|
1 |
|
00:00:21,580 --> 00:00:26,400 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูู ููุงูุฉ ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ |
|
|
|
2 |
|
00:00:26,400 --> 00:00:31,940 |
|
ุฃุฎุฏูุง ูุธุฑูุฉ ุงููุธุฑูุฉ ุจุชููู ูู ุนูุฏู ุฑูู
ูู S ู T are |
|
|
|
3 |
|
00:00:31,940 --> 00:00:37,970 |
|
relatively prime ูุจูู ุงู U S T isomorphicููู US |
|
|
|
4 |
|
00:00:37,970 --> 00:00:43,470 |
|
External Product ู
ุน ู
ู ู
ุน ุงูู UT ูุนูู ุจูุฏุฑ ุฃูุชุจ |
|
|
|
5 |
|
00:00:43,470 --> 00:00:48,230 |
|
ุงูู UN ุนูู ุตูุบุฉ External Product ูู
ูุ ูู two |
|
|
|
6 |
|
00:00:48,230 --> 00:00:52,070 |
|
groups ูู three groups ูู four groups ูู
ุง ุฅูู ุฐูู |
|
|
|
7 |
|
00:00:52,070 --> 00:00:57,840 |
|
ุจุดุฑุท ูููู ุงู S ู ุงู T are relatively a primeูุงุฎุฏูุง |
|
|
|
8 |
|
00:00:57,840 --> 00:01:06,060 |
|
ูู
ุงู ููุทุฉ ุงู U S T ุนูู S isomorphic ู U T ููุฐูู U |
|
|
|
9 |
|
00:01:06,060 --> 00:01:12,820 |
|
T ู U S T isomorphic ู U S ูุฒูุงุฏุฉ ุนูู ุฐูู ุฑููุฑ |
|
|
|
10 |
|
00:01:12,820 --> 00:01:18,300 |
|
ุนูููุง ุจูููู ูู ุนูุฏูุง ุงูุฑูู
M ูุงุณุชุทุนูุง ุงู M ููุชุจู |
|
|
|
11 |
|
00:01:18,300 --> 00:01:23,100 |
|
ุนูู ุงูุดูู ุงูุชุงูู ูุจูู M ุจุฏู ูุณูู N ูุงุญุฏ |
|
|
|
12 |
|
00:01:26,550 --> 00:01:32,090 |
|
ุจุญูุซ ุงู ุงุชููู ู
ู ูุฐู ุงูุฃุฑูุงู
are relatively prime |
|
|
|
13 |
|
00:01:32,090 --> 00:01:37,790 |
|
ูุนูู ni ู
ุน ng ุงุชููู are relatively prime ููู i ูุง |
|
|
|
14 |
|
00:01:37,790 --> 00:01:43,440 |
|
ุชุณุงูู ุงูุฌููุจูู ูู ูุฐู ุงูุญุงูุฉ ุจูุฏุฑ ุงููู ุงู ุงู UM |
|
|
|
15 |
|
00:01:43,440 --> 00:01:54,000 |
|
ุงูุฒู ู
ูุฑู ููู
ุฉ ู ุงู UN 1 UN 2 UN 3 UN UN ูุบุงูุฉ ุงู |
|
|
|
16 |
|
00:01:54,000 --> 00:02:02,330 |
|
UUNุงูุงู ุงู ูุงููู ุงู ููุฐู ุนู
ููุง ู ุงู ููุฐู ูุจูู ูุฐู |
|
|
|
17 |
|
00:02:02,330 --> 00:02:07,890 |
|
ุจุงูุตุบูุฑุฉ ุงู ููุฐู ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุทุจุนุง ุงูุงู |
|
|
|
18 |
|
00:02:07,890 --> 00:02:13,210 |
|
ุจุฏู ุงูุงู ุงุดุชุบู ุนู
ููุงุจูููู ูู ูุงู ุนูุฏู ุงูููู
105 |
|
|
|
19 |
|
00:02:13,210 --> 00:02:17,990 |
|
ุจุชูุฏุฑ ุชูุชุจูุง ูู ุนูู ุงูุดูู ุงููู ุนูุฏู ูุฏูุ ุจู
ุนูู ูู |
|
|
|
20 |
|
00:02:17,990 --> 00:02:23,410 |
|
ุจุชูุฏุฑ ุชูุชุจ ุงู 105 ุนูู ุดูู isomorphic ู two groupsุ |
|
|
|
21 |
|
00:02:23,410 --> 00:02:29,370 |
|
ุงูุฅุฌุงุจุฉ ูุนู
ูุนู
ููููุ ุจุชุฏูุฑ ุนูู ุฑูู
ูู ุงู relative |
|
|
|
22 |
|
00:02:29,370 --> 00:02:34,330 |
|
to prime ูุญุงุตู ุถุฑุจู ู
ุง ูุณุงูู
ูู 105 ุจุชูุฏุฑ ุชุนุทููู |
|
|
|
23 |
|
00:02:34,330 --> 00:02:43,090 |
|
ุฑูู
ููุูุญุฏ ูุนุดุฑูู ูุฎู
ุณุฉ ูููุณ ูุจูู ูุฐุง ุงููู ูู ุนุจุงุฑุฉ |
|
|
|
24 |
|
00:02:43,090 --> 00:02:54,010 |
|
ุนู U ุงููู ูู ูุงุญุฏ ูุนุดุฑูู ู
ุถุฑูุจุฉ ูู ุฎู
ุณุฉ |
|
|
|
25 |
|
00:02:54,010 --> 00:02:59,620 |
|
ูุจูู ูุฐู isomorphic ู U ูุงุญุฏ ูุนุดุฑููExternal |
|
|
|
26 |
|
00:02:59,620 --> 00:03:11,640 |
|
Product ู
ุน U5 ูู
ุงู ุงู U 105 ุนุจุงุฑุฉ ุนู U ุงูุฎู
ุณ ุนุดุฑ |
|
|
|
27 |
|
00:03:11,640 --> 00:03:19,260 |
|
ูู ุณุจุนุฉ7 ูู 15% ุฃู 5 ูุจูู ูุฐุง ุงูููุงู
isomorphic |
|
|
|
28 |
|
00:03:19,260 --> 00:03:27,060 |
|
ูู
ูุ ู U 15 Extended like product ู
ุน ู
ููุ ู
ุน U 7 |
|
|
|
29 |
|
00:03:27,060 --> 00:03:34,950 |
|
ุฃุฌูุงุญ ุงูุชุงูุช ู
ููู
ุณู
ุนุช ุจููููุงูู U 105 ูู ุนุจุงุฑุฉ ุนู |
|
|
|
30 |
|
00:03:34,950 --> 00:03:41,990 |
|
U ุฎู
ุณุฉ ู ุชูุงุชูู ูู ุชูุงุชุฉ ุจูููู ููุงู
ู ุตุญ ูุจูู ูุฐู |
|
|
|
31 |
|
00:03:41,990 --> 00:03:47,510 |
|
isomorphic ูู U ุฎู
ุณุฉ ู ุชูุงุชูู external product ู
ุน |
|
|
|
32 |
|
00:03:47,510 --> 00:03:54,550 |
|
U ุชูุงุชุฉ ูุฌูุง ุนูู ุงูุชุงูุช ูุงู ุงูู U 105 ูุฐู ุงูู U |
|
|
|
33 |
|
00:03:54,550 --> 00:04:03,020 |
|
105 ุจุฏูุง ุชุณุงูู ุงูู U ุชูุงุชุฉ ูู ุฎู
ุณุฉ ูู ุณุจุนุฉุชูุงุชุฉ ู |
|
|
|
34 |
|
00:04:03,020 --> 00:04:06,760 |
|
ูููู
ุชูุงุชุฉ are relatively prime ูุจูู ูุฐู |
|
|
|
35 |
|
00:04:06,760 --> 00:04:12,360 |
|
isomorphic ูู
ููุ ููู ุชูุงุชุฉ external direct product |
|
|
|
36 |
|
00:04:12,360 --> 00:04:17,500 |
|
ููู ุฎู
ุณุฉ external direct product ูู
ููุ ููู ุณุจุนุฉ |
|
|
|
37 |
|
00:04:17,500 --> 00:04:21,140 |
|
ูุนูู ููุณ ุจุงูุถุฑูุฑุฉ ุฃู ูููู two groups ู ููุง ู
ู
ูู |
|
|
|
38 |
|
00:04:21,140 --> 00:04:27,850 |
|
ูููู ุชูุงุชุฉ ู
ู
ูู ุฃุฑุจุนุฉู
ู
ูู ูููู K ู
ู ุงูุฃุฑูุงู
ุงููู |
|
|
|
39 |
|
00:04:27,850 --> 00:04:31,770 |
|
ูููุง relative ูุฃู ุงุฐุง ุฃุฎุฐุช ุงู ุงุชููู ู
ุน ุจุนุถ ุจูููููุง |
|
|
|
40 |
|
00:04:31,770 --> 00:04:35,890 |
|
relatively main ู relatively prime ูุฐุง ุจุงููุณุจุฉ |
|
|
|
41 |
|
00:04:35,890 --> 00:04:40,950 |
|
ูู
ูุ ููููุทุฉ ุงูุฃููู ู ุงูููุทุฉ ุงูุชุงูุชุฉ ูู ุฌูุช ููููุทุฉ |
|
|
|
42 |
|
00:04:40,950 --> 00:04:48,430 |
|
ุงูุซุงููุฉ ู ุจุฏู ุฃุญุณุจ ูุฃู ุฑูู
ู
ููู
ุจุฏู ุฃุญุณุจ U ู
ุซูุง |
|
|
|
43 |
|
00:04:48,430 --> 00:04:55,200 |
|
ุฎู
ุณ ุชุงุดุฑ ูู
ูู ูู
ูุฉ ูุฎู
ุณุฉ ูุณุงููุจุชุนุฑู ู
ูู ุนูุงุตุฑูุง |
|
|
|
44 |
|
00:04:55,200 --> 00:05:00,540 |
|
ุงูู
ุฑุฉ ุงููู ูุงุชุช ุงุนุทููุงููุง ุชุนุฑูู ููุง ููููุง ูู |
|
|
|
45 |
|
00:05:00,540 --> 00:05:05,640 |
|
ุงูุนูุงุตุฑ X ุจุญูุซ ุงู ุงู X modulo K ุจุฏู ุงุนุทููู ุงููุงุญุฏ |
|
|
|
46 |
|
00:05:05,640 --> 00:05:10,220 |
|
ุงูุตุญูุญ ุชุนุฑูู ูุชุจูุงู ู
ุนุงููุง ุงูู
ุฑุฉ ุงููู ูุงุชุช ุงุฐุง ุจุฏู |
|
|
|
47 |
|
00:05:10,220 --> 00:05:17,680 |
|
ุงุฏูุฑ ุนูู ุนูุงุตุฑ ุงู 105 ูุงุฑูุญ ุงุฌูุจ ุนูุงุตุฑ ุงู U15 ุนูู |
|
|
|
48 |
|
00:05:17,680 --> 00:05:23,610 |
|
105 ุงุธู ูู ุจุฏู ุงูุนุฏ ุงูุชุจ ุนูุงุตุฑ ุงู 105 ูููู
ูุชุงุฎุฏูุง |
|
|
|
49 |
|
00:05:23,610 --> 00:05:27,350 |
|
ุฎู
ุณ ุฏูุงูู ู ุงุญูุง ูุงุนุฏูู ูุณุชูุชุฌ ู
ูู ุงููู ุฑุชุจ ุงู |
|
|
|
50 |
|
00:05:27,350 --> 00:05:33,530 |
|
prime ู
ุน ู
ูุฉ ู ุฎู
ุณุฉ ูุฐูู ุจููู ูุฃ ุจุฏู ุงุญุณุจ ู
ุจุงุดุฑุฉ |
|
|
|
51 |
|
00:05:33,530 --> 00:05:39,750 |
|
ููู ุฎู
ุณุชุงุดุฑ ู
ูุฉ ู ุฎู
ุณุฉ ุงููุงุญุฏ ู
ููู
ูุฅู ุงููุงุญุฏ ูุงูุต |
|
|
|
52 |
|
00:05:39,750 --> 00:05:45,190 |
|
ูุงุญุฏ ูุณุงูู ุฒูุฑู ู
ุถุงุนูุงุช ุงูุฎู
ุณุชุงุดุฑ ุทูุจ ุงูุณุช ุนุดุฑ |
|
|
|
53 |
|
00:05:45,190 --> 00:05:50,660 |
|
ู
ููู
ูุนูู ุงูุช ุงูุฎุงู
ุณ ู ุงูุณุชุงุดุฑ ุฏู ู
ุงูุญุท ุฑูู
ูุฏุงู
ู ู |
|
|
|
54 |
|
00:05:50,660 --> 00:05:54,460 |
|
ูู
ุง ุชุญุท ุฑูู
ูุฏุงู
ู ุชุชุฃูุฏ ุงู ุงูุฑูู
ูุฐุง relatively |
|
|
|
55 |
|
00:05:54,460 --> 00:05:58,160 |
|
prime ุนูู ุงูู
ูุฉ ู ุฎู
ุณุฉ ููุง ูุง ุชู
ุงู
ุ ุญุชู ูููู ู
ู |
|
|
|
56 |
|
00:05:58,160 --> 00:06:02,200 |
|
ุนูุงุตุฑ ุงูู
ูุฉ ู ุฎู
ุณุฉ ุงูุณุชุงุดุฑ ู
ู ุนูุงุตุฑ ุงูู
ูุฉ ู ุฎู
ุณุฉ |
|
|
|
57 |
|
00:06:02,200 --> 00:06:05,340 |
|
ูุฃููู
ุจููุณู
ุด ุบูุฑ ุนูู ุงุชููู ู ุงุฑุจุนุฉ ู ุชู
ุงููุฉ ููุฐู |
|
|
|
58 |
|
00:06:05,340 --> 00:06:10,480 |
|
ูููุง relatively prime ุนูู ุงูู
ูุฉ ู ุฎู
ุณุฉ ูุจูู ุณุชุงุดุฑ |
|
|
|
59 |
|
00:06:10,480 --> 00:06:16,330 |
|
ุดุฑูู ูุงุญุฏ ู ุชูุงุชูู ู
ููู
ุูุฃุญุฏ ูุซูุงุซูู ูุฎู
ุณ ุนุดุฑ ูู |
|
|
|
60 |
|
00:06:16,330 --> 00:06:20,630 |
|
ุงุชููู ูุซูุงุซูู ููุงุญุฏ ูุงุญุฏ ูุซูุงุซูู ูุงููุงุญุฏ ูุซูุงุซูู |
|
|
|
61 |
|
00:06:20,630 --> 00:06:24,210 |
|
is a prime ูุจุงูุชุงูู relative to the prime ู
ุน ุฃู |
|
|
|
62 |
|
00:06:24,210 --> 00:06:30,630 |
|
ู
ููุง ุทูุจ ุณุชุฉ ูุงุฑุจุนูู ุณุชุฉ ูุงุฑุจุนูู relative to the |
|
|
|
63 |
|
00:06:30,630 --> 00:06:35,590 |
|
prime ู
ุน ุงูู
ูุฉ ูุฎู
ุณุฉ ูู ุงุชููู ูู ุชูุงุชุฉ ูุนุดุฑูู |
|
|
|
64 |
|
00:06:35,590 --> 00:06:38,590 |
|
ุงุชููู relative to the prime ูุงูุชูุงุชุฉ ูุนุดุฑูู ูุจูู |
|
|
|
65 |
|
00:06:38,590 --> 00:06:43,900 |
|
ูุนูุง ุงูุณุชุฉ ูุงุฑุจุนูู ู
ููู
ุทูุจ ุงููุงุญุฏ ูุงูุณุชููุงูุง ุจุถูู |
|
|
|
66 |
|
00:06:43,900 --> 00:06:48,380 |
|
ููู ุฎู
ุณุฉ ุนุดุงู ุชู
ุงู
ุงููุงุญุฏ ู ุณุชูู ู
ููู
ูุงู ูุงุญุฏ ู |
|
|
|
67 |
|
00:06:48,380 --> 00:06:54,060 |
|
ุณุชูู is a prime ูุฐูู ุทูุจ ุงูุฃู ูู ุฌูุช ุนูู ุงูุณุชุฉ ู |
|
|
|
68 |
|
00:06:54,060 --> 00:07:00,300 |
|
ุณุจุนูู ุณุชุฉ ู ุณุจุนูู ุงู ูุฐุง ูู
ุง ูุดูู ู
ู ุฎู
ุณ ุนุดุฑ ู
ุถู |
|
|
|
69 |
|
00:07:00,300 --> 00:07:03,580 |
|
ุฌุฏุงุด ู
ุถู ูุงุญุฏ ููุงู
ุตุญูุญ ููู ูู ุงูุณุชุฉ ู ุณุจุนูู |
|
|
|
70 |
|
00:07:03,580 --> 00:07:08,000 |
|
relative ู prime ู
ุน ุงูู
ูุฉ ู ุฎู
ุณุฉุนูู ุฎู
ุณุฉ ุจุชุฌูุด |
|
|
|
71 |
|
00:07:08,000 --> 00:07:13,920 |
|
ูุนูู ุณุจุนุฉ ุจุชุฌูุด ูุนูู ุชูุงุชุฉ ุจุฑุถู ุจุชุฌูุด ููุจูู ุงูุณุชุฉ |
|
|
|
72 |
|
00:07:13,920 --> 00:07:20,600 |
|
ูุณุจุนูู ูุฐูู ู
ููู
ุทูุจ ุงููุงุญุฏ ูุชุณุนูู ุฎู
ุณุฉ ูุณุจุนูู |
|
|
|
73 |
|
00:07:20,600 --> 00:07:25,280 |
|
ูุฎู
ุณุชุงุดุฑ ุชุณุนูู ูู
ุงู ูุงุญุฏ ูุงุญุฏ ูุชุณุนูู ู
ุนุงูู
ุญุท ูุนูู |
|
|
|
74 |
|
00:07:25,280 --> 00:07:33,410 |
|
ุทุจ ุณุจุนุฉ ูู ุชูุงุชุงุดุฑ ุจูุฏุงุดุู 91 ุทุจ ุงูุณุจุนุฉ ุจุชูุณุจ ุนูู |
|
|
|
75 |
|
00:07:33,410 --> 00:07:38,070 |
|
ุณุจุนุฉ ู ุงู 105 ุจุชูุณุจ ุนูู ุณุจุนุฉ ูุจูู ุงู 91 ู
ุด ู
ููู
|
|
|
|
76 |
|
00:07:38,070 --> 00:07:43,910 |
|
ุจุฏู ูู
ุงู ุฎู
ุณุงุด ุจููู ูู ุงูุชูุงุตู 105,106 ุจุฑุง ุงูุฑูู
|
|
|
|
77 |
|
00:07:43,910 --> 00:07:50,630 |
|
ุงูุชูููุง ู
ูููุจูู ูุง ููุฌุฏ ุงูุง ูุฐู ุงูุฃุฑูุงู
ุชู
ุงู
ุดููุช |
|
|
|
78 |
|
00:07:50,630 --> 00:07:55,630 |
|
ููู ุจูุญุณุจูุง ุงุฎุชุงุฑูู ุงู ุฑูู
ู
ู ุนูุฏู ู
ู ุงูุฃุฑูุงู
ุงููู |
|
|
|
79 |
|
00:07:55,630 --> 00:08:01,470 |
|
ูู ุงููู ุจุชูุณู
105 ุญุชู ูุญุณุจูุง ุทูุจ ูุฏูุง ุงููู ูู 15 |
|
|
|
80 |
|
00:08:01,470 --> 00:08:11,800 |
|
ุฃููุณ isomorphic ููู 7ูุฃู ุณุจุนุฉ ูู ุฎู
ุณุชุงุดุฑ ุจู
ูุฉ |
|
|
|
81 |
|
00:08:11,800 --> 00:08:16,340 |
|
ูุฎู
ุณุฉ ู ุงุญูุง ูููุง ููุง ุงู U S ุนูู ST isomorphic |
|
|
|
82 |
|
00:08:16,340 --> 00:08:21,360 |
|
ูู
ููุ ู U T ูุจูู ุงุญูุง ููุง ูููุง U ุฎู
ุณุชุงุดุฑ ู ูุฐุง |
|
|
|
83 |
|
00:08:21,360 --> 00:08:25,000 |
|
ุนุจุงุฑุฉ ุนู ุฎู
ุณุชุงุดุฑ ูู ุณุจุนุฉ ูุจูู isomorphic ู U ุณุจุนุฉ |
|
|
|
84 |
|
00:08:25,000 --> 00:08:30,170 |
|
U ุณุจุนุฉ ูู
ุนูุตุฑ ูููุุณุช ุนูุงุตุฑ ูุฏูู ุณุชุฉ ูุงุญุฏ ุงุชููู |
|
|
|
85 |
|
00:08:30,170 --> 00:08:34,490 |
|
ุชูุงุชุฉ ุงุฑุจุน ุฎู
ุณุฉ ุณุชุฉ ูููุง ู
ูุงุตุนูุฉ ู
ูุฉ ูู
ูุฉ ุชู
ุงู
|
|
|
|
86 |
|
00:08:34,490 --> 00:08:39,450 |
|
ุงุฎุชุงุฑ ูู ูู
ุงุฑ ุฑูู
ุงุฎุฑ ูุญุณุจู ูู ุจููุณ ุงูุทุฑููุฉ ุงููู |
|
|
|
87 |
|
00:08:39,450 --> 00:08:48,470 |
|
ุจุฏู ูููุง ููู
ูู ูุญุณุจ ุชุญุณุจ ูู
ุงู ูุงุญุฏ ุจููู ููู
ูุฏุงุดุฑ |
|
|
|
88 |
|
00:08:48,470 --> 00:08:54,730 |
|
ุฎู
ุณุฉ ู ุชูุงุชูู ุฎู
ุณุฉ ู ุชูุงุชูู ุงูุช ุฌูุจุช ุงุณูู ุญุงุฌุฉุทุจ |
|
|
|
89 |
|
00:08:54,730 --> 00:08:57,270 |
|
ู
ู ุงูุง ู
ุงุนุฑู ูุนุทููู ุงูุดู
ุงู ุงููู ููู ูุงููู ูุง ุฃุจู |
|
|
|
90 |
|
00:08:57,270 --> 00:09:02,170 |
|
ูุงุญุฏ ุงูู ูุงุญุฏ ู
ููู
ุณุช ู ุชูุงุชูู ุงููุงุญุฏ ุงู ู
ุนุฑูู |
|
|
|
91 |
|
00:09:02,170 --> 00:09:06,310 |
|
ุงุฌูุจ ุนููู ุณุช ู ุชูุงุชูู ุณุช ู ุชูุงุชูู ู
ููู
ู
ุงุฎุชูู ู
ููู
|
|
|
|
92 |
|
00:09:06,310 --> 00:09:11,550 |
|
ุจุต ุจุต ุจุต ุณุช ู ุชูุงุชูู ู
ููู
ุณุช ู ุชูุงุชูู ุงููู ุชุจูู |
|
|
|
93 |
|
00:09:11,550 --> 00:09:15,850 |
|
prime ู
ุน ู
ูุฉ ู ุฎู
ุณุฉ ู
ุด ุจููุณุจ ู
ุน ุชูุงุชุฉ ุณุช ู ุชูุงุชูู |
|
|
|
94 |
|
00:09:15,850 --> 00:09:20,170 |
|
ุงูู ุฏู ู
ุด ู
ููู
ุญุทู ุน ุดุฌุฉ ูุงููู ุณุจุนูู ูุงุญุฏ ู ุณุจุนูู |
|
|
|
95 |
|
00:09:20,170 --> 00:09:30,240 |
|
ูุงุญุฏ ู ุณุจุนูู ู
ููู
ุฃููุฏุ ุงุณู
ูุง ูุง ุฑุงุฌู ูุนูู |
|
|
|
96 |
|
00:09:30,240 --> 00:09:37,060 |
|
ู
ุด ู
ููู
ุทุจ ุงูุง ุจุฏุฃ ุฃุญุท ู
ููู
ูุฐุง ูู ุทุจ ุฎูุตูุง ููุง |
|
|
|
97 |
|
00:09:37,060 --> 00:09:43,860 |
|
ููู ูู
ุงูุ ูุฏู ุงูุด ุจุตูุฑุ |
|
|
|
98 |
|
00:09:43,860 --> 00:09:48,760 |
|
ุจุฑู ูุจูู ู
ุงุนูุฏูุด ุฅูุง ุฑูู
ููุ ุชู
ุงู
ุูุฐุง ุงููู ูู ู
ูู |
|
|
|
99 |
|
00:09:48,760 --> 00:09:56,340 |
|
ุงููู ูู ูู ุฎู
ุณุฉ ู ุชูุงุชูู ููุฐุง isomorphic ูู
ูุ ูููู |
|
|
|
100 |
|
00:09:56,340 --> 00:10:02,120 |
|
ุชูุงุชุฉูู
ุง ูููุง ููุง isomorphic ูู U ุชูุงุชุฉ ู ููุฐุง |
|
|
|
101 |
|
00:10:02,120 --> 00:10:07,060 |
|
ุชู
ุงู
ุ ุงูุฎุทุฑ ุงู ูุฌูุจ ุฑูู
ูุจูุฑ ูุงู ูุฐุง ุณูู ูุนูู ุฌูุจ |
|
|
|
102 |
|
00:10:07,060 --> 00:10:13,540 |
|
ุนูุฏู ุงุนุฏุงุฏ ูุชูุฑุฉ ุฒู ุงูุด ู
ุซูุง ุฒู U ู
ูุฉ ู ุฎู
ุณุฉ ุฃุจุตุงุฑ |
|
|
|
103 |
|
00:10:13,540 --> 00:10:18,640 |
|
ูุฏูุด ููุง ุงุฎุชุงุฑูู ุณุจุนุฉ ุฎู
ุณุชุงุดุฑ ุฎู
ุณุชุงุดุฑ ุฎุฏูุงู ูุจูู |
|
|
|
104 |
|
00:10:18,640 --> 00:10:22,640 |
|
ุจุฏู ูุงุญุฏ ู ุนุดุฑูู ุฎู
ุณุฉ ุงู ูุงุญุฏ ู ุนุดุฑูู |
|
|
|
105 |
|
00:10:44,500 --> 00:10:48,020 |
|
ู
ูู ุงูุฑูู
ุงููู ูู ุถุฑุจุช ูู ุฎู
ุณุฉ ู ุชูุงุชูู ุจูุนุทูู ู
ูุฉ |
|
|
|
106 |
|
00:10:48,020 --> 00:10:52,880 |
|
ู ุฎู
ุณุฉ ุงููู ูู ุชูุงุชุฉู
ุตุจูุท ูุจุงูุชุงูู ูุฐุง isomorphic |
|
|
|
107 |
|
00:10:52,880 --> 00:10:58,740 |
|
ู U ุชูุงุชุฉ ู ููุฐุง ุทูุจ ูู ูููุง ุฑูู
ุชุงูู U ูุฏุงุด ููุชูุง |
|
|
|
108 |
|
00:10:58,740 --> 00:11:06,060 |
|
ูุงุญุฏ ู ุนุดุฑูู ูุงุญุฏ ู ุนุดุฑูู ููุฌู ูุงุญุฏ ู
ููู
ุจุนุฏู |
|
|
|
109 |
|
00:11:06,060 --> 00:11:11,880 |
|
ุงุชููู ู ุนุดุฑูู ู
ููู
ุงููุฏ ููุง ูุง ู
ุด ุงุชููู ู ุนุดุฑูู |
|
|
|
110 |
|
00:11:11,880 --> 00:11:13,780 |
|
ุงููู ูู ุงุชููู ูู ุงุญุฏ ู ุนุดุฑูู ุงููู ูู ุงู prime ูู |
|
|
|
111 |
|
00:11:13,780 --> 00:11:18,900 |
|
ุนู
ูุฉ ู ุฎู
ุณุฉ ุงููู ูู ุงุชููู ู ุนุดุฑูู ุทุจ ุชูุงุชุฉ ู |
|
|
|
112 |
|
00:11:18,900 --> 00:11:27,800 |
|
ุงุฑุจุนูู ู
ููู
21 ูู 2 ุจ 42 ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท |
|
|
|
113 |
|
00:11:27,800 --> 00:11:27,960 |
|
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท |
|
|
|
114 |
|
00:11:27,960 --> 00:11:33,820 |
|
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท |
|
|
|
115 |
|
00:11:33,820 --> 00:11:34,800 |
|
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท |
|
|
|
116 |
|
00:11:34,800 --> 00:11:36,780 |
|
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท |
|
|
|
117 |
|
00:11:36,780 --> 00:11:46,880 |
|
ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบุท ุงุถุบ |
|
|
|
118 |
|
00:11:47,650 --> 00:11:53,250 |
|
ูุจูู ูุฐู ุงููู ูู ู
ู ุงูุฃุฑุจุนุฉ ูุณุชูู ุทุจ ูู ุถุฑุจุชู ูู |
|
|
|
119 |
|
00:11:53,250 --> 00:11:59,390 |
|
ุฃุฑุจุนุฉ ุจุตูุฑ ุฃุฑุจุนุฉ ู ุชู
ุงููู ู ูุงุญุฏ ุฎู
ุณุฉ ู ุชู
ุงููู ููุณ |
|
|
|
120 |
|
00:11:59,390 --> 00:12:01,850 |
|
relatively prime ู
ุน ู
ูู ู
ุนู ู
ูุฉ ู ุฎู
ุณุฉ ูุฅู ูู |
|
|
|
121 |
|
00:12:01,850 --> 00:12:06,910 |
|
ุจููุณุจ ุนูู ุฎู
ุณุฉ ูุจูู ุญุทู ุนูู ุดุฌุฑุฉ ุงูุขู ุจุนุฏ ุงูุฃุฑุจุนุฉ |
|
|
|
122 |
|
00:12:06,910 --> 00:12:13,350 |
|
ู ุชู
ุงููู ูู ุถุฑุจุช ูู ุฎู
ุณุฉ ุจุตูุฑ ุงูู
ูุฉ ู ุฎู
ุณุฉูุจูู |
|
|
|
123 |
|
00:12:13,350 --> 00:12:18,170 |
|
ุงูุชูููุง ู
ูู ู
ุธุจูุท ูุจูู ูุง ููุฌุฏ ุนูุฏู ุงูุง ูุฐู |
|
|
|
124 |
|
00:12:18,170 --> 00:12:25,630 |
|
ุงูุฃุฑูุงู
ููุฐุง isomorphic ููู ุฎู
ุณุฉ ุชู
ุงู
ูุฅูู ุฎู
ุณุฉ ูู |
|
|
|
125 |
|
00:12:25,630 --> 00:12:31,050 |
|
ูุงุญุฏ ูุนุดุฑูู ูู ุงููู ุจู
ูุฉ .. ู
ูุฉ ูุฎู
ุณุฉ ุชุทูุน ูู ุฎู
ุณุฉ |
|
|
|
126 |
|
00:12:31,050 --> 00:12:35,070 |
|
ูููุง ูุงุญุฏ ูุงุชููู ูุชูุงุชุฉ ูุงุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑูุงู
ูู
ุงุนูุงุด |
|
|
|
127 |
|
00:12:35,070 --> 00:12:41,100 |
|
ููุง ุฅูุง ู
ูู ุฅูุง ุฃุฑุจุนุฉ ุฃุฑูุงู
ููุถุน ุงูุดุบู ูุฐุง ูุฏููุจูู |
|
|
|
128 |
|
00:12:41,100 --> 00:12:46,320 |
|
ุงููU ุงููู ุนูุฏู ุฌุฏุฑ ุชุฌูุจูุง isomorphic ูู
ูู ููgroups |
|
|
|
129 |
|
00:12:46,320 --> 00:12:51,460 |
|
ุงู ุงููexternal product ูู
ุงูู ููgroups ู
ุฎุชููุฉ ููุณู |
|
|
|
130 |
|
00:12:51,460 --> 00:12:57,100 |
|
ูู ููุงู
ูู ูุฐุง ุงูู
ูุถูุน ุงูููุงู
ู
ุงุดู ุจุฏู ุฃูุชูู ู
ู |
|
|
|
131 |
|
00:12:57,100 --> 00:13:03,120 |
|
ุงููU groups ุฃุญูููุง ุฅูู isomorphic ููcyclic ุงููู ูู |
|
|
|
132 |
|
00:13:03,120 --> 00:13:09,240 |
|
ููgroups ุงููู ูู Z2 ูZ3 ูZ4 ูZ5 ูZ10 ูZ30 ูู
ุง ุฅูู |
|
|
|
133 |
|
00:13:09,240 --> 00:13:14,770 |
|
ุฐูููู ุนูุฏูุง .. ุงููู ูู .. ุงููู ูู ูุงุนุฏุฉ ุงููุงุนุฏุฉ |
|
|
|
134 |
|
00:13:14,770 --> 00:13:19,430 |
|
ูุฐู ุทุจุนุง ุจุฑููุช ูู ุฅุญุฏู ุงูู
ุฑุงุฌุน ุงูุชู ุงุนุชู
ุฏ ุนูููุง |
|
|
|
135 |
|
00:13:19,430 --> 00:13:28,230 |
|
ูุฐุง ุงููุชุงุจ ููุฐูู ุจุฏูุง ูุงุฎุฏูุง ูุญูุงุฆู we have the |
|
|
|
136 |
|
00:13:28,230 --> 00:13:36,170 |
|
following notes ุฃู the following facts ุฏู ุนูุฏู |
|
|
|
137 |
|
00:13:36,170 --> 00:13:45,210 |
|
ุญูุงุฆู ู
ูู
ุฉ ุฌุฏุงุงูุญูููุฉ ุงูุฃููู ุงู ุงู U2 isomorphic |
|
|
|
138 |
|
00:13:45,210 --> 00:13:51,430 |
|
ููุท ูุณุช ููุด ูููุง ุงููุงุญุฏ ุฅูุง ุงููุงุญุฏ ุงูุตุญูุญ and ุงู |
|
|
|
139 |
|
00:13:51,430 --> 00:14:04,550 |
|
U4 isomorphic ูู
ุงู
ู U isomorphic ู U2 ุชุฑุจูุนุฃู |
|
|
|
140 |
|
00:14:04,550 --> 00:14:13,770 |
|
ุชุณุงููุฉ U2 ุชุฑุงุจูุน ูุงููู ูู isomorphic ู Z2 ุงูููุทุฉ |
|
|
|
141 |
|
00:14:13,770 --> 00:14:25,110 |
|
ุงูุซุงููุฉ ุงู U2 ุฃูุณ N isomorphic ู Z2 External |
|
|
|
142 |
|
00:14:25,110 --> 00:14:36,130 |
|
Direct Product ู
ุน Zุฒุฏ ุงุชููู ุงูุณ ุงู ูุงูุต ุงุชููู ุงูุณ |
|
|
|
143 |
|
00:14:36,130 --> 00:14:43,630 |
|
ุงู fourู ุฃูุจุฑ ู
ู ุฃู ุชุณุงูู ุชูุงุชุฉ ุงูููุทุฉ ุงูุซุงูุซุฉ |
|
|
|
144 |
|
00:14:43,630 --> 00:14:51,230 |
|
ูุงูุงุฎูุฑุฉ ุงู U P to the power in isomorphic ูู
ูู ู |
|
|
|
145 |
|
00:14:51,230 --> 00:15:08,110 |
|
Z P N ูุงูุต P ุฃุณ N ูุงูุต ูุงุญุฏ for P and D primeุงูู P |
|
|
|
146 |
|
00:15:08,110 --> 00:15:13,090 |
|
and odd a prime so |
|
|
|
147 |
|
00:15:13,090 --> 00:15:25,230 |
|
we can write we can write ุงู U-groups ุงู U-groups |
|
|
|
148 |
|
00:15:25,230 --> 00:15:31,490 |
|
as an external direct product as an external |
|
|
|
149 |
|
00:15:31,490 --> 00:15:36,970 |
|
direct product |
|
|
|
150 |
|
00:15:39,750 --> 00:15:52,890 |
|
external product of cyclic groups ูุนุทู |
|
|
|
151 |
|
00:15:52,890 --> 00:15:59,750 |
|
ู
ุซุงู example write |
|
|
|
152 |
|
00:16:03,490 --> 00:16:13,370 |
|
ูู ุณุจุนู
ูุฉ ูุนุดุฑูู ูู ุณุจุนู
ูุฉ ูุนุดุฑูู as |
|
|
|
153 |
|
00:16:13,370 --> 00:16:21,070 |
|
an external direct product as an external direct |
|
|
|
154 |
|
00:16:21,070 --> 00:16:28,950 |
|
product external |
|
|
|
155 |
|
00:16:28,950 --> 00:16:31,610 |
|
direct product of |
|
|
|
156 |
|
00:16:34,130 --> 00:16:50,950 |
|
cyclic growth ูุฑุฌุน |
|
|
|
157 |
|
00:16:50,950 --> 00:16:56,230 |
|
ููุฐู ุงูุญูุงุฆู ู
ุฑุฉ ุฃุฎุฑู ููุดูู ููู ุจุฏูุง ูุดุชุบู ุนูููุง |
|
|
|
158 |
|
00:16:56,230 --> 00:17:02,010 |
|
ุฃู ู
ุงุฐุง ูุณุชููุฏ ู
ู ูุฐู ุงูุญูุงุฆู ุงูุซูุงุซุงูููุทุฉ ุงูุฃููู |
|
|
|
159 |
|
00:17:02,010 --> 00:17:08,350 |
|
ุฌุงู ุงู U2 isomorphic ููุนุฏุฏ ุงููู ูู ูุงุญุฏ as a set |
|
|
|
160 |
|
00:17:08,350 --> 00:17:12,510 |
|
ุทุจุนุง U2 ู
ุงููุด ูููุง ุฅูุง man ููุนูุตุฑ ุงููู ูู ุงููุงุญุฏ |
|
|
|
161 |
|
00:17:12,510 --> 00:17:18,370 |
|
ูุจูู ูุฐุง ูุถุน ุทุจูุนู ูู trivial case ุงูุญุงูุฉ ุงูุจุฏูููุฉ |
|
|
|
162 |
|
00:17:18,370 --> 00:17:26,850 |
|
U4 ู U2 ุชุฑุจูุฉ isomorphic ู Z2 ูุฃู U4 ูููุง ูุงู
ุนูุตุฑ |
|
|
|
163 |
|
00:17:28,400 --> 00:17:31,100 |
|
ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ |
|
|
|
164 |
|
00:17:31,100 --> 00:17:31,580 |
|
ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู |
|
|
|
165 |
|
00:17:31,580 --> 00:17:33,480 |
|
ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ |
|
|
|
166 |
|
00:17:33,480 --> 00:17:36,180 |
|
ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ |
|
|
|
167 |
|
00:17:36,180 --> 00:17:44,480 |
|
ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ |
|
|
|
168 |
|
00:17:44,480 --> 00:17:45,540 |
|
ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ |
|
|
|
169 |
|
00:17:45,540 --> 00:17:45,540 |
|
ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู |
|
|
|
170 |
|
00:17:45,540 --> 00:17:53,960 |
|
ุฃุฑุจุนุฉ ุชูุงุชุฉ ูู ุฃุฑุจุนุฉ ุชูุงุชุฉ |
|
|
|
171 |
|
00:17:53,960 --> 00:18:00,350 |
|
ูู ุฃุฑุจุฃุชููู ูุงูุต ุงุชููู ู
ู ุงูุขู ูุตุงุนุฏุง ูุดุชุบู ุจุดูู |
|
|
|
172 |
|
00:18:00,350 --> 00:18:06,610 |
|
ูุฐุง ูุนูู ุงู N ูุงูุต ุงุชููู ูู ุฃุณ ูู
ูู ููุฅุชููู ุงูุขู |
|
|
|
173 |
|
00:18:06,610 --> 00:18:15,470 |
|
ุงู UPN isomorphic ูุฒุฏ P ุฃุณ N ู
ุทุฑูุญุง ู
ูู P ุฃุณ N |
|
|
|
174 |
|
00:18:15,470 --> 00:18:21,030 |
|
ูุงูุต ูุงุญุฏ ูุฅูู
ุง ูููู P prime ู P ุฃูุจุฑ ู
ู ู
ูู ู
ู |
|
|
|
175 |
|
00:18:21,030 --> 00:18:24,620 |
|
ุงูุฅุชููู ูุนูู ุฃูุช ุชูุงุชุฉ ูุตุงุนุฏุงูุจูู ูุฐุง ุงูููุงู
|
|
|
|
176 |
|
00:18:24,620 --> 00:18:29,060 |
|
ูุฏุงู
ูุง ู
ูุฌูุฏ ุจุงูุดูู ููุง ูุฐุง ุงูุด ูุงูุฏูุชูุ ูุงูุฏูุชู |
|
|
|
177 |
|
00:18:29,060 --> 00:18:34,420 |
|
ุงู ุงู group UN ู
ูู
ุง ูุงู ุดูููุง ู
ู
ูู ุงุฎูููุง |
|
|
|
178 |
|
00:18:34,420 --> 00:18:40,300 |
|
isomorphic ูู
ูู ู cyclic groups ุดู ุงู cyclic |
|
|
|
179 |
|
00:18:40,300 --> 00:18:44,560 |
|
groups ุงููู ูููุง ุจุฏู ุงูุชุจูุง ุจุฏูุงูุฉ z ูุงูุงุนุฏุงุฏ ุงููู |
|
|
|
180 |
|
00:18:44,560 --> 00:18:50,160 |
|
ู
ูุฌูุฏุฉ ูู z2 ูู z3 ูู z4 ุณูู ุญุณุงุจุชูู
ููู ูู ุฌุชูู |
|
|
|
181 |
|
00:18:50,160 --> 00:18:55,300 |
|
720 ุจุฏู ุงูุชุจ ุฃุฑูุงู
ูุงู
ู ููุง ููุฏูุฑ ุฏูุจ ูุฎูุต ู ุงุญูุง |
|
|
|
182 |
|
00:18:55,300 --> 00:18:59,320 |
|
ุจุฏูุง ูุฌูุจ ุงูุฃููุงู
ุงููู relative ู prime ู
ุน ู
ูู ู
ุน |
|
|
|
183 |
|
00:18:59,320 --> 00:19:04,000 |
|
ุงู 720 ูุตุชูุง ุทูููุฉ ู ุญุฒููุฉ ููู ูู
ุง ุงูุง ุงูุชุจูุง ุจูุฐุง |
|
|
|
184 |
|
00:19:04,000 --> 00:19:08,480 |
|
ุงูุดูู ุจุฏุงูุฉ ุงู Z ุจุตูุฑ ุณูู ุงูุชุนุงู
ู ู
ุนุงูุง ูุจูู ูุงุฆุฏุฉ |
|
|
|
185 |
|
00:19:08,480 --> 00:19:14,800 |
|
ูุฐู ุงูุญูููุฉ ุชุณููู ุงูุชุนุงู
ู ู
ุน ู
ูู ู
ุน ุงู U-groups |
|
|
|
186 |
|
00:19:15,040 --> 00:19:20,560 |
|
ูุนุทูู ู
ุซุงู ุชูุถูุญู ุนูู ุฐูู ุงููู ุงูุชุจ ู U720 as a |
|
|
|
187 |
|
00:19:20,560 --> 00:19:25,600 |
|
product of cyclic aggregate ุจูู ุฏู ุจูููู ุงูุญู |
|
|
|
188 |
|
00:19:25,600 --> 00:19:31,060 |
|
ูุชุงูุฉ solution ูุจูู |
|
|
|
189 |
|
00:19:31,060 --> 00:19:34,620 |
|
ุงูุง ุจุฏู ุงุฑูุญ ู U720 |
|
|
|
190 |
|
00:19:35,530 --> 00:19:42,230 |
|
ูุฐู ุงููู ุจูุฏุฑ ุงูุชุจูุง Uly ุจุฏู ุงุญุทูุง ุนูู ุญุงุตู ุถุฑุจ |
|
|
|
191 |
|
00:19:42,230 --> 00:19:52,190 |
|
ุงุนุฏุงุฏ ูู ููุชูู ูุฐู ุนุจุงุฑุฉ ุนู 16ร9ร5 5ร16 ุจู 80 80ร9 |
|
|
|
192 |
|
00:19:52,190 --> 00:19:58,260 |
|
8ร9 ุจู 72 ูุนูู 720ูุจูู ูุฐุง ุงูููุงู
ุตุญูุญ ุจุงูู
ุงุฆุฉ |
|
|
|
193 |
|
00:19:58,260 --> 00:20:05,660 |
|
ุจุงูู
ุงุฆุฉ ูุฐู ุงูุงู ุงูุฒู ู
ูุฑูู ูู
ูู ููู ุณุชุงุดุฑ |
|
|
|
194 |
|
00:20:05,660 --> 00:20:11,260 |
|
ุงูุณุชูุฑูุงู ุฏุงููุง product ู
ุนุงู ุชุณุนุฉ ุงูุณุชูุฑูุงู ุฏุงููุง |
|
|
|
195 |
|
00:20:11,260 --> 00:20:19,020 |
|
product ู
ุนุงู ุฎู
ุณุฉุทูุจ ูุฐู ู
ูู ูู ุ ุฃููุณุช U2 ุฃูุต |
|
|
|
196 |
|
00:20:19,020 --> 00:20:25,200 |
|
ุฃุฑุจุน Extended product ุชูุงุชุฉ ุชุฑุงุจูุน Extended |
|
|
|
197 |
|
00:20:25,200 --> 00:20:33,380 |
|
product ู U ุฎู
ุณุฉ ุณุช ุนุดุฑ ุงููู ูู ุงุชููู ุฃูุต ุฃุฑุจุน ู |
|
|
|
198 |
|
00:20:33,380 --> 00:20:36,880 |
|
ุชูุงุชุฉ ุชุฑุงุจูุน ุงููู ูู ุชุณุนุฉ ู ุงูุฎู
ุณุฉ ุฒู
ุงู ุทูุจ ุงูุณุคุงู |
|
|
|
199 |
|
00:20:36,880 --> 00:20:41,880 |
|
ูู ููุด ูุชุจุชู ุฒู ูููุุณูู ุฃุญุงูู ุฃู ุฃููู
ุจุงูุชุญููู ุฅูู |
|
|
|
200 |
|
00:20:41,880 --> 00:20:49,060 |
|
ุงูู Cyclic Group. ููู ุนูุฏู
ุง ุฃุญุงูู ุชุญููููุง ุจุฏูุงูุฉ |
|
|
|
201 |
|
00:20:49,060 --> 00:20:53,260 |
|
ุงูุฒุฏ ุงููู ูุฏู ุญุณุจ ุงูููุงุนุฏ ุงููู ูุฏู ุจูุฏุฑ ุฃุชุฃูุฏ ุฃู |
|
|
|
202 |
|
00:20:53,260 --> 00:20:56,760 |
|
ููุงู
ู ู
ุงุฆุฉ ูู ุงูู
ุงุฆุฉ ููู external product ูู |
|
|
|
203 |
|
00:20:56,760 --> 00:20:57,700 |
|
Cyclic Group |
|
|
|
204 |
|
00:21:02,550 --> 00:21:08,190 |
|
ู
ุงุดู ู
ุง ุงุญูุง ูููุง ู
ุดุงู ููู ุจุฏูุง ูุจุณุท ูุงูุดุบู ูุฐู |
|
|
|
205 |
|
00:21:08,190 --> 00:21:14,710 |
|
ุจุฏูุง ูุจุณุท ูุงูุดุบู ูุฐู ู .. ู ูุฑูุญ ููุชุจูุง ุจูุฐุง ุงูุดูู |
|
|
|
206 |
|
00:21:14,710 --> 00:21:22,410 |
|
ุทูุจ ูุจูู ูุงู ูุชุจุช ุงูู U 720 ุนูู ุงูุดูู ุงููู ุนูุฏู |
|
|
|
207 |
|
00:21:22,410 --> 00:21:29,400 |
|
ููุฐู ูุชุจุชูุง ุจุงูุดูู ูุฐุงุงูุงู ูุฐู U2 ุฃูุตู 4 ููุง U2 |
|
|
|
208 |
|
00:21:29,400 --> 00:21:35,560 |
|
ุฃูุตู N ู N ุฃูุจุฑ ู
ู ุฃู ูุณูู 3 ุงูุฒู ู
ูุฑูู ููุฐู ุฅุฐุง |
|
|
|
209 |
|
00:21:35,560 --> 00:21:41,320 |
|
ุจุฏู ุฃููู ูู ูุฐู ุงูุฒู ู
ูุฑูู ูุฒุฏ ุงุชููู external |
|
|
|
210 |
|
00:21:41,320 --> 00:21:47,700 |
|
direct product ู
ุน ุฒุฏ ุจูููู ูู ู
ูู ุงุชููู ูู ุฒู ู
ุง |
|
|
|
211 |
|
00:21:47,700 --> 00:21:53,650 |
|
ููู ุงู n ุงููู ูู ุงุฑุจุนุฉ ูุงูุต ุงุชููู ูุจูู ุทุจูุช ูุฐู |
|
|
|
212 |
|
00:21:53,650 --> 00:21:58,210 |
|
ุนูู main ุนูู ุงูุฃููู ุงููู ูู ุงุชููู ุงูุต ุงุฑุจุนุฉ ู |
|
|
|
213 |
|
00:21:58,210 --> 00:22:04,370 |
|
ูุตููุง ูุฐู ุฒู ุงู n ุงูุชูุงุชุฉ ูุฐุง prime ู
ุธุจูุท ุงุฐุง |
|
|
|
214 |
|
00:22:04,370 --> 00:22:09,490 |
|
ุจูุฏุฑูุญ ูู
ูู ููุญุงูุฉ ุงูุชุงูุชุฉ ูุจูู isomorphic ูู
ูู |
|
|
|
215 |
|
00:22:09,490 --> 00:22:18,300 |
|
ูุฒูP ุงูุชู ูู ุซูุงุซุฉ ู N ุงุชููู ูุงูุต ุซูุงุซุฉ ุฃุณ ุงุชููู |
|
|
|
216 |
|
00:22:18,300 --> 00:22:23,920 |
|
ูุงูุต ูุงุญุฏ ุซู
ุฎูุตูุง ูุฐู ุงูุงู
ุฑ ูููุงู ุงุณุชููุธูุง ุถุงูู |
|
|
|
217 |
|
00:22:23,920 --> 00:22:30,900 |
|
ูุชุงุจุฉ ู
ุน U ุฎู
ุณุฉ ุงููู ูู ุนุจุงุฑุฉ ุนู Z ูุฏู |
|
|
|
218 |
|
00:22:30,900 --> 00:22:39,380 |
|
ุงุด ูููุง ZP ูุนูู Z ุฎู
ุณุฉ ุฃุณ ูุงุญุฏ ูุงูุต ุฎู
ุณุฉ ุฃุณ ูุงุญุฏ |
|
|
|
219 |
|
00:22:39,380 --> 00:22:46,500 |
|
ูุงูุต ูุงุญุฏูุจูู ุงูุทุฉ ููุฏ ู
ุจุงุดุฑุฉ ูุฐุง P ุจุซูุงุซุฉ ู P |
|
|
|
220 |
|
00:22:46,500 --> 00:22:52,960 |
|
ุจุฎู
ุณุฉ ู N ุจูุงุญุฏ ุฎู
ุณุฉ ู S ูุงุญุฏ ูุงูุต ูุงุญุฏ ุดูู ูุฐู |
|
|
|
221 |
|
00:22:52,960 --> 00:22:59,920 |
|
ุงูุด ุตุงุฑุช ุตุฑุช ูุฐู Z ุฏู ุงุชููู external product ู
ุน Z |
|
|
|
222 |
|
00:22:59,920 --> 00:23:06,470 |
|
ุฃุจุตุฑ ุฌุฏุงุดุฃุฑุจุนุฉ ูุงูุต ุงุชููู ุจุงุชููู ุงุชููู ุชุฑุจูุน ุจุงุฑุจุน |
|
|
|
223 |
|
00:23:06,470 --> 00:23:13,110 |
|
ูุจูู ูุฐู isomorphic ูุฒุงุฏ ุงุฑุจุน ูุฌู ููุฐู ุชูุงุชุฉ ุชุฑุจูุน |
|
|
|
224 |
|
00:23:13,110 --> 00:23:19,270 |
|
ุชุณุนุฉ ู ููุง ุชูุงุชุฉ ุฃุณ ูุงุญุฏ ุชูุงุชุฉ ุชุณุนุฉ ูุงูุต ุชูุงุชุฉ |
|
|
|
225 |
|
00:23:19,270 --> 00:23:26,640 |
|
ุจุณุชุฉ ูุจูู isomorphic ูุฒุงุฏ ุณุชุฉููุฐู ุงูุขู ุฎู
ุณุฉ ุฃุณ |
|
|
|
226 |
|
00:23:26,640 --> 00:23:32,880 |
|
ุฒูุฑู ุจูุงุญุฏ ูููุง ุฎู
ุณุฉ ุฃุณ ูุงุญุฏ ุจุฎู
ุณุฉ ูุงูุต ูุงุญุฏ ูุจูู |
|
|
|
227 |
|
00:23:32,880 --> 00:23:39,580 |
|
ุฒุฏ ุฃุฑุจุน ูุจูู ูุงู ูุชุงุจุฉ ุฒุฏ ุณุจุนู
ุงุฆุฉ ูุนุดุฑูู ุนูู ุตูุบุฉ |
|
|
|
228 |
|
00:23:39,580 --> 00:23:42,840 |
|
ุฒุฏ ุงุชููู external product ูุฒุฏ ุฃุฑุจุน external |
|
|
|
229 |
|
00:23:42,840 --> 00:23:48,220 |
|
product ูุฒุฏ ุณุชุฉ external product ูุฒุฏ ุฃุฑุจุน ูุงูุงุฑุจุน |
|
|
|
230 |
|
00:23:48,220 --> 00:23:53,580 |
|
cyclic groupsูุจูู ุจูุงุก ุนููู ุงู group ุงููู ุนูุฏูุง ูู |
|
|
|
231 |
|
00:23:53,580 --> 00:23:58,840 |
|
ุณุจุนู
ูุฉ ูุนุดุฑูู ุฌุจุช group ุจุชุนู
ู ู
ุนุงูุง isomorphism |
|
|
|
232 |
|
00:23:58,840 --> 00:24:03,460 |
|
ูุจุงูุชุงูู ุฎูุงุต ุงู ูู ุณุจุนู
ูุฉ ูุนุดุฑูู ูู ููุณ ุงูุฎูุงุต |
|
|
|
233 |
|
00:24:03,460 --> 00:24:06,940 |
|
ุงููู ุนูุฏูุง ูุจูู ุจูุงุก ุนููู ูู ุฌุงูู ูุงุชูู element ุงู |
|
|
|
234 |
|
00:24:06,940 --> 00:24:12,020 |
|
order ุงูู ูุฐุง ูู ุณุจุนู
ูุฉ ูุนุดุฑููุจุฑูุญ ุนูู ูุฐู ูุฐู ุณูู |
|
|
|
235 |
|
00:24:12,020 --> 00:24:16,840 |
|
ุงูุชุนุงู
ู ู
ุนุงูุง ุจุณ ููู 720 ุตุนุจ ุงูุชุนุงู
ู ู
ุนุงูุง ุฅุฐุง |
|
|
|
236 |
|
00:24:16,840 --> 00:24:22,600 |
|
ุจุฌูุจ ูุฐู ุงูู
ูุงูุฆุฉ ููุง ูู
ู ุฎูุงููุง ุจูุฏุฑ ุฃุฌูุจ ู
ู ุงููู |
|
|
|
237 |
|
00:24:22,600 --> 00:24:28,160 |
|
ูู ุงู element ุงููู ุงู order ุนูุฏู ูุนุทููู ุฅูุงู ูู |
|
|
|
238 |
|
00:24:28,160 --> 00:24:28,960 |
|
ุงูุณุคุงู |
|
|
|
239 |
|
00:24:31,410 --> 00:24:38,470 |
|
ูุจูู ูุฐุง ุงูุดูู ูุถุน ูุชุจุณูุท ุงูุญุณุงุจุงุช ุงูุนู
ููุฉ ูู ุงู |
|
|
|
240 |
|
00:24:38,470 --> 00:24:42,270 |
|
groups ุงูู
ุฎุชููุฉ |
|
|
|
241 |
|
00:24:42,270 --> 00:24:49,730 |
|
ูุนุทูู |
|
|
|
242 |
|
00:24:49,730 --> 00:24:55,230 |
|
ู
ุซุงู ุนูู ูุฐุง ุงูููุงู
ูุจุงูุชุงูู ุงูู
ุซุงู ุงูุช ุชุนูุฏุช ุนูู |
|
|
|
243 |
|
00:24:55,230 --> 00:25:00,750 |
|
external product ู
ูููู ู
ู ุฑูู
ูู ุงุญูุง ููุนุทูู ุณูุฉ ู
ู |
|
|
|
244 |
|
00:25:00,750 --> 00:25:06,910 |
|
ุชูุงุชุฉ ู
ู ุงุฑุจุนุฉ ุงูุซุฑ ู
ู ุฐูู ูุจูู ุจุงุฌู ุจููู example |
|
|
|
245 |
|
00:25:06,910 --> 00:25:11,430 |
|
how |
|
|
|
246 |
|
00:25:11,430 --> 00:25:16,950 |
|
many elements |
|
|
|
247 |
|
00:25:16,950 --> 00:25:20,290 |
|
of |
|
|
|
248 |
|
00:25:20,290 --> 00:25:21,930 |
|
order |
|
|
|
249 |
|
00:25:51,070 --> 00:25:57,340 |
|
ุณุคุงู ู
ุฑุฉ ุชุงููุฉุงูุณุคุงู ุจูููู ุงููุ ุจูููู ุงูู
ุนูุตุฑ ุงู |
|
|
|
250 |
|
00:25:57,340 --> 00:26:03,080 |
|
order ุงูู ุงุชูุงุด ูู ุงู U ุณุจุนู
ูุฉ ู ุนุดุฑูู ุทุจุนุง ุจุฏูุง |
|
|
|
251 |
|
00:26:03,080 --> 00:26:07,160 |
|
ููุนุฏ ูุญุณุจ ูู element ูุญุงูู ุชุทูุน ุฑูุญูุง ู
ุด ูููุฏุฑ |
|
|
|
252 |
|
00:26:07,160 --> 00:26:10,800 |
|
ูุญุณุจูู
ููู ูุฐู ุณุจุนู
ูุฉ ู ุนุดุฑูู ุงููู ุฌุงุชูุง |
|
|
|
253 |
|
00:26:10,800 --> 00:26:15,580 |
|
isomorphic ูู
ูู ููู ุนูุฏูุง ูุฐู ุจูุจูู ุงูุญุณุงุจุงุช ููุง |
|
|
|
254 |
|
00:26:15,580 --> 00:26:22,700 |
|
ุฃุณูู ูุชูุฑ ุฌุฏุง ู
ู ุงูุญุณุงุจุงุช ููุงู ุงููุฉุทุจ ุจุชุฎูุต ุจุงููู |
|
|
|
255 |
|
00:26:22,700 --> 00:26:26,580 |
|
ูู ุงูุณุงุนุชูู ุงููู ุจุชูุฏุฑ ุชุฌูุจูู
ุ ุทุจ ููู
ุงู ุณุงุนุชูู ู
ู |
|
|
|
256 |
|
00:26:26,580 --> 00:26:31,460 |
|
9D ูุงุญุณุจูู ูู ุงู elements ุงููู relatively prime ู
ุน |
|
|
|
257 |
|
00:26:31,460 --> 00:26:38,780 |
|
720 ูุงุฏูุฑ ุนูููู
ู
ู ุงู order ุงููู ูุณุงูู 12 ุงูุช ุญูุฑุฑ |
|
|
|
258 |
|
00:26:38,780 --> 00:26:43,120 |
|
ุฌูุจ ุงููู ุจุฏู ุฅูุงู ุฃูุง ู
ุด ุฒุนูุงู ุจุณ ูุชุงุฎุฏ ููุช ุฑููุจ |
|
|
|
259 |
|
00:26:43,120 --> 00:26:48,550 |
|
ุฌุฏุง ุณุงุนุชููู ู
ุด ููููู ูุญุณุงุจ ุงููู ูู ุงูุณุคุงู ูุฐุงุงูุงู |
|
|
|
260 |
|
00:26:48,550 --> 00:26:57,170 |
|
solution from the above example |
|
|
|
261 |
|
00:26:58,670 --> 00:27:07,090 |
|
ู
ู ุงูู
ุซุงู ุงููู ููู ุงูู U720 ุฃูุฒู ู
ูุฑูู ู Z2 |
|
|
|
262 |
|
00:27:07,090 --> 00:27:13,590 |
|
Extended like product ู
ุน Z4 Extended like product |
|
|
|
263 |
|
00:27:13,590 --> 00:27:19,470 |
|
ู
ุน Z6 Extended like product ู
ุน Z4 |
|
|
|
264 |
|
00:27:22,860 --> 00:27:31,920 |
|
ุฃู element ููุง ุงู order ุฅููู ูุณุงูู ุงุชูุงุด ูุจูู ุจูุงุก |
|
|
|
265 |
|
00:27:31,920 --> 00:27:41,380 |
|
ุนููู ูุจุฏู ูู ุญุณุจ ููู ุงูุชุงููุฉ ูุจูู so the number of |
|
|
|
266 |
|
00:27:41,380 --> 00:27:52,660 |
|
elements of order ุงุชูุงุด in u ุณุจุนู
ูุฉ ุงู ุนุดุฑูู |
|
|
|
267 |
|
00:27:54,980 --> 00:28:07,680 |
|
equal of the number of elements of |
|
|
|
268 |
|
00:28:07,680 --> 00:28:09,280 |
|
order |
|
|
|
269 |
|
00:28:26,260 --> 00:28:32,140 |
|
ุทุจ ุงุญูุง ุงุฎุฏูุง ุงูู ูุธุฑูุฉ ูู ูุฐุง section ููุงู ู
ุดุงู |
|
|
|
270 |
|
00:28:32,140 --> 00:28:38,950 |
|
ุงุฌูุจ ุงู order ูู elementุงูู
ูุฑููุจ ู
ุซูุง ู
ู ู
ูุฑููุจุฉ |
|
|
|
271 |
|
00:28:38,950 --> 00:28:43,370 |
|
ููุง ุจุฌูุจ ุงู list common multiple ูู
ู ู ุงู two |
|
|
|
272 |
|
00:28:43,370 --> 00:28:47,330 |
|
orders ุงููู ุนูุฏู ูุจุงูุชุงูู ุจููู ุฌุงุจุช ุงู order ูู |
|
|
|
273 |
|
00:28:47,330 --> 00:28:50,690 |
|
element ุงููู ู
ูุฌูุฏ ูู ุงู external direct product |
|
|
|
274 |
|
00:28:50,690 --> 00:28:57,210 |
|
ูุฐูู ุจุฑูุญ ุฃุฎุฏ element ููุงู ุงูุชุฑุถ ุงู ูุฐุง ุงู element |
|
|
|
275 |
|
00:28:57,210 --> 00:29:03,010 |
|
ุงู order ูู ูุณุงูู 12 ู ุงุจุญุซ ุนู ุงู orders ุงูู
ุฎุชููุฉ |
|
|
|
276 |
|
00:29:03,010 --> 00:29:09,530 |
|
ูู ูุฐู ุงูุญุงูุฉ ูุจูู ุจุฏุงุฌู ุงููู ูู let ุงู a ู ุงู b ู |
|
|
|
277 |
|
00:29:09,530 --> 00:29:18,610 |
|
ุงู cูุงูุฏู ู
ูุฌูุฏุฉ ูู z2 similar product ู
ุน z4 |
|
|
|
278 |
|
00:29:18,610 --> 00:29:26,570 |
|
similar product ู
ุน z6 similar product ู
ุน z4 such |
|
|
|
279 |
|
00:29:26,570 --> 00:29:37,490 |
|
that ุจุญูุซ ุงู ุงู order ูู a ูุงูb ูุงูc ูุงูd ููู |
|
|
|
280 |
|
00:29:37,490 --> 00:29:43,740 |
|
ุจุฏู ูุณุงูู ูุฏูุ ุจุฏู ูุณุงูู ู
ุงุดูุทูุจ ุงูุขู ูู
ุง ููุงุฏู |
|
|
|
281 |
|
00:29:43,740 --> 00:29:49,060 |
|
ูุฒุฏ ุงุชููู ุฒุฏ ุงุชููู ูู
ุนูุตุฑ ูููุง ุงุชููู ูุนูู ุงู |
|
|
|
282 |
|
00:29:49,060 --> 00:29:53,520 |
|
order ูุงุญุฏ ูุงู order ููุนูุตุฑ ุงูุชุงูู ุงุชููู ุตุญ ููุง ูุง |
|
|
|
283 |
|
00:29:53,520 --> 00:29:57,980 |
|
ูุจูู ุงู element ูู ุฒุฏ ุงุชููู ุงู order ูู ูุง ุงู
ุง |
|
|
|
284 |
|
00:29:57,980 --> 00:30:02,280 |
|
ูุงุญุฏ ุงููู ูู ุงู identity ูุง ุงู
ุง ุงุชููู ุทูุจ ุชุงุฎุฏูู |
|
|
|
285 |
|
00:30:02,280 --> 00:30:09,080 |
|
ุฒุฏ ุงุฑุจุน ุงู order ุงููู ูููุง ูุงุญุฏ ู ูุฏูุด ู ุงุชููู |
|
|
|
286 |
|
00:30:09,740 --> 00:30:14,620 |
|
ุชูุงุชุฉ ุจุชุฌุณู
ุงูุฃุฑุจุนุฉ ุจุชุชููู
|
|
|
|
287 |
|
00:30:14,620 --> 00:30:17,820 |
|
ุนูู order ุจุชุชููู
ุด ุนูู ุงูุนูุงุตุฑ ุงููู ู
ูุฌูุฏุฉ ูููุง |
|
|
|
288 |
|
00:30:17,820 --> 00:30:20,900 |
|
ูุงุญุฏ ูุงุซููู ูุงุฑุจุนุฉ ูุงุญุฏ ูุงุซููู ูุงุฑุจุนุฉ ูููุด ุบูุฑูู
|
|
|
|
289 |
|
00:30:20,900 --> 00:30:25,140 |
|
ู
ุธุจูุท ูุฅู ุงู order ูู element ุจูุฌุณู
ูู order ูู |
|
|
|
290 |
|
00:30:25,140 --> 00:30:28,280 |
|
group ุฒุฏ ุงุฑุจุนุฉ ูู ุงุฑุจุนุฉ ุนูุงุตุฑ ุงุฐุง ููุณู
ูุงุญุฏ ุงุชููู |
|
|
|
291 |
|
00:30:28,280 --> 00:30:33,550 |
|
ุงุฑุจุนุฉ ููุท ูุบูุฑ ููุด ุญุงุฌุฉ ุงุณู
ูุง ุชูุงุชุฉุงูุนูุงุตุฑ ุงููู |
|
|
|
292 |
|
00:30:33,550 --> 00:30:41,750 |
|
ู
ูุฌูุฏุฉ ูู ุงูู Z6 ูุงุญุฏ ุงุชููู ุชูุงุชุฉ ุณุชุฉ ูู ุดุบููู
ุงูู |
|
|
|
293 |
|
00:30:41,750 --> 00:30:46,770 |
|
Z4 ูุจู ูููู ูุจูู ุจุฏู ุฃุถุน ูุฐู ุงูู
ุนููู
ุฉ ุฏู ูุจูุงุก |
|
|
|
294 |
|
00:30:46,770 --> 00:30:53,970 |
|
ุนููู ุจุฏู ุฃุจุฏุฃ ุฃุญุฏุฏ ูู
ุนูุตุฑ ุนูุฏู ูุจูู ููุง any |
|
|
|
295 |
|
00:30:53,970 --> 00:30:55,850 |
|
element |
|
|
|
296 |
|
00:30:57,770 --> 00:31:09,390 |
|
ู ุฒุฏุชุฑ ุงุฒ ุงุฑุฏุช ูุงุญุฏ ูุงุซูููAny element in Z4 has |
|
|
|
297 |
|
00:31:09,390 --> 00:31:19,910 |
|
order 1,2,4 ุฃู element ูู Z6 has order 1,2,3,6 ุฃู |
|
|
|
298 |
|
00:31:19,910 --> 00:31:27,930 |
|
element ูู Z4 ูู Z4 has element 1,2,4 |
|
|
|
299 |
|
00:31:30,490 --> 00:31:34,090 |
|
ุทูุจ ุงูุง ูู
ุง ุจุฏู ุงุฌูุจ ุงู order ู ุงู element ุจุฏู |
|
|
|
300 |
|
00:31:34,090 --> 00:31:38,870 |
|
ุงุฌูุจ ุงู least common multiples ูู
ูู ููุงุฑุจุน orders |
|
|
|
301 |
|
00:31:38,870 --> 00:31:43,390 |
|
ู
ุด ููู ุจููู ูููุณุฉ ุทูุนูู ุงู order ุงูุฃูู ูุงุญุฏ ู |
|
|
|
302 |
|
00:31:43,390 --> 00:31:48,290 |
|
ุงุชููู ู
ูุฌูุฏ ู
ุน ูุฏูู ููุง ูุฃ ู
ูุฌูุฏ ู
ุน ูุฐู ู
ูุฌูุฏ ู
ุน |
|
|
|
303 |
|
00:31:48,290 --> 00:31:53,850 |
|
ูุฐููุนูู ูุฌูุฏ ุฅูุด ุจุณ ุจูุฎุฑ ุจุดูู ุจูุฎูููุง ูุจูุฑุฉ ูุจูู |
|
|
|
304 |
|
00:31:53,850 --> 00:31:58,330 |
|
ูู ุงูุญูููุฉ ุฃูุง ุจุฏู ุฃุจุญุซ ุจุณ ุนู A ูB ูC ุชู
ุงู
ุ ููู |
|
|
|
305 |
|
00:31:58,330 --> 00:32:01,970 |
|
ูุฏุงู ุจุฏู ุฃุฎููู ูู ุญุณุงุจู ู
ุด ุจุงููู
ูู ูุจูู ุงูุฐู |
|
|
|
306 |
|
00:32:01,970 --> 00:32:06,390 |
|
ูุชุญูู
ูู ุงู order ุงููู ูู ุงู 12 ุงููู ูู ุงูุชูุงุชุฉ |
|
|
|
307 |
|
00:32:06,390 --> 00:32:12,520 |
|
ุงูุฃุฎูุฑุงุช ูุฏูููุงููุฏุง 1 ู 2 ู
ุด ู
ุดููุฉ ูุจูู ุนูุฏู |
|
|
|
308 |
|
00:32:12,520 --> 00:32:18,140 |
|
ุนูุตุฑูู ุจุฏุฎููู
ูู ุงูุญุณุงุจ ุจุนุฏ ุฐูู ูุจูู ุจุฏุงูู ูู 2 ู |
|
|
|
309 |
|
00:32:18,140 --> 00:32:23,420 |
|
4 ุงููู ุนูุฏู ูุจูู ููุง ุงู element ุงูู ุงู order ุงูู 1 |
|
|
|
310 |
|
00:32:23,420 --> 00:32:31,450 |
|
ู 2ุงูู element ุจู 1,2,4 ุงู element c 1,2,3,6 ุงู |
|
|
|
311 |
|
00:32:31,450 --> 00:32:38,570 |
|
element 4 1,2,4 ุทุจ ุงูุขู ุงูุง ุจุฏู ุงุฏูุฑ ุงู main ุงู |
|
|
|
312 |
|
00:32:38,570 --> 00:32:42,910 |
|
least common multiple ุงููู ูู
ุจุฏู ูุนุทููู ูุฏุงุด 12 |
|
|
|
313 |
|
00:32:42,910 --> 00:32:49,670 |
|
ูุจุญูุซ ูุง ุทูุนูู ููุงุงูุงู ุงููุงุญุฏ ู ุงูุงุชููู ู
ูุฑุฑุฉ |
|
|
|
314 |
|
00:32:49,670 --> 00:32:54,210 |
|
ู
ุงููุงุญุฏ ู ุงุชููู ูุจูู ูุง ููู
ุฉ ููุง ู
ุธุจูุท ูุจูู ููุง |
|
|
|
315 |
|
00:32:54,210 --> 00:32:58,690 |
|
ุถุงู ุนูุฏ ู
ููุงูุงุฑุจุนุฉ ูุจูู ูู ูุงู ุงู order ุงููู ุจูู |
|
|
|
316 |
|
00:32:58,690 --> 00:33:04,170 |
|
ุจุฏู ูุณุงูู ุงูุงุฑุจุนุฉ ู ุงู order ุงููู ูุณูู ูุงู ุชูุงุชุฉ |
|
|
|
317 |
|
00:33:04,170 --> 00:33:08,830 |
|
ุงู ุณุชุฉ ุทุจ ููุด ุชูุงุชุฉ ุงู ุณุชุฉุ ูุฃู ุชูุงุชุฉ ุงู ุงุฑุจุนุฉ |
|
|
|
318 |
|
00:33:08,830 --> 00:33:12,730 |
|
ููุณูู
ุงู multiple ุงููู ูููู
ูุฏุงุด ุงุชูุงุด ูุงูุณุชุฉ |
|
|
|
319 |
|
00:33:12,730 --> 00:33:15,290 |
|
ูุงูุงุฑุจุนุฉ ููุณูู
ุงู multiple ุงููู ูููู
ูู
ุงู ู
ูู |
|
|
|
320 |
|
00:33:15,290 --> 00:33:21,820 |
|
ุงุชูุงุด ูุจูู ูุฐุง ุงููู ูุณุงู ูุชุญูู
ูู ู
ูุ ูู ุงู order |
|
|
|
321 |
|
00:33:21,820 --> 00:33:25,900 |
|
ุทุจ ู ุงููู ุชุญุช ูุฐุง ูุชุญุช ู
ุง ูู ุฏุงุฎู ูู ุงูุญุณุงุจ ูุฅู |
|
|
|
322 |
|
00:33:25,900 --> 00:33:30,920 |
|
ูุงุญุฏ ุงุชููู ูู ู
ูุฌูุฏุฉ ูุงูุงุฑุจุนุฉ ู
ูุฌูุฏุฉ ููุง ูุจูู ุงู D |
|
|
|
323 |
|
00:33:30,920 --> 00:33:36,140 |
|
ู
ุด ูุชุฃุซุฑ ุนูุฏู ู
ุด ูุชุฌูุจูู ู
ุนููู
ุงุช ุฌุฏูุฏุฉ ูุจูู ุจุงุถููุฉ |
|
|
|
324 |
|
00:33:36,140 --> 00:33:41,240 |
|
ุชุญุตูู ุญุงุตู ูู ุงูุญุงูุฉ ุงูุฃููู ูุจูู ุงูุญุงูุฉ ุงูุฃููู |
|
|
|
325 |
|
00:33:41,240 --> 00:33:44,040 |
|
ุงููู ุงู order ุงู list common multiple ุงููู ุจุฏู |
|
|
|
326 |
|
00:33:44,040 --> 00:33:48,460 |
|
ูุทูุน ุงุชูุงุด ุฎุฏ ุงูุญุงูุฉ ุงูุชุงููุฉู
ู
ูู ูููู ุงู order |
|
|
|
327 |
|
00:33:48,460 --> 00:33:54,180 |
|
ุงููู ุฏู ูู ุฃุฑุจุนุฉ ู ุงู C ูู ุชูุงุชุฉ ู ุณุชุฉ ู
ุด ููู ูุงุฑุฏ |
|
|
|
328 |
|
00:33:54,180 --> 00:33:59,180 |
|
ุชู
ุงู
ู ุงูุจุงูู ุงููู ูู ุงููู ุจูุชุญุตูู ุญุงุตู ุจุณูุท ุชู
ุงู
|
|
|
|
329 |
|
00:33:59,180 --> 00:34:03,200 |
|
ูุจูู ุจุฏูุง ููุฌู ูุดุชุบู ุงูุดุบู ุงููู ุนูุฏูุง ูุงุฏู |
|
|
|
330 |
|
00:34:13,770 --> 00:34:18,010 |
|
ุงูุงู ูููุง ุจุงููุณุจุฉ ููุฃููู ุงููู ุงุณู
ูุง multiple ุชุญุตูู |
|
|
|
331 |
|
00:34:18,010 --> 00:34:24,210 |
|
ุญุตู ูุจูู ุฏู ู
ุด ูุชุฏุฎู ูู ุงูุญุณุงุจ ุนูุฏูุง ูุจูู we have |
|
|
|
332 |
|
00:34:24,210 --> 00:34:30,050 |
|
two cases |
|
|
|
333 |
|
00:34:30,050 --> 00:34:35,910 |
|
ูู ุนูุฏู ุญุงูุชูู ุงูุญุงูุฉ ุงูุฃููู ุงู ุงู order ูู B ุจุฏู |
|
|
|
334 |
|
00:34:35,910 --> 00:34:41,150 |
|
ูุณูู ุงูุฃุฑุจุนุฉ ู ุงู order ู C ูุง ุฅู
ุง ุชูุงุชุฉ ูุง ุฅู
ุง |
|
|
|
335 |
|
00:34:41,150 --> 00:34:45,350 |
|
ุณุชุฉูุจูู ุชูุงุชุฉ ูุงุฑุจุนุฉ ุงูู least common multiple |
|
|
|
336 |
|
00:34:45,350 --> 00:34:48,730 |
|
ูุจูู 12 ุงูุณุชุฉ ูุงูุงุฑุจุนุฉ ุงู least common multiple |
|
|
|
337 |
|
00:34:48,730 --> 00:34:53,290 |
|
ูุจูู 12 ูุจูู ูุฏูู ูุฌูุจููู ุงู element ุงู order ูุณูู |
|
|
|
338 |
|
00:34:53,290 --> 00:35:00,190 |
|
ูู
ุ ุงู 12 ุทุจ ุฃูู
ุงูุตุฑ ูู ุฒูุฏ ุฃุฑุจุนุฉ ุงู order ูุณูู |
|
|
|
339 |
|
00:35:00,190 --> 00:35:08,630 |
|
ุฃุฑุจุนุฉุ ุจุณุฃุชููู ูู ุงููุงุญุฏ ูุงูุชูุงุชุฉ ุงููุงุญุฏ ูุงูุชูุงุชุฉ |
|
|
|
340 |
|
00:35:08,630 --> 00:35:14,850 |
|
ูู ุฒุฏ ุฃุฑุจุนุฉ ุงู order ูุณุงูู ู
ููุ ุงูุงุฑุจุนุฉ ูู
ุฌู ุจูู |
|
|
|
341 |
|
00:35:14,850 --> 00:35:20,890 |
|
ููุง ูุง ุจุฏูุง ุชุณุงูู ูุงุญุฏ ูุง ุจุฏูุง ุชุณุงูู ุชูุงุชุฉ ุทูุจ ุณู |
|
|
|
342 |
|
00:35:20,890 --> 00:35:27,370 |
|
ููุง ุจุฏูุง ุชุณุงูู ุงู order ูู ุชูุงุชุฉ ุงู ุงู order ูู |
|
|
|
343 |
|
00:35:27,370 --> 00:35:34,150 |
|
ุณุชุฉ ุงุธู ุงููุงุญุฏ ุงู order ูู ุณุชุฉ ุทุจ ู ุงุชููู ุทุจ ู |
|
|
|
344 |
|
00:35:34,150 --> 00:35:41,700 |
|
ุงูุฃุฑุจุนุฉุงูุฃุฑุฏุฑ ู
ุงุฐุงุ ุซูุงุซุฉ ุซูุงุซุฉุ ุทุจ ู ุงูุณุชุ ูุงุญุฏ |
|
|
|
345 |
|
00:35:41,700 --> 00:35:45,780 |
|
ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ |
|
|
|
346 |
|
00:35:45,780 --> 00:35:48,240 |
|
ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ |
|
|
|
347 |
|
00:35:48,240 --> 00:35:48,920 |
|
ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ |
|
|
|
348 |
|
00:35:48,920 --> 00:35:49,520 |
|
ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ |
|
|
|
349 |
|
00:35:49,520 --> 00:35:50,300 |
|
ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ |
|
|
|
350 |
|
00:35:50,300 --> 00:35:50,340 |
|
ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ |
|
|
|
351 |
|
00:35:50,340 --> 00:35:53,380 |
|
ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ |
|
|
|
352 |
|
00:35:53,380 --> 00:35:58,440 |
|
ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ ูุงุญุฏุ |
|
|
|
353 |
|
00:35:58,440 --> 00:36:03,500 |
|
ูุงุญุฏุ |
|
|
|
354 |
|
00:36:03,500 --> 00:36:04,480 |
|
ูุง |
|
|
|
355 |
|
00:36:11,410 --> 00:36:17,450 |
|
ุงูุฑูู
ูุง ุจุงุฎุฏ C ุจูุงุญุฏ ูุง ุจุงุฎุฏ ุงูุณุช ูุนูู ุงุชููู ูุฐุง |
|
|
|
356 |
|
00:36:17,450 --> 00:36:21,650 |
|
ุงู component ูุง ุจุชููู ูุงุญุฏ ูุง ุจุชููู ุณุช ุตูุฑ ู
ุงุดู |
|
|
|
357 |
|
00:36:21,650 --> 00:36:25,790 |
|
ุงูุญุงุฌุฉ ุจุชุฒุนูุงู ููู ูุฐุง |
|
|
|
358 |
|
00:36:25,790 --> 00:36:31,450 |
|
ุงุญูุง ุจูุญูู ุงูุขู ูู order ูุจูุฑ ู
ุด ูุญุงูู ุชู
ุงู
ุฃุญูุง |
|
|
|
359 |
|
00:36:31,450 --> 00:36:36,310 |
|
ุจูุญูู ุงูุขู ุงู order ูู element ุจุฏู ูุณุงูู ุณุชุฉ ู
ูู |
|
|
|
360 |
|
00:36:36,310 --> 00:36:40,550 |
|
ุงู elements ุงููู ุงู order ุงููู ูู
ูุณุงูู .. ุฏู ู
ุด |
|
|
|
361 |
|
00:36:40,550 --> 00:36:46,770 |
|
ุณุชุฉ .. ุฏู ุฎู
ุณุฉ .. ุฏู ุฎู
ุณุฉ ุงููุงุญุฏ ู ุงูุฎู
ุณุฉ ุงู order |
|
|
|
362 |
|
00:36:46,770 --> 00:36:52,470 |
|
ุงููู ูู
ุณุชุฉ ุตุญูุญุ ุงุชููู ู ุงูุฃุฑุจุนุฉ ูู
ุงู order ุงููู |
|
|
|
363 |
|
00:36:52,470 --> 00:37:01,030 |
|
ูู
ุชูุงุชุฉ ุทูุจ ูุฐุง ุงู B ู ุงู C ุทุจ ู ุงู Dุูุง ุฎุฏูุง ุฃู |
|
|
|
364 |
|
00:37:01,030 --> 00:37:11,890 |
|
ุดูุก ุงู ูุนู
and ุงุฏู arbitrary ูุนูู ุฎุฏูุง ุฒู ู
ุง ุจุฏู |
|
|
|
365 |
|
00:37:12,760 --> 00:37:17,280 |
|
ูููุณุ ุทูุจ ูู
ุง ุงุฎุฏูุง ุฒู ุงูู
ุจุฏุฃ ุจููู ุงุฎุฏ ุงูุฃุฑุจุนุฉ ูู
ุง |
|
|
|
366 |
|
00:37:17,280 --> 00:37:21,700 |
|
ุงูุง ุงุฎุฏ ูุนูู ุงูุฃุฑุจุนุฉ ู
ุด ููุชุบูุฑ ููุดุ ูุฃู ุงู order |
|
|
|
367 |
|
00:37:21,700 --> 00:37:24,960 |
|
ุณุจุนุฉ ูู ูุงุญุฏุ ูู ุงุชูููุ ูู ุฃุฑุจุนุฉ ูู ูู
ุงุฎุฏูุงูู
|
|
|
|
368 |
|
00:37:24,960 --> 00:37:31,340 |
|
ู
ุนุงูุฏู ูุนูู ู
ุด ููุฌูุจููู ุฅูุดุ ููุด ุฏูุ ูุจูู ุงูุขู the |
|
|
|
369 |
|
00:37:31,340 --> 00:37:40,380 |
|
number of elements of order |
|
|
|
370 |
|
00:37:45,070 --> 00:37:52,890 |
|
ุงูุญูู ุงู A ูู
ุนูุตุฑ ูููุงุ ุงุชููู ุงู B ูู
ุนูุตุฑุ ุงุชููู |
|
|
|
371 |
|
00:37:52,890 --> 00:37:59,590 |
|
ุงู C ูู
ุนูุตุฑุ ุงุฑุจุนุฉ ุงู D ุฎุฏ ุฒู ู
ุง ุจุฏู ุงุฌุฏุด ุงุฑุจุนุฉ |
|
|
|
372 |
|
00:37:59,590 --> 00:38:04,370 |
|
ูุจูู ุฃุฑุจุนุฉ ูู ุฃุฑุจุนุฉ ูู ุณุชุงุดุฑ ูู ุฃุฑุจุนุฉ ุจุงุฑุจุนุฉ ูุณุชูู |
|
|
|
373 |
|
00:38:04,370 --> 00:38:11,490 |
|
ูุจูู ุงุฑุจุนุฉ ูุณุชูู elementูุฐูู ุงู order ูุณุงูู 12 ูู |
|
|
|
374 |
|
00:38:11,490 --> 00:38:12,090 |
|
ูุงู |
|
|
|
375 |
|
00:38:19,370 --> 00:38:23,850 |
|
ูุฏูู ุงู orders ููู ุงูุง ูุงู
ุนูุตุฑ ูุฏูู ุนูุฏู ุงุฑุจุนุฉ ูุต |
|
|
|
376 |
|
00:38:23,850 --> 00:38:27,330 |
|
ุฎุฏ ุงููู ุจุฏู ุงูุงู ุงู orders ูุงุญุฏ ูุงุชููู ูุงุฑุจุนุฉ ุฒู |
|
|
|
377 |
|
00:38:27,330 --> 00:38:30,630 |
|
ุงููุงุญุฏ ูุงุชููู ูุงุฑุจุนุฉ ุงุฐุง ูุฏูู ููุช ู
ุตูุน ุดุฌุนูู |
|
|
|
378 |
|
00:38:30,630 --> 00:38:36,590 |
|
ุงุดุชุบูุช ูู ูุฏูู ุชู
ุงู
ูุฏูู ุงูุงู ูุฐุง ุจุถูู ุชุญุตูู ุญุงุตู |
|
|
|
379 |
|
00:38:36,590 --> 00:38:40,590 |
|
ูุนูู ุงูุด ู
ุง ูุงู ูููู ูุงู ุงู zero ูุงู ุงููุงุญุฏ ูุงู |
|
|
|
380 |
|
00:38:40,590 --> 00:38:44,350 |
|
ุงูุงุชููู ูุงู ุงูุชูุงุชุฉ ูู ูุบูุฑ ูู ุงููุชูุฌุฉ ุดูุฆุง ูููุงู |
|
|
|
381 |
|
00:38:44,350 --> 00:38:48,990 |
|
ุงูุช ุจุชูุชุจ element ู
ููู ู
ู ุงุฑุจุน ู
ุฑูุจุงุชูุนูู ุนูุฏู |
|
|
|
382 |
|
00:38:48,990 --> 00:38:54,110 |
|
ุจุฏุงุฆู ุงุชููู ูู A ูุจุฏุงุฆู ุงุชููู ูู B ูุฃู ุงู order |
|
|
|
383 |
|
00:38:54,110 --> 00:38:59,190 |
|
ูุณูู ุงุฑุจุนุฉ ูุนูุฏู ุงุฑุจุน ุจุฏุงุฆู ูู C ูุงุฑุจุน ุจุฏุงุฆู ูู D |
|
|
|
384 |
|
00:38:59,190 --> 00:39:03,210 |
|
ุตุญูุญ ููุง ูุงุ ูุจูู ุนูู ุจุนุถูู
ููู ู
ุตูุฑู ุฌุฏุงุด ุงุฑุจุนุฉ |
|
|
|
385 |
|
00:39:03,210 --> 00:39:09,590 |
|
ูุณุชูู ุนูุตุฑ ูุฐุง ูู ุงูุญุงูุฉ ุงูุฃููู ุงูุญุงูุฉ ุงูุชุงููุฉุงู |
|
|
|
386 |
|
00:39:09,590 --> 00:39:16,150 |
|
order ุงููู ุฏู ู
ู
ูู ูููู ุงุฑุจุนุฉ and ุงู order ูุณู ูุง |
|
|
|
387 |
|
00:39:16,150 --> 00:39:26,910 |
|
ุงู
ุง ุชูุงุชุฉ ูุง ุงู
ุง ุณุชุฉ ูุจูู |
|
|
|
388 |
|
00:39:26,910 --> 00:39:31,650 |
|
ูู ูุฐู ุงูุญุงูุฉ ูู
ุง ุงู order ุงููู ุฏู ุจุฏู ูุณุงูู ุงุฑุจุนุฉ |
|
|
|
389 |
|
00:39:31,650 --> 00:39:38,600 |
|
ุงูู
element ุจูุนุทููุง ุงุชููู ู
ุธุจูุทูุจูู ููุง ูู ุนูุฏู |
|
|
|
390 |
|
00:39:38,600 --> 00:39:46,080 |
|
ุงุชููู elements ุทูุจ ูู
ุง ูููู ููุง ูู ุนูุฏู ุฌุฏุงุดุ |
|
|
|
391 |
|
00:39:46,080 --> 00:39:52,440 |
|
ุฌุฏุงุดุ ุงุฑุจุน elements ุทูุจ |
|
|
|
392 |
|
00:39:52,440 --> 00:39:59,200 |
|
ููุฌู ูู a ุฌุฏุงุดุ ุงุฑุจุน elements ุงุชููู elements ููุฌู |
|
|
|
393 |
|
00:39:59,200 --> 00:40:03,240 |
|
ูู b ุฌุฏุงุด ุนูุฏูุ ุงุชููู elements |
|
|
|
394 |
|
00:40:05,800 --> 00:40:12,760 |
|
ูุจูู ุตุบุฑ ุงูุขู ุงุชููู ุงุฎุฏูุงูุง |
|
|
|
395 |
|
00:40:12,760 --> 00:40:16,240 |
|
ุงุฑุจุนุฉ ู
ุน ุงูุฎุทูุฉ ุงููู ูุจููุง ุงู ุงุฎุฏูุงูุง ุงุฑุจุนุฉ ู
ุน |
|
|
|
396 |
|
00:40:16,240 --> 00:40:19,580 |
|
ุงูุฎุทูุฉ ุงููู ูุจููุง ูุงุด ููุฑุฑูุง ูุงู ุงูุชูุฑุงุฑ ูุฐุง ุจุฌูุจ |
|
|
|
397 |
|
00:40:19,580 --> 00:40:24,300 |
|
ุดุบูุงุช ุงูุชุฑ ู
ู ุงููุงุฒู
ูุจูู so we have ุงูุนูุตุฑ |
|
|
|
398 |
|
00:40:24,300 --> 00:40:28,400 |
|
ุงูุฃููุงูู ุงุชููู ูุงูุชุงูู ุงุฑุจุนุฉ ูุงููู ุจุนุฏู ุงุชููู |
|
|
|
399 |
|
00:40:28,400 --> 00:40:33,370 |
|
ูุงููู ุจุนุฏู ุงุชููููุจูู ุชู
ุงููุฉ ูู ุฃุฑุจุนุฉ ุจุฌุฏุงุด ุจุชููู ู |
|
|
|
400 |
|
00:40:33,370 --> 00:40:41,650 |
|
ุชูุงุชูู element of order ุงููู ูู ุฃุชูุงุดุฑ ุทุจ ุฅุฐุง ุนูู |
|
|
|
401 |
|
00:40:41,650 --> 00:40:43,210 |
|
ุจุนุถูู
ุฌุฏุงุด |
|
|
|
402 |
|
00:40:45,410 --> 00:40:52,270 |
|
ูู ุณุจุนู
ูุฉ ูุนุดุฑูู has ุงููู ูู ูุฏุงุด ูู ุงูุฃูู ุงุฑุจุนุฉ |
|
|
|
403 |
|
00:40:52,270 --> 00:41:00,330 |
|
ูุณุชูู ุฒุงุฆุฏ ุงุชููู ูุชูุงุชูู ููุณุงูู ุณุชุฉ ูุชุณุนูู element |
|
|
|
404 |
|
00:41:00,330 --> 00:41:08,010 |
|
of order ุงููู ูู ุงุชูุงุดุฑ |
|
|
|
405 |
|
00:41:17,690 --> 00:41:22,970 |
|
ูุจูู ุจูุงุก ุนูููุง ู
ู ุงูุขู ูุตุงุนุฏุง ูู ูุงููู ุดูู ููุฏุงุด |
|
|
|
406 |
|
00:41:22,970 --> 00:41:29,050 |
|
ุนุฏุฏ ุงูุนูุงุตุฑ ุงููู ุงู order ููู
ูุณุงููุฉ ุฑูู
ู
ุนูู ูู |
|
|
|
407 |
|
00:41:29,050 --> 00:41:34,770 |
|
UN ุงู UN ุงู N ู
ููู
ุง ูุงูุช ุชููู ุจุฏู ุงุญูููุง ุงูู ู
ููุ |
|
|
|
408 |
|
00:41:34,770 --> 00:41:41,160 |
|
ุจุฏู ุงุญูููุง ุงูู ุงู cyclic groupsู
ุฏุงูุฉ z2 ู z3 ู z4 |
|
|
|
409 |
|
00:41:41,160 --> 00:41:45,840 |
|
ู z5 ู z6 ู ุจูุจููุง ุฃุญุณุจ ู
ู ู
ูู ู
ู ูุฐู ุงู z ุงููู ูู |
|
|
|
410 |
|
00:41:45,840 --> 00:41:51,000 |
|
ูุฐู ุงูุนูุงุตุฑ ุนูู ููู ุจูููู ุงูุชูู ุงู section ุทูุจ ูู |
|
|
|
411 |
|
00:41:51,000 --> 00:41:57,800 |
|
ุนูุฏู ุณุคุงู ุฒู ุณุคุงู ุชูุงุชุฉ ุจูููู ู
ุง ูุฃุชู ุณุคุงู |
|
|
|
412 |
|
00:41:57,800 --> 00:42:06,820 |
|
ุชูุงุชุฉุจููู ุงูู G group with identity ูุงูู H ุจูู |
|
|
|
413 |
|
00:42:06,820 --> 00:42:12,440 |
|
group with identity prove that ุงูู G isomorphic |
|
|
|
414 |
|
00:42:12,440 --> 00:42:20,340 |
|
ุงูู G isomorphic ูู
ููุ ูู external direct product |
|
|
|
415 |
|
00:42:20,730 --> 00:42:26,850 |
|
ููู G external like product ู
ุน ุงู identity element |
|
|
|
416 |
|
00:42:26,850 --> 00:42:38,850 |
|
ุชุจุน ุงู H and ุงู H is isomorphic ูู
ูุ |
|
|
|
417 |
|
00:42:38,850 --> 00:42:45,570 |
|
ูู identity ุชุจุน ุงู G external like product ู
ุน ู
ูุ |
|
|
|
418 |
|
00:42:45,570 --> 00:42:48,350 |
|
ู
ุน ุงู H |
|
|
|
419 |
|
00:42:56,050 --> 00:43:04,540 |
|
ุฎููู ุจุงูู ุฃูู ุฃูุง ุนูุฏู ุงูู G ู ุงู H are groupsู
ุด |
|
|
|
420 |
|
00:43:04,540 --> 00:43:07,580 |
|
ูุชููู ุงููH subgroup ู
ู G ุงููู ู
ุงูุนุงุด ุนูุงูุฉ ูุฐู |
|
|
|
421 |
|
00:43:07,580 --> 00:43:12,880 |
|
group ู ูุฐู group ุชุงูู ุจููู ุงุซุจุช ุงู ุงููG ูู |
|
|
|
422 |
|
00:43:12,880 --> 00:43:17,580 |
|
isomorphic ูู
ูู ููG ูุงู external direct product |
|
|
|
423 |
|
00:43:17,580 --> 00:43:23,680 |
|
ูุจูู ููุง ุจุชุฑูุญ ุงุนุฑููู Phi ู
ู ุงููG ุงูู ุงููG |
|
|
|
424 |
|
00:43:23,680 --> 00:43:31,520 |
|
external direct product ู
ุน E H Piูุงู ุงู ุฌู ู
ู
ูู |
|
|
|
425 |
|
00:43:31,520 --> 00:43:37,900 |
|
ุงุฎุฏ ุตูุฑุชู ููุง ู
ู
ูู ุงุฎุฏูุง ุฌู ูุงูุงู ุชุจุน ุงู H |
|
|
|
426 |
|
00:43:44,530 --> 00:43:52,370 |
|
ูู ุฌูุช ุฃุฎุฏุช ุจุฏู ูู ุฃุฎุฏุช ู
ุซูุง ุงููู ูู ุงู F ู
ู ุงู H |
|
|
|
427 |
|
00:43:52,370 --> 00:44:01,290 |
|
ุฅูู ุงู identity element ุชุจุน ุงู G across ุงู H by ุงู |
|
|
|
428 |
|
00:44:01,290 --> 00:44:09,030 |
|
F of H ุจุฏู ูุณุงูู ุงู external direct product ูู |
|
|
|
429 |
|
00:44:09,030 --> 00:44:16,920 |
|
E ุชุจุน ุงู Gููู A ุชุงุจุน ุงูู G ู H ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
430 |
|
00:44:16,920 --> 00:44:25,020 |
|
ููุง ุงู ุจูุงุด ููู ูุฐุง ุงูู ุฌูุฒ ููุฐุง ุงูู ุฌู ู H ุฌูุฒ |
|
|
|
431 |
|
00:44:25,020 --> 00:44:29,540 |
|
ู
ุจุงุดุฑุฉ ูุจูู ุจุฏูุง ูุซุจุช ู
ู ูุฐุง ุทุจุนุง ุฅุฐุง ุฃุซุจุชูุง ุงูุฃูู |
|
|
|
432 |
|
00:44:29,540 --> 00:44:36,510 |
|
ุจุตูุฑ ุงูุชุงูู ุญุฑููุง ุฒููุทูุจ ูู ุฌูุช ูู ุงูุฃููู ูุจูู ุจุฏู |
|
|
|
433 |
|
00:44:36,510 --> 00:44:41,830 |
|
ุงุซุจุช ูู ุงู ุงูู Phi is one to one ูุจูู ุจุฏู ุงููู ูู |
|
|
|
434 |
|
00:44:41,830 --> 00:44:50,310 |
|
assume ุงูุชุฑุถ ุงู Phi of G1 ุจุฏู ุณุงูู Phi of G2 ูุฐุง |
|
|
|
435 |
|
00:44:50,310 --> 00:44:56,050 |
|
ู
ุนูุงุชู ุงู ุงูู G1 ู ุงู identity ุชุจุน ุงู H ุจุฏู ุณุงูู |
|
|
|
436 |
|
00:44:56,050 --> 00:45:03,780 |
|
G2 ู ุงู identity ุชุจุน ุงู Hุทุจุนุง two order pair are |
|
|
|
437 |
|
00:45:03,780 --> 00:45:07,220 |
|
equal ูุจูู ุงูู
ุฑุงูุจุฉ ุงูุฃููู ุณูุงุก ุงูู
ุฑุงูุจุฉ ุงูุฃููู ุฃู |
|
|
|
438 |
|
00:45:07,220 --> 00:45:12,540 |
|
ุงูู
ุฑุงูุจุฉ ุงูุซุงููุฉ ุณูุงุก ู
ูู ุงูู
ุฑุงูุจุฉ ุงูุซุงููุฉ ูุจูู G1 |
|
|
|
439 |
|
00:45:12,540 --> 00:45:19,400 |
|
ุณูุงุก G2 ููุฐุง ุงููEH ูู ููุณู ุงููEH ุฃุธู ู ูู ุงูู
ุทููุจ |
|
|
|
440 |
|
00:45:19,400 --> 00:45:26,030 |
|
ุงูุขู ู
ุฏุงุฌู ุฃุซุจุช ูู ุฃู ูุงู is ontoูุจูู ุจุงูุฏุฑุฌุฉ |
|
|
|
441 |
|
00:45:26,030 --> 00:45:32,190 |
|
ุงูููู ุงูุชุฑุถ ุงู ุงู X ู
ูุฌูุฏ ูู ุงู G external product |
|
|
|
442 |
|
00:45:32,190 --> 00:45:40,210 |
|
ู
ุน ุงู identity ุชุจุน ุงู H ุซู
ุดูู ุงู X ูุฐุง ุจุฏู ูุณุงูู |
|
|
|
443 |
|
00:45:40,210 --> 00:45:47,120 |
|
element ู
ู G ู ุงู identity element ุชุจุน ุงู Hุทูุจ ูุฐุง |
|
|
|
444 |
|
00:45:47,120 --> 00:45:53,980 |
|
ุญุณุจ ุงูุชุนุฑูู ูู ู
ููุ Phi of G ูุฐูู Phi is ุฃูุชูุง ุจูู |
|
|
|
445 |
|
00:45:53,980 --> 00:45:59,380 |
|
ูุฏููุง Phi is an isomorphism ูุจูู Phi is an |
|
|
|
446 |
|
00:45:59,380 --> 00:46:09,480 |
|
isomorphism ูุจูู ุจุฏู ุฃูุนุฏ ุฃุฎุฏ ุงู Phi of G ู G2 |
|
|
|
447 |
|
00:46:09,480 --> 00:46:15,750 |
|
ุงูุดูู ุงููู ุนูุฏูุง ููุง ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงููุงููู |
|
|
|
448 |
|
00:46:15,750 --> 00:46:24,070 |
|
ูู ู
ูู ุงููู ูู five of g one g two ุจุฏู ูุณุงูู ุงููู |
|
|
|
449 |
|
00:46:24,070 --> 00:46:33,170 |
|
ูู g one g two ูุงู ุฅูู hูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุจุฏู |
|
|
|
450 |
|
00:46:33,170 --> 00:46:39,370 |
|
ุงุญุงูู ุงูุชุจ ูุฐุง ุนูู ุตูุบุฉ ุญุงุตู ุถุฑุจ ููุณูู ุงุฐุง ูู ุฌูุช |
|
|
|
451 |
|
00:46:39,370 --> 00:46:49,530 |
|
ููุช ุฌู ูุงุญุฏ ู
ุน ุงู E H ูููุง ุฌู ุงุชููู ู
ุน ุงู E H ูู |
|
|
|
452 |
|
00:46:49,530 --> 00:46:53,370 |
|
ุถุฑุจุช ุถุฑุจ component wise ูุจูู ุจูุตูุฑ ุฌู ูู ุฌู ุชูู |
|
|
|
453 |
|
00:46:53,370 --> 00:46:59,060 |
|
ูุงู E H ูู ุงู E H ูู ุจุงู E H itselfูุจูู ูุฐุง ุงูููุงู
|
|
|
|
454 |
|
00:46:59,060 --> 00:47:07,300 |
|
ุจุฏู ูุณุงูู ูุฐุง Phi of G1 ู ูุฐุง Phi of G2 ูุจูู ููุง |
|
|
|
455 |
|
00:47:07,300 --> 00:47:17,080 |
|
Phi is an isomorphism ูููุฐุง ุจุงููุณุจุฉ ูู
ูุ ุจุงููุณุจุฉ |
|
|
|
456 |
|
00:47:17,080 --> 00:47:17,900 |
|
ููุซุงูู |
|
|
|
|