abdullah's picture
Add files using upload-large-folder tool
9b50984 verified
raw
history blame
101 kB
1
00:00:04,910 --> 00:00:08,190
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุญู…ุฏ ู„ู„ู‡ ุฑุจ ุงู„ุนุงู„ู…ูŠู†
2
00:00:08,190 --> 00:00:12,270
ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุณูŠุฏ ุงู„ู…ุฑุณู„ูŠู† ุณูŠุฏู†ุง ู…ุญู…ุฏ ุนู„ู‰
3
00:00:12,270 --> 00:00:18,470
ุขู„ู‡ ูˆุตุญุจู‡ ุฃุฌู…ุนูŠู† ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 22 ููŠ ู…ุณุงู‚
4
00:00:18,470 --> 00:00:23,930
ุชุญู„ูŠู„ ุญู‚ูŠู‚ุฉ ู†ูŠู„ ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉู‚ุณู…
5
00:00:23,930 --> 00:00:29,530
ุงู„ุฑูŠุงุถูŠุงุช ููŠ ูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ุนู†ูˆุงู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู…
6
00:00:29,530 --> 00:00:32,850
ู‡ู†ูƒู…ู„ chapter ุชู…ุงู†ูŠุฉ ู‡ูŠูƒูˆู† ููŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
7
00:00:32,850 --> 00:00:37,130
applications ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุชู…ุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ูˆ
8
00:00:37,130 --> 00:00:41,630
ุชู…ุงู†ูŠุฉ ุงุชู†ูŠู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู… ุงู„ู„ูŠ ู‡ูŠ ู‡ู†ุญูƒูŠ ุนู† the
9
00:00:41,630 --> 00:00:46,730
exponential and the logarithmic functions ู‡ู†ุญูƒูŠ ุนู†
10
00:00:46,730 --> 00:00:51,830
ุงู„ู„ูŠ ู‡ูˆ ุฏุงู„ุฉ ุงู„ E to the X ูˆุฏุงู„ุฉ ุงู„ Lin ุฃูˆ ุฏุงู„ุฉ ุงู„
11
00:00:51,830 --> 00:00:57,660
logุงู„ุงู† ู‡ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุฎู„ุงู„ .. ููŠ ุงู„ุจุฏุงูŠุฉ ู‡ู†ุญูƒูŠ
12
00:00:57,660 --> 00:01:03,280
ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ exponential function ุฃูˆ ู‡ู†ุซุจุช ุงู„ู„ูŠ
13
00:01:03,280 --> 00:01:05,740
ู‡ูˆ ูˆุฌูˆุฏ ุงู„ exponential function
14
00:01:09,490 --> 00:01:13,630
ุงุญู†ุง ุงุณุชุฎุฏู…ู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒ ู…ุฌุฑุฏ ุฃู…ุซู„ุฉ ุจุนูŠุฏุง ุนู† ุงู„ู„ูŠ
15
00:01:13,630 --> 00:01:18,730
ู‡ูˆ ุงู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ู…ูุชุฑุถู†ุง ุงู†ู‡ ู…ุนู„ูˆู…ุงุช ู…ูˆุฌูˆุฏุฉ ู…ุณุจู‚ุง
16
00:01:18,730 --> 00:01:22,170
ูˆู„ุง ุชู†ุงู‚ุถ ุงู„ู„ูŠ ู‡ูˆ ุงู†ู‡ ู†ุซุจุชู‡ุง ุงู„ูŠูˆู… ู„ุฅู†ู‡ ุงุซุจุงุชู‡ุง
17
00:01:22,170 --> 00:01:25,410
ุงู„ูŠูˆู… ู„ุง ูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ุณุงุจู‚ุง ุจู…ุง ูŠุฎุต
18
00:01:25,410 --> 00:01:29,350
ุจุฃู…ุซู„ุฉ ุงู„ู„ูŠ ุฐูƒุฑุช ููŠู‡ุง ุงู„ exponential ุงู„ุงู† ุงู„
19
00:01:29,350 --> 00:01:34,310
exponential function ุจุฏู†ุง ู†ุซุจุช ูˆุฌูˆุฏู‡ุง ุงูŠุด ุงู„ู„ูŠ
20
00:01:34,310 --> 00:01:38,820
ุจู†ู‚ูˆู„ู‡ ู†ุดูˆู ุนุจุฑ ุงู„ theorem 8 3 1 theoremุจู‚ูˆู„ there
21
00:01:38,820 --> 00:01:44,060
exists a function U ุฏู„ู‘ุฉ E ู…ู† R ู„ R ุฅุฐุง ููŠ ุนู†ุฏู†ุง
22
00:01:44,060 --> 00:01:49,680
ุฏู„ู‘ุฉ ุงุณู…ู‡ุง E ู…ู† R ู„ R such that ุงู„ู€ E prime of X
23
00:01:49,680 --> 00:01:55,280
ู„ู‡ุง ุจุณุงูˆู„ EX ู„ูƒู„ X element in Rุฅุชู†ูŠู† E of Zero
24
00:01:55,280 --> 00:01:58,820
ุจุณุงูˆูŠ ุฅูŠุด ูˆุงุญุฏ ูŠุนู†ูŠ ุงู„ุขู† ุงู„ู†ุธุฑูŠุฉ ุฏูŠ ุจุชู‚ูˆู„ูŠ ุฅู†ู‡
25
00:01:58,820 --> 00:02:02,920
ูŠูˆุฌุฏ ุนู†ุฏู†ุง ุฏุงู„ุฉ domainู‡ุง ูƒู„ ุงู„ R ูˆ rangeู‡ุง ุจุฑูˆุญ
26
00:02:02,920 --> 00:02:10,220
ุจุตูˆุจ ููŠ ุงู„ R ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุชุญู‚ู‚ ุดุฑุทูŠู† ุงู„ู„ูŠ ู‡ูŠ E prime
27
00:02:10,220 --> 00:02:14,500
of X ุจุณุงูˆูŠ E of X ูˆ E of Zero ุจุณุงูˆูŠ ุฅูŠุด ูˆุงุญุฏุงู„ุงู†
28
00:02:14,500 --> 00:02:19,920
ู†ุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏู†ุง ู†ุซุจุช ูˆุฌูˆุฏ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงูŠู‡ ุงู„ุชูŠ
29
00:02:19,920 --> 00:02:25,380
ุชุญู‚ู‚ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู…ุฐูƒูˆุฑุฉ ููŠู‡ ุงู„ู„ูŠ
30
00:02:25,380 --> 00:02:29,960
ู‡ูŠ ู†ุธุฑูŠุง ุงู„ุงู† ุฎู„ูŠู†ุง ุนุดุงู† ู†ุฑูˆุญ ุจุงุชุฌุงู‡ ุงุซุจุงุช ูˆุฌูˆุฏ
31
00:02:29,960 --> 00:02:34,080
ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุฎู„ูŠู†ุง ู†ุงุฎุฏ we inductively define a
32
00:02:34,080 --> 00:02:37,900
sequence of continuous functions as follows ุจุฏูŠ
33
00:02:37,900 --> 00:02:43,590
ุงู„ุขู† ุงุนุฑู ุงู„ู„ูŠ ู‡ูˆ sequence of functionsุงู„ุฃูˆู„ู‰
34
00:02:43,590 --> 00:02:48,790
ุงุณู…ู‡ุง E1 of X ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุฒุงุฆุฏ X ุทุจุนุง ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ
35
00:02:48,790 --> 00:02:52,790
ู…ูˆุฌูˆุฏุฉ E1 of X ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุฒุงุฆุฏ X ู‡ูŠ ุฏุงู„ุฉ ุฎุทูŠุฉ
36
00:02:52,790 --> 00:02:58,590
ุงู„ุขู† ุจุฏูŠ ุฃุนุฑู ุงู„ E2 ุงู„ E2 of X ุจุณุงูˆูŠ ุงู„
37
00:02:58,590 --> 00:03:04,170
integration ูˆุงุญุฏ ุฒุงุฆุฏ ุงู„ integration ู…ู† ุณูุฑ ู„ุนู†ุฏ X
38
00:03:04,170 --> 00:03:13,140
ุงู„ู„ูŠ ู‡ูˆ E1 of X D ุฃูˆ E1 of T DTุฅุฐุงู‹ ุงู„ู€ E2 ุจุฏูŠ
39
00:03:13,140 --> 00:03:17,960
ุฃุฌูŠุจู‡ุง ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู€ E1 ุทุจุนุงู‹ ุจุชูŠุฌูŠ ุงู„ู€ E ูˆุงู„ู€ E2
40
00:03:17,960 --> 00:03:23,500
ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุฒุงุฆุฏ ู‡ุฐู‡ ูˆุงุญุฏ ุฒุงุฆุฏ T ุงู„ู„ูŠ ู‡ูˆ
41
00:03:23,500 --> 00:03:27,730
ุชูุงุถู„ู‡ุง ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† ุชูƒู…ู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ Tุฒุงุฆุฏ
42
00:03:27,730 --> 00:03:32,910
ุงู„ู„ูŠ ู‡ูŠ T ุชุฑุจูŠุน ุนู„ู‰ ุงุชู†ูŠู† ู…ู† ุตูุฑ ู„ุนู†ุฏ X ูˆูŠุณูˆุง ูˆุงุญุฏ
43
00:03:32,910 --> 00:03:38,490
ุฒุงุฆุฏ X ุฒุงุฆุฏ X ุนู„ู‰ X ุชุฑุจูŠุน ุนู„ู‰ ุงุชู†ูŠู† ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ู…ู†
44
00:03:38,490 --> 00:03:45,020
ู‡ูŠ E2 of X E3 of Xุจุชุนุฑูู‡ุง ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุจุงู„ุณุงูˆูŠ 1
45
00:03:45,020 --> 00:03:49,840
ุฒุงุฆุฏ ุงู„ู€ integration ู…ู† 0 ู„ X ู„ุฏุงู„ุฉ ุงู„ู„ูŠ ูˆุฌุฏุชู‡ุง
46
00:03:49,840 --> 00:03:56,140
ู‚ุจู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ E2 of T DT ุจุถู„ ุฃุณุงุฆูŠ ุณุงูŠุฑ ููŠ ุงู„ุชุนุฑูŠู
47
00:03:56,140 --> 00:04:03,760
ุจู‚ูˆู„ in general ุจุชุนุฑู ุงู„ E N ุฒุงุฆุฏ 1 of Xุจุณุงูˆุฉ ุงู„ู€
48
00:04:03,760 --> 00:04:11,420
1 ุฒูŠ ุงู„ integration ู…ู† 0 ู„ X EN of T DT ุฅุฐู† ุงู„ุขู†
49
00:04:11,420 --> 00:04:16,020
ุนุฑูุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ E1 of X ุจุณุงูˆุฉ 1 ุฒูŠ X ูˆู…ู†ู‡ุง ุนุฑูุช
50
00:04:16,020 --> 00:04:21,840
ุงู„ู„ูŠ ู‡ูŠ E2 ูˆE2 ุนุฑูุช ู…ู†ู‡ุง E3 ูˆE3 ุนุฑูุช ู…ู†ู‡ุง E4 ูˆู‡ูƒุฐุง
51
00:04:21,840 --> 00:04:26,120
ุงู„ EN ุฒูŠ ุงู„ 1 of X ู‡ุชุณุงูˆุฉ 1 ุฒูŠ ุงู„ integration ู…ู† 0
52
00:04:26,120 --> 00:04:31,440
ู„ X ู„ู„ EN ุงู„ู„ูŠ ุฌุงุจ ุงู„ู‡ุง ุฏูŠof D D T ู„ูƒู„ N element
53
00:04:31,440 --> 00:04:36,720
in N ูˆ ู„ูƒู„ X element in M in R ู†ูŠุฌูŠ ุงู„ุขู† ู†ุทู„ุน ุนู„ู‰
54
00:04:36,720 --> 00:04:40,920
ุงู„ู…ู„ุงุญุธุงุช ุงู„ู„ูŠ ุจุฏู†ุง ู†ุญูƒูŠู‡ุง ุนุดุงู† ู†ุณุชุฎุฏู…ู‡ุง ุงู„ุงู† 1
55
00:04:40,920 --> 00:04:46,840
ุฒุงุฆุฏ X ุฏุงู„ุฉ ู…ุชุตู„ุฉ ู…ุด ู…ุชุตู„ุฉ ุฃุตู„ุง ุจุณ ู‡ูŠ ุฃุตู„ุง ู‚ุงุจู„ุฉ
56
00:04:46,840 --> 00:04:51,900
ู„ู„ุชูุงุถู„ ุฃูŠุถุง ุงู„ู„ูŠ ู‡ูŠ differentiable ุงู„ุงู† ุจู†ุงุก ุนู„ูŠู‡
57
00:04:51,900 --> 00:05:00,140
ู…ุฏุงู… ุงู„ E1 is continuous ู‡ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ E2E2 ู‡ูŠ
58
00:05:00,140 --> 00:05:03,940
ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1
59
00:05:03,940 --> 00:05:04,180
ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€
60
00:05:04,180 --> 00:05:07,840
E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1
61
00:05:07,840 --> 00:05:11,080
ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€
62
00:05:11,080 --> 00:05:12,820
E1 ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด
63
00:05:12,820 --> 00:05:14,980
ู„ู„ู€ E1 ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1 ู‡ูŠ
64
00:05:14,980 --> 00:05:18,980
ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1
65
00:05:18,980 --> 00:05:22,820
ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„ู€ E1 ู‡ูŠ ุงู„ุงู†ุชุฌุฑุงุด ู„ู„ู€ E1 ุงู„
66
00:05:25,750 --> 00:05:27,270
ุงู„ุขู† F.E.L
67
00:05:31,050 --> 00:05:34,950
in on R then it is integrable over any bounded
68
00:05:34,950 --> 00:05:39,590
interval ุฒูŠ ู…ุง ู‚ู„ู†ุง ู…ุฏุงู… ู‡ุฐุง continuous ุงู„ู„ูŠ ู‡ูŠ E
69
00:05:39,590 --> 00:05:45,210
ุงู„ู„ูŠ ู‡ูŠ 2 continuous ูˆู…ู† ู‡ู†ุง ู‡ุชุทู„ุน E 3 continuous
70
00:05:45,210 --> 00:05:49,530
ูˆE 4 continuous ุฅุฐุง ุตุงุฑุช ู‡ุฐูŠ ุฏุงูŠู…ุง continuous ูˆุฏู‡
71
00:05:49,530 --> 00:05:53,170
continuous ูˆุฏู‡ integration exist ูˆ by fundamental
72
00:05:53,170 --> 00:05:57,250
theorem ู‡ุฐุง ุงู„ integration ูƒู„ู‡ ุนู„ู‰ ุจุนุถ can be
73
00:05:57,250 --> 00:06:01,160
differentiatedูˆู‡ุชูƒูˆู† ุงู„ู‡ูˆ ุงูŠุด is differentiable
74
00:06:01,160 --> 00:06:05,520
ูˆู…ู†ู‡ so EN ุฒุงุฆุฏ ูˆุงุญุฏ is well defined by the above
75
00:06:05,520 --> 00:06:09,300
formula moreover ุฒูŠ ู…ุง ู‚ู„ุช it is from fundamental
76
00:06:09,300 --> 00:06:12,400
theorem of calculus ุงู„ second form ุงู„ู„ูŠ ู‡ูŠ ุณุจุนุฉ
77
00:06:12,400 --> 00:06:15,920
ุชู„ุงุชุฉ ุฎู…ุณุฉ ู‡ูŠูƒูˆู† ุนู†ุฏ ุงู„ EN ุฒุงุฆุฏ ูˆุงุญุฏ is
78
00:06:15,920 --> 00:06:19,280
differentiable ูˆู…ุด ู‡ูŠูƒ ูˆุชูุงุถู„ ู‡ุฐู‡ ุฒูŠ ู…ุง ุงุญู†ุง
79
00:06:19,280 --> 00:06:24,540
ุนุงุฑููŠู† ุจุณุงูˆูŠ ุจู†ุดูŠู„ ุงู„ integration ุทุจุนุง ุงู„ุชูุงุถู„ ุจู„ุบ
80
00:06:24,540 --> 00:06:29,220
ุงู„ integrationุจุตูŠุฑ en of x ูุจุตูŠุฑ ุนู†ุฏูŠ ุงู„ en ุฒุงุฆุฏ
81
00:06:29,220 --> 00:06:34,240
ูˆุงุญุฏ prime of x ู…ูˆุฌูˆุฏุฉ ูˆูŠุณุงูˆูŠ en x for all n
82
00:06:34,240 --> 00:06:37,720
element in N ุฅุฐู† ุงู„ุขู† ุนู…ู„ู†ุง sequence ุงู„ sequence
83
00:06:37,720 --> 00:06:40,580
ู‡ุฐู‡ ุทู„ุนุช sequence of differentiable functions ูˆ ุงู„
84
00:06:40,580 --> 00:06:43,860
derivative ู„ู„ en ุฒุงุฆุฏ ูˆุงุญุฏ prime ู‡ูŠ ุจุชุฑุฌุน ู„ู…ูŠู†
85
00:06:43,860 --> 00:06:50,320
ุจุชูŠุฌูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ en of xุทูŠุจ ุงู„ุงู† ู‡ุฐุง ูƒู„ู‡ ูˆ ุฏู‡
86
00:06:50,320 --> 00:06:53,900
ุฎู„ูŠู†ูŠ ุงุณู…ูŠู‡ุง ุชู„ุงุชุฉ ูˆ ุฎู„ูŠู†ูŠ ู†ุญุถุฑ ุญุงู„ู†ุง ู†ุตู„ ู„ู„ูŠ ุจุฏู†ุง
87
00:06:53,900 --> 00:06:59,500
ูŠุงุฌูˆู„ูƒู… ูˆูŠู† ู‡ู†ุตู„ ููŠ ุงู„ุขุฎุฑ ู‡ูˆุตู„ูƒู… ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„
88
00:06:59,500 --> 00:07:05,400
limit ู„ู‡ุฐู‡ ุงู„ sequence ุงูˆ ู„ู‡ุฐู‡ ุงู„ sequence ู‡ูŠ ุงู„ E
89
00:07:05,400 --> 00:07:12,300
of X ุงู„ู„ูŠ ุงู†ุง ุจุซุจุช ูˆุฌูˆุฏู‡ุงูˆุณุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ ุจุชุญู‚ู‚
90
00:07:12,300 --> 00:07:16,440
ุงู„ุดุฑูˆุท ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ู…ุง ู„ุงุณุชุนุฌู„ุด ู†ุดูˆู
91
00:07:16,440 --> 00:07:19,900
ุฅูŠุด ุงู„ู„ูŠ ุจุฏู†ุง ู†ุตู„ู„ู‡ ุฅุฐุง ุงู„ู„ูŠ ุนู…ู„ู†ุงู‡ ูƒูˆู‘ู†ู†ุง
92
00:07:19,900 --> 00:07:23,380
sequence sequence ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ sequence
93
00:07:23,380 --> 00:07:28,160
ุจุฏุฃุช ุนุดุงู† ูŠุจู‚ู‰ ู„ูƒู… ุงู„ุฐุงูƒุฑูŠู† E1 of X ุจุณุงูˆูŠ ูˆุงุญุฏ
94
00:07:28,160 --> 00:07:34,760
ุฒุงุฆุฏ X E and ุฒุงุฆุฏ ูˆุงุญุฏ of X ุจุณุงูˆูŠ ุงู„ุงู†ุชุฌุฑุฃุช ูˆุงุญุฏ
95
00:07:35,450 --> 00:07:39,790
ุจุณูˆุก ูˆุงุญุฏุฉ ุฒูŠ ุงู„ู€ integration ู…ู† ุตูุฑ ู„ุนุฏุฏ X E N of
96
00:07:39,790 --> 00:07:47,450
T DT ุฎู„ู‘ูŠู† ู‡ุฐูˆู„ุฉ ุฃู…ุงู…ู†ุง ุทุจุนุงู‹ N element in N ุนู†ุฏูŠ
97
00:07:47,450 --> 00:07:54,630
ูˆ X ุฃูŠ element ูˆูŠู† in RุทูŠุจ ุฅุฐุง ุงู„ุงู† ุณุงุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ
98
00:07:54,630 --> 00:07:58,430
ู‡ูˆ ุงู„ .. ุฏู‡ ุงู„ู„ูŠ ู‡ุฐูŠ is differential ู„ุงู† ุจู‚ูˆู„ู„ูŠ
99
00:07:58,430 --> 00:08:03,230
ุงู†ู‡ ุงุจู† ุงู„ุฏุนูŠ ูˆูŠู…ูƒู† ู„ูˆ ุญุฏ ุดุงู ู‚ุจู„ ุจุดูˆูŠุฉ ู…ุง ูˆุตู„ู†ุง ู„
100
00:08:03,230 --> 00:08:08,450
E2 E2 ูƒุงู†ุช ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุฒูŠ ุฏูƒุณุชุฑ ุจูŠู‡ ุนู„ู‰ ุงุชู†ูŠู†
101
00:08:08,450 --> 00:08:13,070
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุงุชู†ูŠู† factorialู„ูˆ ูƒู…ู„ู†ุง ู‡ูŠูƒูˆู† E N
102
00:08:13,070 --> 00:08:16,910
of X ุจุชุณุงูˆูŠ 1 ุฒูŠุงุฏ X ุนู„ู‰ 1 factorial X ุชุฑุจูŠู‡ ุนู„ู‰ 2
103
00:08:16,910 --> 00:08:21,170
factorial ุฒูŠุงุฏ X ูˆุตู N ุนู„ู‰ 100 ุนู„ู‰ N factorial ู„ูƒู„
104
00:08:21,170 --> 00:08:25,750
X element in R ู‡ุฐู‡ ุงู„ู€ N ุตุญูŠุญุฉ ุงู„ู„ูŠ ู‡ูŠ ู„ูƒู„ N
105
00:08:25,750 --> 00:08:31,470
element in R ุงู„ู„ูŠ ู‡ูˆ ุทุจุนุง ุงุซุจุงุชู‡ุง ุณู‡ู„ ู†ุซุจุชู‡ุง by
106
00:08:31,470 --> 00:08:36,010
induction ุฎู„ูŠู†ุง ู†ุดูˆู ูƒูŠูู†ุง ู†ุซุจุช ุฃุฑุจุนุฉ by induction
107
00:08:58,380 --> 00:09:01,020
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ
108
00:09:01,020 --> 00:09:04,640
ุฃุฑุจุนุฉ
109
00:09:04,640 --> 00:09:06,540
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ
110
00:09:06,540 --> 00:09:06,720
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ
111
00:09:06,720 --> 00:09:06,900
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ
112
00:09:06,900 --> 00:09:08,610
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃfour is
113
00:09:08,610 --> 00:09:16,450
a true four and ุจุชุณุงูˆูŠ ูƒุชุงุจุฉ ูŠุนู†ูŠ ุตุงุฑ ุนู†ุฏ ุงู„ุงู„ุงู„ู€
114
00:09:16,450 --> 00:09:23,550
E K of X ุจุชุณุงูˆูŠ 1 ุฒุงุฆุฏ X ุนู„ู‰ 1 factorial ุฒุงุฆุฏ X
115
00:09:23,550 --> 00:09:29,170
ุชุฑุจูŠุน ุนู„ู‰ 2 factorial ุฒุงุฆุฏ X ุฃูุณ K ุนู„ู‰ K factorial
116
00:09:29,170 --> 00:09:33,890
ู‡ุฐุง ู„ู…ุง ู†ูุฑุถ ุฅู† ุงู„ู„ูŠ ู‡ูŠ .. ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุฑุจุนุฉ is true
117
00:09:33,890 --> 00:09:39,150
for N ุจุชุณุงูˆูŠ K ุจุฏู†ุง ู†ุซุจุช ุฅู† E K ุฒุงุฆุฏ 1 ู‡ุชุทู„ุน ุงู„ู„ูŠ
118
00:09:39,150 --> 00:09:43,870
ู‡ูŠ ู‡ุฐู‡ุฒุงุฆุฏ x ุฃุณ k ุนู„ู‰ k ุฒุงุฆุฏ ูˆุงุญุฏ ููŠูƒุชูˆุฑูŠุง ุงู„ู„ูŠ
119
00:09:43,870 --> 00:09:48,790
ุนู„ู‰ ุงู„ net ุจุชุทู„ุน ุฃุฑุจุนุฉ ุตุญูŠุญุฉ for k ุฒุงุฆุฏ ูˆุงุญุฏ ุฏู‡
120
00:09:48,790 --> 00:09:56,070
ู†ุญุณุจ ุฎู„ู‘ูŠู†ุง ู†ุญุณุจ ุงู„ุขู† E k ุฒุงุฆุฏ ูˆุงุญุฏ of x ุญุณุจ ุงู„ู„ูŠ
121
00:09:56,070 --> 00:10:01,370
ุงุญู†ุง ู…ูุชุฑุถูŠู†ู‡ ุฃูˆ ู…ุนุฑููŠู† ุงู„ sequence ุนู„ู‰ ุฃุณุงุณู‡ E k
122
00:10:01,370 --> 00:10:04,830
ุฒุงุฆุฏ ูˆุงุญุฏ of x ุฃูŠุด ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุฒุงุฆุฏ ุงู„ integration
123
00:10:04,830 --> 00:10:14,410
ู…ู† ุตูุฑ ู„ X E k of T DTู…ุธุจูˆุทุŸ ุทูŠุจ ุงู„ุงู† ุจุฏูŠ ุงุนูˆุถ ุนู†
124
00:10:14,410 --> 00:10:20,030
E K of T ุงุญู†ุง ู…ูุชุฑุถูŠู†ู‡ุง ุตุญูŠุญุฉ ู„ K ุงุฐุง E K of X
125
00:10:20,030 --> 00:10:24,230
ู‡ูŠู‡ุง ุงุฐุง ุจุงุฌูŠ ุจุนูˆุถ ุจูŠุตูŠุฑ Y ุณุงูˆูŠ ูˆุงุญุฏ ุฒุงุฆุฏ ุงู„
126
00:10:24,230 --> 00:10:29,250
integration ู…ู† ุตูุฑ ู„ X E K of T ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุฒุงุฆุฏ
127
00:10:29,250 --> 00:10:33,170
T ุฒุงุฆุฏ T ุชุฑุจูŠุน ุทุจุนุง ูˆุงุญุฏ ููŠูƒุชูˆุฑูŠุงู„ ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ
128
00:10:33,170 --> 00:10:40,080
ุนู„ู‰ ุงุชู†ูŠู† ููŠูƒุชูˆุฑูŠุงู„ ุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ X ุฃูˆ T ุฃุณ Kุนู„ู‰ K
129
00:10:40,080 --> 00:10:46,520
ููƒุชูˆุฑูŠุงู„ ุงู„ูƒู„ ุฅุดู…ุงู„ู‡ DT ู„ุฃู† ุงู„ู„ูŠ ู‡ูŠ ุฃูƒูŠุฏ ูˆุถุญุช
130
00:10:46,520 --> 00:10:49,660
ุงู„ุตูˆุฑุฉ ุจุฏู„ ุงู„ูุงุถู„ ู†ุทู„ุน ู‚ูŠู…ุฉ ุงู„ุชูุงุตูŠู„ ุงู„ูƒุงู…ู„ ูˆ ู†ุทู„ุน
131
00:10:49,660 --> 00:10:54,360
ู‚ูŠู…ุฉ ุงู„ุชูƒุงู…ู„ ูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู‡ูŠูˆุฒุงูŠุฏ ู…ุง ู‡ูˆ ุฌุงุนุฏ ุฒุงุฏ
132
00:10:54,360 --> 00:11:00,520
ู‡ุฐุง ุงู„ integration ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† Tุฒุงุฆุฏ T ุชุฑุจูŠุน
133
00:11:00,520 --> 00:11:06,140
ุนู„ู‰ 2 ููŠ 1 ูŠุนู†ูŠ 2 factorial ุฒุงุฆุฏ T ุชูƒุนูŠุจ ุนู„ู‰ 3 ููŠ
134
00:11:06,140 --> 00:11:10,920
2 factorial ูŠุนู†ูŠ 3 factorial ุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ 1 T
135
00:11:10,920 --> 00:11:15,640
ุฃูุณ K ุฒุงุฆุฏ 1 ุนู„ู‰ K ุฒุงุฆุฏ 1 ููŠ K factorial ู‡ูŠ K ุฒุงุฆุฏ
136
00:11:15,640 --> 00:11:22,230
1 ู„ูƒู„ factorial ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ู† 0 ู„ู…ูŠู†ุŸู„ุนู†ุฏ X ูˆุงุถุญุฉ
137
00:11:22,230 --> 00:11:26,550
ุงู„ุตูˆุฑุฉ ูˆูŠุณุงูˆูŠ ุนุจุงุฑุฉ ุนู† ู„ู…ุง ุงุนูˆุถ ู…ู† 0 ู„ X ุจูŠุตูŠุฑ 1
138
00:11:26,550 --> 00:11:32,090
ุฒุงุฆุฏ X ุฒุงุฆุฏ X ุชุฑุจูŠุน ุนู„ู‰ 2 factorial ู„ู…ุง ุฃุตู„ ู„ุฃุฎุฑ
139
00:11:32,090 --> 00:11:38,210
ูˆุงุญุฏ X K ุฒุงุฆุฏ 1 ุนู„ู‰ K ุฒุงุฆุฏ 1ูุงูƒุชูˆุฑูŠุงู„ ุฅุฐุง ูุนู„ุงู‹
140
00:11:38,210 --> 00:11:42,110
ุทู„ุนุช ุนู†ุฏูŠ a k ุฒุงุฆุฏ ูˆุงุญุฏ ุจุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูŠุนู†ูŠ
141
00:11:42,110 --> 00:11:46,450
ุจู…ุนู†ู‰ ุขุฎุฑ ุฃุฑุจุนุฉ ุทู„ุนุช ุงู„ true for n ุจุชุณุงูˆูŠ k ุฒุงุฆุฏ
142
00:11:46,450 --> 00:11:51,830
ูˆุงุญุฏ ุฅุฐุง ู…ู† ูƒู„ ู‡ุฐุง ุงู„ induction ุจู†ูƒูˆู† ุฃุซุจุชู†ุง ุฃู† e
143
00:11:51,830 --> 00:11:56,430
n of x ุจุณุงูˆูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูƒู„ x element in R ู„ูƒู„ n
144
00:11:56,430 --> 00:12:00,630
element in Nุฅุฐุงู‹ ู‡ุฐู‡ ุตูˆุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€EN of X ุตูˆุฑุฉ
145
00:12:00,630 --> 00:12:05,150
ุบูŠุฑ ุงู„ุตูˆุฑุฉ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ุง ููˆู‚ ุงุณุชู†ุชุฌู†ุงู‡ุง ู…ู†ู‡ุง ุงู„ุขู†
146
00:12:05,150 --> 00:12:11,770
ุฎู„ู‘ูŠู†ุง ู†ุฑูˆุญ ุจุงุชุฌุงู‡ ุฅุซุจุงุช ุฅู†ู‡ ุงู„ limit ู„ู„ู€EN ู‡ุฐู‡ ุฃูˆ
147
00:12:11,770 --> 00:12:17,910
ุงู„ู€EK ุฃูˆ ุงู„ู€EN ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ is uniformly convergent
148
00:12:18,680 --> 00:12:23,900
to some function ู‡ุฐู‡ ุงู„ู€ some function ู‡ูŠ ุงู„ู„ูŠ
149
00:12:23,900 --> 00:12:29,120
ุจุชุฏุนูŠ ุงู†ู‡ุง ู‡ุชูƒูˆู† ุงู„ exponential ุทูŠุจ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ุง
150
00:12:29,120 --> 00:12:32,840
exponential ุจุนุฏ ุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุจุชุญู‚ู‚ ุดุฑุทูŠู† ุงู„ู„ูŠ
151
00:12:32,840 --> 00:12:35,400
ุญูƒูŠู†ุง ุนู†ู‡ู… ู„ุณู‡ ุงุญู†ุง ุจู†ุนุฑู ุงู„ exponential ุงุญู†ุง
152
00:12:35,400 --> 00:12:38,340
ุจู†ุนุฑู ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ ู„ูƒู† ู„ุฃู† ู…ุนู„ูˆู…ุงุชู†ุง ุนุงุฑููŠู† ู…ู† ุงูˆู„
153
00:12:38,340 --> 00:12:43,000
ุงู„ exponentialุงู„ุงู† ุงุญู†ุง ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ ุงู„ู„ู‰ ู‡ู†ุซุจุช
154
00:12:43,000 --> 00:12:46,540
ูˆุฌูˆุฏู‡ุง ุงู„ูŠูˆู… ู‡ูŠ ุงู„ู„ู‰ ุจุนุฏ ุดูˆูŠุฉ ุจุนุฏ ู…ุง ู†ุซุจุช ุงู„
155
00:12:46,540 --> 00:12:50,880
uniqueness ู„ู‡ุง ุจู†ุณู…ูŠู‡ุง ุงู„ exponential ุฒูŠ ู…ุง ู‡ู†ุดูˆู
156
00:12:50,880 --> 00:12:56,620
ุจุนุฏ ุดูˆูŠุฉ ุงู„ุงู† ุงุฐุง ุงู„ sequence ุงู„ู„ู‰ ุนู†ุฏู‰ ู‡ุฐู‡
157
00:12:56,620 --> 00:13:05,300
ู‡ูŠูˆุถุนู‡ุง ุงู„ุงู† ู‚ู„ู†ุง E Nof X ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ ู‡ูŠ
158
00:13:05,300 --> 00:13:11,560
ูˆุงุญุฏ ุฒุงุฆุฏ X ุฒุงุฆุฏ X ุชุฑุจูŠุน ุนู„ู‰ ุงุชู†ูŠู† factorial ุฒุงุฆุฏ
159
00:13:11,560 --> 00:13:15,600
X ุฃูุณ N ุนู„ู‰ N factorial ูˆู‡ุฐุง ุงู„ุดูƒู„ ุทุจุนุง ุฃู†ุชูˆุง ู…ุด
160
00:13:15,600 --> 00:13:20,240
ุบุฑูŠุจ ุนู„ูŠูƒู… ุจุชุนุฑููˆู‡ ุงู„ุขู† ุฎู„ูŠู†ูŠ ุฃุฎุฏ ุงู„ุงู† let A ุฃูƒุจุฑ
161
00:13:20,240 --> 00:13:24,120
ู…ู† ุณูุฑ ุจูŠู‡ given ุงูุชุฑุถ ุงู† A ุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ real
162
00:13:24,120 --> 00:13:28,660
number ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ุณูุฑ ุจุงุฎุฏู‡ arbitrarily ู„ูƒู†
163
00:13:28,660 --> 00:13:33,470
ุฎู„ูŠู†ูŠ ู†ุญูƒูŠ ุนู† A ู…ุญุฏุฏุฉุงู„ุงู† if absolute value of X
164
00:13:33,470 --> 00:13:37,910
ุฃุตุบุฑ ุฃูˆ ุชุณุงูˆูŠ A ูŠุนู†ูŠ ุจุชุญูƒูŠ ุงู„ุญุฏูŠุซ ู‡ุงู† ุนู„ู‰ ุงู„ Xุงุช
165
00:13:37,910 --> 00:13:43,590
ุงู„ู„ูŠ ููŠ ุงู„ R ุงู„ู„ูŠ ู…ู† ุนู†ุฏ ู†ุงู‚ุต A ู„ุนู†ุฏ ู…ูŠู† ุงู„ A ูŠุนู†ูŠ
166
00:13:43,590 --> 00:13:48,610
ุงู„ absolute value ู„ู‡ู† ู‡ุฐูˆู„ุฉ ุฃุตุบุฑ ุฃูˆ ุชุณุงูˆูŠ ุงู„ A
167
00:13:48,610 --> 00:13:52,390
ูŠุนู†ูŠ ููŠ ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ุงู„ู„ูŠ ุจูŠู† ู†ุงู‚ุต ุงู„
168
00:13:52,390 --> 00:13:58,870
A ูˆ ุงู„ A ุจุชุชุญุฏุซ ุดูˆู ุงู„ุขู† ุงุญุณุจู„ูŠ Em of X ู†ุงู‚ุต En of
169
00:13:58,870 --> 00:14:03,750
Xูˆ ูŠุณุงูˆูŠ ูˆ ุจุฏู†ุง ู†ูุชุฑุถ ู„ูƒู… ุงู† ุงู„ุงู† ุงูŠู‡ ุดู…ุงู„ู‡ุง ุงูƒุจุฑ
170
00:14:03,750 --> 00:14:07,910
ู…ู† ุงู„ุงู† ูˆ ุงู„ุงู† ุงูƒุจุฑ ู…ู† ุงุชู†ูŠู† ุงูŠู‡ ุงุชู†ูŠู† ุงูŠู‡ ู…ูƒุชูˆุจ
171
00:14:07,910 --> 00:14:10,850
ุงุชู†ูŠู† ุงูŠู‡ ู„ุบุฑุถ ุงู„ุญุณุงุจุงุช ุงู„ู„ูŠ ุฌูŠุช ู…ู†ุดูˆูู‡ุง ุจู†ูุน
172
00:14:10,850 --> 00:14:13,270
ุชู„ุงุชุฉ ุงูŠู‡ุŒ ุจู†ูุน ุงุฑุจุนุฉ ุงูŠู‡ุŒ ุจู†ูุน ุฎู…ุณุฉ ุงูŠู‡ุŒ ุจู†ูุน ุณุชุฉ
173
00:14:13,270 --> 00:14:16,550
ุงูŠู‡ุŒ ุจู†ูุน ูƒู„ู‡ ุจู†ูุน ู‡ุฐุง ุงู„ูƒู„ุงู… ุนู„ู‰ ุงุณุงุณ ุงู†ูƒ ู…ุงูŠู†ูุนุด
174
00:14:16,550 --> 00:14:19,550
ุงู‚ูˆู„ ู†ุต ุงูŠู‡ ุงูˆ ุชู„ุช ุงูŠู‡ ุงูˆ ุฑุจุน ุงูŠู‡ ู„ุฃู†ู‡ุง ู…ุด ู‡ุชู‚ุฏ
175
00:14:19,550 --> 00:14:23,910
ุงู„ุบุฑุถ ุงู„ู„ูŠ ุจุฏูŠ ุงู†ุงู„ุฃู† ู…ูŠู† ุงุฎุชุฑุช ุฃู†ุง ุงุฎุชุฑุช ุงู„ู„ูŠ ู‡ูˆ
176
00:14:23,910 --> 00:14:29,650
ุงู„ุฃู…ุงุช ูˆุงู„ุฃู†ุงุช ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู†ูŠู† ู…ู† ุงุชู†ูŠู† ููŠ ุงู„ู€A
177
00:14:29,650 --> 00:14:34,390
ุงู„ู„ูŠ ู‡ูŠ ู‚ูŠุจุฉ ู…ูŠู† ุงู„ู€A ุงู„ู„ูŠ ู‡ูŠ ู†ุต ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ
178
00:14:34,390 --> 00:14:39,210
ุฃูˆ ุทูˆู„ ู†ุต ุงู„ูุชุฑุฉ ุทูŠุจุŒ ุงุญุณุจู„ูŠ ุงูŠู‡ M of X ู†ุงู‚ุต Y of
179
00:14:39,210 --> 00:14:44,360
XุŸE M of X ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุฒุงุฆุฏ X ุฒุงุฆุฏ X
180
00:14:44,360 --> 00:14:49,360
ุชุฑุจูŠุน ูˆ ู‡ุฌุงุจู„ ููŠ ุงู„ุทุฑูŠู‚ ู…ู† ุงู„ X M ู„ุฃู†ู‡ M ุฃูƒุจุฑ X
181
00:14:49,360 --> 00:14:52,720
ุชุฑุจูŠุน ุนู„ู‰ M ููƒุชูˆุฑูŠุงู„ ุฒุงุฆุฏ X M ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ M ุฒุงุฆุฏ
182
00:14:52,720 --> 00:14:57,280
ูˆุงุญุฏ ููƒุชูˆุฑูŠุงู„ ู„ู…ุง ุฃุตู„ ุงู„ุฃุฎุฑ ูˆุงุญุฏุฉ ู…ู† X ุฃูุณ M ุนู„ู‰ M
183
00:14:57,280 --> 00:15:03,400
ููƒุชูˆุฑูŠุงู„ ูŠุนู†ูŠ ุงู„ุขู† ู‡ุฐูŠ ู‡ูŠูƒูˆู† ุฒูŠ ู‡ูŠูƒ ู„ู…ุง ุฃุตู„ ุทุจุนุง X
184
00:15:03,400 --> 00:15:10,500
M ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ Mุฒุงุฆุฏ ูˆุงุญุฏ factorial ุฒุงุฆุฏ ู„ู…ู‘ุง ุฃุตู„
185
00:15:10,500 --> 00:15:15,760
ู„ุนู†ุฏ X ุฃูุณ M ุนู„ู‰ M factorial ู‡ุฐู‡ ู…ูŠู† ู‡ูŠ ู‡ุฐู‡ ุนุจุงุฑุฉ
186
00:15:15,760 --> 00:15:24,220
ุนู† ุงู„ EM ูŠุนู†ูŠ ุงู„ EM ู‡ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ E of XE N of X
187
00:15:24,220 --> 00:15:30,020
ุฒุงุฆุฏ ุงู„ู…ุชุจู‚ูŠ ู‡ุฐุง ุงู„ุงู† ุญุงุตู„ ุทุฑุญ ุงู„ุงุชู†ุชูŠู† ู‡ูŠูƒูˆู†
188
00:15:30,020 --> 00:15:33,480
ุนุจุงุฑุฉ ุนู† ู„ุฅู† ุงู„ู…ูุชุฑุถ ุงู„ M ุฃูƒุจุฑ ู…ู† L ุฒูŠ ู…ุง ู‚ู„ู†ุง
189
00:15:33,480 --> 00:15:37,700
ุญุงุตู„ ุทุฑุญ ุงู„ู„ูŠ ู‡ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุชุจู‚ูŠ ู‡ุฐุง X N ุฒุงุฆุฏ
190
00:15:37,700 --> 00:15:40,840
ูˆุงุญุฏ ุนู„ู‰ N ุฒุงุฆุฏ ูˆุงุญุฏ ููŠูƒุชูˆุฑูŠุงู„ ู„ู…ุง ุฃุตู„ ู„ X M ุนู„ู‰ M
191
00:15:40,840 --> 00:15:46,240
ุฅูŠุด ููŠูƒุชูˆุฑูŠุงู„ ู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ุงู„ุฃู† ุฃูˆุตู„ู†ุง ู„ุญุงุตู„ ุทุฑุญ
192
00:15:46,240 --> 00:15:51,340
ุฏูˆู„ุฉ ุจุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุฑ ู†ูŠุฌูŠ ู†ูƒู…ู„ ุงู„ุฃู† ุนู†ุฏูŠ
193
00:15:53,560 --> 00:15:58,460
ุนู†ุฏ ุงู„ absolute value ู„ู„ X ุฃุตุบุฑ ู…ู† 100 ู…ู† A
194
00:16:10,590 --> 00:16:17,130
ุฒุงุฆุฏ absolute value ุฒุงุฆุฏ xn ุฒุงุฆุฏ ุงุชู†ูŠู† ุนู„ู‰ n ุฒุงุฆุฏ
195
00:16:17,130 --> 00:16:22,710
ุงุชู†ูŠู† factorial ุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ ู„ุฃุฎุฑ ูˆุงุญุฏ x ุฃุณู… ู… ุนู„ู‰
196
00:16:22,710 --> 00:16:28,150
m factorial ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ ุงู„ุขู† ุงู† ุงู† ูƒู„ x ู…ู†
197
00:16:28,150 --> 00:16:31,270
ู‡ุฏูˆู„ุฉ ุงู„ absolute value ู‡ูŠ ุฃุตุบุฑ ูŠุณุงูˆูŠ ู…ู†ูŠู† ุงูŠู‡ ุฅุฐุง
198
00:16:31,270 --> 00:16:36,650
ุตุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ู†ุง
199
00:16:36,650 --> 00:16:45,550
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ Mุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ N ุขุณู A ุฃูุณ N ุฒุงุฆุฏ
200
00:16:45,550 --> 00:16:49,970
ูˆุงุญุฏ ู„ุฃู† ุงู„ absolute value X ุฃุตุบุฑ ุชุณุงูˆูŠ A ุฅุฐุง X N
201
00:16:49,970 --> 00:16:54,510
ุฒุงุฆุฏ ูˆุงุญุฏ ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ุงู„ A ุฃูุณ N ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ N
202
00:16:54,510 --> 00:17:00,870
ุฒุงุฆุฏ ูˆุงุญุฏ factorial ุฒุงุฆุฏ ุงู„ุชุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ A N ุฒุงุฆุฏ
203
00:17:00,870 --> 00:17:07,130
ุงุชู†ูŠู†ุนู„ู‰ n ุฒุงุฆุฏ 2 factorial ุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ ูˆุงุญุฏ
204
00:17:07,130 --> 00:17:14,870
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† a ุฃุณ m ุนู„ู‰ m factorial ู…ุงุดูŠ ุงู„ุญุงู„
205
00:17:14,870 --> 00:17:21,080
ุทูŠุจุงู„ุงู† ุฎู„ูŠู†ูŠ ุงุฎุฏ ู…ู† ู‡ุฏูˆู„ุฉ ุงู„ a n ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงู„
206
00:17:21,080 --> 00:17:24,480
n ุฒุงุฆุฏ ูˆุงุญุฏ factorial ุนุงู…ู„ ู…ุดุชุฑูƒ ู‚ุจู„ ู…ุง ุงุตู„ุญ ู‡ุฐู‡
207
00:17:24,480 --> 00:17:28,520
ุงู„ุฎุทูˆุฉ ู„ุณู‡ ุงู‡ ุฎู„ูŠู†ูŠ ุงุฎุฏ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุตูŠุฑ ุนู†ุฏูŠ a n
208
00:17:28,520 --> 00:17:33,180
ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ุฒุงุฆุฏ ูˆุงุญุฏ factorial ูุงุด ุงู„ู„ูŠ ุจูŠุถู„
209
00:17:33,180 --> 00:17:39,420
ู‡ู†ุง ููŠู‡ ุงู„ู„ูŠ ุจูŠุถู„ ู‡ู†ุง ูˆุงุญุฏ ุฒุงุฆุฏ ู‡ู†ุง ุจูŠุถู„ a ุนู„ู‰ n
210
00:17:39,420 --> 00:17:46,280
ุฒุงุฆุฏ ุงุชู†ูŠู† ุงูƒูŠุฏ ุฒุงุฆุฏ ุงู„ู„ูŠ ุจุนุฏู‡ุง a ุชุฑุจูŠุน ุนู„ู‰ nุฒุงุฆุฏ
211
00:17:46,280 --> 00:17:52,160
ุงุชู†ูŠู† ูุงู† ุฒุงุฆุฏ ุชู„ุงุชุฉ ุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ ูˆุงุญุฏ ู…ูŠู†
212
00:17:52,160 --> 00:17:57,080
ุขุฎุฑ ูˆุงุญุฏ ุจุดูŠู„ ู…ู†ู‡ ุงู† ุฒุงุฆุฏ ูˆุงุญุฏ ุจูŠุตูŠุฑ a ุฃุณ ุงู… ู†ุงู‚ุต
213
00:17:57,080 --> 00:18:03,000
ุงู† ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุงู„ู„ูŠ ุจูŠุถู„ ู…ู† ุงู† ุฒุงุฆุฏ ุงุชู†ูŠู† ู…ุถุฑูˆุจ
214
00:18:03,000 --> 00:18:09,250
ู„ุนู†ุฏ ุงู† ุงู… ู†ุงู‚ุต ุงู† ู†ุงู‚ุต ูˆุงุญุฏ ู‡ุฐูˆู„ ุงู„ุฃู†ู…ุงุดูŠ ุงู„ุญุงู„
215
00:18:09,250 --> 00:18:13,470
ู‡ุฐุง ุฃุฎุฏ ุชู…ูŠู† ูŠุง ุฌู…ุงุนุฉ ู…ุงุนู„ูŠุด ุฏุฎู„ ุงู„ูƒู„ุงู… ู…ุน ุจุนุถู‡ ุจุณ
216
00:18:13,470 --> 00:18:18,130
ุฃูƒูŠุฏ ุฃู†ุชูˆุง ู…ุณุชูˆุนุจูŠู† ุฅูŠุด ุจู‚ูˆู„ ุทู„ุนุช ุงู„ a n ุฒุงุฆุฏ ูˆุงุญุฏ
217
00:18:18,130 --> 00:18:21,090
ุนู„ู‰ n ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ูƒุชูˆุฑูŠุง ุงู„ุนุงู… ุงู„ู…ุดุชุฑูƒ ุทู„ุน ุนู†ุฏูŠ
218
00:18:21,090 --> 00:18:26,550
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ุงู† ุนู†ุฏูŠ ุฃูƒูŠุฏ ุงู„ n ุฒุงุฆุฏ ุงุชู†ูŠู† ุฃูƒุจุฑ ู…ู†
219
00:18:26,550 --> 00:18:32,050
ู…ูŠู† ู…ู† ุงู„ end ูู…ู‚ู„ูˆุจู‡ ุฃุตุบุฑุฃู‡ ูุจุตูŠุฑ ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ูˆ
220
00:18:32,050 --> 00:18:38,050
ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ a n ุนู„ู‰ l ุฒุงุฆุฏ 2 ุฃุตุบุฑ ุฃูˆ
221
00:18:38,050 --> 00:18:42,170
ุดุงูˆูŠ a ุนู„ู‰ n ูˆ ุงู„ู„ู‰ ุจุนุฏู‡ a ุชุฑุจูŠุน ุฃุตุบุฑ ุฃูˆ ุดุงูˆูŠ ุง ุง
222
00:18:42,170 --> 00:18:44,370
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง
223
00:18:44,370 --> 00:18:44,410
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง
224
00:18:44,410 --> 00:18:45,090
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง
225
00:18:45,090 --> 00:18:46,010
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง
226
00:18:46,010 --> 00:18:47,730
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง
227
00:18:47,730 --> 00:18:48,010
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง
228
00:18:51,320 --> 00:18:55,380
ุฃูƒุจุฑ ู…ู† ุฃู†ู‡ ูˆู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ุฃู†ู‡ ูู…ู‚ู„ูˆุจู‡ู… ุจูŠุตูŠุฑ ู‡ุฐุง
229
00:18:55,380 --> 00:19:00,980
ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ุงู„ู„ูŠ ู‡ูˆ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุจุนุฏู‡
230
00:19:00,980 --> 00:19:07,730
ุจูŠุตูŠุฑ ุนู†ุฏู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุฒูŠ ู…ุง ู‡ูˆ ูˆ
231
00:19:07,730 --> 00:19:13,670
ู‡ุฐู‡ ูˆุงุญุฏ ู‡ุฐู‡ a ุนู„ู‰ n ู„ุฃู†ู‡ุง ู‡ุชูƒูˆู† ุฃูƒุจุฑ a ุชุฑุจูŠุน ุนู„ู‰
232
00:19:13,670 --> 00:19:19,170
n ุชุฑุจูŠุน ุงู† ุชุฑุจูŠุน ู‡ุชูƒุจุฑ ู„ู…ุง ุฃุตู„ ู„ a m minus n ู†ู‚ุต
233
00:19:19,170 --> 00:19:25,420
ูˆุงุญุฏ ุนู„ู‰ m minus n ู†ู‚ุต ูˆุงุญุฏ ู„ุฃู† ู‡ู†ุง ุฏูˆู„ุฉ ุนุฏุฏู‡ู…ู†
234
00:19:25,420 --> 00:19:30,200
ู†ู‚ุต ูˆุงุญุฏ ู…ู† ุงู„ุงู†ุฒ ู‡ูŠูƒูˆู† ุงู† ุทุจุนุง ุงุณุชุจุฏุงู„ุช ูƒู„ ูˆุงุญุฏุฉ
235
00:19:30,200 --> 00:19:34,400
ุจุงู† ูู‡ูŠุทู„ุน ุจุงู„ุดูƒู„ ู‡ุฐุง ูˆุจุชุธู„ ุงู„ inequality ุตุญูŠุญุฉ
236
00:19:34,400 --> 00:19:38,540
ุฎู„ุตู†ุง ู…ู† ู‡ุฐุง ุทูŠุจ ุฏุนูˆู†ุง ู†ุดูˆู ูƒูŠู ุฃุถุจุญ ู„ูƒู… ู‡ุฐุง ุฏุนูˆู†ุง
237
00:19:38,540 --> 00:19:48,770
ู†ุฎู„ุต ู…ู†ู‡ ู†ุฌูŠ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ู†ุฑุฌุนุงู†ูƒู…ู„ ุงู„ุญุณุจุฉ ู‡ุฐุง
238
00:19:48,770 --> 00:19:57,670
ุงู„ุงู† ุงู„ู…ู‚ุฏุงุฑ ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ูˆ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ู‡ูŠู‡ ุงุชุทู„ุนูˆุง
239
00:19:57,670 --> 00:20:06,710
ุนู†ุฏู‰ ุงู„ a ุงู„ a ุนู„ู‰ n ุงูŠุด ุงู†ุง ู…ุงุฎุฏ ุงู„ n ู…ุงุฎุฏ ุงู„ n
240
00:20:06,710 --> 00:20:12,930
ุงูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ุงุชู†ูŠู† a ูŠุนู†ูŠ ุงู„ a ุงุตุบุฑ ู…ู† n ุนู„ู‰ ู…ูŠู†
241
00:20:13,680 --> 00:20:21,900
ุนู„ู‰ ุงุชู†ูŠู† ู…ุธุจูˆุท ุงู„ A ุฃุตุบุฑ ู…ู† N ุนู„ู‰ ุงุชู†ูŠู† ูˆุงุถุญุฉ ุฌุณู…
242
00:20:21,900 --> 00:20:25,660
ุงู„ N ุนู„ู‰ ุงุชู†ูŠู† ูˆ N ุนู„ู‰ ุงุชู†ูŠู† ุตุงุฑุช N ุนู„ู‰ ุงุชู†ูŠู† ุฃูƒุจุฑ
243
00:20:25,660 --> 00:20:29,940
ู…ู† ู…ูŠู† ู…ู† ุงูŠู‡ ุจุฏูŠ ุงุณุชุฎุฏู…ู‡ุง ุงู„ุขู† ู‡ุฐู‡ ุงู„ N ุจุตูŠุฑ ุฃุตุบุฑ
244
00:20:29,940 --> 00:20:34,020
ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุตูŠุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุจุญูƒูŠ
245
00:20:34,020 --> 00:20:39,590
ุนู† ู‡ุฐุง ุจุตูŠุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ Aุฃูุณ ุงู† ุฒุงุฆุฏ
246
00:20:39,590 --> 00:20:45,410
ูˆุงุญุฏ ุนู„ู‰ ุงู† ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ูƒู„ ููƒุชูˆุฑูŠุงู„ ููŠู‡ ุงู„ู„ูŠ ู‡ูˆ
247
00:20:45,410 --> 00:20:56,830
ูˆุงุญุฏ ุฒุงุฆุฏ ุง ุนู„ู‰ ุงู† ุฒุงุฆุฏ ุง ุชุฑุจูŠุฉ ุนู„ู‰ ุงู† ุชุฑุจูŠุฉ ุฒุงุฆุฏ
248
00:20:56,830 --> 00:21:06,530
ุง ุงู„ู„ูŠ ู‡ูˆ ุง ุชูƒุนูŠุจ ุนู„ู‰ ุงู† ุชูƒุนูŠุจุฒุงุฆุฏ ู…ุด ุจุชุตู„ ู„ู‡ุฐุง
249
00:21:06,530 --> 00:21:11,670
ุฒุงุฆุฏ ูˆ ุจุชุธู„ ู…ุงุดูŠู‡ุง ูŠุดู…ุงู„ู‡ุง ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูŠุนู†ูŠ
250
00:21:11,670 --> 00:21:17,110
ุจุชุถูŠู ุนู„ูŠู‡ุง a ุนู„ู‰ n ุฃุณ ุงู… ู†ุงู‚ุต n a ุนู„ู‰ n ุฃุณ ุงู…
251
00:21:17,110 --> 00:21:20,290
ู†ุงู‚ุต n ุฒุงุฆุฏ ูˆุงุญุฏ ูˆู‡ูƒุฐุง ุชุธู„ู‡ุง ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูŠุนู†ูŠ
252
00:21:20,290 --> 00:21:23,850
ุจุชุญูˆู„ู‡ุง ู„ู…ูŠู† ู„ infinite series ุทูŠุจ ุงุญู†ุง ู‚ู„ู†ุง ุงู„ a
253
00:21:23,850 --> 00:21:28,670
ุฃุตุบุฑ ู…ู† n ุนู„ู‰ 2ูŠุนู†ูŠ ุงู„ a n ุนู„ู‰ n ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†
254
00:21:28,670 --> 00:21:32,930
ู†ุต ุนุฑูุชู‡ ุงู„ุฃู† ุฅูŠุด ุจุฏุฃ ุฃุณุฃู„ ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
255
00:21:32,930 --> 00:21:39,310
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ a ุฃุณ n ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ุฒุงุฆุฏ ูˆุงุญุฏ ู„ูƒู„
256
00:21:39,310 --> 00:21:45,690
factorial ู…ุถุฑูˆุจ ููŠ ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุฒุงุฆุฏ ู†ุต ุฒุงุฆุฏ
257
00:21:45,690 --> 00:21:50,670
ู†ุต ุชุฑุจูŠุน ุฃู‡ ู„ุฃู† a ุนู„ู‰ n ุฃุตุบุฑ ู…ู† ู…ูŠู† ูŠุง ุฌู…ุงุนุฉุŸ ู…ู†
258
00:21:50,670 --> 00:21:57,850
ู†ุต ุฒุงุฆุฏุชุฑุจูŠุน ุฒุงุฏ ู†ุต ุชุชุนูŠุฏ ุฒุงุฏ ุงู„ุขุฎุฑูŠู† ู„ุฃู† ู‡ุฐู‡ ุตุงุฑุช
259
00:21:57,850 --> 00:22:02,470
ุนุจุงุฑุฉ ุนู† geometric series ู…ุฌู…ูˆุญู‡ุง ู‡ุฐู‡ ุจุชุณุงูˆูŠ ู…ุฌู…ูˆุญ
260
00:22:02,470 --> 00:22:07,050
ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ ู†ุงู‚ุตู‡ ุงู„ู„ูŠ ู‡ูˆ ู†ุต ูˆู‡ูŠ
261
00:22:07,050 --> 00:22:12,730
ุณุงูˆูŠ ุฌุฏุงุด ุงุชู†ูŠู†ู…ุงุดูŠ ุฅุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุตุงุฑ
262
00:22:12,730 --> 00:22:16,510
ุนุจุงุฑุฉ ุนู† ุงุชู†ูŠู† ููŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ูˆุตู„ู†ุง ู„ู‡
263
00:22:16,510 --> 00:22:20,650
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ a n ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ุฒุงุฆุฏ ูˆุงุญุฏ
264
00:22:20,650 --> 00:22:23,890
ููŠูƒุชูˆุฑูŠุง ู…ุถุฑูˆุจ ููŠ ู…ูŠู†ุŸ ููŠ ุงุชู†ูŠู† ูŠุนู†ูŠ ุญุณุงุจุงุช ู‡ุฐู‡
265
00:22:23,890 --> 00:22:28,770
ุทูŠุจ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ู‡ุงูŠ ุงู„ู„ูŠ ุจุฏูŠ ุฃุตู„ู‡ ูˆ ุงู„ู„ูŠ
266
00:22:28,770 --> 00:22:31,630
ูƒุงุชุจู‡ ุจุงุฎุชุตุงุฑ ู‡ูˆ ู„ุฅู†ู‡ ุจูŠุนุชุจุฑ ุงู† ุงู„ุจุงู‚ูŠุฉ ุญุณุงุจุงุชูŠ
267
00:22:31,630 --> 00:22:36,950
ุจุชุนุฑููˆุง ุชุญุณุจูˆู‡ุง em-n of x of x ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง
268
00:22:36,950 --> 00:22:43,450
ุงู„ู…ู‚ุฏุงุฑ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงุชู†ูŠู†ุงู„ุงู† ุดูˆู ู…ุง ูŠู„ูŠู‡ ุงู„ุงู† as
269
00:22:43,450 --> 00:22:49,590
n goes to infinity ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ as n
270
00:22:49,590 --> 00:22:54,230
goes to infinity ุงู„ limit ุจุชุฑูˆุญ ู„ู„ุตูุฑ ู„ุฃู† a n ุฒุงุฆุฏ
271
00:22:54,230 --> 00:22:57,110
ูˆุงุญุฏ ุนู„ู‰ n ุฒุงุฆุฏ ูˆุงุญุฏ ูƒู„ factorial as n goes to
272
00:22:57,110 --> 00:23:01,190
infinity ุงูŠุด ุจุฏู‡ ูŠุฑูˆุญ ู„ู„ุตูุฑ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุงุฎุฑ ู…ุฏุงู…
273
00:23:01,190 --> 00:23:04,430
ุจุฏู‡ ูŠุฑูˆุญ ู„ู„ุตูุฑ ุทุจุนุง ูˆุฐุง ูƒุจุฑุช ุงู„ุงู† ุจุชูƒุจุฑ ู…ูŠู† ุจุฑุถู‡
274
00:23:04,430 --> 00:23:07,850
ู…ุจุงุดุฑุฉ ุงู… ู„ุฃู† ุงู… ุงูƒุจุฑ ู…ู†ู‡ุง ุงุฐุง four
275
00:23:10,880 --> 00:23:19,800
for large ู† ูˆ ุฃู… we get
276
00:23:23,490 --> 00:23:31,050
E M of X ู†ุงู‚ุต E N of X ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ู†
277
00:23:31,050 --> 00:23:38,070
ู‡ุฐู‡ ู‡ุฐู‡ ุฃุตู„ุง for large N as N goes to infinity ู‡ุฐุง
278
00:23:38,070 --> 00:23:43,470
ุงู„ู…ู‚ุฏุงุฑ ุจูŠุตูŠุฑ ุฃุตุบุฑ ู…ู† ุฃูŠ ูŠ ููŠ ุงู„ุฏู†ูŠุง ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ
279
00:23:43,470 --> 00:23:49,330
ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ูŠ ุฃูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ูŠ as N ูˆ M
280
00:23:49,330 --> 00:23:54,630
become very very largeู…ุงุดูŠ ุงู„ุญุงู„ ู„ุฅู†ู‡ ุงู„ limit ู„ู„
281
00:23:54,630 --> 00:23:59,110
a n ุนู„ู‰ n ููƒุชูˆุฑู‡ ู„ูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ ุณูุฑ ุฅุฐุง ุตุงุฑ
282
00:23:59,110 --> 00:24:05,950
ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ E m of X E n of X ุฃุตุบุฑ ูˆุดูˆู‰ Y
283
00:24:05,950 --> 00:24:15,250
ู„ูƒู„ X ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ A ู…ุงู‚ุต A ุฃูˆ A ู…ุงุดูŠ
284
00:24:15,250 --> 00:24:23,160
ุงู„ุญุงู„ ุงู„ุขู† ุจู†ุงุก ุนู„ูŠู‡ุงู„ุงู† ู„ูƒู„ X ุจุบุถ ุงู„ู†ุธุฑ ุนู„ู‰ ุงู„ X
285
00:24:23,160 --> 00:24:28,000
ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ุนู†ุฏูŠ ุฃู†ู‡ I'm very large ูˆุจูŠุนุทูŠู†ูŠ ู‡ุฐุง
286
00:24:28,000 --> 00:24:32,560
ุฃุตุบุฑ ูˆุณูˆุก ู…ู† ุฅุจุณู„ูˆู† ูˆู‡ุฐู‡ ุงู„ู„ูŠ ุณู…ูŠู†ุงู‡ุง Cauchy's
287
00:24:32,560 --> 00:24:37,470
criterion for uniformุงู„ู„ูŠ ู‡ูˆ convergence ููŠ ุงู„ ..
288
00:24:37,470 --> 00:24:43,590
ุงู„ู„ูŠ ู‡ูˆ section 81 ุจู†ุงุก ุนู„ูŠู‡ุง ุจุทู„ุน ุนู†ุฏู‰ E and ุงู„ู„ูŠ
289
00:24:43,590 --> 00:24:47,090
ู‡ูˆ converges uniformly to some function ู…ุด
290
00:24:47,090 --> 00:24:51,410
ุนุงุฑููŠู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ .. ุงู„ู„ูŠ ู‡ูŠ converges uniformly on
291
00:24:51,410 --> 00:24:59,770
mean ุณุงู„ุจ a ุฃูˆ a ุจุงุดูŠ ุงู„ุญุงู„ุฉ ุงู„ุงู„ุงู„ุขู† ุนู†ุฏูŠ it
292
00:24:59,770 --> 00:25:02,610
follows the sequence a and a converge uniformly on
293
00:25:02,610 --> 00:25:07,210
the interval ู†ุงู‚ุต a ูˆ a where a ุฃูƒุจุฑ ู…ู† 0 ู„ูƒู† a
294
00:25:07,210 --> 00:25:11,670
ุฃูƒุจุฑ ู…ู† 0 was a ุดู…ุงู„ู‡ุง arbitrarily ูŠุนู†ูŠ ุงู„ู„ูŠ ูˆุตู„ู†ุง
295
00:25:11,670 --> 00:25:18,110
ู„ู‡ ู…ุง ูŠุงู„ูŠุง ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ูˆุตู„ู†ุง ู„ู‡ ุฃู†ู‡ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ
296
00:25:18,110 --> 00:25:23,210
ุงู„ู€ sequence ู‡ุฐู‡ ู„ูˆ ุฌูŠุช ุฃุฎุฏุช for every a element
297
00:25:23,210 --> 00:25:27,130
in R ูˆ a ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูˆ ูˆุตู„ู†ุง ู„ู‡ ุงู„ู„ูŠ ูƒุงู†ุช a
298
00:25:27,130 --> 00:25:32,130
arbitrarily ูˆุฌุฏู†ุง ุฃู†ู‡ ู‡ูŠูƒูˆู† ุนู†ุฏ ุงู„ู€ EL converges
299
00:25:32,130 --> 00:25:39,550
uniformly on ู…ุงู‚ุต a ูˆ ู…ูŠู† ูˆ a ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ ุจู†ุงุก
300
00:25:39,550 --> 00:25:48,200
ุนู„ูŠู‡ ู„ูˆ ุฃู†ุช ุฌูŠุช ุฃุฎุฏุช ุฎุฏ ุงู„ุขู† letX element in RุŒ ุฃูŠ
301
00:25:48,200 --> 00:25:53,540
X element in RุŒ ู…ุฏุงู… X ููŠ RุŒ ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู€ X ุนุดุฑุŒ
302
00:25:53,540 --> 00:25:59,250
ุนุดุฑูŠู†ุŒ ุชู„ุงุชูŠู†ุŒ ู…ู„ูŠูˆู†ุŒ ู…ู…ูƒู† ู…ุง ุชูƒูˆู†ุŒุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ A
303
00:25:59,250 --> 00:26:05,890
ุจุญูŠุซ ุฃู† X ุชู†ุชู…ูŠ ุฅู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ู†ุงู‚ุต A ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ
304
00:26:05,890 --> 00:26:11,590
ุฅูŠู‡ ูŠุนู†ูŠ ู…ุซู„ุง ุงู„ X ู„ุฌูŠุชู‡ุง 100 ุจุงุฎุฏ ุงู„ A 110 ุจุตูŠุฑ
305
00:26:11,590 --> 00:26:17,850
ุงู„ X ุจูŠู† ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต 110 ูˆ100 ุฅูŠุด ู…ุง ุชูŠุฌูŠ X ุจู„ุงู‚ูŠ
306
00:26:17,850 --> 00:26:24,470
ู„ู‡ุง Aุฅุฐุง there exists a such that x element in a
307
00:26:24,470 --> 00:26:31,410
minus a ุฃูƒุจุฑ ู…ู† ุตูุฑ ุทุจุนุง minus a ูˆู…ูŠู† ุฃูˆ a ุฃูƒูŠุฏ ุทุจ
308
00:26:31,410 --> 00:26:34,390
ู…ุง ู‡ูˆ ุงุญู†ุง ู‚ุฏ ุฃุซุจุชู†ุง ุงู†ู‡ ู„ูƒู„ a element in R
309
00:26:38,870 --> 00:26:44,730
Converge uniformly ู„ู„ู€ A ุงู„ู„ูŠ ู„ุงุฌู†ุงู‡ุง ู‡ุฐู‡ On ู†ุงู‚ุต
310
00:26:44,730 --> 00:26:49,690
A ูˆ A ู„ู‡ุฐู‡ ุงู„ู€ A ูŠุนู†ูŠ ุจู…ุนู†ู‰ ู…ุนู†ุงู‡ ู…ุงุฏุงู… Converge
311
00:26:49,690 --> 00:26:55,030
uniformly ู„ุฅุฐุง E N of Xุงู„ู„ูŠ ู‡ูˆ converges point
312
00:26:55,030 --> 00:26:58,250
-wise to some function ุนู†ุฏ ู…ูŠู†ุŸ ุนู†ุฏ ุงู„ู€ X ุงู„ู„ูŠ
313
00:26:58,250 --> 00:27:03,670
ุฃุฎุฏุชู‡ุง ู‡ุงู†ุง ู‡ุฐู‡ ุฅุฐุง ุงู„ุฃู† for any X element in R
314
00:27:03,670 --> 00:27:11,450
for any X element in R ู‡ู†ู„ุงู‚ูŠ E N of X convergesู…ุง
315
00:27:11,450 --> 00:27:15,250
ุฏุงู… ุงู„ E N of X is convergent for every X element
316
00:27:15,250 --> 00:27:22,230
in R ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ limit ุงู„ E N of X as N goes to
317
00:27:22,230 --> 00:27:27,830
infinity exists for every X element in R ู…ุง ุฏุงู…
318
00:27:27,830 --> 00:27:34,210
exist ุญุณุจ ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ุง ุฅุฐุง ุงู„ุขู† ุดุฑุนุช ู„ุชุนุฑูŠู ุงู„ุฏุงู„ุฉ
319
00:27:34,210 --> 00:27:40,600
ุงู„ุชุงู„ูŠุฉ ุงู„ุขู† ุฃู†ุง ุจู‚ูˆู„ ุฅู†ู‡ ุงุญู†ุง ุตุงุฑ ุนู†ุฏู†ุงุงู„ู„ูŠ ู‡ูˆ
320
00:27:40,600 --> 00:27:47,760
ู…ุดุฑูˆุน ุงู† ู†ู‚ูˆู„ we define E ู…ู† R ู„R by limit E N of
321
00:27:47,760 --> 00:27:53,940
X ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ุณู…ูŠุชู‡ุง ุฅูŠุด ุงุณู…ู‡ุง E of X for X
322
00:27:53,940 --> 00:28:00,760
element of Rูˆุฌูˆุฏ ุงู„ู„ูŠ ู‡ูˆ ุฏุงู„ุฉ ุงุณู…ู‡ุง E ุฃู†ุง ุณู…ูŠุชู‡ุง E
323
00:28:00,760 --> 00:28:06,400
ู…ู† R ู„ุนู†ุฏ R ุจุญูŠุซ ุงู† E of X ู‡ูŠ limit ุงู„ E ุฃู†ู‡ VIX
324
00:28:06,400 --> 00:28:11,480
ุงู„ู„ูŠ ุฃุซุจุชุช ูˆุฌูˆุฏู‡ ุจุฏูŠ ุฃุซุจุชู„ูƒ ุงู„ุฃู† ุฃู† E of X ู‡ุฐู‡ ู‡ูŠ
325
00:28:11,480 --> 00:28:16,120
ุงู„ุฏุงู„ุฉ ุงู„ู…ุจุชุบุฉ ุงู„ู„ูŠ ุจุชุญู‚ู‚ ุงู„ุดุฑูˆุท ุงู„ู„ูŠ ุทู„ุจู‡ุง ููŠ
326
00:28:16,120 --> 00:28:21,740
ุงู„ู†ุธุฑูŠุฉ ู†ุดูˆู ูƒูŠู ุทูŠุจ ุตู„ูˆุง ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ
327
00:28:21,740 --> 00:28:22,160
ูˆุงู„ุณู„ุงู…
328
00:28:35,970 --> 00:28:39,830
ุงู„ุงู† ุนู†ุฏู‰ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
329
00:28:39,830 --> 00:28:39,910
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
330
00:28:39,910 --> 00:28:39,970
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
331
00:28:39,970 --> 00:28:40,290
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
332
00:28:40,290 --> 00:28:42,410
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
333
00:28:42,410 --> 00:28:42,810
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
334
00:28:42,810 --> 00:28:44,810
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
335
00:28:44,810 --> 00:28:49,770
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
336
00:28:49,770 --> 00:28:51,450
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
337
00:28:51,450 --> 00:28:51,610
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
338
00:28:51,610 --> 00:28:52,610
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
339
00:28:52,610 --> 00:28:55,710
.. ุงู„ ..
340
00:29:00,330 --> 00:29:06,370
converge such that x element ู†ุงู‚ุต a ุฃูˆ a ูƒู„ู‡ุง ู‡ุฐู‡
341
00:29:06,370 --> 00:29:12,330
ุงู„ู€en converged uniformly ุงู„ุงู† ู„ู…ู†ุŸ ู„ู„ู€e ู…ุนุงูŠุง
342
00:29:12,330 --> 00:29:19,190
converged uniformly ู„ู„ู€e for every ุฃูˆ on ู†ุงู‚ุต a ุฃูˆ
343
00:29:19,190 --> 00:29:23,010
a ู„ุฃู†ู‡ ุณู…ู†ุงู‡ุง ุฅูŠุด ุงู„ู„ูŠ ู‡ูŠ ุงู„ limit ุจุชุฑูˆุญู„ู‡ุง ุงุณู…ู‡ุง
344
00:29:23,010 --> 00:29:27,670
ุฅูŠู‡ ุงู„ุขู† en ุงุชูุฌู†ุง ุฅู†ู‡ ุฃุซุจุชู†ุงู‡ุง ุฅู†ู‡ุง ุฅูŠุด ู…ุนุงู„ู‡ุง
345
00:29:28,810 --> 00:29:34,050
continuous ู…ุงุฏุงู… continuous ูˆ en ุงู„ู„ูŠ ู‡ูˆ ุทุจุนุง
346
00:29:34,050 --> 00:29:36,330
continuous ู…ุด ุจุณ ุนู„ู‰ ู†ุงู‚ุต a ูˆ a continuous ูˆูŠู†
347
00:29:36,330 --> 00:29:39,690
ู…ูƒุงู† ุงุญู†ุง ุงู„ุขู† ู‡ู†ุญูƒูŠ ุนู† ู†ุงู‚ุต a ูˆ a continuous ุตุงุฑุช
348
00:29:39,690 --> 00:29:42,910
ุงู„ en continuous sequence converts uniformly to e
349
00:29:42,910 --> 00:29:48,110
ุนู„ู‰ ู†ุงู‚ุต a ูˆ a ุฅุฐุง ุตุงุฑุช ุงู„ e ู‡ุฐู‡ ุญุณุจ ู†ุธุฑูŠุชู†ุง ู‡ุชูƒูˆู†
350
00:29:48,110 --> 00:29:53,560
continuous ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ููŠ ุณูŠูƒุดู† 8 ุงู„ู„ูŠ ู‡ูˆ 2 ู‡ุชูƒูˆู†
351
00:29:53,560 --> 00:29:57,800
ุงู„ู€ E is continuous ุนู„ู‰ ู†ุงู‚ุต A ูˆ A ู‚ูˆู„ู†ุง if E N is
352
00:29:57,800 --> 00:30:00,200
a sequence of continuous functions that converge
353
00:30:00,200 --> 00:30:03,200
uniformly to some function then this function or
354
00:30:03,200 --> 00:30:06,880
some function is continuous on ู†ุงู‚ุต A ูˆ Eุฅุฐุง ุตุงุฑุช
355
00:30:06,880 --> 00:30:10,200
ุงู„ E continuous ุนู„ู‰ ู†ู‚ุต A ูˆ A ูŠุนู†ูŠ ุงู„ E continuous
356
00:30:10,200 --> 00:30:14,520
ุนู†ุฏ ู…ู†ุŸ ุนู†ุฏ ุงู„ X ูˆ since X was arbitrary in R then
357
00:30:14,520 --> 00:30:21,180
E ู‡ุชูƒูˆู† is continuous ุนู„ู‰ ูƒู„ ุงู„ R ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ E
358
00:30:21,180 --> 00:30:26,560
is continuous at any X element in R ุงู„ุขู† ู„ูˆ ุฌูŠู†ุง
359
00:30:26,560 --> 00:30:31,600
ุญุณุจู†ุง ุงู„ E N of 0 ูˆ E 1 of 0 ูˆ E 1 of 0 ุฃุดูˆ
360
00:30:31,600 --> 00:30:39,410
ุจุงู„ุณุงูˆูŠุฉุŸ ู‡ูŠ ูˆุงุญุฏE ุงู„ู„ูŠ ู‡ูˆ N ุฒุงุฆุฏ ูˆุงุญุฏ of Zero
361
00:30:39,410 --> 00:30:45,630
ุงู„ู„ูŠ ู‡ูˆ ุจุณุงูˆูŠ ู…ู† ุณูุฑ ู„ุณูุฑ ู‡ูŠุทู„ุน ุณูุฑ ูˆู‡ุฐุง ูˆุงุญุฏ ูŠุนู†ูŠ
362
00:30:45,630 --> 00:30:52,470
ุฏุงูŠู…ุง ุงู„ E N of Zero ู‡ุชุทู„ุน ุฅูŠุดุŸ Zero ู…ุฏุงู… E N of
363
00:30:52,470 --> 00:31:00,670
Zero Zero ูˆุจู…ุง ุฃู†ู‡ E is continuous ุฅุฐู† limit ุงู„ Eู†
364
00:31:00,670 --> 00:31:05,930
of zero as n goes to infinity ุจุณูˆุก ุงู„ู„ูŠ ู‡ูˆ E of
365
00:31:05,930 --> 00:31:10,990
zero ุฃูˆ E of X ุฃุณู E of X as n goes to infinity
366
00:31:10,990 --> 00:31:18,450
ุจุณูˆุก E of X ูˆุจู…ุง ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆุงู„ู„ูŠ ู‡ูŠ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
367
00:31:18,450 --> 00:31:20,590
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
368
00:31:20,590 --> 00:31:21,370
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
369
00:31:21,370 --> 00:31:22,190
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
370
00:31:22,190 --> 00:31:25,670
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
371
00:31:25,670 --> 00:31:30,470
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
372
00:31:30,470 --> 00:31:32,430
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
373
00:31:32,430 --> 00:31:32,790
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
374
00:31:32,790 --> 00:31:32,950
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
375
00:31:32,950 --> 00:31:35,550
ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„ ุงู„
376
00:31:35,550 --> 00:31:39,680
ุงู„ ุงู„ุฃู†ุง ูƒู†ุช ุจุฎู„ุทู‡ุง ุฃู†ุง ุจู‚ูˆู„ E n of 0 ุจุณุงูˆูŠ 1
377
00:31:39,680 --> 00:31:43,540
limit E n of X ุจุณุงูˆูŠ E of X ูˆุงู„ E is continuous
378
00:31:43,540 --> 00:31:48,900
ุฅุฐุง ุงู„ุญูŠูƒูˆู† ุงู„ E of 0 ู‡ุฐู‡ ู‡ุชุณุงูˆูŠ ุฅูŠุดุŸ ู‡ูŠุณุงูˆูŠ 1
379
00:31:48,900 --> 00:31:53,800
ู„ุฃู†ู‡ limit E n of 0 point twice ุจุณุงูˆูŠ E of 0 ุงู„ู„ูŠ
380
00:31:53,800 --> 00:31:58,580
ู‡ูŠ 0ุงู„ุงู† e n of zero ุจุชุณุงูˆูŠ ูˆุงุญุฏ for all and infim
381
00:31:58,580 --> 00:32:04,940
therefore e of zero ุจุชุณุงูˆูŠ ูˆุงุญุฏ ู„ุฅู† ุงู„ู„ูŠ ู‡ูŠ e
382
00:32:04,940 --> 00:32:11,240
ู†ูุณู‡ุง is continuous ุฅุฐุง ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก
383
00:32:11,240 --> 00:32:16,080
ุงู„ุฃูˆู„ ุฃุฐูƒุฑูƒู… ููŠ ุงู„ุธุงู‡ุฑูŠุฉ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุฃูˆ
384
00:32:16,080 --> 00:32:20,770
ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ู‡ู‰ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ู‡ู‰
385
00:32:20,770 --> 00:32:25,430
ุนู†ุฏู‰ ุฃุซุจุชู†ุง .. ุงู„ุชุงู†ู‰ ุฃุณู ุฃุซุจุชู†ุง E ุงู„ู„ู‰ ู‡ู‰ E of
386
00:32:25,430 --> 00:32:29,370
Zero ุจุงู„ุณุงูˆูŠุฉ ูˆุงุญุฏุฉ ุจุฏู‰ ุฃุซุจุชู„ูƒ ุงู„ุฃู† E prime of X
387
00:32:29,370 --> 00:32:34,750
ู‡ุชุณุงูˆูŠ E of X ุนุดุงู† ุฃุซุจุชู‡ุง ุจุฏู†ุง ู†ุฐูƒุฑูƒู… ููŠ ู†ุธุฑูŠุฉ
388
00:32:34,750 --> 00:32:45,750
ุฃุฎุฏู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู„ู„ู‰ ู‡ู‰ ุจุชู‚ูˆู„ ู…ุง ูŠู„ูŠู‡ ุฃุฐูƒุฑูƒู…
389
00:32:45,750 --> 00:32:51,350
ูŠุง ุฌู…ุงุนุฉุจุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจุณุชุฎุฏู…ู‡ุง ูƒุงู†ุช ุงู† ุนู†ุฏูŠ ู„ูˆ ููŠ
390
00:32:51,350 --> 00:32:56,330
ุนู†ุฏูŠ fn sequence of functions ูˆ ู‡ุฐู‡ fn ุงู„
391
00:32:56,330 --> 00:33:00,050
differentiable ู„ุฃู† fn ุจุฑุงูŠู… ุจุชุฑูˆุญ ู„ g uniformly
392
00:33:00,050 --> 00:33:08,330
ู…ุงุดูŠ on some interval on some j ูˆูƒุงู† ุนู†ุฏูŠ fn of x
393
00:33:08,330 --> 00:33:11,050
not converge
394
00:33:12,940 --> 00:33:21,240
converts to f of x not ู…ุซู„ุง on j ุงู‡ for x not
395
00:33:21,240 --> 00:33:31,300
element in j then ุจู‚ูˆู„ ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ f ู‡ุฐู‡ f prime
396
00:33:31,300 --> 00:33:39,230
existsูˆ FN converts uniformly to this F ุงูˆ FN
397
00:33:39,230 --> 00:33:46,950
converts uniformly to this F and F' ู‡ูŠ ู…ูŠู† ู‡ูŠ ุงู„ู€
398
00:33:46,950 --> 00:33:50,370
G ู‡ุฐุง ุญูƒูŠู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุทูŠุจุŒ ุจุฏุฃ ุงุณุชุฎุฏู…ู‡ุง ุงู„ุขู†
399
00:33:50,370 --> 00:33:54,510
ุดูˆู ุนู†ุฏู‡ุŒ ุงู† ุดูˆู ุนู†ุฏู‡ ุงู„ู€ N ุฃุซุจุชู†ุง ุงูˆ ุงู„ู€ N
400
00:33:54,510 --> 00:33:57,110
interval ู„ุงู‚ุตูŠุฉ ูˆ ุงูŠู‡ุŸ we have the uniform
401
00:33:57,110 --> 00:34:02,350
convergence of the sequence EN ุงู„ู„ูŠ ู‡ูˆ ู‡ุชูƒูˆู† EN
402
00:34:04,720 --> 00:34:12,400
converge uniformly ู…ุงุดูŠ ุงู„ุญุงู„ุฉ of you of me of
403
00:34:12,400 --> 00:34:15,900
ุชู„ุงุชุฉ ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุฎู„ูŠู†ูŠ
404
00:34:15,900 --> 00:34:21,540
ุจุณ ู†ุฐูƒุฑูƒู… ููŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุชู„ุงุชุฉ ู‡ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุชู„ุงุชุฉ
405
00:34:21,840 --> 00:34:25,980
ุนู†ุฏูŠ ุงู„ุงู† conversion formally to some function E
406
00:34:25,980 --> 00:34:30,140
ุณู…ู†ุงู‡ุง ุงู„ุงู† ุจู†ุงุก ุนู„ูŠู‡ ุจุฏู„ุง ู…ู† ุงู„ุงู† ุฒุงุฆุฏ ูˆุงุญุฏ ู‡ูŠ
407
00:34:30,140 --> 00:34:34,820
ุณุงูุณุฉ ุงู„ุงู† ุฅุฐุง ุตุงุฑุช ุงู„ุงู† ุฒุงุฆุฏ ูˆุงุญุฏ prime ุจุฑุถู‡
408
00:34:34,820 --> 00:34:38,140
conversion ู‡ุงุฏูŠ ู‡ุงุฏูŠ ุฃุตู„ุง conversion formally to
409
00:34:38,140 --> 00:34:46,280
ู…ูŠู†ุŸ to ุงู„ E ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ุงู† ูˆุถุญุช ุงู„ุตูˆุฑุฉ ุงู„ุงู† ุตุงุฑุช
410
00:34:46,280 --> 00:34:53,410
ุงู„ุตูˆุฑุฉ ูˆุงุถุญุฉ ุงู„ุงู† ุงู„ู„ูŠ ุญุตู„ู†ุง ุงู†ู‡ุงู†ุชุจู‡ ุนู„ูŠุงุŒ on any
411
00:34:53,410 --> 00:34:56,010
interval ู†ุงู‚ุต a ูˆ a, we have the inferred
412
00:34:56,010 --> 00:35:01,170
convergence of E n ูˆููŠ ุถูˆุก ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ, we also
413
00:35:01,170 --> 00:35:04,290
have the inferred convergence E n prime of the
414
00:35:04,290 --> 00:35:08,350
derivatives ุงู„ุขู† ู…ู† ุงู„ theorem 8.2.3 ุงู„ู„ูŠ ุญูƒูŠุชู‡ุง
415
00:35:08,350 --> 00:35:13,700
ู‡ู†ุงุŒ ู…ุฏุงู… F n prime converges ู„ Gู…ุงุดูŠ ุงู„ุญุงู„ ูˆ ุงู„
416
00:35:13,700 --> 00:35:17,160
.. ุงูˆ ุงู„ Fn X0 ุจุชุฑูˆุญ ู„ F of X0 for X0 ุงู„ู„ูŠ ุจุชู†ุฌุญ
417
00:35:17,160 --> 00:35:21,880
ุงู„ู„ูŠ ู‡ูˆ ุงูƒุชุฑ ู…ู† ุงู„ู†ู‚ุทุฉ ูˆ ุงุตู„ุง ุนู„ู‰ ุงุณุงุณ ุนุฑูู†ุง ุงู† Fn
418
00:35:21,880 --> 00:35:27,420
of X ุจุงู„ุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† E of X ุจุชุฑูˆุญ ู„ู…ูŠู† ู„ู„ E of
419
00:35:27,420 --> 00:35:31,780
X ุงุฐุง ุงูƒูŠุฏ ู‡ุฐู‡ ู…ุชุญู‚ู‚ุฉ ูƒู…ุงู† ุจุงู„ู†ุณุจุฉ ู„ู…ูŠู† ู„ู„ E N
420
00:35:31,780 --> 00:35:36,760
ุตุงุฑุช ู‡ุฐู‡ ู…ุชุญู‚ู‚ุฉ ูˆ ู‡ุฐู‡ ู…ุชุญู‚ู‚ุฉ ู…ู† ุงู„ุชุญู‚ู‚ ู‡ุฐู‡ู‡ุฐู‡ ูŠุง
421
00:35:36,760 --> 00:35:42,140
ุนุฒูŠุฒูŠ ุงู„ุชุญู‚ู‚ ู‡ุฐู‡ ุฅุฐุง ุฅุฐุง ู‡ูŠูƒูˆู† ุนู†ุฏู‡ ุงู„ F N ุจุชุฑูˆุญ
422
00:35:42,140 --> 00:35:46,020
ู„ู„ F ุงู„ู„ูŠ ู‡ูŠ ุงู„ E N ุจุชุฑูˆุญ ู„ู„ E ุตู†ุงุฏุฑ ุฃุซุจุชู†ุงู‡ุง ุจุณ
423
00:35:46,020 --> 00:35:51,720
ุฅูŠุด ุงู„ู…ู‡ู… ุฃู†ู‡ ุงู„ F prime ู„ู‡ุฐู‡ ุงู„ู„ูŠ ุจุชุฑูˆุญู„ู‡ุง ู‡ุฐู‡
424
00:35:51,720 --> 00:35:57,080
ุงู„ู„ูŠ ู‡ูŠ ุงู„ E prime ู‡ูŠ ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุชุฑูˆุญู„ู‡ุง ุงู„
425
00:35:57,080 --> 00:36:02,340
E N ุงู„ F ุงู„ F N prime ุนู†ุฏ ุงู„ E N ุฒุงุฆุฏ ูˆุงุญุฏ prime
426
00:36:02,340 --> 00:36:03,260
ุจุชุฑูˆุญ ู„ู„ E
427
00:36:06,460 --> 00:36:13,560
ุฅุฐุง ู…ู† ู†ุธุฑูŠุฉ ุฅูŠุงู† ุณุชุฐู‡ุจ ุฅู„ู‰ ุงู„ู€ E ุจุฑุถู‡ ูˆู„ูŠุณ ูƒุฐู„ูƒ
428
00:36:13,560 --> 00:36:20,250
ุงู„ู€ E' ู„ู‡ุฐู‡ู‡ูŠ ู‡ุฐู‡ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ E N ุฒูŠ ุฏูˆู„ ุจุฑุงูŠู…
429
00:36:20,250 --> 00:36:25,830
ุจุฑุงูŠู… limitู‡ุง ุงู„ E ุจุฑุงูŠู… ุฒูŠ ู…ุง ู‡ูŠ ู…ูŠู† ุงู„ E ูŠุนู†ูŠ
430
00:36:25,830 --> 00:36:29,950
ู…ุฏุงู… ุงู„ุงู† limitู‡ุง ู‡ูŠ ุงู„ E ูˆ ู‡ูŠ ู†ูุณู‡ุง limitู‡ุง ู…ู†
431
00:36:29,950 --> 00:36:33,370
ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจู†ุณุชู†ุชุฌู‡ุง E ุจุฑุงูŠู… ุฅุฐุง ุตุงุฑุช ุงู„ E ู‡ูŠ
432
00:36:33,370 --> 00:36:38,610
ู…ูŠู† ุงู„ E ุจุฑุงูŠู… ุฃูˆ ุจุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ limit ุงู„ E N ุจุฑุงูŠู…
433
00:36:38,610 --> 00:36:43,440
ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ุจุชุณุงูˆูŠ ุงู„ E ุจุฑุงูŠู…ูˆู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ limit en
434
00:36:43,440 --> 00:36:50,500
ุจุฑุงูŠ ู‡ูˆ ู†ูุณู‡ limit en ู†ูุณู‡ุงูˆ limit en ุงู„ู„ูŠ ู‡ูŠ ุทุจุนุง
435
00:36:50,500 --> 00:36:53,280
ุงู†ุง ู…ุณู…ูŠู‡ุง n ูˆ n ู†ู‚ุต ูˆุงุญุฏ ุงุญู†ุง ู…ุณู…ูŠูŠู†ู‡ุง n ูˆ n ุฒุงุฏ
436
00:36:53,280 --> 00:36:57,740
ูˆุงุญุฏ ุทุจูŠุนูŠ en ุจุฑุงูŠู… ู‡ูŠ limit ู…ู† limit en ู†ู‚ุต ูˆุงุญุฏ
437
00:36:57,740 --> 00:37:02,620
ู„ุญุงู„ู‡ุง ู„ุฃู† ู‡ุฐู‡ ุจุชุณุงูˆูŠ ู‡ุฐู‡ ูˆ ู‡ุฐู‡ ุงุตู„ุง limit ุงุญู†ุง
438
00:37:02,620 --> 00:37:07,140
ุงุซุจุชู†ุง ุงูŠุด ุจุณุงูˆูŠ ุงู„ E ุงุฐุง ุตุงุฑุช ุนู†ุฏ ุงู„ E ุจุฑุงูŠู… ู‡ูŠ
439
00:37:07,140 --> 00:37:10,720
ุงูŠุด ุจุชุณุงูˆูŠ ุงู„ E ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ E ุจุฑุงูŠู… ุงุณุชู†ุชุงุฌุง ู…ู†
440
00:37:10,720 --> 00:37:16,260
ุงู„ู†ุธุฑูŠุฉูˆ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุงู„ู„ูŠ ุฃุซุจุชู†ุง ููŠ ุงู„ุจุฏุงูŠุฉ ูˆ
441
00:37:16,260 --> 00:37:19,800
ุฃูŠุถุง ู†ู‚ุฏุฑ ู†ุณุชุฎุฏู… .. ู„ุณู‡ ู†ุชุฌู‡ ู…ู† ุงู„ู†ุธุฑูŠุฉ ู„ูƒู† ุฃุญู†ุง
442
00:37:19,800 --> 00:37:25,540
ุฃุซุจุชู†ุง ููŠู‡ุง ู‚ุจู„ ู…ุง ู†ุณุชุนู…ู„ ุงู„ู…ุธู„ุฉุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู…
443
00:37:25,540 --> 00:37:30,680
ุตุญูŠุญ ูˆูŠู† ู„ูƒู„ x ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ู†ุงู‚ุต a ูˆ a ู„ูƒู† a ุงุญู†ุง
444
00:37:30,680 --> 00:37:35,600
ุฃุฎุฏู†ุงู‡ุง ุฃุฌู…ุงู„ู‡ุง arbitrary ูŠุนู†ูŠ ุงู„ุขู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ
445
00:37:35,600 --> 00:37:40,740
ุงู„ู„ูŠ ู‡ูˆ ู„ูƒู„ x ุจู„ู‚ูŠ ู„ูˆุงุญุฏุฉ ุฒูŠ ู‡ูŠูƒ ุจุชุญู‚ู‚ ุงู„ูƒู„ุงู… ู‡ุฐุง
446
00:37:40,740 --> 00:37:44,560
ุงู„ุขู† ูุจุตูŠุฑ ุนู†ุฏูŠ a prime of x ุจุณูˆูŠุฉ of x ู„ูƒู„ x
447
00:37:44,560 --> 00:37:50,720
element in R ูˆู‡ูŠูƒ ุจูŠูƒูˆู† ุงุญู†ุง ุฃุซุจุชู†ุง ูˆุฌูˆุฏ ุงู„ู„ูŠ ู‡ูˆ
448
00:37:50,720 --> 00:37:58,390
ุงู„ E of Xุฃุซุจุชู†ุง ูˆุฌูˆุฏ ุฏุงู„ุฉ ุฃุซุจุชู†ุง
449
00:37:58,390 --> 00:38:06,100
ูˆุฌูˆุฏ ุฏุงู„ุฉ ุณู…ู†ุงู‡ุง E of Xู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุจุชุญู‚ู‚ ุดุฑุทูŠู† ุงู„ู„ูŠ
450
00:38:06,100 --> 00:38:11,900
ู‡ูˆ E prime of X ุจุณุงูˆูŠ E of X ูˆุจุชุญู‚ู‚ ุงู„ุดุฑุท ุงู„ุชุงู†ูŠ E
451
00:38:11,900 --> 00:38:20,680
of 0 ุจุณุงูˆูŠ 1 ุงู„ุณุคุงู„ ุงู„ุขู† ู‡ู„ ููŠ ุบูŠุฑู‡ุงุŸ ู‡ู„ ููŠ ุบูŠุฑู‡ุง
452
00:38:20,680 --> 00:38:25,860
ูˆู„ุง ู„ุฃุŸ ุทุจุนุง ู„ุญุธุฉ ุงู„ุญุธ ุฃู†ู‡ ู„ุง ูŠูˆุฌุฏ ุฏุงู„ุฉ ุบูŠุฑ ู‡ุฐู‡
453
00:38:25,860 --> 00:38:31,140
ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุชุญู‚ู‚ ู‡ุฐุง ุงู„ูƒู„ุงู…ุจุณ ู‚ุจู„ ู…ุง ู†ุซุจุช ุงู„ู€
454
00:38:31,140 --> 00:38:35,740
uniqueness ุฎู„ู‘ูŠู†ุง ู†ุงุฎุฏ ุจุนุถ ุงู„ู†ุชุงุฆุฌ ุจุดูƒู„ ุณุฑูŠุน ูˆ
455
00:38:35,740 --> 00:38:39,900
ู†ุชุงุฆุฌ ุณู‡ู„ุฉ ูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู† ุดุงุก ุงู„ู„ู‡ ู…ุชุงุฎุฏุด ูˆู‚ุชู‡ุง
456
00:38:39,900 --> 00:38:43,040
ุดูˆููˆุง ูŠุง ุฌู…ุงุนุฉ ุตู„ูˆุง ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…
457
00:38:43,040 --> 00:38:48,080
ุงู„ู€ function E has a derivative of every order and
458
00:38:48,080 --> 00:38:51,260
E N of X ุจูŠุณุงูˆูŠ E of X for all N element in N ูˆ X
459
00:38:51,260 --> 00:38:54,480
element in RูŠุนู†ูŠ ุงู„ุขู† ู„ูˆ ูุถู„ู†ุงู‡ุง ูƒู…ุงู† ู…ุฑุฉ ูˆ ู…ุฑุชูŠู†
460
00:38:54,480 --> 00:38:56,980
ูˆ ุชู„ุงุชุฉ ูˆ ุฃุฑุจุนุฉ ู‡ุชุทู„ุน ุฃูŠุด ู†ูุณ ุงู„ุฏุงู„ุฉ ุทุจุนุง ู‡ุฐุง
461
00:38:56,980 --> 00:39:00,360
ุงู„ูƒู„ุงู… ุณู‡ู„ ูˆ by induction ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† ุฃูˆู„
462
00:39:00,360 --> 00:39:03,120
ุญุงุฌุฉ ู…ุงุซุจุชู‡ุง ููˆุฑุงู† ุจุงู„ุณุงูˆูŠุฉ ูˆุงุญุฏ ููˆุฑุงู† ุจุงู„ุณุงูˆูŠุฉ
463
00:39:03,120 --> 00:39:06,480
ูˆุงุญุฏ ู…ุงุญู†ุง ุฃุซุจุชู†ุง E prime of X ุฃูŠุด ุจุงู„ุณุงูˆูŠุฉ E of X
464
00:39:06,480 --> 00:39:11,070
ุฅุฐุง ู‡ุฐู‡ is true ููˆุฑุงู† ุจุงู„ุณุงูˆูŠุฉ ูˆุงุญุฏุทูŠุจ ู„ุงู† ุงูุชุฑุถ
465
00:39:11,070 --> 00:39:15,510
ุงู†ู‡ุง ู‡ุฐู‡ ุตุญูŠุญุฉ ููŠ ุงู„ู‚ุฑุขู† ุจูŠุณุงูˆูŠ K ุจูŠุตูŠุฑ E K of X
466
00:39:15,510 --> 00:39:20,010
ุจูŠุณุงูˆูŠ E of X ู„ู…ุง ุงู† ุงุชุจุชู‡ุง ู„ K ุฒุงุฆุฏ ูˆุงุญุฏ ุทูŠุจ ู„ K
467
00:39:20,010 --> 00:39:23,870
ุฒุงุฆุฏ ูˆุงุญุฏ ุฎุฏ A K ุฒุงุฆุฏ ูˆุงุญุฏ of X ุงูŠุด ู‡ุฐู‡ุŸ ู‡ุฐู‡ ุงู„ู„ูŠ
468
00:39:23,870 --> 00:39:30,840
ู‡ูŠ A K of X ุงู„ูƒู„ ุงุดู…ุงู„ู‡ุง ุฅุจุฑุงู‡ูŠู…ุงู„ุงู† a k of x
469
00:39:30,840 --> 00:39:33,540
ูุฑุถู†ุงู‡ุง ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡
470
00:39:33,540 --> 00:39:33,940
ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ
471
00:39:33,940 --> 00:39:34,880
ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡
472
00:39:34,880 --> 00:39:35,180
ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡
473
00:39:35,180 --> 00:39:37,200
ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ
474
00:39:37,200 --> 00:39:43,180
ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡
475
00:39:43,180 --> 00:39:54,500
ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุงูˆูŠุฉ ุงูŠู‡ ุจุงู„ุณุง
476
00:39:55,640 --> 00:40:01,620
ูˆุถู„ูƒ ูุงุถู„ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุญูŠุธู„ ุชุทู„ุน ู†ูุณ ุงู„ุฏุงู„ุฉ ู†ุฌูŠ
477
00:40:01,620 --> 00:40:07,340
ุงู„ุขู† ู„ู€ Corollary ุฃูˆ ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ู„ู‡ุฐู‡
478
00:40:07,340 --> 00:40:15,040
ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ Fx ุฃูƒุจุฑ ู…ู† 0 ุจู‚ูˆู„ูƒ ุฏุงูŠู…ุงู‹ ุญูŠูƒูˆู†
479
00:40:15,040 --> 00:40:21,280
ุงู„ูˆุงุญุฏ ุฒุงุฆุฏ X strictly ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† E of X ู…ู† E
480
00:40:21,280 --> 00:40:32,910
of X ุงู† ุงู†ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุนุดุงู† ุชุดูˆู ุฃูŠุด
481
00:40:32,910 --> 00:40:40,550
ุฃุฑุจุนุฉ ุงู„ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ E prime of X ุฃุธู† ู‡ูŠูƒ ูƒู†ุง
482
00:40:40,550 --> 00:40:51,590
ุญุงูƒูŠู† ุงู„ E ุงู„ู†ุงุณ ููŠ ุงู„ E of X ุนู†ุฏูŠ
483
00:40:51,590 --> 00:40:53,390
E
484
00:40:55,380 --> 00:41:03,750
ุงู†ุง of Xุฃู‚ุจู‰ ุฃูˆ ุฃุตุบุฑ strictly ู…ู† E N ุฒุงุฆุฏ ูˆุงุญุฏ of
485
00:41:03,750 --> 00:41:09,850
X ู„ูƒู„ X ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ุตูุฑ ู„ูŠู‡ุŸ ู„ุฃู† ู‡ุฐู‡ ู‡ูŠุฒูŠุฏ
486
00:41:09,850 --> 00:41:12,630
ุนู„ูŠู‡ุง term ุงู„ู„ูŠ ู‡ูˆ X ุฃุณูˆุงู† ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ N ุฒุงุฆุฏ
487
00:41:12,630 --> 00:41:15,630
ูˆุงุญุฏ ููƒุชูˆุฑูŠุง ูˆู‡ุฐุง ุงู„ term ุงู„ุงูƒุณุงุชูŠ ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู†
488
00:41:15,630 --> 00:41:19,810
ุตูุฑ ุฃุดู…ุงู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ูˆุฏุฉ ุฅุฐุง ุตุงุฑุช ุงู„ sequence ุงู„ู„ูŠ
489
00:41:19,810 --> 00:41:25,010
ุนู†ุฏูŠ ูŠุง ุฌู…ุงุนุฉ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† strictly increasing
490
00:41:25,680 --> 00:41:29,120
sequence strictly increasing sequence ุจู†ุงุกู‹ ุนู„ูŠู‡
491
00:41:29,120 --> 00:41:36,240
ู‡ูŠูƒูˆู† ุนู†ุฏ E1 of X ุฃุตุบุฑ strictly ู…ู† E2 of X ูˆู‡ุฐุง
492
00:41:36,240 --> 00:41:42,020
ุฃุตุบุฑ strictly ู…ู† E N of X ู„ูƒู„ N ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ
493
00:41:42,020 --> 00:41:51,440
ุชู„ุงุชุฉ ูˆุงู„ X ุฃุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ุณูุฑ ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ E1
494
00:41:51,440 --> 00:42:02,170
of X ู…ูŠู† ู‡ูŠุŸ ูˆุงุญุฏ ุฒุงุฏ Xูˆู‡ุฐุง ุฃุตุบุฑ ู…ู† E2 of X ูˆู‡ุฐุง
495
00:42:02,170 --> 00:42:08,170
ุฃุตุบุฑ ู…ู† E N of X ุฅุฐุง ู†ุฎุฏ ุงู„ limit ู„ูƒู„ ุงู„ุฌู‡ุงุช as N
496
00:42:08,170 --> 00:42:10,670
goes to infinity ูˆู‡ุฐุง independent of N ูˆู‡ุฐุง
497
00:42:10,670 --> 00:42:15,590
independent of N ุฅุฐุง ุณูŠุตุจุญ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ limit E N
498
00:42:15,590 --> 00:42:20,430
of X as N goes to infinityูˆ limit E n of X as n
499
00:42:20,430 --> 00:42:25,350
goes to infinity ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ู‚ู„ู†ุง ุนู†ู‡ E of X
500
00:42:25,350 --> 00:42:31,350
ุฅุฐุง ุตุงุฑุช 1 ุฒุงุฆุฏ X strictly ุฃุตุบุฑ ู…ู† E of X ุฃูˆ E of
501
00:42:31,350 --> 00:42:39,850
X ุฃูƒุจุฑ strictly ู…ู† 1 ุฒุงุฆุฏ XุทูŠุจ ู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ุซุจุช
502
00:42:39,850 --> 00:42:45,310
ุงู„ู€ uniqueness ู„ู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุฃุซุจุชู†ุง ูˆุฌูˆุฏู‡ุง ุงู„ุขู† ุฅุฐุง
503
00:42:45,310 --> 00:42:51,290
ุฃุซุจุชู†ุง ูˆุฌูˆุฏ ุฏุงู„ุฉ ุณู…ูŠู†ุงู‡ุง E of X ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุชุญู‚ู‚
504
00:42:51,290 --> 00:43:01,390
ุงู„ุดุฑุทูŠู† ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ู† ุงู„ู„ูŠ ู‡ูˆ E of E primeof X ุจุณุงูˆูŠ
505
00:43:01,390 --> 00:43:07,430
E of X ู„ูƒู„ X element in R ุงู„ุดุฑุท ุงู„ุฃูˆู„ ูˆุงู„ุดุฑุท
506
00:43:07,430 --> 00:43:14,350
ุงู„ุชุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ E of Zero ุจุชุณุงูˆูŠ ุฅูŠุงุด ูˆุงุญุฏ ุงู„ุขู† ู‡ุฐู‡
507
00:43:14,350 --> 00:43:17,390
ุงู„ุดุฑุท ุฏู‡ ุงู„ู„ูŠ ุฃูƒุจุฑู†ุง ูˆุฌูˆุฏู‡ุง ู„ู†ุชุจุช ุฅู†ู‡ุง ุฅูŠุงุด ูˆุญูŠุฏุฉ
508
00:43:17,700 --> 00:43:22,860
ุงู„ุฃู† ุงู„ู€ function E ู…ู† R ู„ู€ R that satisfies I and
509
00:43:22,860 --> 00:43:29,200
I I ู‡ูƒุฐุง of theorem 8.3.1 is unique ุฅุฐุง ู…ุง ู„ู‡ุง ู‡ุฐู‡
510
00:43:29,200 --> 00:43:32,940
ุงู„ุฏุงู„ุฉ ูˆุญูŠุฏุฉ ูˆู†ุดูˆู ูƒูŠู ู†ุซุจุช ูˆุญูŠุฏุฉ ุทุจุนุง ุงู†ุชูˆุง
511
00:43:32,940 --> 00:43:36,140
ุนุงุฑููŠู† ุงู„ .. ุงู„ุงุณุชุฑุงุชูŠุฌูŠุฉ ุชุซุจุช ุงู†ู‡ุง ูˆุญูŠุฏุฉ ูˆู†ูุชุฑุถ
512
00:43:36,140 --> 00:43:39,340
ุงู† ููŠ ุฏุงู„ุชูŠู† ูˆููŠ ุงู„ุขุฎุฑ ูŠุง ุจู†ุณุฃู„ ู„ุชู†ุงู‚ุถ ุฃูˆ ุจู†ุณุฃู„
513
00:43:39,340 --> 00:43:43,260
ู„ุฅู† ุงู„ุฏุงู„ุชูŠู† ุฅุดู…ุงู„ู‡ู… ู…ุชุณุงูˆูŠุชูŠู† ุฎู„ูŠู†ุง ู†ุดูˆู
514
00:43:47,010 --> 00:43:52,110
ู„ุฃู† let E1 and E2 be two functions on R ู…ุงุดูŠ ุงู„ุญุงู„
515
00:43:52,110 --> 00:43:59,470
E1 ูˆE2 ุนุจุงุฑุฉ ุนู† ุฏุงู„ุชูŠู† ู…ู† R ู„R ุชุญู‚ูŠู‚ุงู† ุงู„ุจุฑูˆ ุจุงุฑุชุฒ
516
00:43:59,470 --> 00:44:03,010
I and I I of T ูˆุงู„ู…ุชู…ู†ู‰ ู‡ูˆ ุชู„ุงุชุฉ ูˆุงุญุฏ ุงู„ู„ูŠ ูƒุชุจู‡ ุงู†
517
00:44:03,010 --> 00:44:08,700
ุงู†ุง ุนู„ู‰ ุงู„ุฌู†ุจ ู‡ู†ุงูƒุงู„ุงู† ูˆ ุฎู„ู‘ูŠู†ุง ู†ุณู…ูŠ E1-E2 ูŠุชุณุงูˆูŠ
518
00:44:08,700 --> 00:44:14,840
F ุฑุงูŠุญูƒู… ุจุงุชุฌุงู‡ุฉ F ูŠุชุณุงูˆูŠ 0 ุฅุฐุง ุฃุซุจุชู†ุง F ูŠุชุณุงูˆูŠ 0
519
00:44:14,840 --> 00:44:21,630
ุฅุฐุง ุณูŠุตุจุญ E1 ูŠุชุณุงูˆูŠ E2 ูŠูƒูˆู† ุฎู„ุตู†ุงุทูŠุจ then ูุถู„ูŠ ู‡ุฐู‡
520
00:44:21,630 --> 00:44:24,510
.. ูุถู„ูŠ ู‡ุฐู‡ ู„ุฃู† ู‡ุฐุง ู‚ุจู„ ุงู„ุชูุงุถู„ ูˆ ู‡ุฐุง ู‚ุจู„ ุงู„ุชูุงุถู„
521
00:44:24,510 --> 00:44:27,350
ุฅุฐุง F prime of X ุจูŠุณุงูˆูŠ E1 prime of X ู†ุงู‚ุต E2
522
00:44:27,350 --> 00:44:32,230
prime of X E1 prime of X ุฅูŠุด ู‡ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ูุณู‡ุง
523
00:44:32,230 --> 00:44:35,730
ู„ุฃู† ู…ูุชุฑุถูŠู† ุงุญู†ุง ูˆ E2 prime of X ุจุฑุถู‡ ู‡ุชุณุงูˆูŠ ู†ูุณู‡ุง
524
00:44:35,730 --> 00:44:39,770
ุฅุฐุง E1 ู†ุงู‚ุต E2 ูŠุนู†ูŠ ู…ูŠู† ุจูŠุณุงูˆูŠ F ูŠุนู†ูŠ ุตุงุฑุช F prime
525
00:44:39,770 --> 00:44:44,610
ุชุจุนุชู†ุง ู…ูŠู† ู‡ูŠ ุจูŠุณุงูˆูŠ F of X ู„ูƒู„ X element ุงู„ู…ูŠู†
526
00:44:44,610 --> 00:44:50,090
ุฅู†ุง ุงุญุณุจ ุงู„ู„ูŠ ุฏูŠ ุฅูŠุด ูŠุง ุฌู…ุงุนุฉ ุงุญุณุจ ู„ูˆู„ูŠ F ููŠ ุตูุฑุฃู
527
00:44:50,090 --> 00:44:53,350
ุงู ุตูุฑ ุจูŠุณุงูˆูŠ ุง ูˆุงุญุฏ ุงู ุตูุฑ ู†ุงู‚ุต ุงุชู†ูŠู† ุงู ุตูุฑ ุง
528
00:44:53,350 --> 00:44:56,710
ูˆุงุญุฏ ุงู ุตูุฑ ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ุงู ุตูุฑ ุจุฑุถู‡ ุงุด ุจุชุณุงูˆูŠ
529
00:44:56,710 --> 00:44:59,510
ูˆุงุญุฏ ู„ุฅู† ู…ูุชุฑุถูŠู† ุง ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ุจุชุญูู‚ ุงู„ู„ูŠ ู‡ูŠ
530
00:44:59,510 --> 00:45:02,970
ุงู„ุดุทู† ุงู„ุฃู…ุงู…ู†ุง ุฅุฐุง ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ูˆ ุงูŠ ุณุงูˆูŠ
531
00:45:02,970 --> 00:45:04,350
ุงุด ุตูุฑ
532
00:45:07,320 --> 00:45:13,380
by induction f double prime ู‡ุชุณุงูˆูŠ f ู†ูุณู‡ุง f
533
00:45:13,380 --> 00:45:18,060
triple ุจุชุณุงูˆูŠ f ู†ูุณู‡ุง fn of x ุจูŠุณุงูˆูŠ f of x ูˆุนู…ู„ุช
534
00:45:18,060 --> 00:45:21,920
ู‚ุจู„ ุจุดูˆูŠุฉ ูˆุงุญุฏุฉ ุฒูŠู‡ุง ุฅุฐุง by induction fn of x
535
00:45:21,920 --> 00:45:28,280
ุจูŠุณุงูˆูŠ f of x ู„ูƒู„ x element in R ุฅุฐุง ุญู‚ู‚ุช ุงู„ุขู† f
536
00:45:28,280 --> 00:45:34,500
of 0 ุจูŠุณุงูˆูŠ 0 ูˆ fn of x ุจูŠุณุงูˆูŠ ู…ูŠู†ุŸ f of x ุดูˆู
537
00:45:34,500 --> 00:45:42,870
ุงู„ุขู†ุฃุฐุง ุตุงุฑ ุนู†ุฏูŠ F of Zero ุจุณุงูˆูŠ Zero ุฃูˆ F
538
00:46:10,090 --> 00:46:17,830
ุจุณุงูˆุฉ 0ุทุจ ุงูŠุด ุนู„ุงู‚ุชู†ุง ุงุจูˆู‡ุง ุงู„ุฌูŠุช ุจุชุดูˆู ุนุดุงู† ุจุฏู†ุง
539
00:46:17,830 --> 00:46:20,690
ู†ุทุจู‚ ุงู„ู„ูŠ ู‡ูˆ taylor's theorem ุชุจุนุช ุงู„ derivative
540
00:46:20,690 --> 00:46:25,930
ู†ุต ุงู„ู„ูŠ ุงู„ู„ูŠ ุจุฏู†ุง ูŠุนู†ูŠ ุจุฑู‡ุงู† ุญู„ูˆ let x element in
541
00:46:25,930 --> 00:46:29,550
R be arbitrary ุฃุฎุฏู†ุง ุฅุฐุง x element in R arbitrary
542
00:46:29,550 --> 00:46:33,810
x ุงู„ู„ูŠ ูŠุนู†ูŠ let I x be the closed interval with
543
00:46:33,810 --> 00:46:40,760
end point 0x ูŠุนู†ูŠ I xู‡ู†ุงุฎุฏู‡ุง ุจุชุณุงูˆูŠ 0 ูˆ X ุฃูˆ ุงู„ู„ูŠ
544
00:46:40,760 --> 00:46:47,080
ู‡ูŠ X ูˆ 0 ุนู„ู‰ .. ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุญุณุจ X ุงู„ู„ูŠ ู‡ูŠ
545
00:46:47,080 --> 00:46:51,980
ุณุงู„ุจุฉ ุฃูˆ ู…ุฌุจุฉ ุฅุฐุง ุฃุฎุฏู†ุง ุงู„ I X ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ุงู„
546
00:46:51,980 --> 00:46:56,600
closed interval ุงู„ู„ูŠ within point 0 X ุงู„ุขู† F is
547
00:46:56,600 --> 00:47:01,020
continuous on I Xุนู„ู‰ ุงู„ู€ closed interval ู…ุฏุงู…
548
00:47:01,020 --> 00:47:03,320
continuous ุนู„ู‰ closed interval and function that
549
00:47:03,320 --> 00:47:06,460
is continuous ุนู„ู‰ closed interval then it is
550
00:47:06,460 --> 00:47:09,200
bounded on this interval ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ there
551
00:47:09,200 --> 00:47:12,880
exist k ุจุญูŠุซ ุฃู† absolute value of f of t ุฃุตุบุฑ ุฃูˆ
552
00:47:12,880 --> 00:47:17,960
ูŠุณุงูˆูŠ k for all t element in I X ูŠุนู†ูŠ f is bounded
553
00:47:17,960 --> 00:47:23,580
on this intervalุงู„ุงู† ุจุฏู†ุง ู†ุทุจู‚ if we apply
554
00:47:23,580 --> 00:47:27,540
taylor's theorem 6 4 1 to F ุจุฏู†ุง ู†ุทุจู‚ู‡ุง ุนู„ู‰
555
00:47:27,540 --> 00:47:31,800
ุงู„ู†ู‚ุทุชูŠู† ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ู‰ ู‡ู‰ ุงู„ X X ูˆ X naught 0
556
00:47:31,800 --> 00:47:35,640
ูŠุนู†ูŠ ุจู†ุทุจู‚ู‡ุง ุนู„ู‰ ู…ูŠู† ุงู„ู„ู‰ ู‡ู‰ X X ุงู„ู„ู‰ ู‡ู‰ ุทุจุนุง
557
00:47:35,640 --> 00:47:41,370
ุงู†ุชูˆุง ู…ุชุฐูƒุฑูŠู† F of Xุฃู of X ุชูŠู„ุฑ ุณูŠูˆุฑูŠู… there
558
00:47:41,370 --> 00:47:46,370
exists C in ุงู„ู„ูŠ ู‡ูŠ ุงู„ interval ู…ุซู„ุง X not ูˆ X
559
00:47:46,370 --> 00:47:52,690
such that F of X ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ F of X not ุฒุงุฆุฏ F
560
00:47:52,690 --> 00:47:58,490
prime of X not ุนู„ู‰ ูˆุงุญุฏ factorial ููŠ X minus X not
561
00:47:58,490 --> 00:48:05,910
ุฒุงุฆุฏ ุฒุงุฆุฏ Fn of x0 ุนู„ู‰ n factorial ููŠ x minus x0
562
00:48:05,910 --> 00:48:11,610
ุงู„ูƒู„ูˆุณ n ุฒุงุฆุฏ ุงู„ remainder ุงู„ู„ูŠ ู‡ูˆ fn ุฒุงุฆุฏ ูˆุงุญุฏ of
563
00:48:11,610 --> 00:48:15,730
ุงู„ู„ูŠ ู‡ูŠ ุงู„ c ุงู„ู„ูŠ ู„ุงุฌูŠู†ุงู‡ุง there exists c ุงู„ู„ูŠ ู‡ูŠ
564
00:48:15,730 --> 00:48:19,170
of c ุทุจุนุง ุงู„ c ู‡ู†ุง ู‡ุชุนุชู…ุฏ ุนู„ู‰ ุงู„ n ุงู„ู„ูŠ ุงุญู†ุง
565
00:48:19,170 --> 00:48:24,850
ุงุฎุชุงุฑู†ุงู‡ุง ูˆุงุดุชุบู„ู†ุง ุนู„ูŠู‡ุง ู‡ูˆ ู…ุณู…ูŠู‡ุง cn ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ
566
00:48:24,850 --> 00:48:28,670
n ุฒุงุฆุฏ ูˆุงุญุฏ factorial ููŠ x
567
00:48:33,180 --> 00:48:37,920
ุงู„ู€ N ู‡ูˆ
568
00:48:37,920 --> 00:48:42,580
ู…ุง ุฎุฏู‡ุง ู„ุนู†ุฏ ู…ูŠู† ุจุฏู„ ู…ุง ู‡ูˆ remainder N ุฒุงุฆุฏ ูˆุงุญุฏ
569
00:48:42,580 --> 00:48:45,880
ู†ุณู…ูŠู‡ remainder N ู†ูุณ ุงู„ุดูŠุก ู…ุงููŠุด ู…ุดูƒู„ุฉ ุงุญู†ุง
570
00:48:45,880 --> 00:48:51,880
ูƒู…ู„ู†ุงู‡ุง ูŠุนู†ูŠ ุจุฏู„ ู…ุง ุงุดุชุบู„ ุนู„ู‰ N ุฒูŠ ู…ุง ุงุดุชุบู„ ุนู„ู‰ N
571
00:48:51,880 --> 00:48:54,460
ุฒุงุฆุฏ ูˆุงุญุฏ ุงุดุชุบู„ ุนู„ู‰ ุงู„ N ู‡ูˆ ุงู…ุง ู‡ูŠ ุงู„ Taylor's
572
00:48:54,460 --> 00:48:59,460
theorem ุทูŠุจ ุงู„ู…ู‡ู… ุงู†ุชุจู‡ูˆุง ุนู† ุฏูŠู„ู†ุจู† Taylor's
573
00:48:59,460 --> 00:49:03,580
theorem ุนู„ู‰ ุงู„ interval Ix ุงู„ู„ูŠ X0 ุจูŠุณุงูˆูŠ 0
574
00:49:03,580 --> 00:49:08,040
ูˆุฎู„ู‘ูŠู†ุง ู†ุณุชุฎุฏู… Fk of 0 ุงู„ู„ูŠ ูƒุชุจุชู‡ุง ู‡ู†ุงูƒ ุงู„ู„ูŠ ู‡ูˆ
575
00:49:08,040 --> 00:49:12,020
ู‡ุชุณุงูˆูŠ Fk of 0 ู‡ุชุณุงูˆูŠ 0 ุฏุงูŠู…ุง ุงู„ู„ูŠ ู‡ูˆ ูˆ ู„ูƒู„ k
576
00:49:12,020 --> 00:49:15,740
element n it follows thatfor each n unlimited on
577
00:49:15,740 --> 00:49:20,000
there exist a point cn unlimited on x ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
578
00:49:20,000 --> 00:49:23,920
ุงู„ cn ุจุชุนุชู…ุฏ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ n ูŠุนู†ูŠ ุงู„ุฃู† ู„ูˆ ุฃุฎุฏุช ุจุจุฏู„
579
00:49:23,920 --> 00:49:28,860
ุงู„ู„ูŠ ู‡ู†ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ on ุจุชุณุงูˆูŠ ู…ุซู„ุง ุงุชู†ูŠู† ุฃุฎุฏ on
580
00:49:28,860 --> 00:49:31,660
ุจุชุณุงูˆูŠ ุชู„ุชุฉ ุฃุฎุฏ ุจุชุณุงูˆูŠ on ุจุชุณุงูˆูŠ ุฃุฑุจุนุฉ ุฏู‡ ู‡ุชุฎุชู„ู
581
00:49:31,660 --> 00:49:35,740
ู…ู† ุงู„ cn ุงู„ู„ูŠ ุจู†ู„ุงู‚ูŠู‡ุง such that f of x ุจูŠุณุงูˆูŠ f
582
00:49:35,740 --> 00:49:39,420
of zero ุฒูŠุฏ f prime of zero ุนู„ู‰ ูˆุงุญุฏ factorial ููŠ
583
00:49:39,420 --> 00:49:44,390
xุทุจุนุงู‹ ู†ู‚ุต ุตูุฑ X ู‡ุชุธู„ู‡ุง ุฒุงุฆุฏ FN ู†ู‚ุต ูˆุงุญุฏ ู„ุฃู† ู†ู‚ุต
584
00:49:44,390 --> 00:49:47,630
ูˆุงุญุฏ factorial ููŠ X minus X note ุงู„ู„ูŠ ู‡ูŠ ุตูุฑ ุทุจุนุงู‹
585
00:49:47,630 --> 00:49:52,830
ู‡ุชุตูŠุฑ X ู†ู‚ุต ูˆุงุญุฏ ุฒุงุฆุฏ FN of CN ุนู„ู‰ N factorial X
586
00:49:52,830 --> 00:49:56,530
ุฃุซู† ูŠุนู†ูŠ ู‡ู†ุง ู†ุงุฎุฏ ุงู„ remainder ุงู„ู„ูŠ ู‡ูˆ RN ู…ุด RN
587
00:49:56,530 --> 00:50:01,410
ุฒุงุฆุฏ ูˆุงุญุฏ ุฒูŠ ู…ุง ู†ุนู…ู„ู‡ ุทุจุนุงู‹ ู…ุงุชูุฑุฌุดุจุชุฒูŠุฏู‡ ูˆ ุจุชุดุชุบู„
588
00:50:01,410 --> 00:50:04,910
ุนู„ูŠู‡ ู†ูุณ ุงู„ุงุดูŠ ุงู„ุงู† ุจุณ ุงู„ cn ุงู„ู„ูŠ ุจุชุฎุชู„ู ู…ู† n ุฒุงุฆุฏ
589
00:50:04,910 --> 00:50:07,650
ูˆุงุญุฏ ุจุตูŠุฑ cn ุฒุงุฆุฏ ูˆุงุญุฏ ู…ุซู„ุง ู„ุฃู†ู‡ ุญุงุฌุฉ ุชุงู†ูŠุฉ ู…ู…ูƒู†
590
00:50:07,650 --> 00:50:11,290
ุชูŠุฌูŠ ุบูŠุฑ ุงู„ cn ุงู„ู„ูŠ ู„ุงุฌูŠู†ุงู‡ุง ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ูˆ ูŠุณุงูˆูŠ
591
00:50:11,290 --> 00:50:16,350
ู„ุฃู† ูƒู„ ู‡ุฏูˆู„ ุงู„ุชุงุฑูŠุฌ ุฒูŠ ุดู…ุงู„ ู‡ูŠ ุงู„ุตูุงุฑ ู„ุฅู†ู‡ fk of
592
00:50:16,350 --> 00:50:21,290
00 ุฅุฐุง ู‡ุฐุง ุณูุฑ ูˆู‡ุฐุง ุณูุฑ ุทุจุนุง ู‡ุฐุง ุนู†ุฏ ู…ูŠู† ู…ุญุณุจ ุนู†ุฏ
593
00:50:21,290 --> 00:50:25,800
ุงู„ุณูุฑ ูˆู‡ุฐุง ุนู†ุฏ ุงู„ุณูุฑ ุฅู„ู‰ ุขุฎุฑู‡ุฅุฐุง ูƒู„ ู‡ุฐูˆู„ ู‡ูŠูƒูˆู†
594
00:50:25,800 --> 00:50:30,700
ุงู„ุตูุงุฑ ู‡ูŠุธู„ ุนู†ุฏู‰ ุจุณ ุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ุงูŠุด ุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ
595
00:50:30,700 --> 00:50:35,320
ู‡ูŠ fn of cn ุทุจูŠุนูŠ ู‡ุชูƒูˆู† f of min of cn ู„ุฃู†ู‡ ุงุญู†ุง
596
00:50:35,320 --> 00:50:41,070
ุนุฑูู†ุง ุงู†ู‡ ุงู„ derivative f primeุฃู ุฏุงุจู„ ุจุฑุงูŠู… ุฃู
597
00:50:41,070 --> 00:50:45,710
ุชุฑูŠุจู„ ูƒู„ ู†ูŠุงุด ุจูŠุณุงูˆูŠ ุงู„ุฃู ุฅุฐุง ุญูŠูƒูˆู† ุฃู of CN ุนู„ู‰ N
598
00:50:45,710 --> 00:50:50,710
ููŠูƒุชูˆุฑูŠุงู„ ููŠ X ุฃูุณ N ุฅุฐุง ูˆุตู„ู†ุง ู„ู‡ ุงู„ุขู† ุฃู†ู‡ ุจุนุฏ ู…ุง
599
00:50:50,710 --> 00:50:57,170
ุทุจู‚ู†ุง Taylor's theorem ุทู„ุน ุนู†ุฏูŠ ุงู„ุขู† F of X ู‡ุฐู‡
600
00:50:57,170 --> 00:51:04,710
ุงู„ู„ูŠ ุจู†ุตุจู‡ ุฅู„ู‰ ุฃู† ู†ุซุจุชู‡ุง ุจุชุณุงูˆูŠ ุตูุฑ ุทู„ุนุช ุนู†ุฏูŠ F of
601
00:51:04,710 --> 00:51:10,230
X ุจูŠุณุงูˆูŠ F of CN ุนู„ู‰ N ููŠูƒุชูˆุฑูŠุงู„ ููŠ X ุฃูุณ Nุงู„ุงู† ุฎุฏ
602
00:51:10,230 --> 00:51:14,510
ู„ู„ absolute value ู„ู‡ุง absolute value ู„ู„ F of X
603
00:51:14,510 --> 00:51:20,090
ู‡ูŠุตูŠุฑ ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ุงู„ absolute value ุงูˆ ุจูŠุณุงูˆูŠ
604
00:51:20,090 --> 00:51:26,870
ุจุงู„ุธุจุท absolute value F of C N ูุงู„ absolute value
605
00:51:27,400 --> 00:51:33,440
ู„ู„ู€ X ุฃูุณ N ุนู„ู‰ N ููƒุชูˆุฑูŠุงู„ุŒ ู…ุธุจูˆุทุŸ ู„ูƒู† F of C N
606
00:51:33,440 --> 00:51:37,200
ู‡ุฐู‡ is .. ุงู„ู€ F is bounded ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู„ุฌูŠู†ุงู‡ุง
607
00:51:37,200 --> 00:51:40,180
ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ุงู„ูŠู…ูŠู† ุงู„ู„ูŠ ู‚ู„ุช ุนู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ I
608
00:51:40,180 --> 00:51:44,380
X ู…ุฏุงู† bounded ู‚ู„ู†ุง ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ K ุฅุฐุง
609
00:51:44,380 --> 00:51:47,380
ู‡ุฐู‡ ุจูŠุตูŠุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ K ููŠ ุงู„ absolute value
610
00:51:47,380 --> 00:51:52,750
X ุฃุณ N ุนู„ู‰ N ููƒุชูˆุฑูŠุงู„ ู†ูŠุฌูŠ ุงู„ุขู†ู‡ุฐู‡ as n goes to
611
00:51:52,750 --> 00:51:56,770
infinity ู‡ุฐู‡ independent of n ู‡ุฐู‡ ุฃูƒุจุฑู‡ ูŠุณุงูˆูŠ ุณูุฑ
612
00:51:56,770 --> 00:51:59,430
ูˆ ุฃุตุบุฑู‡ ูŠุณุงูˆูŠ ู‡ุฐู‡ as n goes to infinity ู‡ุฐู‡ ุจุชุฑูˆุญ
613
00:51:59,430 --> 00:52:05,590
ู„ู„ุณูุฑ ุฅุฐุง ู‡ุฐู‡ ุจุชุฑูˆุญ ุฃุดู…ุงู„ู‡ุง ุจุฏู‡ุง ุชุตูŠุฑ f of x ุชุณุงูˆูŠ
614
00:52:05,590 --> 00:52:11,230
ุงู„ุณูุฑ ูˆู…ู†ู‡ ุงู„ E1 ุจุชุณุงูˆูŠ ุงู„ E2 ู„ุฃู† f ุจุชุณุงูˆูŠ E1 ู†ุงู‚ุต
615
00:52:11,230 --> 00:52:17,350
Eุฅุชู†ูŠู† ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ู„ูƒู„ X element
616
00:52:17,350 --> 00:52:25,050
in R ู„ุฃู† X ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ุง arbitrary element in R ู‡ูŠูƒ
617
00:52:25,050 --> 00:52:31,990
ุจู†ูƒูˆู† ุฃุซุจุชู†ุง ูˆุฌูˆุฏ ุงู„ E ูˆุงุญุฏ ุงู„ E ุงู„ุชูŠ ุชุญู‚ู‚ ุงู„ุดุฑุทูŠู†
618
00:52:31,990 --> 00:52:38,590
ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุฃุซุจุชู†ุง ุฃู† ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ
619
00:52:38,590 --> 00:52:46,680
ุจุชุญู‚ู‚ ุงู„ุดุฑุทูŠู†ู‡ูŠ ุฏุงู„ุฉ ูˆุญูŠุฏุฉู…ุฏุงู… ุงู„ุฏุงู„ุฉ ูˆุงุญุฏุฉ ุฅุฐู†
620
00:52:46,680 --> 00:52:53,280
ุงู„ุขู† ูŠุนู†ูŠ ุดุฑู‘ุนู†ุง ุฅู†ู‡ ู†ุนุทูŠู‡ุง ุงุณู… ุฅู†ู‡ ู†ู‚ุฏุฑ ู†ุนุฑู
621
00:52:53,280 --> 00:52:59,200
ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุชุญู‚ู‚ ู‡ุฐูˆู„ ุงู„ุดุฑุทูŠู† ุฅู†ู‡ุง ุงุณู…ู‡ุง ูƒุฐุง the
622
00:52:59,200 --> 00:53:02,660
unique definition ุซู…ุงู†ูŠุฉ ุชู„ุงุชุฉ ุฎู…ุณุฉ the unique
623
00:53:02,660 --> 00:53:06,140
function E ู…ู† R ู„R such that E prime of X ููŠ ุณูˆุก E
624
00:53:06,140 --> 00:53:10,120
of X for all X elements in R ูˆุชุญู‚ู‚ ุงู„ E ุฒูŠุฑูˆ
625
00:53:10,120 --> 00:53:15,190
ุจุงู„ุณูˆุก ูˆุงุญุฏ ู…ูˆุฌูˆุฏุฉูˆูˆุญูŠุฏุฉ ุฅุฐุง ุจุญู‚ ุงู„ู„ูŠ ุฃู‚ูˆู„ is
626
00:53:15,190 --> 00:53:18,450
called the exponential function ูˆู‡ูŠ ุงู„ู€
627
00:53:18,450 --> 00:53:22,350
exponential ุงู„ู„ูŠ ุฃู†ุชูˆุง ู…ุจุณูˆุทูŠู† ุนู„ูŠู‡ุง ูˆ ุจุชุณุชุฎุฏู…ูˆู‡ุง
628
00:53:22,350 --> 00:53:27,530
ุฃุซุจุชู†ุง ุงู„ุขู† ู…ู† ุฎู„ุงู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชุฑุชูŠุจ ุงู„ู„ูŠ
629
00:53:27,530 --> 00:53:31,690
ุฑุชุจู†ุงู‡ ููŠ ุงู„ู…ุงุฏุฉ differentiability integrability ูˆ
630
00:53:31,690 --> 00:53:36,350
ุจุนุฏูŠู† ุงู„ู„ูŠ ู‡ูˆ sequences of functions ูˆุตู„ู†ุง ุฅู„ู‰
631
00:53:36,350 --> 00:53:41,190
ุงู„ู„ูŠ ู‡ูˆ ุงู„ exponential ู‡ุฐู‡ function existsุงู„ุชูŠ
632
00:53:41,190 --> 00:53:43,850
ุณู…ู†ุงู‡ุง ุงู„ู€ Exponential Function
633
00:53:48,710 --> 00:53:53,850
ุจุฏู†ุง ู†ุณู…ูŠ ุงู„ู€ E of ูˆุงุญุฏ ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ ุงู„ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ
634
00:53:53,850 --> 00:53:58,650
ุงู„ู€ E ู‡ุฐู‡ ุนู†ุฏ ุงู„ูˆุงุญุฏ ุจุฏู†ุง ู†ุณู…ูŠู‡ุง E E ูˆ ู‡ุฐุง ุงู„ู„ูŠ
635
00:53:58,650 --> 00:54:04,410
ุจู†ุณู…ูŠู‡ Ehlers number ูˆ ุงุญู†ุง ูŠุนู†ูŠ ุจุนุฏ ู‡ูŠูƒ ู‡ูŠุตูŠุฑ
636
00:54:04,410 --> 00:54:09,410
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฑู…ุฒ E of X ุงู† ู‡ูˆ ุงู„ exponential X
637
00:54:09,410 --> 00:54:15,710
ุงูˆ ุฃุณู‡ู„ู†ุง ููŠ ุงู„ุงุณุชุฎุฏุงู… ุงู„ E of X ุงูŠุด ู‡ุชุณุงูˆูŠุงู„ู€ E X
638
00:54:15,710 --> 00:54:21,530
ู‡ุฐุง ุงู„ู€ E ูˆุงุญุฏ ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ ุนู†ุฏ ู…ูŠู† ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ
639
00:54:21,530 --> 00:54:26,750
ุงู„ุฑู‚ู… ูˆุงุญุฏ ุณู…ู†ุงู‡ุง E ู…ุงุดูŠ ุงู„ุญุงู„ุฉ ุงู„ุงู† E of X
640
00:54:26,750 --> 00:54:32,610
ุจุงู„ุณุงูˆูŠ E to the X ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฏุงู„ุฉ E
641
00:54:32,610 --> 00:54:37,550
of X ุจุงู„ุณุงูˆูŠ X notation ู„ู‡ุง ู„ูƒู† ุจุนุฏ ุดูˆูŠุฉ ู‡ู†ู„ุงู‚ูŠ ุงู„
642
00:54:37,550 --> 00:54:42,310
notation consistent of ุงู„ู„ูŠ ู‡ูˆ ู…ุน ู…ูŠู† ู…ุน ุงู„ู„ูŠ ู‡ูˆ
643
00:54:42,310 --> 00:54:47,480
ุงู„ exponentูŠุนู†ูŠ ู‡ูŠุตูŠุฑ ุงู„ู€ E to the exponent X ู‡ูˆ
644
00:54:47,480 --> 00:54:51,960
ุนุจุงุฑุฉ ุนู† ุจุงู„ุธุจุท ุงู„ู„ูŠ ู‡ูˆ ู‚ูŠู…ุฉ ุงู„ู€ E of X ู„ุฃู† ุงู„ู€ E
645
00:54:51,960 --> 00:54:54,620
of X ุจูŠุณุงูˆูŠ E to the X ูˆ ุงู„ E of ูˆุงุญุฏ ุจูŠุณุงูˆูŠ E
646
00:54:54,620 --> 00:54:59,440
ูˆุงุญุฏ ุจูŠุตูŠุฑ ุนู†ุฏูŠ E ู„ู…ุง ุฃุฑูุญู‡ุง ู„ู„ู‚ูˆุฉ X ูŠุทู„ุน ู‚ูŠู…ุชู‡ุง
647
00:54:59,440 --> 00:55:05,840
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ู‚ูŠู…ุฉ ุฏู„ E of X ุญุณุจ ุงู„ู„ูŠ ุงุญู†ุง
648
00:55:05,840 --> 00:55:11,550
ู…ุนุฑููŠู†ู‡ ู‡ู†ุงูŠุนู†ูŠ ู…ู† ุงู„ุฅุญุณุงุจุงุช ูˆู…ู† ุชุนุฑูŠูู†ุง ู„ู„ุฏุงู„ุฉ
649
00:55:11,550 --> 00:55:23,070
ู‡ูŠูƒูˆู† ููŠู‡ consistent it is consistent ููŠ ุงู„ุญุงู„ุชูŠู†
650
00:55:23,070 --> 00:55:28,990
ุทูŠุจู†ุฌูŠ ุงู„ุขู† ู„ู…ุง ุงู„ูƒู„ุงู… ู‡ุฐุง ุงู„ number E can be
651
00:55:28,990 --> 00:55:32,570
obtained as a limit and thereby approximated in
652
00:55:32,570 --> 00:55:36,410
several different ways ุทุจูŠุนุง ุงุญู†ุง ู…ุงุฏุงู… ุนู†ุฏู‡ ุงู„ู„ูŠ
653
00:55:36,410 --> 00:55:42,990
ู‡ูˆ ุนุจุงุฑุฉ ุนู† limit ู„ู„ E N of Xุงู„ู„ูŠ ู‡ูŠ ุจุชุทู„ุน ุนู†ุฏู‰
654
00:55:42,990 --> 00:55:47,450
limit ุนู†ุฏ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ end of ูˆุงุญุฏ ู„ุฃู†ู‡ุง
655
00:55:47,450 --> 00:55:52,130
continuous ุจุตูŠุฑ ุนู†ุฏู‰ ู…ุฏุงู… limit ุฅุฐุง ุจุตูŠุฑ ุฃู‚ุฏุฑ ุฃู‚ุฑุจ
656
00:55:52,130 --> 00:55:56,490
ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูŠ ูˆ ู†ุญุตู„ ุนู„ู‰ ู‚ูŠู…ุฉ ุชู‚ุฑูŠุจูŠุฉ ุจุงู„ E ูˆ
657
00:55:56,490 --> 00:56:00,010
ู‡ุฐุง ู…ุด ุดุบู„ู†ุง ุดุบู„ ุชุจุนูŠู† ุงู„ู„ูŠ ู‡ูˆ numerical analysis
658
00:56:00,010 --> 00:56:05,530
ุฃูˆ ุงู„ู†ุงุณ ุงู„ู„ูŠ ุจุฏุฃุช .. ุงู„ู„ูŠ ู‡ูŠ ุชุดุชุบู„ ููŠ ุงู„ุชู‚ุฑูŠุจ ุฃูˆ
659
00:56:05,530 --> 00:56:09,270
ู…ุด ุดุบู„ ู†ู‡ุงู†ูŠ ูŠุนู†ูŠ ุจุตุฏูŠุฅู„ู‰ ุฃู† ุงู„ู€ use of notation E
660
00:56:09,270 --> 00:56:15,050
ูˆ X of E X ุฒูŠ ู…ุง ู‚ู„ู†ุง ูƒู„ู‡ ุชู…ุงู… ุชู…ุงู… consistent ุฅู„ู‰
661
00:56:15,050 --> 00:56:19,910
ุฃู† ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ู„ุจุนุถ ุงู„ุฎูˆุงุต ุงู„ุฃุฎุฑู‰ ู„ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
662
00:56:19,910 --> 00:56:24,130
ุงู„ุฏุงู„ุฉ ุฅู„ู‰ ุฃู† ุงู„ู€ exponential function satisfies
663
00:56:24,130 --> 00:56:26,150
the following properties
664
00:56:32,620 --> 00:56:35,960
ุฃูˆู„ ุญุงุฌุฉ ุฃู† ุงู„ู€ E of X ู„ุง ุชุณุงูˆูŠ ุณูุฑ ู„ูƒู„ X element
665
00:56:35,960 --> 00:56:40,140
in R ู‡ูŠ ุฃูˆู„ ุญุงุฌุฉ ุฃู† ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุฏุงูŠู…ุง ู„ุง ุชุณุงูˆูŠ ุณูุฑ
666
00:56:40,140 --> 00:56:45,980
ุทุจุนุง ุดุบุงู„ุฉ ุนู„ู‰ R E of X ุฒูŠ Y ุจุณูˆุก E of X ููŠ E of Y
667
00:56:45,980 --> 00:56:50,880
for all X element .. Y element in R ุงู„ุขู† E of R
668
00:56:50,880 --> 00:56:56,080
ู‡ู†ุง ุงู„ู„ูŠ ู‡ูŠ E of R ู‚ูŠู…ุฉ ุงู„ู€ function ู‡ุฐู‡ ู‡ุชุทู„ุน ู„ู†ุง
669
00:56:56,080 --> 00:57:00,260
ุจุงู„ุธุจุทู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ E ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡ุง ุงู„ุฑู‚ู… ุงู„ู„ูŠ
670
00:57:00,260 --> 00:57:06,000
ู‚ุจู„ ูˆ ุดูˆูŠุฉ ู„ู…ุง ู†ุฑูุน ู„ู„ู‚ูˆุฉ R ูุจุตูŠุฑ ุงู„ุงู† consistency
671
00:57:06,000 --> 00:57:11,440
between the definition of the exponential and the
672
00:57:11,440 --> 00:57:15,700
exponent of E to the power R ุจุณ ู‡ุฐูŠ ุงู„ู€ R ุฅูŠุด ุงู„ู„ูŠ
673
00:57:15,700 --> 00:57:21,880
ู…ู† ุงู„ูŠู†ุŸ NQ ู„ุงู† ู…ุงุดูŠ ุงู„ุญุงู„ุฉ ุฏู‡ ู†ุดูˆู ู†ุจุฑู‡ู† ุงู„ู„ูŠ ู‡ูˆ
674
00:57:21,880 --> 00:57:27,390
ุงู„ุฃูˆู„ู‰ by contradictionุจุฏูŠ ุงูุชุฑุถ ุงู†ู‡ ููŠ ุนู†ุฏูŠ E of
675
00:57:27,390 --> 00:57:31,930
ฮฑ for some ฮฑ element in R ูˆุงู„ู€ E of ฮฑ ุงูŠุด ุชุณุงูˆูŠ
676
00:57:31,930 --> 00:57:35,870
ุชุณุงูˆูŠ ุณูุฑ ูˆู†ูˆุตู„ ู„contradiction ู„ุงู† suppose that
677
00:57:35,870 --> 00:57:39,550
there exists ฮฑ element in R such that E of ฮฑ ุงูŠุด
678
00:57:39,550 --> 00:57:44,750
ุจุณุงูˆูŠ ุจุณุงูˆูŠ ุณูุฑุงู„ุขู† and let G ฮฑ be the closed
679
00:57:44,750 --> 00:57:49,710
interval with endpoints mean ฮฑ ูˆ 0 ูŠุนู†ูŠ ุงู„ู€ G of ฮฑ
680
00:57:49,710 --> 00:57:54,230
ุฒูŠ ุงู„ู„ูŠ ููˆู‚ ูŠุง ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ 0 ุฃู„ูุฉ ุฃูˆ ุฃู„ู ูˆ ุฒูŠุฑู‡
681
00:57:54,230 --> 00:57:59,440
ุญุณุจ ู‚ูŠู…ุฉ ุงู„ุฃู„ู ู…ูˆุฌุจุฉ ุฃูˆ ุณุงู„ุจุฉ ุทูŠุจุงู„ุงู† ุฒูŠ ู…ุง ู‚ู„ุช
682
00:57:59,440 --> 00:58:02,480
ู‚ุจู„ ุจุดูˆูŠุฉ ุจู…ุง ุงู† E is continuous on a closed
683
00:58:02,480 --> 00:58:07,700
interval Iฮฑ ุงูˆ Jฮฑ ุงู„ู„ูŠ ู‡ูˆ ู…ุณู…ูŠู‡ุง then there exist
684
00:58:07,700 --> 00:58:10,280
case such that ุงู„ู„ูŠ ู‡ูˆ ุงู„ absolute value E of D
685
00:58:10,280 --> 00:58:16,030
ุฃุตูุฑ ุณูˆู‰ K ู„ูƒู„ T element in Gุงู„ุฃู† ู…ุดุงุจู‡ ู„ู„ูŠ ู‚ุจู„ ุฏูŠ
686
00:58:16,030 --> 00:58:19,930
ุฑุจุงู„ูƒู… ุงู„ุงู† ุจุฏู†ุง ู†ุณุชุฎุฏู… mean taylor theorem ุงู„ู„ูŠ
687
00:58:19,930 --> 00:58:24,890
ู‡ูˆ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ function ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ
688
00:58:24,890 --> 00:58:29,310
ุจุณ ููŠ ู…ูŠู† ุงู„ุขู† ููŠ ุงู„ end points ุฃู„ู ูˆู…ูŠู† ุฃู„ู ูˆุตูุฑ
689
00:58:29,310 --> 00:58:32,610
ุงุฐุง there exist cn element in dn such that ู…ุณุฑุน
690
00:58:32,610 --> 00:58:35,950
ู„ุฅู†ู‡ ู‚ุงุนุฏ ุจุนูŠุฏ ู†ูุณ ุงู„ุจุฑู‡ุงู† ุงู„ู„ูŠ ู‚ุจู„ู‡ ุดูˆูŠุฉ such
691
00:58:35,950 --> 00:58:42,200
that ุงู„ู„ูŠ ู‡ูˆ E of ุตูุฑุจุทุจู‚ ุนู†ุฏ e of 0 ุจุณุงูˆูŠ e of
692
00:58:42,200 --> 00:58:44,340
alpha ุฒุงุฆุฏ e prime of alpha ุนู„ู‰ ูˆุงุญุฏ factorial ููŠ
693
00:58:44,340 --> 00:58:47,280
ู†ุงู‚ุต alpha ุงู„ู„ูŠ ู‡ูŠ zero ู†ุงู‚ุต alpha ุฒุงุฆุฏ e n ู†ุงู‚ุต
694
00:58:47,280 --> 00:58:50,780
ูˆุงุญุฏ ุนู„ู‰ ู†ุงู‚ุต ูˆุงุญุฏ factorial alpha ู†ุงู‚ุต alpha ุฃูุณ
695
00:58:50,780 --> 00:58:54,160
n ู†ุงู‚ุต ูˆุงุญุฏ ู„ู…ุง ุฃุตู„ ู„ุนู†ุฏ ุงู„ remainder e n of alpha
696
00:58:54,160 --> 00:59:00,060
ุนู„ู‰ n factorial ููŠ ู†ุงู‚ุต alpha ุฃูุณ n ุงู„ุขู† ุงุฎู„ู‚ ู‡ุฐู‡
697
00:59:00,060 --> 00:59:05,770
ู…ุด e alpha ู‡ุฐู‡ ุงู„ู€Cnู‡ุฐู‡ ุงู„ู€ C ุฃู†ุง ู…ุฎุฑุจุท ุจุตูŠุญุฉ ุงู„ู„ู‡
698
00:59:05,770 --> 00:59:11,430
ู…ุงุดูŠ ุงู„ุญุงู„ุฉ ุงู„ุงู† E of Zero ุทุจูŠุนูŠ ุงูŠุด ูŠุณุงูˆูŠ ูˆุงุญุฏ
699
00:59:11,430 --> 00:59:14,510
ู…ุงุญู†ุง ุนุงุฑููŠู† ุงู† ุฎู„ุงุต ุนุฑุถู†ุงู‡ุง ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ E of Zero
700
00:59:14,510 --> 00:59:17,630
ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุงุชุณุงูˆูŠ ูˆุงุญุฏ ูŠุณุงูˆูŠ E of Zero ูˆ ูŠุณุงูˆูŠ
701
00:59:20,060 --> 00:59:23,400
ุงู„ุฃู† E of Alpha ูุฑุถู†ุงู‡ุง ุฅูŠุด ุจุงู„ุณุงูˆูŠุฉ ุณูุฑ ู‡ูŠูƒ
702
00:59:23,400 --> 00:59:28,280
ู…ูุชุฑุถูŠู†ู‡ุง E prime of Alpha ุงู„ู„ูŠ ู‡ูŠ ู†ูุณ E of Alpha
703
00:59:28,280 --> 00:59:32,880
ุฅุฐุง ุณูุฑ ุจุฑุถู‡ ูˆู‡ุฐุง ู†ูุณ ุงู„ุดูŠุก ุฅุฐุง ูƒู„ู†ุง ุฏูˆู„ ุฃุตูุฑ ู…ุน
704
00:59:32,880 --> 00:59:36,100
ุฏู…ูŠู† ุงู„ุฃุฎูŠุฑุฉ ุฅุฐุง ู‡ุชุณุงูˆูŠ E of Cn ุนู„ู‰ N factorial
705
00:59:36,100 --> 00:59:42,340
ู†ุงู‚ุต Alpha ุฃุณุนู‰ ูˆุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅู†ู‡ ุงุญู†ุง ุงู„ุขู† ู‡ุฐุง
706
00:59:42,340 --> 00:59:48,390
ุงู„ู…ู‚ุฏุงุฑ ุนู†ุฏูŠ ุตุงุฑ .. ู†ูˆุถุญ ู„ูƒู… ู‡ุฐู‡ู†ุดูˆู ูƒูŠู ู†ุตู„ ู„ู€
707
00:59:48,390 --> 00:59:53,770
contradiction ู‡ุงู„ gate ุตุงุฑ ุนู†ุฏ ู…ุงูŠุง ู„ูŠู‡ ูŠุง ุฌู…ุงุนุฉ
708
00:59:53,770 --> 00:59:57,190
ุตุงุฑุช ุนู†ุฏ ุงู„ูˆุงุญุฏ ู‡ุฐู‡ ุงู„ู„ูŠ ุจูŠุณุงูˆูŠ E to the zero
709
00:59:57,190 --> 01:00:03,630
ุจูŠุณุงูˆูŠ E to the zero ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„
710
01:00:03,630 --> 01:00:07,510
absolute value ู„ู‡ุฐู‡ ุจูŠุณุงูˆูŠู‡ุง ุจุนุฏ ุฅู†ู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
711
01:00:07,510 --> 01:00:14,420
ุจูŠุณุงูˆูŠ ุงู„ absolute value E of CL ุนู„ู‰ N factorialููŠ
712
01:00:14,420 --> 01:00:22,320
absolute value ู†ุงู‚ุต Alpha ุฃูุณ N ูˆ ู‡ุฐู‡ ุฒูŠ ู…ุง ู‚ู„ู†ุง E
713
01:00:22,320 --> 01:00:25,880
of C N ุฅูŠุด ู…ุง ุงู„ู„ูŠ ู‚ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆูŠ ูˆ
714
01:00:25,880 --> 01:00:32,960
ุณุงูˆูŠ K ุฅุฐุง K ุนู„ู‰ N factorial ููŠ ู†ุงู‚ุต Alpha ุฃูุณ N
715
01:00:32,960 --> 01:00:38,710
ู…ุงุดูŠ ุงู„ุขู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑas n goes to infinity ุจูŠุฑูˆุญ
716
01:00:38,710 --> 01:00:42,910
ู„ู€0 ู‡ุฐุง independent of n ูˆ ู‡ุฐุง independent of n
717
01:00:42,910 --> 01:00:48,650
ุตุงุฑ ุนู†ุฏู‰ ุงู„ุงู† ู‡ุฐุง ุงู„ุงู† ู‡ูŠ ุงู„ูˆุงุญุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
718
01:00:48,650 --> 01:00:53,390
ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฎุฏ ุงู„ limit as n goes to
719
01:00:53,390 --> 01:00:57,430
infinity ุจูŠุตูŠุฑ ุงู„ูˆุงุญุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุณูุฑ ูˆ ู‡ุฐุง ุฅูŠุด
720
01:00:57,430 --> 01:01:03,250
ู…ุงู„ู‡ contradictionุฅุฐุง ุตุงุฑ ููŠ ุนู†ุฏูŠ ุงู„ูุฑุถูŠุฉ ุงู„ุฃูˆู„ู‰
721
01:01:03,250 --> 01:01:07,770
ุฎุงุทุฆุฉ ุฅุฐุง there is no such Alpha ุงู„ู„ูŠ ู‡ูˆ ุจุชูƒูˆู†
722
01:01:07,770 --> 01:01:10,530
ุนู†ุฏู‡ุง ุงู„ K of Alpha ุจุชุณุงูˆูŠ ุณูุฑ ุฅุฐุง ุงู„ K of Alpha
723
01:01:10,530 --> 01:01:16,090
ุจุชุณุงูˆูŠ ุฃูƒุจุฑ ู„ุง ุชุณุงูˆูŠ ุณูุฑ ุฏุงุฆู…ุง ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ
724
01:01:16,090 --> 01:01:22,150
ู‡ูˆ ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูŠ E to the X ู„ุง ุชุณุงูˆูŠ ุณูุฑ ุฃุจุฏุง ู†ูŠุฌูŠ
725
01:01:22,150 --> 01:01:29,110
ุงู„ุขู† ุฅู† ุจุฏู†ุง ู†ุซุจุช ุฃู†ู‡ู†ุซุจุช ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ู„ูŠ
726
01:01:29,110 --> 01:01:38,430
ู‡ูŠ ุนุจุงุฑุฉ ุนู† E of X ุฒุงุฆุฏ Y ุจุณุงูˆุฉ E of X ููŠ E of Y
727
01:01:38,430 --> 01:01:42,670
ู„ูƒู„ X ูˆ Y element in R ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุจุฏู†ุง
728
01:01:42,670 --> 01:01:48,410
ู†ุซุจุชู‡ุง ุดูˆู ุทุฑูŠู‚ุชู‡ ุญู„ูˆุฉ ููŠ ุงู„ุฅุซุจุงุช ุจูŠู‚ูˆู„ ู„ูŠู‡ ู†ูุชุฑุถ
729
01:01:48,410 --> 01:01:53,030
Y fixed arbitrary ู„ูƒู† ู„ูŠู‡ุงุด fixed ุจู†ุญูƒูŠ ุนู† Y ู…ุญุฏุฏุฉ
730
01:01:53,030 --> 01:01:59,760
arbitrary ู„ูƒู† ู†ุญูƒูŠ ุนู† Y ู…ุญุฏุฏุฉุงู„ุงู† ู…ุงุฏุงู… Y ุงู„ู„ูŠ ู‡ูŠ
731
01:01:59,760 --> 01:02:05,240
ุงู„ E of Y ุฃูƒูŠุฏ ูŠุดู…ู„ู‡ุง ู„ุง ุชุณุงูˆูŠ ุณูุฑ ุงุชูุฌู†ุง ุนู„ูŠู‡ุง
732
01:02:05,240 --> 01:02:11,520
ุงู„ุงู† ุนุฑูู„ูŠ ุงู„ุงู† function G ู…ู† R ู„R ุนุฑูู‡ุง ูƒูŠูุŸG of
733
01:02:11,520 --> 01:02:15,720
X ุงู„ู…ุชุบูŠุฑ X ุงู„ุงู† Y ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงุดูŠ Fix ุซุงุจุช
734
01:02:15,720 --> 01:02:19,080
ุจุญูƒูŠ ุนู†ู‡ ู„ูƒู† ูƒุงู† arbitrary ุงู„ู„ูŠ ู‡ูŠ G of X ุจูŠุณุงูˆูŠ E
735
01:02:19,080 --> 01:02:24,420
of X ุฒุงุฆุฏ Y ุนู„ู‰ E of Y for X element in R ุฃุฎุฏู†ุง
736
01:02:24,420 --> 01:02:30,060
ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงู„ุขู† ุดูˆู ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงุนู…ู„ู‡ G prime ู„ู‡ุง G
737
01:02:30,060 --> 01:02:33,920
prime of X ุจุงู„ูุถู„ ุจุงู„ู†ุณุจุงู„ูŠ XY ุซุงุจุชุฉ ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ
738
01:02:33,920 --> 01:02:38,280
ู‡ุฐู‡ E prime of X ุฒุงุฆุฏ Y ุนู„ู‰ E of Y ุนุฏุฏ ู…ุง ู„ุงุด
739
01:02:38,280 --> 01:02:43,080
ุนู„ุงู‚ุฉ ููŠู‡ Y ุณุงูˆูŠุงู„ู€ E' ู‡ูŠ ู†ูุณ ู…ูŠู†ุŸ ุงู„ู€ E of X ุฒูŠ Y
740
01:02:43,080 --> 01:02:48,720
ุนู„ู‰ E of Y ู…ุงุดูŠุŸ ุทูŠุจุŒ ุงู„ุขู† ุตุงุฑ ู‡ุฐุง ุงู„ู€ E X ุฒูŠ Y
741
01:02:48,720 --> 01:02:53,280
ุนู„ู‰ E of Y ู‡ูˆ ู…ูŠู†ุŸ ุฑุฌุน G ุฅุฐุง ุฑุฌุนุช ุฅู† ุงู„ู€ G' ู…ุด
742
01:02:53,280 --> 01:03:01,770
ุจูŠุณุงูˆูŠ ุงู„ู€ G ุงู„ุขู† andุฃุญุณุจ ู„ูŠ g of 0 ุจุณุงูˆูŠุฉ e of 0
743
01:03:01,770 --> 01:03:06,070
ุฒุงุฆุฏ y ุนู„ู‰ e of y ูŠุนู†ูŠ ุจุณุงูˆูŠุฉ ูˆุงุญุฏุฉ ุฅุฐุง ุงู„ุฏุงู„ุฉ
744
01:03:06,070 --> 01:03:11,050
ุงู„ู„ูŠ ุนุฑูู†ุงู‡ุง ู‡ุฐู‡ g of x ุทู„ุนุช ู„ูŠ g prime ู„ู‡ุง ู†ูุณู‡ุง
745
01:03:11,050 --> 01:03:15,310
ูˆุทู„ุนุช ู„ูŠ g of 0 ูˆุงุญุฏุฉ ูˆุนู„ู…ุฉ ู‚ุจู„ ู‚ู„ูŠู„ ุนู…ุงู„ ุจูŠู‚ูˆู„
746
01:03:15,310 --> 01:03:18,610
ู…ุงููŠุด ู„ุบูŠุฑ ูˆุงุญุฏุฉ ููŠ ุงู„ุฏู†ูŠุง ุจุชู‡ุจู‡ุง ุงู„ุฎุงุตูŠุชูŠู† ุงู„ู„ูŠ
747
01:03:18,610 --> 01:03:23,190
ู‡ูŠ ู…ูŠู† ุงู„ E of X ุฅุฐุง ู‡ุฐู‡ ุบุตุจ ุนู†ู†ุง ู„ุงุฒู… ุชุทู„ุน ู…ูŠู† ุงู„
748
01:03:23,190 --> 01:03:27,080
E of X because of the uniqueness of Eุฅุฐุง ุตุญูŠุญ ุฃู†ุง
749
01:03:27,080 --> 01:03:31,000
ุนู†ุฏูŠ E of X ุจุณุงูˆูŠ E X Z Y ุนู„ู‰ E E of Y ูŠุนู†ูŠ E X Z
750
01:03:31,000 --> 01:03:37,940
Y ุจุณุงูˆูŠ E of Y ููŠ ุงู„ E of X ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุทูŠุจ ู†ูŠุฌูŠ
751
01:03:37,940 --> 01:03:46,800
ุงู„ุขู† ู†ุซุจุช ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุจุฏู†ุง ู†ุซุจุช E of R
752
01:03:46,800 --> 01:03:54,870
ุจุณุงูˆูŠ E to the RR ุงู„ู…ู†ุชู†ูŠู† LQ ุงู„ู„ูŠ ู‡ูˆ rational
753
01:03:54,870 --> 01:04:00,870
number ุทูŠุจ ุฌู…ุงุนุฉ ููŠูƒู… ุชุตู„ ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ
754
01:04:00,870 --> 01:04:09,370
ูˆุงู„ุณู„ุงู… ู„ู†ุดูˆู ูƒูŠู ู†ูŠุฌูŠ
755
01:04:09,370 --> 01:04:14,690
ุงู„ุจุฑู‡ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก ุงู„ุซุงู„ุซ ุฃูˆ ู‡ุฐุง ุฌุฒุก ู…ู† ุงู„ู†ุธุฑูŠุฉ
756
01:04:14,690 --> 01:04:18,830
ุฃูˆู„
757
01:04:18,830 --> 01:04:24,560
ุญุงุฌุฉู‡ุฐู‡ ุตุญูŠุญุฉ ู„ูƒู„ ุฃู†ู‡ูŠ ุงู„ู…ุชู†ุงู†ุฉ ูƒูŠูุŸ by induction
758
01:04:24,560 --> 01:04:53,330
E of X ุจุณุงูˆูŠ E of XุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ
759
01:04:53,330 --> 01:04:56,270
ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ
760
01:04:56,270 --> 01:04:56,330
ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ
761
01:04:56,330 --> 01:04:57,110
ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ
762
01:04:57,110 --> 01:05:00,170
ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ
763
01:05:00,170 --> 01:05:02,740
ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒE
764
01:05:02,740 --> 01:05:08,660
of K ููŠ X ุฒุงุฆุฏ X ูˆูŠุณุงูˆูŠ ู…ู† ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุงุญู†ุง ู„ุณู‡
765
01:05:08,660 --> 01:05:12,880
ู…ุงุฎู„ุตู†ู‡ุงุด ู‡ุฐู‡ ุจุณุงูˆูŠ E ู„ู„ุฃูˆู„ ุฒุงูŠุฏ ููŠ E ู„ู„ุชุงู†ูŠ ุงู„ู„ูŠ
766
01:05:12,880 --> 01:05:17,960
ู‡ูŠ E ู„ู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ KX ููŠ E ู„ู„ุชุงู†ูŠ ุงู„ู„ูŠ ู‡ูŠ EX
767
01:05:17,960 --> 01:05:22,780
ูˆูŠุณุงูˆูŠ EKX ุงู„ู„ูŠ ู‡ูˆ E of X ุฃูุณ K ู„ุฃู†ู‡ ูุฑุถูŠู†ุง ุฃู†ุง
768
01:05:22,780 --> 01:05:31,260
ุตุญูŠุญุฉ ุงู„ู„ูŠ ู‡ูŠ K ุจูŠุตูŠุฑ ุนู†ุฏูŠ E of X ุฃูุณ K ููŠ E of Xูˆ
769
01:05:31,260 --> 01:05:39,800
ูŠุณุงูˆูŠ E of X ุงู„ูƒู„ ุฃูุณ K ุฒุงุฆุฏ ูˆุงุญุฏ ุฅุฐุง ุตุงุฑุช
770
01:05:39,800 --> 01:05:49,580
ู‡ุฐู‡ is true for all N element in N ุทูŠุจ .. ุงู„ุขู† ุดูˆู
771
01:05:49,580 --> 01:05:53,920
ู…ุง ูŠู„ูŠู‡ ู†ู„ุงุญุธ ู…ุง ูŠู„ูŠู‡
772
01:06:02,460 --> 01:06:06,080
Lit x ุจุชุณุงูˆูŠ ุงูŠุดุŸ ูˆุงุญุฏุฉ ุนู„ู‰ ุงู† ู†ุงุฎุฏ ุงู„ู€ x ุงูŠุด
773
01:06:06,080 --> 01:06:10,540
ุจุชุณุงูˆูŠ ูˆุงุญุฏุฉ ุนู„ู‰ ุงู†ุŸ ุจุชุตูŠุฑ ู‡ุฐุง E of ูˆุงุญุฏ ู„ุฃู† ุงู† ููŠ
774
01:06:10,540 --> 01:06:13,840
ูˆุงุญุฏุฉ ุนู„ู‰ ุงู† ูˆุงุญุฏ ุงู„ E of ูˆุงุญุฏ ุฑู…ุฒู†ุงู‡ุง ู…ู† ุฑู…ุฒ ุงูŠุด
775
01:06:13,840 --> 01:06:17,940
ูŠุง ุฌู…ุงุนุฉุŸ E ูˆู‡ุฐุง ุงู„ู„ูŠ ุจุฏุฃ ุงุตู„ูŠู‡ ู‡ุฐุง ุฑู…ุฒู†ุงู‡ุง ู…ู† ุฑู…ุฒ
776
01:06:17,940 --> 01:06:22,420
E ูˆุงู„ E ุนุจุงุฑุฉ ุนู† ุฑู‚ู… ุงู„ E of ูˆุงุญุฏ ู‡ูŠ ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ
777
01:06:22,420 --> 01:06:28,100
ุงู„ู„ูŠ ุชุจุนุชู†ุง ุนู†ุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูˆุงุญุฏ ุณู…ูŠู†ู‡ุง Eุงู„ุงู† E of N
778
01:06:28,100 --> 01:06:33,380
ููŠ 1 ุนู„ู‰ N ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ X ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
779
01:06:33,380 --> 01:06:40,720
ุนุจุงุฑุฉ ุนู† 1 ุนู„ู‰ N E of 1 ุนู„ู‰ N ุงู„ูƒู„ ุงุณู…ู‡ ุฃูุณ N ูŠุนู†ูŠ
780
01:06:40,720 --> 01:06:48,380
ุงู„ุขู† ุนู†ุฏูŠ ู‡ุฐู‡ ุงู„ X E N X ุจุณุงูˆูŠ E X ุฃูุณ N X ู…ูŠู† 1
781
01:06:48,380 --> 01:06:53,210
ุนู„ู‰ N E of 1 ุนู„ู‰ N ุฃูุณ Nุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ู‡ูŠ ู‡ุฐุง
782
01:06:53,210 --> 01:06:59,010
ุงู„ู‚ูŠู…ุฉ ุจุณุงูˆูŠุฉ ู‡ุฐุง ุฅุฐุง ุจู…ุนู†ู‰ ุขุฎุฑ E of ูˆุงุญุฏุฉ ุงู„ุงู†
783
01:06:59,010 --> 01:07:05,830
ุจุณุงูˆูŠุฉ E ุงู„ุนุฏุฏ ุฃุณ ูˆุงุญุฏ ุนู„ู‰ N ู‡ุฐุง ุงู„ุงู† E of ูˆุงุญุฏุฉ
784
01:07:05,830 --> 01:07:14,050
ุงู„ุงู† ุจุณุงูˆูŠุฉ E ุฃุณ ูˆุงุญุฏ ุนู„ู‰ N ุงู„ุขู† ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ู„ูˆ
785
01:07:14,050 --> 01:07:23,700
ุฌูŠุช E ุฃุณ minus Mู‡ุชุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ E ุฃูุณ M ุฎุฏ
786
01:07:23,700 --> 01:07:26,760
ุงู„
787
01:07:26,760 --> 01:07:33,460
E of M ู†ุงู‚ุต M ุงู„ู„ูŠ ู‡ูŠ ุจูŠุณุงูˆูŠ E of Zero ุงู„ู„ูŠ ู‡ูŠ
788
01:07:33,460 --> 01:07:41,020
ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุตุญ ูˆุฅูŠู‡ ุณุงูˆูŠ E of MููŠ E of ู†ุงู‚ุต M ุญุณุจ
789
01:07:41,020 --> 01:07:45,900
ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุฒุงุฆุฏ ู†ุงู‚ุต M ู‡ุฐู‡ X ูˆู‡ุฐู‡ ุงู„ Y E
790
01:07:45,900 --> 01:07:49,760
ุงู„ุฃูˆู„ู‰ ููŠ E ุงู„ุชุงู†ูŠุฉ ุงู„ุงู† ุตุงุฑ ุนู†ุฏู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
791
01:07:49,760 --> 01:07:57,600
ุจุณุงูˆูŠ ูˆุงุญุฏ ูŠุนู†ูŠ ุฅุฐุง E of ู†ุงู‚ุต M ุจุณุงูˆูŠ ุจู†ุฌู„ ู‡ุฏู‡ุงู†
792
01:07:57,600 --> 01:08:03,260
ูˆุงุญุฏ ุนู„ู‰ E of M ุฅุฐุง ุตุงุฑุช ุนู†ุฏู‰ E of ู†ุงู‚ุต M ุจุณุงูˆูŠ
793
01:08:03,260 --> 01:08:09,360
ูˆุงุญุฏ ุนู„ู‰ E of M ูˆุงู„ E of M ุงู„ E of Mู…ู† ููˆู‚ E of M
794
01:08:09,360 --> 01:08:14,280
ู‡ุฐุง X ุจูˆุงุญุฏ ูŠุนู†ูŠ ุจูŠุณุงูˆูŠ E of ูˆุงุญุฏ ุฃูุณ M ูŠุนู†ูŠ ุนุจุงุฑุฉ
795
01:08:14,280 --> 01:08:19,500
ุนู† E ุฃูุณ M ูˆู‡ูŠ ููˆู‚ ุฅูŠุด ูˆุงุญุฏ ุงู„ุขู† ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ุนุฏุฏ
796
01:08:19,500 --> 01:08:23,800
ุนุงุฏูŠ ุงู„ู„ูŠ ู‡ูˆ E ู…ุฑููˆุน ู„ู„ุฃูุณ M ุงู„ู„ูŠ ู‡ูˆ ู†ูุณู‡ E to the
797
01:08:23,800 --> 01:08:27,360
minus M ู„ุฃู† ู‡ุฐู‡ ู…ุนู„ูˆู…ุฉ ู‚ุฏูŠู…ุฉ ู„ุฐุง ุงู†ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† E
798
01:08:27,360 --> 01:08:34,820
of minus M ุจูŠุณุงูˆูŠ E ุฃูุณ ู…ุงู‚ุต M ูˆุงู„ E ุฃูุณ ูˆุงุญุฏ ุนู„ู‰
799
01:08:34,820 --> 01:08:43,460
N ุจูŠุณุงูˆูŠ Eุฃูุณ ูˆุงุญุฏ ุนู„ู‰ N ู†ุฌูŠ
800
01:08:43,460 --> 01:08:46,780
ุงู„ุขู† ุงุญู†ุง ุบุงูŠุชู†ุง ู…ูŠู†ุŸ E of R ุงู„ู€ R ุฅูŠุด ุงู„ู„ูŠ ู†ู‚ุฏุฑ
801
01:08:46,780 --> 01:08:50,640
ู†ูƒุชุจู‡ุงุŸ ุงู„ู€ R ููŠ ุงู„ู€ Q ุฅุฐุง ุงู„ู€ R ุจุชู†ูƒุชุจ ุนู„ู‰ ุตูˆุฑุฉ M
802
01:08:50,640 --> 01:08:54,780
ุนู„ู‰ N ุฅุฐุง ู†ุฎุฏ R ููŠ ุงู„ู„ูŠ ู†ู…ุชู†ูŠ Q ุฅุฐุง there exists M
803
01:08:54,780 --> 01:08:58,820
ูˆ N ุงูŠ ูˆุงุญุฏุฉ ููŠ ุฒุฏ ูˆุงุญุฏุฉ ููŠ N ุตุญูŠุญ ุฏู‡ุŸ R ุจุชุณุงูˆูŠ M
804
01:08:58,820 --> 01:09:03,320
ุนู„ู‰ N ุจุชุซุจุชู„ูƒ ุฅู† E of M ุนู„ู‰ N ุจุณุงูˆูŠ E to the M ุนู„ู‰
805
01:09:03,320 --> 01:09:12,580
N ุดูˆู ูƒูŠูE of M ุนู„ู‰ N ุงูŠุด ู‡ูŠุณุงูˆูŠ E ุฃูุณ ูˆุงุญุฏุฉ ู„ N
806
01:09:12,580 --> 01:09:21,400
ุงู„ูƒู„ A ุดู…ุงู„ู‡ ุฃูุณ M ุฃูุณ M E of ูˆุงุญุฏุฉ ู„ N ุฃูุณ M ู…ูŠู†
807
01:09:21,400 --> 01:09:28,870
ุงู„ู„ูŠ ุดุฑุนู„ูŠ ุงู„ู„ูŠ ู‡ูˆุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ E-M ูˆ ู‡ูŠ ุณุงู„ุจุฉ ุทู„ุนุช
808
01:09:28,870 --> 01:09:33,870
E ุฃุต ู…ูŠู†ุณ M ูˆ ุงู„ู„ูŠ ุดุฑุนู„ูŠ E ูˆ ูˆุงุญุฏุฉ ู„ N ูˆ N ู…ูˆุฏุจุฉ
809
01:09:33,870 --> 01:09:41,130
ู‡ูŠ E ุฃุต ูˆุงุญุฏ ุนู„ู‰ N ูุจุตูŠุฑ ุนู†ุฏูŠ ุงู„ุฃู† E ุฃุต M ุนู„ู‰ N ุฃุต
810
01:09:41,130 --> 01:09:45,970
M ุนู„ู‰ N ุจุณุงูˆูŠ E ุฃุต ูˆุงุญุฏ ุนู„ู‰ N ู‡ุฐู‡ ุงู„ู„ูŠ ุฌูˆุง ุงู„ูƒู„
811
01:09:45,970 --> 01:09:53,650
ุฃุณู…ูŠู† ุงู„ูƒู„ ุฃุต M ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ูˆ ูŠุณุงูˆูŠ E
812
01:09:58,010 --> 01:10:03,730
ู‡ุฐู‡ ุดุฑุนุงุช ู„ุฅูŠ ูˆ ูˆุงุญุฏุฉ ุงู„ุงู† ูƒู„ ุงุณ ุงู… ูˆู‡ุฐุง ุนุฏุฏ ุนุงุฏูŠ
813
01:10:03,730 --> 01:10:08,730
ุงู„ุงู† ูˆู‡ุฐุง ุนุฏุฏ ุนุงุฏูŠุฉ ุจูŠุตูŠุฑ ุงูŠ ุฃุณ ุงู… ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู† ูˆ
814
01:10:08,730 --> 01:10:14,850
ู‡ุฐู‡ ุจูŠูƒูˆู† ุนู†ุฏูŠ ุงูŠ ุฃุณ ุงูŠ ุงูˆ ุงู… ุนู„ู‰ ุงู† ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
815
01:10:14,850 --> 01:10:18,870
ุนุจุงุฑุฉ ุนู† ุงูŠ ุฃุณ ุงู… ุนู„ู‰ ุงู† ูˆ ุงู… ุนู„ู‰ ุงู† was our
816
01:10:18,870 --> 01:10:21,710
arbitral rational number ุงุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงูŠ ุฃุณ ุงุฑ
817
01:10:21,710 --> 01:10:24,210
ุจุณุงูˆูŠ ุงูŠ ุฃุณ ุงุฑ
818
01:10:29,400 --> 01:10:35,160
ู†ุฌูŠ ุงู„ุขู† ู„ู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุชู…ุงู†ูŠุฉ ุชู„ุงุชุฉ ุณุจุนุฉ ุงู„ู„ูŠ ู‡ูŠ
819
01:10:35,160 --> 01:10:39,980
ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃุฎูŠุฑุฉ ููŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญุฏูŠุซ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„
820
01:10:39,980 --> 01:10:45,260
exponential function ูˆ ุจุนุฏู‡ุง ุทุจุนุง ุจู†ุญูƒูŠ ุนู† ุงู„ู„ูŠ ู‡ูˆ
821
01:10:45,260 --> 01:10:48,060
ุงู„ logarithmic function ุจุณ ุฎู„ูŠู†ุง ุงู„ุขู† ู†ุญูƒูŠ ุนุงู„ู…ูŠุง
822
01:10:48,060 --> 01:10:54,340
ุงู†ูƒู…ู„ ู†ุธุฑูŠุชู†ุง ุนู„ู‰ ุงู„ exponential function ุจู†ุดูˆู
823
01:10:55,540 --> 01:11:00,240
ุงู„ุฃู† ุจู‚ูˆู„ูŠ ุงู„ู€ exponential function E is strictly
824
01:11:00,240 --> 01:11:04,840
increasing on R ูŠุนู†ูŠ ุงู„ู€ derivative ุฅู„ู‡ุง ุฃูƒุจุฑ ู…ู†
825
01:11:04,840 --> 01:11:11,460
ุณูุฑ ู…ุงุดูŠุŸ and this range ุงู„ู„ูŠ ู‡ูˆ Y ุงู„ู…ุชู†ุฑุณุฌ ุฏู‡ Y
826
01:11:11,460 --> 01:11:16,720
ุฃูƒุจุฑ ู…ู† ุณูุฑ ูŠุนู†ูŠ ุงู„ู€ E ู‡ุชูƒูˆู† ุจุงู„ุธุจุท ุฏู‡ ุงู„ู„ูŠ ู…ู† R
827
01:11:16,720 --> 01:11:24,080
ุจุชุตุจ ุฅู„ู‰ R positive ุฅู„ู‰ R positive ูŠุนู†ูŠ ุนุจุงุฑุฉ ุนู†
828
01:11:24,080 --> 01:11:31,370
Zeroูˆู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู‡ูŠ ุงู„ุชูŠ ู‡ูŠ range ุฏุงู„ุฉ range ุฏุงู„ุฉ
829
01:11:31,370 --> 01:11:34,610
ู‡ุฐู‡ ู‡ูŠ ู…ู† ุณูุฑ ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู„ุฃู† ูƒุชุงุจุฉ ุนู„ู‰ ุณูˆุฑุฉ
830
01:11:34,610 --> 01:11:40,210
function is on to ุทูŠุจ ู…ุด ู‡ูŠูƒ limit E of X ู„ู…ุง X
831
01:11:40,210 --> 01:11:43,470
ุชุฑูˆุญ ู„ุณุงู„ุจ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุจุชุณุงูˆูŠ ุณูุฑ and limit E of X
832
01:11:43,470 --> 01:11:47,110
ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุงูŠุด ุจุชุณุงูˆูŠุŸ ุจุชุณุงูˆูŠ ู…ุงู„ุฉ
833
01:11:47,110 --> 01:11:55,670
ู†ู‡ุงูŠุฉูŠุนู†ูŠ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ ููŠ ุญุงู„ุฉ ุงู„ ุงู„ E of X ุงู„ู„ูŠ
834
01:11:55,670 --> 01:11:59,070
ุงุญู†ุง ุณู…ูŠู†ุงู‡ุง ุงู„ X exponential ู„ู„ X ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡
835
01:11:59,070 --> 01:12:03,130
ุงู„ุฏุงู„ุฉ ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ุณุงู„ุจ ู…ุงู„ู‡
836
01:12:03,130 --> 01:12:06,830
ู†ู‡ุงูŠุฉ ู‡ุฐุง ู‡ูŠุฑูˆุญ ู„ู„ุณูุฑ ุงู„ E of X ู‡ุชุฑูˆุญ ู„ู„ุณูุฑ ูˆ ู„ู…ุง
837
01:12:06,830 --> 01:12:10,890
ุงู„ X ุชุฑูˆุญ ู„ู…ุงู„ู‡ ู†ู‡ุงูŠุฉ ุงู„ E of X ู‡ุชุฑูˆุญ ุฅูŠุด ุฅู„ู‰ ู…ุงู„ู‡
838
01:12:10,890 --> 01:12:14,810
ู†ู‡ุงูŠุฉ ู†ุดูˆู ุฃูˆู„ ุดูŠ ุจุงู„ู†ุณุจุฉ ู„ู…ู†ุŸ ู„ู„ range
839
01:12:19,570 --> 01:12:24,250
ุงู„ุงู† we know that E of 0 ุจูŠุณุงูˆูŠ Eุงุด ูˆุงุญุฏ ุงูƒุจุฑ ู…ู†
840
01:12:24,250 --> 01:12:29,770
Eุงุด ู…ู† ุณูุฑ ุงูƒูŠุฏุŒุธุจุท ูˆู„ุง ู„ุงุŸ and E of X ุฏู‡ ุจูŠุณุงูˆูŠ
841
01:12:29,770 --> 01:12:36,390
ุณูุฑ for X element in R ุตุงุฑ ุนู†ุฏู‰ ุงู„ุงู† ู‡ุงูŠ ุฏุงู„ุฉ E of
842
01:12:36,390 --> 01:12:38,650
0 ุฅู„ู‡ุง ูˆุงุญุฏุŒู…ุงุดูŠุŸ
843
01:12:40,360 --> 01:12:46,000
ุฃูˆ E of X ู…ุด ุณูุฑ ูŠุนู†ูŠ ุฅูŠู‡ ุดู…ุงู„ู‡ุง ู„ุง ุชู‚ุทุน ู…ุญูˆุฑ
844
01:12:46,000 --> 01:12:51,910
ุงู„ุณูŠู†ุงุช ุฅุทู„ุงู‚ุงุงู„ู„ูŠ E of X ู†ูุณู‡ุง ูˆ 0 ู…ู† ุณูุฑู‡ุง ุงู„ุฃู†
845
01:12:51,910 --> 01:12:57,110
ุฃู†ุง ุจู‚ูˆู„ ู…ุณุชุญูŠู„ ุชูƒูˆู† ููŠ ุฅูŠู‡ุง ู‚ูŠู… ุณุงู„ุจุฉ ูŠุนู†ูŠ ู…ุณุชุญูŠู„
846
01:12:57,110 --> 01:13:02,030
ู†ู„ุงู‚ูŠ E of X naught ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู† 0 ู„ูŠุดุŸ ู„ุฃู†ู‡ ู„ูˆ
847
01:13:02,030 --> 01:13:05,990
ู„ุฌูŠู†ุง E of X naught ุณุงู„ุจุฉ ู„ูˆ ู‡ุงู„ุฌูŠุช ุนู†ุฏู†ุง X naught
848
01:13:05,990 --> 01:13:09,910
ูˆ ู‡ูŠู‡ุง ู‚ูŠู…ุชู‡ุง E of X naught ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจุฉ ูŠุนู†ูŠ
849
01:13:09,910 --> 01:13:16,460
ู‡ุชูƒูˆู† ุชุญุชุทุจ ู…ุง ู‡ูŠ ุงู„ุฏุงู„ุฉ ู…ุชุตู„ุฉ ู…ุฏุงู… ู…ุชุตู„ุฉ ุฅุฐุง ุบุตุจ
850
01:13:16,460 --> 01:13:20,940
ุนู†ู‡ุง ู‡ุชูŠุฌูŠ ุชู‚ุทุน ุงู„ู„ูŠ ู‡ูˆ ู…ุง ู‡ุชูŠุฌูŠ ู…ู†ู‡ุง ู„ู‡ุง ู‡ุชู‚ุทุน
851
01:13:20,940 --> 01:13:24,760
ู…ุญูˆุฑ ุงู„ุณูŠู†ุงุช ุฅุฐุง ู‡ุชุตูŠุฑ ุณูุฑ ูˆู‡ุฐุง Contradiction ู…ู†
852
01:13:24,760 --> 01:13:28,380
ุฃูŠู† ุงู„ูƒู„ุงู… ู‡ุฐุงุŸ By Bolzano Intermediate Value
853
01:13:28,380 --> 01:13:32,760
Theorem ุจู…ุง ุฃู†ู‡ ุงุญู†ุง ููŠ ุนู†ุฏู†ุง X0 ูุฑุถู†ุงู‡ุง ุงู„ E of
854
01:13:32,760 --> 01:13:39,260
X0 ุฃุตุบุฑ ู…ู† ุณูุฑ ูˆููŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ E of Zero ุจุณุงูˆูŠ
855
01:13:39,260 --> 01:13:40,980
ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ
856
01:13:44,440 --> 01:13:48,620
ุฃู‡ ู„ูˆ ูุฑุถู†ุง ุงู† ููŠ ุงูƒุณ ู†ูˆุช ุงูƒุณ ู†ูˆุช ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ
857
01:13:48,620 --> 01:13:56,300
ุณุงู„ุจุฉ ุงูƒุณ ู†ูˆุช ุงุตุบุฑ ู…ู† ุณูุฑ ูุนู†ุฏูŠ E of X naught ุงุตุบุฑ
858
01:13:56,300 --> 01:14:05,740
ู…ู† ุณูุฑ ูˆุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ู„ูŠ ู‡ูˆ E of X ุจุณุงูˆูŠ
859
01:14:05,740 --> 01:14:14,470
ูˆุงุญุฏ ุงู‡ ูˆู‡ุงุฏูŠ ุงูƒุจุฑ ู…ู† ุณูุฑุฃู‡ ูˆูุฑุถู†ุง ูˆุฌูˆุฏ ู‡ุฐู‡ ูˆูุฑุถู†ุง
860
01:14:14,470 --> 01:14:18,810
ูˆุฌูˆุฏ ู‡ุฐู‡ ุงุฐุง by intermediate value theorem ุบุตุจู†
861
01:14:18,810 --> 01:14:23,650
ุนู†ู‡ุง there exists c element ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุญูƒูŠ
862
01:14:23,650 --> 01:14:28,510
ุนู†ู‡ุง R such that f of ู‡ุฐู‡ ุงู„ู€ c ุงู„ู„ูŠ ู‡ูŠ E of C
863
01:14:28,510 --> 01:14:33,330
ุจุชุณุงูˆู„ ูƒู…ูŠุฉ ุงู„ู„ูŠ ุจูŠู†ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุงุณู…ู‡ุง ุณูุฑ ูˆู‡ุฐุง
864
01:14:33,330 --> 01:14:41,860
contradictionุจุงู„ุชุงู„ูŠ ุจูŠุญู‚ู‚ ุงู„ุจู„ุฒุงู† ุงู†ู‡ุง ู…ุณุชู…ุฑุฉ ุนู„ู‰
865
01:14:41,860 --> 01:14:47,060
ุงูŠ ุงู†ุชู‚ุงู„ ู…ุบู„ู‚ ุนู„ู‰ ูƒู„ ุฃุฑุถ ู„ุงู†ู‡ุง ุจูŠุญู‚ู‚ ุงู„ุจู„ุฒุงู† ุงู†ู‡ุง
866
01:14:47,060 --> 01:14:47,260
ู…ุณุชู…ุฑุฉ ุนู„ู‰ ุงูŠ ุงู†ุชู‚ุงู„ ู…ุบู„ู‚ ุนู„ู‰ ูƒู„ ุฃุฑุถ ู„ุงู†ู‡ุง ุจูŠุญู‚ู‚
867
01:14:47,260 --> 01:14:47,280
ุงู„ุจู„ุฒุงู† ุงู†ู‡ุง ู…ุณุชู…ุฑุฉ ุนู„ู‰ ุงูŠ ุงู†ุชู‚ุงู„ ู…ุบู„ู‚ ุนู„ู‰ ูƒู„ ุฃุฑุถ
868
01:14:47,280 --> 01:14:47,700
ู„ุงู†ู‡ุง ุจูŠุญู‚ู‚ ุงู„ุจู„ุฒุงู† ุงู†ู‡ุง ู…ุณุชู…ุฑุฉ ุนู„ู‰ ุงูŠ ุงู†ุชู‚ุงู„ ู…ุบู„ู‚
869
01:14:47,700 --> 01:14:48,880
ุนู„ู‰ ูƒู„ ุฃุฑุถ ู„ุงู†ู‡ุง ุจูŠุญู‚ู‚ ุงู„ุจู„ุฒุงู† ุงู†ู‡ุง ู…ุณุชู…ุฑุฉ ุนู„ู‰ ุงูŠ
870
01:14:48,880 --> 01:14:49,100
ุงู†ุชู‚ุงู„ ู…ุบู„ู‚ ุนู„ู‰ ูƒู„ ุฃุฑุถ ู„ุงู†ู‡ุง ุจูŠุญู‚ู‚ ุงู„ุจู„ุฒุงู† ุงู†ู‡ุง
871
01:14:49,100 --> 01:14:51,280
ู…ุณุชู…ุฑุฉ ุนู„ู‰ ุงูŠ ุงู†ุชู‚ุงู„ ู…ุบู„ู‚ ุนู„ู‰ ูƒู„ ุฃุฑุถ ู„ุงู†ู‡ุง ุจูŠุญู‚ู‚
872
01:14:51,280 --> 01:14:54,390
ุงู„ุจู„ุฒุงู† ุงู†ู‡ุง ู…ุณุชู…ุฑุฉ ุนู„ู‰ ุงูŠ ุงู†ุชู‚ู…ู† ุณูุฑ ุทูŠุจ ู…ุฏุงู… ุงู„
873
01:14:54,390 --> 01:14:57,010
E of X ุฃูƒุจุฑ ู…ู† ุณูุฑ ูˆ ุงุญู†ุง ุจู†ุนุฑู ุงู† ุงู„ E prime of X
874
01:14:57,010 --> 01:15:00,690
ุจูŠุชุณุงูˆูŠ E of X ุงุฐุง ุตุงุฑุช ุงู„ E prime ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู†
875
01:15:00,690 --> 01:15:04,890
ุณูุฑ ูƒู„ X element ุงู„ R ูˆู…ู† ุซู… ู‡ุฐุง ู…ุนู†ุงุชู‡ ุงู† E is
876
01:15:04,890 --> 01:15:10,450
strictly increasing on R ุงุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„
877
01:15:10,450 --> 01:15:15,810
ุฃุซุจุชู†ุงู‡ ุงู† E is strictly increasing on R ุทูŠุจ
878
01:15:24,230 --> 01:15:30,250
ุนู†ุฏูŠ ุงุชู†ูŠู† strictly increasing ุงู„ function ู…ุธุจูˆุท
879
01:15:30,250 --> 01:15:41,510
ูŠุนู†ูŠ ุงุชู†ูŠู† ุงุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงูŠุงุด ู…ู† ุงู„ E ู„ูŠุด ู„ุฃู†
880
01:15:41,510 --> 01:15:53,730
ุนู†ุฏูŠ ุงู„ูˆุงุญุฏ E ูˆุงุญุฏ ุงูˆ E of Xู‚ู„ู†ุง ุฃุตุบุฑ strictly ูˆู„ุง
881
01:15:53,730 --> 01:15:57,890
ุฃูƒุจุฑ strictly ู…ู† ูˆุงุญุฏ ุฒุงุฏ X ุตุญุŸ ู‡ุฐู‡ ุงู„ูƒูˆุฑูˆู„ุง
882
01:15:57,890 --> 01:16:02,810
remained ุชู…ุงู†ูŠุฉ ุชู„ุงุชุฉ ุชู„ุงุชุฉ ุงุซุจุชู†ุงู‡ุง ุฅุฐุง ุตุงุฑ ุนู†ุฏ E
883
01:16:02,810 --> 01:16:08,050
of ูˆุงุญุฏุฃูƒุจุฑ strictly ู…ู† ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุง ุฃูƒุจุฑ strictly
884
01:16:08,050 --> 01:16:13,970
ู…ู† ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ูˆุงู„ E of ูˆุงุญุฏ ู…ูŠู† ู‡ูˆ E ุฃุณ ูˆุงุญุฏ
885
01:16:13,970 --> 01:16:17,390
ู…ุด ู‡ูŠูƒ ุงุชูุงุฌู†ุง ูŠุนู†ูŠ ู‡ุฐุง ุฅูŠุงุด ุงุชู†ูŠู† ูŠุนู†ูŠ ุงู„ E ุฃูƒุจุฑ
886
01:16:17,390 --> 01:16:22,450
strictly ู…ู† ู…ูŠู† ู…ู† ุงู„ุงุชู†ูŠู† ุงุชูุงุฌู†ุง ุทูŠุจ ุงุชูุงุฌู†ุง ุฅุฐุง
887
01:16:22,450 --> 01:16:26,410
ุตุงุฑ ุนู†ุฏ ุงู„ E of ุงุชู†ูŠู† ุฃูƒุจุฑ strictly ุงู„ E ุฃูƒุจุฑ ู…ู†
888
01:16:26,410 --> 01:16:29,950
ู…ูŠู† ู…ู† ุงุชู†ูŠู† ุฎู„ูŠู†ุง ู†ุจุฏุฃ ุนู„ูŠู‡ุง ู‡ุฐู‡ ุงู„ E ุฃูƒุจุฑ ู…ู†
889
01:16:29,950 --> 01:16:41,000
ุฅูŠุงุด ู…ู† ุงุชู†ูŠู†ุงู„ุงู† ุงูƒูŠุฏ ุนู†ุฏู‡ ุงู„ E of R ุงู„ู„ูŠ ุจูŠุณูˆูŠ E
890
01:16:41,000 --> 01:16:48,440
R ุงูˆ E N ุฎู„ูŠู†ูŠ ุงู‚ูˆู„ E N ุงูƒุจุฑ ู…ู† ุงุชู†ูŠู† ู‡ุชูƒูˆู† ุงุตุบุฑ
891
01:16:48,440 --> 01:16:53,700
ุงู„ู„ูŠ ู‡ูŠ ุงูƒุจุฑ ู…ู† ุงุชู†ูŠู† ุฃูุณ N ุงู„ุงู† as N goes to
892
01:16:53,700 --> 01:16:57,680
infinity ุงุฐุง
893
01:16:57,680 --> 01:17:04,230
ุงูƒูŠุฏ ู‡ุฐู‡ ู‡ุชุฑูˆุญ ู„ู…ูŠู† ู„ุฅู†ููŠู†ูŠุชูŠูˆุงู„ู€ E ู†ูุณู‡ุง ุงู„ู„ูŠ ู‡ูŠ
894
01:17:04,230 --> 01:17:08,750
is strictly increasing is strictly increasing ุฅุฐุง
895
01:17:08,750 --> 01:17:12,370
ุงู„ E of X ุชุจุนุชู‡ุง ุจุฑุถู‡ ู‡ุชุฑูˆุญ ู„ู…ูŠู† ู„ Infinity ู„ู…ุง X
896
01:17:12,370 --> 01:17:18,650
ุชุฑูˆุญ ุฅู„ู‰ ูˆูŠู† ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู„ูŠุด ู„ุฃู† ู„ูƒู„ L ููŠ X
897
01:17:18,650 --> 01:17:24,670
ุฃูƒุจุฑ ู…ู†ู‡ุงุจุญูŠุซ ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุชุตูŠุฑ E of X ุงู„ู„ูŠ ู‡ูŠ
898
01:17:24,670 --> 01:17:30,110
ุจูŠุณุงูˆูŠ E to the X ุฃูƒุจุฑ ู…ู† E to the N ู„ูƒู„ N ููŠ X
899
01:17:30,110 --> 01:17:33,850
ุฃูƒุจุฑ ู…ู†ู‡ุง ุจุชุตูŠุฑ E of X ุฃูƒุจุฑ ู…ู†ู‡ุง ู„ุฃู†ู‡ุง strictly
900
01:17:33,850 --> 01:17:37,710
increasing ูู„ุงู† ู„ู…ุง ุชุฑูˆุญ ู‡ุฐู‡ ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุงู„ูƒุจุงุฑ
901
01:17:37,710 --> 01:17:41,170
ุชุจุนุชู‡ุง ูˆู‡ุฐู‡ ุทุจุนุง ุฃูƒุจุฑ ุฏุงูŠู…ุง ู…ูˆุฌูˆุฏุฉ ู‡ุฐุง ู‡ุชุฑูˆุญ ุฅู„ู‰
902
01:17:41,170 --> 01:17:45,540
ุฃูŠู† ุจุฑุถู‡ ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ูŠุนู†ูŠ limit ุงู„ E of Xู„ู…ุง X
903
01:17:45,540 --> 01:17:48,980
ุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุจุชุณุงูˆูŠ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ูˆู‚ู„ูƒู… ุงู„ู„ูŠ
904
01:17:48,980 --> 01:17:54,040
ู‡ูˆ ู„ูˆ ุชุฌุฑุจุชู‡ ุงู„ู„ูŠ ู‡ูˆ ุชุซุจุชู‡ ุฃู†ู‡ ุจู…ุง ุฃู†ู‡ limit E of
905
01:17:54,040 --> 01:17:58,840
N ุจุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ by ุงู„ู„ูŠ ู‡ูŠ limit definition
906
01:17:58,840 --> 01:18:03,020
ุฅุฐุง limit E of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุจุชุณุงูˆูŠ
907
01:18:03,020 --> 01:18:08,080
ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุงู„ุขู† similarly for mean for ุงู„ู„ูŠ ู‡ูˆ
908
01:18:08,080 --> 01:18:11,120
limit
909
01:18:12,620 --> 01:18:16,560
ุงู„ู€ E of X ู„ู…ุง X ุชุฑูˆุญ ู„ุณุงู„ุจ ู…ู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐู‡ ุงู„ุงู†
910
01:18:16,560 --> 01:18:22,840
ุจูŠุตูŠุฑ ุงุชู†ูŠู† ุฃูˆ minus N ุฃูƒุจุฑ ู…ู† E ุฃูˆ minus N ู…ุงุดูŠ
911
01:18:22,840 --> 01:18:28,000
ุงู„ุญุงู„ ุงู„ุงู† ุงู„ limit ู„ู‡ุฐู‡ as N goes to infinity
912
01:18:28,000 --> 01:18:31,940
ุฃูƒุจุฑ ุฃูˆ ุณุงูˆูŠ ุงู„ limit ู„ู‡ุฐู‡ as N goes to infinity
913
01:18:31,940 --> 01:18:33,420
ุงู„ุงู†
914
01:18:35,300 --> 01:18:40,100
ู‡ุฐู‡ ุงุด ู…ุงู„ู‡ุง ุจูŠุณุงูˆูŠ ุณูุฑ ูˆู‡ุฐู‡ ุงูˆุชูˆู…ุงุชูŠูƒ ู‡ูŠุณุงูˆูŠ ุงูŠุดุŸ
915
01:18:40,100 --> 01:18:44,840
ู‡ูŠุณุงูˆูŠ ุณูุฑ ุงู„ุงู† as N goes to infinity ูŠุนู†ูŠ ุงู„ E to
916
01:18:44,840 --> 01:18:49,720
the minus N ุจุชุฑูˆุญ ู„ู„ุณูุฑ ู…ู† ูˆูŠู†ุŸู…ู† ุงู„ูŠู…ูŠู†ุŒ ู…ุธุจูˆุท ุฃูˆ
917
01:18:49,720 --> 01:18:53,060
ุชุฑูˆุญ ู„ู„ู€ ZeroุŒ ู…ุธุจูˆุท ู„ุฃู† at E minus N ุชุฑูˆุญ ู„ู…ุง
918
01:18:53,060 --> 01:18:57,440
ู„ู†ู‡ุงูŠุฉ As N goes to infinity E to the minus N ุชุฑูˆุญ
919
01:18:57,440 --> 01:19:03,460
ู„ุฅู†ููŠู†ูŠุชูŠ ู„ุฃู† as X ุจุชุฑูˆุญ ุฅู„ู‰ ุณุงู„ุจ ู…ุง ู„ู†ู‡ุงูŠุฉ ุงู„ E
920
01:19:03,460 --> 01:19:07,560
to the minus X ุจุฑุถู‡ ู‡ุชุฑูˆุญ ุฅู„ู‰ ูˆูŠู†ุŸ ุฅู„ู‰ ุงู„ุณูุฑ ูŠุนู†ูŠ
921
01:19:07,560 --> 01:19:11,220
ุงู„ E to the X ู†ูุณู‡ุง ู„ู…ุง ู†ุงุฎุฏ ุงู„ limit ู„ู…ุง X ุชุฑูˆุญ
922
01:19:11,220 --> 01:19:14,580
ุจุฏู„ ู…ุง ู„ู†ู‡ุงูŠุฉ ุชุฑูˆุญ ุฅู„ู‰ ู…ูŠู†ุŸ ุณุงู„ุจ ู…ุง ู„ู†ู‡ุงูŠุฉ ุจุฑุถู‡
923
01:19:14,580 --> 01:19:20,200
ู‡ุชุณุงูˆูŠ ุฅูŠุดุŸ ุงู„ุณูุฑุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ limit E ุถูˆ X ู„ู…ุง X
924
01:19:20,200 --> 01:19:23,560
ุชุฑูˆุญ ุงู„ุณู„ู…ุฉ ู„ู‡ุง ูŠุงุจุณุฉ ุฃูˆ ุณูุฑ ูˆ ุจุนุชู…ุฏ ุนู„ู‰ ุงู„ู„ู‰ ู‡ูˆ
925
01:19:23,560 --> 01:19:26,780
ุงู„ุฌู‡ุชูŠู† ุนู„ู‰ ุงู„ strictly increasing ุชุจุน ุงู„ E ูˆ
926
01:19:26,780 --> 01:19:30,580
ุงู„ุชูุงุตูŠู„ ุงู„ู„ู‰ ู‡ู‰ ุงู„ definition ุจุชุธู‡ุฑ ุนู†ุฏูƒู… ุฃู†ุง
927
01:19:30,580 --> 01:19:34,220
ู…ุงูุตู„ุชุงุด ู„ุฅู†ู‡ ู‡ูˆ ุฅูŠู‡ ู‡ุฐุง ุงู„ู‚ุงุฆู