ูŠูˆ ุณุจุนู…ูŠุฉ ูˆุนุดุฑูŠู† ู‡ูŠ ู†ูุณ ุงู„ุฎูˆุงุต
233
00:24:03,460 --> 00:24:06,940
ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู„ูˆ ุฌุงู„ูŠ ู‡ุงุชู„ูŠ element ุงู„
234
00:24:06,940 --> 00:24:12,020
order ุงู„ูˆ ูƒุฐุง ููŠ ุณุจุนู…ูŠุฉ ูˆุนุดุฑูŠู†ุจุฑูˆุญ ุนู„ู‰ ู‡ุฐู‡ ู‡ุฐู‡ ุณู‡ู„
235
00:24:12,020 --> 00:24:16,840
ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง ุจุณ ู„ูŠู‡ 720 ุตุนุจ ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง ุฅุฐุง
236
00:24:16,840 --> 00:24:22,600
ุจุฌูŠุจ ู‡ุฐู‡ ุงู„ู…ูƒุงูุฆุฉ ู„ู‡ุง ูˆู…ู† ุฎู„ุงู„ู‡ุง ุจู‚ุฏุฑ ุฃุฌูŠุจ ู…ู† ุงู„ู„ูŠ
237
00:24:22,600 --> 00:24:28,160
ู‡ูˆ ุงู„ element ุงู„ู„ูŠ ุงู„ order ุนู†ุฏู‡ ูŠุนุทูŠู†ูŠ ุฅูŠุงู‡ ููŠ
238
00:24:28,160 --> 00:24:28,960
ุงู„ุณุคุงู„
239
00:24:31,410 --> 00:24:38,470
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„ ูˆุถุน ู„ุชุจุณูŠุท ุงู„ุญุณุงุจุงุช ุงู„ุนู…ู„ูŠุฉ ููŠ ุงู„
240
00:24:38,470 --> 00:24:42,270
groups ุงู„ู…ุฎุชู„ูุฉ
241
00:24:42,270 --> 00:24:49,730
ู†ุนุทูŠูƒ
242
00:24:49,730 --> 00:24:55,230
ู…ุซุงู„ ุนู„ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…ูˆุจุงู„ุชุงู„ูŠ ุงู„ู…ุซุงู„ ุงู†ุช ุชุนูˆุฏุช ุนู„ู‰
243
00:24:55,230 --> 00:25:00,750
external product ู…ูƒูˆู‘ู† ู…ู† ุฑู‚ู…ูŠู† ุงุญู†ุง ู‡ู†ุนุทูŠูƒ ุณู†ุฉ ู…ู†
244
00:25:00,750 --> 00:25:06,910
ุชู„ุงุชุฉ ู…ู† ุงุฑุจุนุฉ ุงูƒุซุฑ ู…ู† ุฐู„ูƒ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ example
245
00:25:06,910 --> 00:25:11,430
how
246
00:25:11,430 --> 00:25:16,950
many elements
247
00:25:16,950 --> 00:25:20,290
of
248
00:25:20,290 --> 00:25:21,930
order
249
00:25:51,070 --> 00:25:57,340
ุณุคุงู„ ู…ุฑุฉ ุชุงู†ูŠุฉุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ุงูŠู‡ุŸ ุจูŠู‚ูˆู„ ุงูƒู… ุนู†ุตุฑ ุงู„
250
00:25:57,340 --> 00:26:03,080
order ุงู„ูˆ ุงุชู†ุงุด ููŠ ุงู„ U ุณุจุนู…ูŠุฉ ูˆ ุนุดุฑูŠู† ุทุจุนุง ุจุฏู†ุง
251
00:26:03,080 --> 00:26:07,160
ู†ู‚ุนุฏ ู†ุญุณุจ ูƒู„ element ู„ุญุงู„ู‡ ุชุทู„ุน ุฑูˆุญู†ุง ู…ุด ู‡ู†ู‚ุฏุฑ
252
00:26:07,160 --> 00:26:10,800
ู†ุญุณุจู‡ู… ู„ูƒู† ู‡ุฐู‡ ุณุจุนู…ูŠุฉ ูˆ ุนุดุฑูŠู† ุงู„ู„ูŠ ุฌุงุชู‡ุง
253
00:26:10,800 --> 00:26:15,580
isomorphic ู„ู…ูŠู† ู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุจูŠุจู‚ู‰ ุงู„ุญุณุงุจุงุช ู‡ู†ุง
254
00:26:15,580 --> 00:26:22,700
ุฃุณู‡ู„ ูƒุชูŠุฑ ุฌุฏุง ู…ู† ุงู„ุญุณุงุจุงุช ู‡ู†ุงูƒ ุงูŠูˆุฉุทุจ ุจุชุฎู„ุต ุจุงู„ู„ู‡
255
00:26:22,700 --> 00:26:26,580
ููŠ ุงู„ุณุงุนุชูŠู† ุงู„ู„ูŠ ุจุชู‚ุฏุฑ ุชุฌูŠุจู‡ู…ุŸ ุทุจ ูˆูƒู…ุงู† ุณุงุนุชูŠู† ู…ู†
256
00:26:26,580 --> 00:26:31,460
9D ูˆุงุญุณุจู„ูŠ ูƒู„ ุงู„ elements ุงู„ู„ูŠ relatively prime ู…ุน
257
00:26:31,460 --> 00:26:38,780
720 ูˆุงุฏูˆุฑ ุนู„ูŠู‡ู… ู…ู† ุงู„ order ุงู„ู„ูŠ ูŠุณุงูˆูŠ 12 ุงู†ุช ุญูˆุฑุฑ
258
00:26:38,780 --> 00:26:43,120
ุฌูŠุจ ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ ุฃู†ุง ู…ุด ุฒุนู„ุงู† ุจุณ ู‡ุชุงุฎุฏ ูˆู‚ุช ุฑู‡ูŠุจ
259
00:26:43,120 --> 00:26:48,550
ุฌุฏุง ุณุงุนุชูŠู†ูƒ ู…ุด ู‡ูŠูƒููˆ ู„ุญุณุงุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุคุงู„ ู‡ุฐุงุงู„ุงู†
260
00:26:48,550 --> 00:26:57,170
solution from the above example
261
00:26:58,670 --> 00:27:07,090
ู…ู† ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ููˆู‚ ุงู„ู€ U720 ุฃูŠุฒูˆ ู…ูˆุฑููƒ ู„ Z2
262
00:27:07,090 --> 00:27:13,590
Extended like product ู…ุน Z4 Extended like product
263
00:27:13,590 --> 00:27:19,470
ู…ุน Z6 Extended like product ู…ุน Z4
264
00:27:22,860 --> 00:27:31,920
ุฃู‰ element ู‡ู†ุง ุงู„ order ุฅู„ูŠู‡ ูŠุณุงูˆูŠ ุงุชู†ุงุด ูŠุจู‚ู‰ ุจู†ุงุก
265
00:27:31,920 --> 00:27:41,380
ุนู„ูŠู‡ ูŠุจุฏูˆ ู„ูˆ ุญุณุจ ููŠู‡ ุงู„ุชุงู†ูŠุฉ ูŠุจู‚ู‰ so the number of
266
00:27:41,380 --> 00:27:52,660
elements of order ุงุชู†ุงุด in u ุณุจุนู…ูŠุฉ ุงูˆ ุนุดุฑูŠู†
267
00:27:54,980 --> 00:28:07,680
equal of the number of elements of
268
00:28:07,680 --> 00:28:09,280
order
269
00:28:26,260 --> 00:28:32,140
ุทุจ ุงุญู†ุง ุงุฎุฏู†ุง ุงูˆู„ ู†ุธุฑูŠุฉ ููŠ ู‡ุฐุง section ูˆูƒุงู† ู…ุดุงู†
270
00:28:32,140 --> 00:28:38,950
ุงุฌูŠุจ ุงู„ order ู„ู„ elementุงู„ู…ูุฑูƒู‘ุจ ู…ุซู„ุง ู…ู† ู…ูุฑูƒู‘ุจุฉ
271
00:28:38,950 --> 00:28:43,370
ู‡ู†ุง ุจุฌูŠุจ ุงู„ list common multiple ู„ู…ู† ู„ ุงู„ two
272
00:28:43,370 --> 00:28:47,330
orders ุงู„ู„ูŠ ุนู†ุฏู‡ ูˆุจุงู„ุชุงู„ูŠ ุจูƒูˆู† ุฌุงุจุช ุงู„ order ู„ู„
273
00:28:47,330 --> 00:28:50,690
element ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ external direct product
274
00:28:50,690 --> 00:28:57,210
ู„ุฐู„ูƒ ุจุฑูˆุญ ุฃุฎุฏ element ู‡ู†ุงูˆ ุงูุชุฑุถ ุงู† ู‡ุฐุง ุงู„ element
275
00:28:57,210 --> 00:29:03,010
ุงู„ order ู„ู‡ ูŠุณุงูˆูŠ 12 ูˆ ุงุจุญุซ ุนู† ุงู„ orders ุงู„ู…ุฎุชู„ูุฉ
276
00:29:03,010 --> 00:29:09,530
ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงู‚ูˆู„ ู„ู‡ let ุงู„ a ูˆ ุงู„ b ูˆ
277
00:29:09,530 --> 00:29:18,610
ุงู„ cูˆุงู„ุฏู‰ ู…ูˆุฌูˆุฏุฉ ููŠ z2 similar product ู…ุน z4
278
00:29:18,610 --> 00:29:26,570
similar product ู…ุน z6 similar product ู…ุน z4 such
279
00:29:26,570 --> 00:29:37,490
that ุจุญูŠุซ ุงู† ุงู„ order ู„ู„ a ูˆุงู„b ูˆุงู„c ูˆุงู„d ูƒู„ู‡
280
00:29:37,490 --> 00:29:43,740
ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุงุดูŠุทูŠุจ ุงู„ุขู† ู„ู…ุง ู†ู‚ุงุฏูŠ
281
00:29:43,740 --> 00:29:49,060
ู„ุฒุฏ ุงุชู†ูŠู† ุฒุฏ ุงุชู†ูŠู† ูƒู… ุนู†ุตุฑ ููŠู‡ุง ุงุชู†ูŠู† ูŠุนู†ูŠ ุงู„
282
00:29:49,060 --> 00:29:53,520
order ูˆุงุญุฏ ูˆุงู„ order ู„ู„ุนู†ุตุฑ ุงู„ุชุงู†ูŠ ุงุชู†ูŠู† ุตุญ ูˆู„ุง ู„ุง
283
00:29:53,520 --> 00:29:57,980
ูŠุจู‚ู‰ ุงูŠ element ููŠ ุฒุฏ ุงุชู†ูŠู† ุงู„ order ู„ู‡ ูŠุง ุงู…ุง
284
00:29:57,980 --> 00:30:02,280
ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ identity ูŠุง ุงู…ุง ุงุชู†ูŠู† ุทูŠุจ ุชุงุฎุฏู„ูŠ
285
00:30:02,280 --> 00:30:09,080
ุฒุฏ ุงุฑุจุน ุงู„ order ุงู„ู„ูŠ ููŠู‡ุง ูˆุงุญุฏ ูˆ ูƒุฏู‡ุด ูˆ ุงุชู†ูŠู†
286
00:30:09,740 --> 00:30:14,620
ุชู„ุงุชุฉ ุจุชุฌุณู… ุงู„ุฃุฑุจุนุฉ ุจุชุชูƒู„ู…
287
00:30:14,620 --> 00:30:17,820
ุนู„ู‰ order ุจุชุชูƒู„ู…ุด ุนู„ู‰ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠู‡ุง
288
00:30:17,820 --> 00:30:20,900
ูˆุงุญุฏ ูˆุงุซู†ูŠู† ูˆุงุฑุจุนุฉ ูˆุงุญุฏ ูˆุงุซู†ูŠู† ูˆุงุฑุจุนุฉ ูˆููŠุด ุบูŠุฑู‡ู…
289
00:30:20,900 --> 00:30:25,140
ู…ุธุจูˆุท ู„ุฅู† ุงู„ order ู„ู„ element ุจูŠุฌุณู… ู„ู„ order ู„ู„
290
00:30:25,140 --> 00:30:28,280
group ุฒุฏ ุงุฑุจุนุฉ ููŠ ุงุฑุจุนุฉ ุนู†ุงุตุฑ ุงุฐุง ู‚ูˆุณู… ูˆุงุญุฏ ุงุชู†ูŠู†
291
00:30:28,280 --> 00:30:33,550
ุงุฑุจุนุฉ ูู‚ุท ู„ุบูŠุฑ ููŠุด ุญุงุฌุฉ ุงุณู…ู‡ุง ุชู„ุงุชุฉุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
292
00:30:33,550 --> 00:30:41,750
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Z6 ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุณุชุฉ ููŠ ุดุบู„ู‡ู… ุงู„ู€
293
00:30:41,750 --> 00:30:46,770
Z4 ู‚ุจู„ ู‚ู„ูŠู„ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุน ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ ุฏูŠ ูˆุจู†ุงุก
294
00:30:46,770 --> 00:30:53,970
ุนู„ูŠู‡ ุจุฏูŠ ุฃุจุฏุฃ ุฃุญุฏุฏ ูƒู… ุนู†ุตุฑ ุนู†ุฏูŠ ูŠุจู‚ู‰ ู‡ู†ุง any
295
00:30:53,970 --> 00:30:55,850
element
296
00:30:57,770 --> 00:31:09,390
ู† ุฒุฏุชุฑ ุงุฒ ุงุฑุฏุช ูˆุงุญุฏ ูˆุงุซู†ูŠู†Any element in Z4 has
297
00:31:09,390 --> 00:31:19,910
order 1,2,4 ุฃูŠ element ููŠ Z6 has order 1,2,3,6 ุฃูŠ
298
00:31:19,910 --> 00:31:27,930
element ููŠ Z4 ููŠ Z4 has element 1,2,4
299
00:31:30,490 --> 00:31:34,090
ุทูŠุจ ุงู†ุง ู„ู…ุง ุจุฏูŠ ุงุฌูŠุจ ุงู„ order ู„ ุงู„ element ุจุฏูŠ
300
00:31:34,090 --> 00:31:38,870
ุงุฌูŠุจ ุงู„ least common multiples ู„ู…ูŠู† ู„ู„ุงุฑุจุน orders
301
00:31:38,870 --> 00:31:43,390
ู…ุด ู‡ูŠูƒ ุจู‚ูˆู„ ูƒูˆูŠุณุฉ ุทู„ุนู„ูŠ ุงู„ order ุงู„ุฃูˆู„ ูˆุงุญุฏ ูˆ
302
00:31:43,390 --> 00:31:48,290
ุงุชู†ูŠู† ู…ูˆุฌูˆุฏ ู…ุน ู‡ุฏูˆู„ ูˆู„ุง ู„ุฃ ู…ูˆุฌูˆุฏ ู…ุน ู‡ุฐู‡ ู…ูˆุฌูˆุฏ ู…ุน
303
00:31:48,290 --> 00:31:53,850
ู‡ุฐู‡ูŠุนู†ูŠ ูˆุฌูˆุฏ ุฅูŠุด ุจุณ ุจูŠุฎุฑ ุจุดูƒู„ ุจูŠุฎู„ูŠู‡ุง ูƒุจูŠุฑุฉ ูŠุจู‚ู‰
304
00:31:53,850 --> 00:31:58,330
ููŠ ุงู„ุญู‚ูŠู‚ุฉ ุฃู†ุง ุจุฏูŠ ุฃุจุญุซ ุจุณ ุนู† A ูˆB ูˆC ุชู…ุงู…ุŸ ู„ูƒู†
305
00:31:58,330 --> 00:32:01,970
ู‡ุฏุงูƒ ุจุฏูŠ ุฃุฎู„ูŠู‡ ููŠ ุญุณุงุจูŠ ู…ุด ุจุงู‡ูŠู… ู„ู‡ ูŠุจู‚ู‰ ุงู„ุฐูŠ
306
00:32:01,970 --> 00:32:06,390
ูŠุชุญูƒู… ููŠ ุงู„ order ุงู„ู„ูŠ ู‡ูˆ ุงู„ 12 ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชู„ุงุชุฉ
307
00:32:06,390 --> 00:32:12,520
ุงู„ุฃุฎูŠุฑุงุช ู‡ุฏูˆู„ูˆุงู„ู‡ุฏุง 1 ูˆ 2 ู…ุด ู…ุดูƒู„ุฉ ูŠุจู‚ู‰ ุนู†ุฏูŠ
308
00:32:12,520 --> 00:32:18,140
ุนู†ุตุฑูŠู† ุจุฏุฎู„ู‡ู… ููŠ ุงู„ุญุณุงุจ ุจุนุฏ ุฐู„ูƒ ูŠุจู‚ู‰ ุจุฏุงู„ูŠ ู„ู„ 2 ูˆ
309
00:32:18,140 --> 00:32:23,420
4 ุงู„ู„ูŠ ุนู†ุฏูŠ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ element ุงูŠู‡ ุงู„ order ุงูŠู‡ 1
310
00:32:23,420 --> 00:32:31,450
ูˆ 2ุงู„ู€ element ุจูŠ 1,2,4 ุงู„ element c 1,2,3,6 ุงู„
311
00:32:31,450 --> 00:32:38,570
element 4 1,2,4 ุทุจ ุงู„ุขู† ุงู†ุง ุจุฏูŠ ุงุฏูˆุฑ ุงู„ main ุงู„
312
00:32:38,570 --> 00:32:42,910
least common multiple ุงู„ู„ูŠ ู‡ู… ุจุฏู‡ ูŠุนุทูŠู†ูŠ ู‚ุฏุงุด 12
313
00:32:42,910 --> 00:32:49,670
ูˆุจุญูŠุซ ู‡ุง ุทู„ุนู„ูŠ ู‡ู†ุงุงู„ุงู† ุงู„ูˆุงุญุฏ ูˆ ุงู„ุงุชู†ูŠู† ู…ูƒุฑุฑุฉ
314
00:32:49,670 --> 00:32:54,210
ู…ุงู„ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูŠุจู‚ู‰ ู„ุง ู‚ูŠู…ุฉ ู„ู‡ุง ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ู†ุง
315
00:32:54,210 --> 00:32:58,690
ุถุงู„ ุนู†ุฏ ู…ูŠู†ุงู„ุงุฑุจุนุฉ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู† ุงู„ order ุงู„ู„ู‰ ุจูŠู‡
316
00:32:58,690 --> 00:33:04,170
ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุงุฑุจุนุฉ ูˆ ุงู„ order ุงู„ู„ู‰ ูŠุณูŠู‡ ูƒุงู† ุชู„ุงุชุฉ
317
00:33:04,170 --> 00:33:08,830
ุงูˆ ุณุชุฉ ุทุจ ู„ูŠุด ุชู„ุงุชุฉ ุงูˆ ุณุชุฉุŸ ู„ุฃู† ุชู„ุงุชุฉ ุงูˆ ุงุฑุจุนุฉ
318
00:33:08,830 --> 00:33:12,730
ู„ูŠุณูƒู… ุงู„ multiple ุงู„ู„ูŠ ู‚ู„ู‡ู… ูƒุฏุงุด ุงุชู†ุงุด ูˆุงู„ุณุชุฉ
319
00:33:12,730 --> 00:33:15,290
ูˆุงู„ุงุฑุจุนุฉ ู„ูŠุณูƒู… ุงู„ multiple ุงู„ู„ูŠ ู‚ู„ู‡ู… ูƒู…ุงู† ู…ูŠู†
320
00:33:15,290 --> 00:33:21,820
ุงุชู†ุงุด ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ู‰ ูŠุณุงู‡ ูŠุชุญูƒู…ูู‰ ู…ู†ุŸ ูู‰ ุงู„ order
321
00:33:21,820 --> 00:33:25,900
ุทุจ ูˆ ุงู„ู„ู‰ ุชุญุช ู‡ุฐุง ู„ุชุญุช ู…ุง ู‡ูˆ ุฏุงุฎู„ ูู‰ ุงู„ุญุณุงุจ ู„ุฅู†
322
00:33:25,900 --> 00:33:30,920
ูˆุงุญุฏ ุงุชู†ูŠู† ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ูˆุงู„ุงุฑุจุนุฉ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูŠุจู‚ู‰ ุงู„ D
323
00:33:30,920 --> 00:33:36,140
ู…ุด ู‡ุชุฃุซุฑ ุนู†ุฏูŠ ู…ุด ู‡ุชุฌูŠุจู„ูŠ ู…ุนู„ูˆู…ุงุช ุฌุฏูŠุฏุฉ ูŠุจู‚ู‰ ุจุงุถูŠูุฉ
324
00:33:36,140 --> 00:33:41,240
ุชุญุตูŠู„ ุญุงุตู„ ู‡ูŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰
325
00:33:41,240 --> 00:33:44,040
ุงู„ู„ู‰ ุงู„ order ุงู„ list common multiple ุงู„ู„ู‰ ุจุฏู‡
326
00:33:44,040 --> 00:33:48,460
ูŠุทู„ุน ุงุชู†ุงุด ุฎุฏ ุงู„ุญุงู„ุฉ ุงู„ุชุงู†ูŠุฉู…ู…ูƒู† ูŠูƒูˆู† ุงู„ order
327
00:33:48,460 --> 00:33:54,180
ุงู„ู„ูŠ ุฏูŠ ู‡ูˆ ุฃุฑุจุนุฉ ูˆ ุงู„ C ู„ู‡ ุชู„ุงุชุฉ ูˆ ุณุชุฉ ู…ุด ู‡ูŠูƒ ูˆุงุฑุฏ
328
00:33:54,180 --> 00:33:59,180
ุชู…ุงู… ูˆ ุงู„ุจุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจูŠุชุญุตูŠู„ ุญุงุตู„ ุจุณูŠุท ุชู…ุงู…
329
00:33:59,180 --> 00:34:03,200
ูŠุจู‚ู‰ ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุดุชุบู„ ุงู„ุดุบู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุงุฏูŠ
330
00:34:13,770 --> 00:34:18,010
ุงู„ุงู† ู‚ู„ู†ุง ุจุงู„ู†ุณุจุฉ ู„ู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ุงุณู…ู‡ุง multiple ุชุญุตูŠู„
331
00:34:18,010 --> 00:34:24,210
ุญุตู„ ูŠุจู‚ู‰ ุฏูŠ ู…ุด ู‡ุชุฏุฎู„ ููŠ ุงู„ุญุณุงุจ ุนู†ุฏู†ุง ูŠุจู‚ู‰ we have
332
00:34:24,210 --> 00:34:30,050
two cases
333
00:34:30,050 --> 00:34:35,910
ู‡ูŠ ุนู†ุฏูŠ ุญุงู„ุชูŠู† ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ุงู† ุงู„ order ู„ู„ B ุจุฏู‡
334
00:34:35,910 --> 00:34:41,150
ูŠุณูˆู‰ ุงู„ุฃุฑุจุนุฉ ูˆ ุงู„ order ู„ C ูŠุง ุฅู…ุง ุชู„ุงุชุฉ ูŠุง ุฅู…ุง
335
00:34:41,150 --> 00:34:45,350
ุณุชุฉูŠุจู‚ู‰ ุชู„ุงุชุฉ ูˆุงุฑุจุนุฉ ุงู„ู€ least common multiple
336
00:34:45,350 --> 00:34:48,730
ูŠุจู‚ู‰ 12 ุงู„ุณุชุฉ ูˆุงู„ุงุฑุจุนุฉ ุงู„ least common multiple
337
00:34:48,730 --> 00:34:53,290
ูŠุจู‚ู‰ 12 ูŠุจู‚ู‰ ู‡ุฏูˆู„ ูŠุฌูŠุจูˆู„ูŠ ุงู„ element ุงู„ order ูŠุณูˆู‰
338
00:34:53,290 --> 00:35:00,190
ูƒู…ุŸ ุงู„ 12 ุทุจ ุฃูƒู… ุงู†ุตุฑ ููŠ ุฒูŠุฏ ุฃุฑุจุนุฉ ุงู„ order ูŠุณูˆู‰
339
00:35:00,190 --> 00:35:08,630
ุฃุฑุจุนุฉุŸ ุจุณุฃุชู†ูŠู† ู‡ูˆ ุงู„ูˆุงุญุฏ ูˆุงู„ุชู„ุงุชุฉ ุงู„ูˆุงุญุฏ ูˆุงู„ุชู„ุงุชุฉ
340
00:35:08,630 --> 00:35:14,850
ููŠ ุฒุฏ ุฃุฑุจุนุฉ ุงู„ order ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุงู„ุงุฑุจุนุฉ ูŠู…ุฌู‰ ุจูŠู‡
341
00:35:14,850 --> 00:35:20,890
ู‡ู†ุง ูŠุง ุจุฏู‡ุง ุชุณุงูˆูŠ ูˆุงุญุฏ ูŠุง ุจุฏู‡ุง ุชุณุงูˆูŠ ุชู„ุงุชุฉ ุทูŠุจ ุณูŠ
342
00:35:20,890 --> 00:35:27,370
ู‡ู†ุง ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ order ู„ู‡ ุชู„ุงุชุฉ ุงูˆ ุงู„ order ู„ู‡
343
00:35:27,370 --> 00:35:34,150
ุณุชุฉ ุงุธู† ุงู„ูˆุงุญุฏ ุงู„ order ู„ู‡ ุณุชุฉ ุทุจ ูˆ ุงุชู†ูŠู† ุทุจ ูˆ
344
00:35:34,150 --> 00:35:41,700
ุงู„ุฃุฑุจุนุฉุงู„ุฃุฑุฏุฑ ู…ุงุฐุงุŸ ุซู„ุงุซุฉ ุซู„ุงุซุฉุŸ ุทุจ ูˆ ุงู„ุณุชุŸ ูˆุงุญุฏ
345
00:35:41,700 --> 00:35:45,780
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
346
00:35:45,780 --> 00:35:48,240
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
347
00:35:48,240 --> 00:35:48,920
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
348
00:35:48,920 --> 00:35:49,520
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
349
00:35:49,520 --> 00:35:50,300
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
350
00:35:50,300 --> 00:35:50,340
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
351
00:35:50,340 --> 00:35:53,380
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
352
00:35:53,380 --> 00:35:58,440
ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ
353
00:35:58,440 --> 00:36:03,500
ูˆุงุญุฏุŒ
354
00:36:03,500 --> 00:36:04,480
ูˆุง
355
00:36:11,410 --> 00:36:17,450
ุงู„ุฑู‚ู… ูŠุง ุจุงุฎุฏ C ุจูˆุงุญุฏ ูŠุง ุจุงุฎุฏ ุงู„ุณุช ูŠุนู†ูŠ ุงุชู†ูŠู† ู‡ุฐุง
356
00:36:17,450 --> 00:36:21,650
ุงู„ component ูŠุง ุจุชูƒูˆู† ูˆุงุญุฏ ูŠุง ุจุชูƒูˆู† ุณุช ุตูุฑ ู…ุงุดูŠ
357
00:36:21,650 --> 00:36:25,790
ุงู„ุญุงุฌุฉ ุจุชุฒุนู„ุงู† ู„ูŠู‡ ู‡ุฐุง
358
00:36:25,790 --> 00:36:31,450
ุงุญู†ุง ุจู†ุญูƒูŠ ุงู„ุขู† ููŠ order ูƒุจูŠุฑ ู…ุด ู„ุญุงู„ู‡ ุชู…ุงู…ุฃุญู†ุง
359
00:36:31,450 --> 00:36:36,310
ุจู†ุญูƒูŠ ุงู„ุขู† ุงู„ order ู„ู„ element ุจุฏู‡ ูŠุณุงูˆูŠ ุณุชุฉ ู…ูŠู†
360
00:36:36,310 --> 00:36:40,550
ุงู„ elements ุงู„ู„ูŠ ุงู„ order ุงู„ู„ูŠ ู‡ู… ูŠุณุงูˆูŠ .. ุฏู‡ ู…ุด
361
00:36:40,550 --> 00:36:46,770
ุณุชุฉ .. ุฏู‡ ุฎู…ุณุฉ .. ุฏู‡ ุฎู…ุณุฉ ุงู„ูˆุงุญุฏ ูˆ ุงู„ุฎู…ุณุฉ ุงู„ order
362
00:36:46,770 --> 00:36:52,470
ุงู„ู„ูŠ ู‡ู… ุณุชุฉ ุตุญูŠุญุŸ ุงุชู†ูŠู† ูˆ ุงู„ุฃุฑุจุนุฉ ู‡ู… ุงู„ order ุงู„ู„ูŠ
363
00:36:52,470 --> 00:37:01,030
ู‡ู… ุชู„ุงุชุฉ ุทูŠุจ ู‡ุฐุง ุงู„ B ูˆ ุงู„ C ุทุจ ูˆ ุงู„ DุŸู„ุง ุฎุฏู‡ุง ุฃูŠ
364
00:37:01,030 --> 00:37:11,890
ุดูŠุก ุงูŠ ู†ุนู… and ุงุฏูŠ arbitrary ูŠุนู†ูŠ ุฎุฏู‡ุง ุฒูŠ ู…ุง ุจุฏูƒ
365
00:37:12,760 --> 00:37:17,280
ูƒูˆูŠุณุŸ ุทูŠุจ ู„ู…ุง ุงุฎุฏู‡ุง ุฒูŠ ุงู„ู…ุจุฏุฃ ุจู‚ูˆู„ ุงุฎุฏ ุงู„ุฃุฑุจุนุฉ ู„ู…ุง
366
00:37:17,280 --> 00:37:21,700
ุงู†ุง ุงุฎุฏ ูŠุนู†ูŠ ุงู„ุฃุฑุจุนุฉ ู…ุด ู‡ูŠุชุบูŠุฑ ู„ูŠุดุŸ ู„ุฃู† ุงู„ order
367
00:37:21,700 --> 00:37:24,960
ุณุจุนุฉ ู‡ูŠ ูˆุงุญุฏุŒ ู‡ูŠ ุงุชู†ูŠู†ุŒ ู‡ูŠ ุฃุฑุจุนุฉ ู‡ูŠ ูˆู…ุงุฎุฏู†ุงู‡ู…
368
00:37:24,960 --> 00:37:31,340
ู…ุนุงู‡ุฏูŠ ูŠุนู†ูŠ ู…ุด ู‡ูŠุฌูŠุจูˆู„ูŠ ุฅูŠุดุŸ ู„ูŠุด ุฏูŠุŸ ูŠุจู‚ู‰ ุงู„ุขู† the
369
00:37:31,340 --> 00:37:40,380
number of elements of order
370
00:37:45,070 --> 00:37:52,890
ุงู„ุญูŠู† ุงู„ A ูƒู… ุนู†ุตุฑ ููŠู‡ุงุŸ ุงุชู†ูŠู† ุงู„ B ูƒู… ุนู†ุตุฑุŸ ุงุชู†ูŠู†
371
00:37:52,890 --> 00:37:59,590
ุงู„ C ูƒู… ุนู†ุตุฑุŸ ุงุฑุจุนุฉ ุงู„ D ุฎุฏ ุฒูŠ ู…ุง ุจุฏูƒ ุงุฌุฏุด ุงุฑุจุนุฉ
372
00:37:59,590 --> 00:38:04,370
ูŠุจู‚ู‰ ุฃุฑุจุนุฉ ููŠ ุฃุฑุจุนุฉ ููŠ ุณุชุงุดุฑ ููŠ ุฃุฑุจุนุฉ ุจุงุฑุจุนุฉ ูˆุณุชูŠู†
373
00:38:04,370 --> 00:38:11,490
ูŠุจู‚ู‰ ุงุฑุจุนุฉ ูˆุณุชูŠู† elementู‡ุฐูˆู„ ุงู„ order ูŠุณุงูˆูŠ 12 ู„ูˆ
374
00:38:11,490 --> 00:38:12,090
ูƒุงู†
375
00:38:19,370 --> 00:38:23,850
ู‡ุฏูˆู„ ุงู„ orders ู„ูƒู† ุงู†ุง ูƒุงู… ุนู†ุตุฑ ู‡ุฏูˆู„ ุนู†ุฏู‰ ุงุฑุจุนุฉ ู†ุต
376
00:38:23,850 --> 00:38:27,330
ุฎุฏ ุงู„ู„ู‰ ุจุฏูƒ ุงูŠุงู‡ ุงู„ orders ูˆุงุญุฏ ูˆุงุชู†ูŠู† ูˆุงุฑุจุนุฉ ุฒู‰
377
00:38:27,330 --> 00:38:30,630
ุงู„ูˆุงุญุฏ ูˆุงุชู†ูŠู† ูˆุงุฑุจุนุฉ ุงุฐุง ู‡ุฏูˆู„ ู‚ู„ุช ู…ุตูุน ุดุฌุนูˆู†
378
00:38:30,630 --> 00:38:36,590
ุงุดุชุบู„ุช ููŠ ู‡ุฏูˆู„ ุชู…ุงู… ู‡ุฏูˆู„ ุงู„ุงู† ู‡ุฐุง ุจุถูŠู ุชุญุตูŠู„ ุญุงุตู„
379
00:38:36,590 --> 00:38:40,590
ูŠุนู†ูŠ ุงูŠุด ู…ุง ูƒุงู† ูŠูƒูˆู† ูƒุงู† ุงู„ zero ูƒุงู† ุงู„ูˆุงุญุฏ ูƒุงู†
380
00:38:40,590 --> 00:38:44,350
ุงู„ุงุชู†ูŠู† ูƒุงู† ุงู„ุชู„ุงุชุฉ ู„ู† ูŠุบูŠุฑ ููŠ ุงู„ู†ุชูŠุฌุฉ ุดูŠุฆุง ูˆูƒูˆุงู†
381
00:38:44,350 --> 00:38:48,990
ุงู†ุช ุจุชูƒุชุจ element ู…ูƒูˆู† ู…ู† ุงุฑุจุน ู…ุฑูƒุจุงุชูŠุนู†ูŠ ุนู†ุฏูƒ
382
00:38:48,990 --> 00:38:54,110
ุจุฏุงุฆู„ ุงุชู†ูŠู† ู„ู„ A ูˆุจุฏุงุฆู„ ุงุชู†ูŠู† ู„ู„ B ู„ุฃู† ุงู„ order
383
00:38:54,110 --> 00:38:59,190
ูŠุณูˆู‰ ุงุฑุจุนุฉ ูˆุนู†ุฏูƒ ุงุฑุจุน ุจุฏุงุฆู„ ู„ู„ C ูˆุงุฑุจุน ุจุฏุงุฆู„ ู„ู„ D
384
00:38:59,190 --> 00:39:03,210
ุตุญูŠุญ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰ ุนู„ู‰ ุจุนุถู‡ู… ูƒู„ู‡ ู…ุตูŠุฑู‡ ุฌุฏุงุด ุงุฑุจุนุฉ
385
00:39:03,210 --> 00:39:09,590
ูˆุณุชูŠู† ุนู†ุตุฑ ู‡ุฐุง ู‡ูŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ุญุงู„ุฉ ุงู„ุชุงู†ูŠุฉุงู„
386
00:39:09,590 --> 00:39:16,150
order ุงู„ู„ู‰ ุฏู‰ ู…ู…ูƒู† ูŠูƒูˆู† ุงุฑุจุนุฉ and ุงู„ order ู„ุณู‡ ูŠุง
387
00:39:16,150 --> 00:39:26,910
ุงู…ุง ุชู„ุงุชุฉ ูŠุง ุงู…ุง ุณุชุฉ ูŠุจู‚ู‰
388
00:39:26,910 --> 00:39:31,650
ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู„ู…ุง ุงู„ order ุงู„ู„ู‰ ุฏู‰ ุจุฏู‰ ูŠุณุงูˆูŠ ุงุฑุจุนุฉ
389
00:39:31,650 --> 00:39:38,600
ุงูƒู… element ุจูŠุนุทูŠู†ุง ุงุชู†ูŠู† ู…ุธุจูˆุทูŠุจู‚ู‰ ู‡ู†ุง ููŠ ุนู†ุฏูŠ
390
00:39:38,600 --> 00:39:46,080
ุงุชู†ูŠู† elements ุทูŠุจ ู„ู…ุง ูŠูƒูˆู† ู‡ู†ุง ููŠ ุนู†ุฏูŠ ุฌุฏุงุดุŸ
391
00:39:46,080 --> 00:39:52,440
ุฌุฏุงุดุŸ ุงุฑุจุน elements ุทูŠุจ
392
00:39:52,440 --> 00:39:59,200
ู†ูŠุฌูŠ ู„ู„ a ุฌุฏุงุดุŸ ุงุฑุจุน elements ุงุชู†ูŠู† elements ู†ูŠุฌูŠ
393
00:39:59,200 --> 00:40:03,240
ู„ู„ b ุฌุฏุงุด ุนู†ุฏูŠุŸ ุงุชู†ูŠู† elements
394
00:40:05,800 --> 00:40:12,760
ูŠุจู‚ู‰ ุตุบุฑ ุงู„ุขู† ุงุชู†ูŠู† ุงุฎุฏู†ุงู‡ุง
395
00:40:12,760 --> 00:40:16,240
ุงุฑุจุนุฉ ู…ุน ุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ู‚ุจู„ู‡ุง ุงู‡ ุงุฎุฏู†ุงู‡ุง ุงุฑุจุนุฉ ู…ุน
396
00:40:16,240 --> 00:40:19,580
ุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ู‚ุจู„ู‡ุง ู„ุงุด ู†ูƒุฑุฑู‡ุง ู„ุงู† ุงู„ุชูƒุฑุงุฑ ู‡ุฐุง ุจุฌูŠุจ
397
00:40:19,580 --> 00:40:24,300
ุดุบู„ุงุช ุงูƒุชุฑ ู…ู† ุงู„ู„ุงุฒู… ูŠุจู‚ู‰ so we have ุงู„ุนู†ุตุฑ
398
00:40:24,300 --> 00:40:28,400
ุงู„ุฃูˆู„ุงู†ูŠ ุงุชู†ูŠู† ูˆุงู„ุชุงู†ูŠ ุงุฑุจุนุฉ ูˆุงู„ู„ูŠ ุจุนุฏู‡ ุงุชู†ูŠู†
399
00:40:28,400 --> 00:40:33,370
ูˆุงู„ู„ูŠ ุจุนุฏู‡ ุงุชู†ูŠู†ูŠุจู‚ู‰ ุชู…ุงู†ูŠุฉ ููŠ ุฃุฑุจุนุฉ ุจุฌุฏุงุด ุจุชู†ูŠู† ูˆ
400
00:40:33,370 --> 00:40:41,650
ุชู„ุงุชูŠู† element of order ุงู„ู„ูŠ ู‡ูˆ ุฃุชู†ุงุดุฑ ุทุจ ุฅุฐุง ุนู„ู‰
401
00:40:41,650 --> 00:40:43,210
ุจุนุถู‡ู… ุฌุฏุงุด
402
00:40:45,410 --> 00:40:52,270
ูŠูˆ ุณุจุนู…ูŠุฉ ูˆุนุดุฑูŠู† has ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด ููŠ ุงู„ุฃูˆู„ ุงุฑุจุนุฉ
403
00:40:52,270 --> 00:41:00,330
ูˆุณุชูŠู† ุฒุงุฆุฏ ุงุชู†ูŠู† ูˆุชู„ุงุชูŠู† ูˆูŠุณุงูˆูŠ ุณุชุฉ ูˆุชุณุนูŠู† element
404
00:41:00,330 --> 00:41:08,010
of order ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ุงุดุฑ
405
00:41:17,690 --> 00:41:22,970
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ุง ู…ู† ุงู„ุขู† ูุตุงุนุฏุง ู„ูˆ ู‚ุงู„ู„ูŠ ุดูˆู ู„ู‚ุฏุงุด
406
00:41:22,970 --> 00:41:29,050
ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุงู„ order ู„ู‡ู… ูŠุณุงูˆูŠุฉ ุฑู‚ู… ู…ุนูŠู† ููŠ
407
00:41:29,050 --> 00:41:34,770
UN ุงู„ UN ุงู„ N ู…ูŠู†ู…ุง ูƒุงู†ุช ุชูƒูˆู† ุจุฏูŠ ุงุญูˆู„ู‡ุง ุงู„ู‰ ู…ูŠู†ุŸ
408
00:41:34,770 --> 00:41:41,160
ุจุฏูŠ ุงุญูˆู„ู‡ุง ุงู„ู‰ ุงู„ cyclic groupsู…ุฏุงู„ุฉ z2 ูˆ z3 ูˆ z4
409
00:41:41,160 --> 00:41:45,840
ูˆ z5 ูˆ z6 ูˆ ุจูŠุจู‚ูˆุง ุฃุญุณุจ ู…ู† ู…ูŠู† ู…ู† ู‡ุฐู‡ ุงู„ z ุงู„ู„ูŠ ู‡ูˆ
410
00:41:45,840 --> 00:41:51,000
ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ ุนู„ู‰ ู‡ูŠูƒ ุจูŠูƒูˆู† ุงู†ุชู‡ู‰ ุงู„ section ุทูŠุจ ููŠ
411
00:41:51,000 --> 00:41:57,800
ุนู†ุฏูƒ ุณุคุงู„ ุฒูŠ ุณุคุงู„ ุชู„ุงุชุฉ ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุณุคุงู„
412
00:41:57,800 --> 00:42:06,820
ุชู„ุงุชุฉุจู‚ูˆู„ ุงู„ู€ G group with identity ูˆุงู„ู€ H ุจูŠู‡
413
00:42:06,820 --> 00:42:12,440
group with identity prove that ุงู„ู€ G isomorphic
414
00:42:12,440 --> 00:42:20,340
ุงู„ู€ G isomorphic ู„ู…ูŠู†ุŸ ู„ู„ external direct product
415
00:42:20,730 --> 00:42:26,850
ู„ู„ู€ G external like product ู…ุน ุงู„ identity element
416
00:42:26,850 --> 00:42:38,850
ุชุจุน ุงู„ H and ุงู„ H is isomorphic ู„ู…ู†ุŸ
417
00:42:38,850 --> 00:42:45,570
ู„ู„ identity ุชุจุน ุงู„ G external like product ู…ุน ู…ู†ุŸ
418
00:42:45,570 --> 00:42:48,350
ู…ุน ุงู„ H
419
00:42:56,050 --> 00:43:04,540
ุฎู„ู‘ูŠ ุจุงู„ูƒ ุฃู†ูŠ ุฃู†ุง ุนู†ุฏูŠ ุงู„ู€ G ูˆ ุงู„ H are groupsู…ุด
420
00:43:04,540 --> 00:43:07,580
ู‡ุชู‚ูˆู„ ุงู„ู€H subgroup ู…ู† G ุงู„ู„ูŠ ู…ุงู„ุนุงุด ุนู„ุงู‚ุฉ ู‡ุฐูŠ
421
00:43:07,580 --> 00:43:12,880
group ูˆ ู‡ุฐูŠ group ุชุงู†ูŠ ุจู‚ูˆู„ ุงุซุจุช ุงู† ุงู„ู€G ู‡ูŠ
422
00:43:12,880 --> 00:43:17,580
isomorphic ู„ู…ูŠู† ู„ู€G ูˆุงู„ external direct product
423
00:43:17,580 --> 00:43:23,680
ูŠุจู‚ู‰ ู‡ู†ุง ุจุชุฑูˆุญ ุงุนุฑูู„ู‡ Phi ู…ู† ุงู„ู€G ุงู„ู‰ ุงู„ู€G
424
00:43:23,680 --> 00:43:31,520
external direct product ู…ุน E H PiูุงูŠ ุงู ุฌูŠ ู…ู…ูƒู†
425
00:43:31,520 --> 00:43:37,900
ุงุฎุฏ ุตูˆุฑุชู‡ ู‡ู†ุง ู…ู…ูƒู† ุงุฎุฏู‡ุง ุฌูŠ ูˆุงู„ุงูŠ ุชุจุน ุงู„ H
426
00:43:44,530 --> 00:43:52,370
ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุจุฏู„ ููŠ ุฃุฎุฏุช ู…ุซู„ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ F ู…ู† ุงู„ H
427
00:43:52,370 --> 00:44:01,290
ุฅู„ู‰ ุงู„ identity element ุชุจุน ุงู„ G across ุงู„ H by ุงู„
428
00:44:01,290 --> 00:44:09,030
F of H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ external direct product ู„ู„
429
00:44:09,030 --> 00:44:16,920
E ุชุจุน ุงู„ Gู„ู„ู€ A ุชุงุจุน ุงู„ู€ G ูˆ H ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
430
00:44:16,920 --> 00:44:25,020
ู‡ู†ุง ุงูˆ ุจู„ุงุด ู‡ูˆู† ู‡ุฐุง ุงูŠู‡ ุฌูˆุฒ ูˆู‡ุฐุง ุงูŠู‡ ุฌูŠ ูˆ H ุฌูˆุฒ
431
00:44:25,020 --> 00:44:29,540
ู…ุจุงุดุฑุฉ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุซุจุช ู…ู† ู‡ุฐุง ุทุจุนุง ุฅุฐุง ุฃุซุจุชู†ุง ุงู„ุฃูˆู„
432
00:44:29,540 --> 00:44:36,510
ุจุตูŠุฑ ุงู„ุชุงู†ูŠ ุญุฑููŠุง ุฒูŠู‡ุทูŠุจ ู„ูˆ ุฌูŠุช ู„ู‡ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ุจุฏูŠ
433
00:44:36,510 --> 00:44:41,830
ุงุซุจุช ู„ู‡ ุงู† ุงู„ู€ Phi is one to one ูŠุจู‚ู‰ ุจุฏูŠ ุงู‚ูˆู„ ู„ู‡
434
00:44:41,830 --> 00:44:50,310
assume ุงูุชุฑุถ ุงู† Phi of G1 ุจุฏูŠ ุณุงูˆูŠ Phi of G2 ู‡ุฐุง
435
00:44:50,310 --> 00:44:56,050
ู…ุนู†ุงุชู‡ ุงู† ุงู„ู€ G1 ูˆ ุงู„ identity ุชุจุน ุงู„ H ุจุฏูŠ ุณุงูˆูŠ
436
00:44:56,050 --> 00:45:03,780
G2 ูˆ ุงู„ identity ุชุจุน ุงู„ Hุทุจุนุง two order pair are
437
00:45:03,780 --> 00:45:07,220
equal ูŠุจู‚ู‰ ุงู„ู…ุฑุงูƒุจุฉ ุงู„ุฃูˆู„ู‰ ุณูˆุงุก ุงู„ู…ุฑุงูƒุจุฉ ุงู„ุฃูˆู„ู‰ ุฃูˆ
438
00:45:07,220 --> 00:45:12,540
ุงู„ู…ุฑุงูƒุจุฉ ุงู„ุซุงู†ูŠุฉ ุณูˆุงุก ู…ูŠู† ุงู„ู…ุฑุงูƒุจุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ G1
439
00:45:12,540 --> 00:45:19,400
ุณูˆุงุก G2 ูˆู‡ุฐุง ุงู„ู€EH ู‡ูˆ ู†ูุณู‡ ุงู„ู€EH ุฃุธู† ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ
440
00:45:19,400 --> 00:45:26,030
ุงู„ุขู† ู…ุฏุงุฌูŠ ุฃุซุจุช ู„ู‡ ุฃู† ูุงูŠ is ontoูŠุจู‚ู‰ ุจุงู„ุฏุฑุฌุฉ
441
00:45:26,030 --> 00:45:32,190
ุงู‚ูˆู„ู‡ ุงูุชุฑุถ ุงู† ุงู„ X ู…ูˆุฌูˆุฏ ููŠ ุงู„ G external product
442
00:45:32,190 --> 00:45:40,210
ู…ุน ุงู„ identity ุชุจุน ุงู„ H ุซู… ุดูƒู„ ุงู„ X ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ
443
00:45:40,210 --> 00:45:47,120
element ู…ู† G ูˆ ุงู„ identity element ุชุจุน ุงู„ HุทูŠุจ ู‡ุฐุง
444
00:45:47,120 --> 00:45:53,980
ุญุณุจ ุงู„ุชุนุฑูŠู ู‡ูˆ ู…ูŠู†ุŸ Phi of G ู„ุฐู„ูƒ Phi is ุฃู†ุชูˆุง ุจู‚ู‰
445
00:45:53,980 --> 00:45:59,380
ู„ุฏูŠู†ุง Phi is an isomorphism ูŠุจู‚ู‰ Phi is an
446
00:45:59,380 --> 00:46:09,480
isomorphism ูŠุจู‚ู‰ ุจุฏูŠ ุฃู‚ุนุฏ ุฃุฎุฏ ุงู„ Phi of G ูˆ G2
447
00:46:09,480 --> 00:46:15,750
ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠุงู„ู„ูŠ
448
00:46:15,750 --> 00:46:24,070
ู‡ูˆ ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ five of g one g two ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ูŠ
449
00:46:24,070 --> 00:46:33,170
ู‡ูˆ g one g two ูˆุงู„ ุฅูŠู‡ hู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุจุฏู‡
450
00:46:33,170 --> 00:46:39,370
ุงุญุงูˆู„ ุงูƒุชุจ ู‡ุฐุง ุนู„ู‰ ุตูŠุบุฉ ุญุงุตู„ ุถุฑุจ ู‚ูˆุณูŠู† ุงุฐุง ู„ูˆ ุฌูŠุช
451
00:46:39,370 --> 00:46:49,530
ู‚ู„ุช ุฌูŠ ูˆุงุญุฏ ู…ุน ุงู„ E H ูˆู‡ู†ุง ุฌูŠ ุงุชู†ูŠู† ู…ุน ุงู„ E H ู„ูˆ
452
00:46:49,530 --> 00:46:53,370
ุถุฑุจุช ุถุฑุจ component wise ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุฌูŠ ูˆู† ุฌูŠ ุชูˆู†
453
00:46:53,370 --> 00:46:59,060
ูˆุงู„ E H ููŠ ุงู„ E H ู‡ูŠ ุจุงู„ E H itselfูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
454
00:46:59,060 --> 00:47:07,300
ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐุง Phi of G1 ูˆ ู‡ุฐุง Phi of G2 ูŠุจู‚ู‰ ู‡ู†ุง
455
00:47:07,300 --> 00:47:17,080
Phi is an isomorphism ูˆู‡ูƒุฐุง ุจุงู„ู†ุณุจุฉ ู„ู…ู†ุŸ ุจุงู„ู†ุณุจุฉ
456
00:47:17,080 --> 00:47:17,900
ู„ู„ุซุงู†ูŠ