|
1 |
|
00:00:04,910 --> 00:00:08,190 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุญู
ุฏ ููู ุฑุจ ุงูุนุงูู
ูู |
|
|
|
2 |
|
00:00:08,190 --> 00:00:12,270 |
|
ูุงูุตูุงุฉ ูุงูุณูุงู
ุนูู ุณูุฏ ุงูู
ุฑุณููู ุณูุฏูุง ู
ุญู
ุฏ ุนูู |
|
|
|
3 |
|
00:00:12,270 --> 00:00:18,470 |
|
ุขูู ูุตุญุจู ุฃุฌู
ุนูู ูุฐู ูู ุงูู
ุญุงุถุฑุฉ ุฑูู
22 ูู ู
ุณุงู |
|
|
|
4 |
|
00:00:18,470 --> 00:00:23,930 |
|
ุชุญููู ุญูููุฉ ููู ูุทูุงุจ ูุทุงูุจุงุช ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉูุณู
|
|
|
|
5 |
|
00:00:23,930 --> 00:00:29,530 |
|
ุงูุฑูุงุถูุงุช ูู ูููุฉ ุงูุนููู
ุนููุงู ุงูู
ุญุงุถุฑุฉ ุงูููู
|
|
|
|
6 |
|
00:00:29,530 --> 00:00:32,850 |
|
ูููู
ู chapter ุชู
ุงููุฉ ููููู ูู ุนูุฏู ุงููู ูู |
|
|
|
7 |
|
00:00:32,850 --> 00:00:37,130 |
|
applications ุนูู ุงููู ูู ุชู
ุงููุฉ ุงููู ูู ูุงุญุฏ ู |
|
|
|
8 |
|
00:00:37,130 --> 00:00:41,630 |
|
ุชู
ุงููุฉ ุงุชููู ุงูู
ุญุงุถุฑุฉ ุงูููู
ุงููู ูู ููุญูู ุนู the |
|
|
|
9 |
|
00:00:41,630 --> 00:00:46,730 |
|
exponential and the logarithmic functions ููุญูู ุนู |
|
|
|
10 |
|
00:00:46,730 --> 00:00:51,830 |
|
ุงููู ูู ุฏุงูุฉ ุงู E to the X ูุฏุงูุฉ ุงู Lin ุฃู ุฏุงูุฉ ุงู |
|
|
|
11 |
|
00:00:51,830 --> 00:00:57,660 |
|
logุงูุงู ููุซุจุช ุงููู ูู ู
ู ุฎูุงู .. ูู ุงูุจุฏุงูุฉ ููุญูู |
|
|
|
12 |
|
00:00:57,660 --> 00:01:03,280 |
|
ุนู ุงููู ูู ุงู exponential function ุฃู ููุซุจุช ุงููู |
|
|
|
13 |
|
00:01:03,280 --> 00:01:05,740 |
|
ูู ูุฌูุฏ ุงู exponential function |
|
|
|
14 |
|
00:01:09,490 --> 00:01:13,630 |
|
ุงุญูุง ุงุณุชุฎุฏู
ูุงูุง ูุจู ููู ู
ุฌุฑุฏ ุฃู
ุซูุฉ ุจุนูุฏุง ุนู ุงููู |
|
|
|
15 |
|
00:01:13,630 --> 00:01:18,730 |
|
ูู ุงูู ุงููู ูู ู
ูุชุฑุถูุง ุงูู ู
ุนููู
ุงุช ู
ูุฌูุฏุฉ ู
ุณุจูุง |
|
|
|
16 |
|
00:01:18,730 --> 00:01:22,170 |
|
ููุง ุชูุงูุถ ุงููู ูู ุงูู ูุซุจุชูุง ุงูููู
ูุฅูู ุงุซุจุงุชูุง |
|
|
|
17 |
|
00:01:22,170 --> 00:01:25,410 |
|
ุงูููู
ูุง ูุนุชู
ุฏ ุนูู ุงููู ุญูููุงู ุณุงุจูุง ุจู
ุง ูุฎุต |
|
|
|
18 |
|
00:01:25,410 --> 00:01:29,350 |
|
ุจุฃู
ุซูุฉ ุงููู ุฐูุฑุช ูููุง ุงู exponential ุงูุงู ุงู |
|
|
|
19 |
|
00:01:29,350 --> 00:01:34,310 |
|
exponential function ุจุฏูุง ูุซุจุช ูุฌูุฏูุง ุงูุด ุงููู |
|
|
|
20 |
|
00:01:34,310 --> 00:01:38,820 |
|
ุจููููู ูุดูู ุนุจุฑ ุงู theorem 8 3 1 theoremุจููู there |
|
|
|
21 |
|
00:01:38,820 --> 00:01:44,060 |
|
exists a function U ุฏููุฉ E ู
ู R ู R ุฅุฐุง ูู ุนูุฏูุง |
|
|
|
22 |
|
00:01:44,060 --> 00:01:49,680 |
|
ุฏููุฉ ุงุณู
ูุง E ู
ู R ู R such that ุงูู E prime of X |
|
|
|
23 |
|
00:01:49,680 --> 00:01:55,280 |
|
ููุง ุจุณุงูู EX ููู X element in Rุฅุชููู E of Zero |
|
|
|
24 |
|
00:01:55,280 --> 00:01:58,820 |
|
ุจุณุงูู ุฅูุด ูุงุญุฏ ูุนูู ุงูุขู ุงููุธุฑูุฉ ุฏู ุจุชูููู ุฅูู |
|
|
|
25 |
|
00:01:58,820 --> 00:02:02,920 |
|
ููุฌุฏ ุนูุฏูุง ุฏุงูุฉ domainูุง ูู ุงู R ู rangeูุง ุจุฑูุญ |
|
|
|
26 |
|
00:02:02,920 --> 00:02:10,220 |
|
ุจุตูุจ ูู ุงู R ูุฐู ุงูุฏุงูุฉ ุชุญูู ุดุฑุทูู ุงููู ูู E prime |
|
|
|
27 |
|
00:02:10,220 --> 00:02:14,500 |
|
of X ุจุณุงูู E of X ู E of Zero ุจุณุงูู ุฅูุด ูุงุญุฏุงูุงู |
|
|
|
28 |
|
00:02:14,500 --> 00:02:19,920 |
|
ูุฌู ุงููู ูู ุจุฏูุง ูุซุจุช ูุฌูุฏ ูุฐู ุงูุฏุงูุฉ ุงูู ุงูุชู |
|
|
|
29 |
|
00:02:19,920 --> 00:02:25,380 |
|
ุชุญูู ุงููู ูู ุงูุฎูุงุต ุงููู ุนูุฏูุง ุงูู
ุฐููุฑุฉ ููู ุงููู |
|
|
|
30 |
|
00:02:25,380 --> 00:02:29,960 |
|
ูู ูุธุฑูุง ุงูุงู ุฎูููุง ุนุดุงู ูุฑูุญ ุจุงุชุฌุงู ุงุซุจุงุช ูุฌูุฏ |
|
|
|
31 |
|
00:02:29,960 --> 00:02:34,080 |
|
ูุฐู ุงูุฏุงูุฉ ุฎูููุง ูุงุฎุฏ we inductively define a |
|
|
|
32 |
|
00:02:34,080 --> 00:02:37,900 |
|
sequence of continuous functions as follows ุจุฏู |
|
|
|
33 |
|
00:02:37,900 --> 00:02:43,590 |
|
ุงูุขู ุงุนุฑู ุงููู ูู sequence of functionsุงูุฃููู |
|
|
|
34 |
|
00:02:43,590 --> 00:02:48,790 |
|
ุงุณู
ูุง E1 of X ุจุชุณุงูู ูุงุญุฏ ุฒุงุฆุฏ X ุทุจุนุง ูุฐู ุงูุฏุงูุฉ |
|
|
|
35 |
|
00:02:48,790 --> 00:02:52,790 |
|
ู
ูุฌูุฏุฉ E1 of X ุจุชุณุงูู ูุงุญุฏ ุฒุงุฆุฏ X ูู ุฏุงูุฉ ุฎุทูุฉ |
|
|
|
36 |
|
00:02:52,790 --> 00:02:58,590 |
|
ุงูุขู ุจุฏู ุฃุนุฑู ุงู E2 ุงู E2 of X ุจุณุงูู ุงู |
|
|
|
37 |
|
00:02:58,590 --> 00:03:04,170 |
|
integration ูุงุญุฏ ุฒุงุฆุฏ ุงู integration ู
ู ุณูุฑ ูุนูุฏ X |
|
|
|
38 |
|
00:03:04,170 --> 00:03:13,140 |
|
ุงููู ูู E1 of X D ุฃู E1 of T DTุฅุฐุงู ุงูู E2 ุจุฏู |
|
|
|
39 |
|
00:03:13,140 --> 00:03:17,960 |
|
ุฃุฌูุจูุง ู
ู ู
ููุ ู
ู ุงูู E1 ุทุจุนุงู ุจุชูุฌู ุงูู E ูุงูู E2 |
|
|
|
40 |
|
00:03:17,960 --> 00:03:23,500 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุฒุงุฆุฏ ูุฐู ูุงุญุฏ ุฒุงุฆุฏ T ุงููู ูู |
|
|
|
41 |
|
00:03:23,500 --> 00:03:27,730 |
|
ุชูุงุถููุง ุฒู ู
ุง ุงูุชูุง ุนุงุฑููู ุชูู
ููุง ุงููู ูู Tุฒุงุฆุฏ |
|
|
|
42 |
|
00:03:27,730 --> 00:03:32,910 |
|
ุงููู ูู T ุชุฑุจูุน ุนูู ุงุชููู ู
ู ุตูุฑ ูุนูุฏ X ููุณูุง ูุงุญุฏ |
|
|
|
43 |
|
00:03:32,910 --> 00:03:38,490 |
|
ุฒุงุฆุฏ X ุฒุงุฆุฏ X ุนูู X ุชุฑุจูุน ุนูู ุงุชููู ูุฐู ุงูุฏุงูุฉ ู
ู |
|
|
|
44 |
|
00:03:38,490 --> 00:03:45,020 |
|
ูู E2 of X E3 of Xุจุชุนุฑููุง ุจููุณ ุงูุฃุณููุจ ุจุงูุณุงูู 1 |
|
|
|
45 |
|
00:03:45,020 --> 00:03:49,840 |
|
ุฒุงุฆุฏ ุงูู integration ู
ู 0 ู X ูุฏุงูุฉ ุงููู ูุฌุฏุชูุง |
|
|
|
46 |
|
00:03:49,840 --> 00:03:56,140 |
|
ูุจููุง ุงููู ูู E2 of T DT ุจุถู ุฃุณุงุฆู ุณุงูุฑ ูู ุงูุชุนุฑูู |
|
|
|
47 |
|
00:03:56,140 --> 00:04:03,760 |
|
ุจููู in general ุจุชุนุฑู ุงู E N ุฒุงุฆุฏ 1 of Xุจุณุงูุฉ ุงูู |
|
|
|
48 |
|
00:04:03,760 --> 00:04:11,420 |
|
1 ุฒู ุงู integration ู
ู 0 ู X EN of T DT ุฅุฐู ุงูุขู |
|
|
|
49 |
|
00:04:11,420 --> 00:04:16,020 |
|
ุนุฑูุช ุงููู ูู ุงู E1 of X ุจุณุงูุฉ 1 ุฒู X ูู
ููุง ุนุฑูุช |
|
|
|
50 |
|
00:04:16,020 --> 00:04:21,840 |
|
ุงููู ูู E2 ูE2 ุนุฑูุช ู
ููุง E3 ูE3 ุนุฑูุช ู
ููุง E4 ูููุฐุง |
|
|
|
51 |
|
00:04:21,840 --> 00:04:26,120 |
|
ุงู EN ุฒู ุงู 1 of X ูุชุณุงูุฉ 1 ุฒู ุงู integration ู
ู 0 |
|
|
|
52 |
|
00:04:26,120 --> 00:04:31,440 |
|
ู X ูู EN ุงููู ุฌุงุจ ุงููุง ุฏูof D D T ููู N element |
|
|
|
53 |
|
00:04:31,440 --> 00:04:36,720 |
|
in N ู ููู X element in M in R ููุฌู ุงูุขู ูุทูุน ุนูู |
|
|
|
54 |
|
00:04:36,720 --> 00:04:40,920 |
|
ุงูู
ูุงุญุธุงุช ุงููู ุจุฏูุง ูุญูููุง ุนุดุงู ูุณุชุฎุฏู
ูุง ุงูุงู 1 |
|
|
|
55 |
|
00:04:40,920 --> 00:04:46,840 |
|
ุฒุงุฆุฏ X ุฏุงูุฉ ู
ุชุตูุฉ ู
ุด ู
ุชุตูุฉ ุฃุตูุง ุจุณ ูู ุฃุตูุง ูุงุจูุฉ |
|
|
|
56 |
|
00:04:46,840 --> 00:04:51,900 |
|
ููุชูุงุถู ุฃูุถุง ุงููู ูู differentiable ุงูุงู ุจูุงุก ุนููู |
|
|
|
57 |
|
00:04:51,900 --> 00:05:00,140 |
|
ู
ุฏุงู
ุงู E1 is continuous ูุชููู ุงููู ูู E2E2 ูู |
|
|
|
58 |
|
00:05:00,140 --> 00:05:03,940 |
|
ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 |
|
|
|
59 |
|
00:05:03,940 --> 00:05:04,180 |
|
ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู |
|
|
|
60 |
|
00:05:04,180 --> 00:05:07,840 |
|
E1 ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด ููู E1 |
|
|
|
61 |
|
00:05:07,840 --> 00:05:11,080 |
|
ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด ููู |
|
|
|
62 |
|
00:05:11,080 --> 00:05:12,820 |
|
E1 ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด |
|
|
|
63 |
|
00:05:12,820 --> 00:05:14,980 |
|
ููู E1 ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 ูู |
|
|
|
64 |
|
00:05:14,980 --> 00:05:18,980 |
|
ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 |
|
|
|
65 |
|
00:05:18,980 --> 00:05:22,820 |
|
ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงูู E1 ูู ุงูุงูุชุฌุฑุงุด ููู E1 ุงู |
|
|
|
66 |
|
00:05:25,750 --> 00:05:27,270 |
|
ุงูุขู F.E.L |
|
|
|
67 |
|
00:05:31,050 --> 00:05:34,950 |
|
in on R then it is integrable over any bounded |
|
|
|
68 |
|
00:05:34,950 --> 00:05:39,590 |
|
interval ุฒู ู
ุง ูููุง ู
ุฏุงู
ูุฐุง continuous ุงููู ูู E |
|
|
|
69 |
|
00:05:39,590 --> 00:05:45,210 |
|
ุงููู ูู 2 continuous ูู
ู ููุง ูุชุทูุน E 3 continuous |
|
|
|
70 |
|
00:05:45,210 --> 00:05:49,530 |
|
ูE 4 continuous ุฅุฐุง ุตุงุฑุช ูุฐู ุฏุงูู
ุง continuous ูุฏู |
|
|
|
71 |
|
00:05:49,530 --> 00:05:53,170 |
|
continuous ูุฏู integration exist ู by fundamental |
|
|
|
72 |
|
00:05:53,170 --> 00:05:57,250 |
|
theorem ูุฐุง ุงู integration ููู ุนูู ุจุนุถ can be |
|
|
|
73 |
|
00:05:57,250 --> 00:06:01,160 |
|
differentiatedููุชููู ุงููู ุงูุด is differentiable |
|
|
|
74 |
|
00:06:01,160 --> 00:06:05,520 |
|
ูู
ูู so EN ุฒุงุฆุฏ ูุงุญุฏ is well defined by the above |
|
|
|
75 |
|
00:06:05,520 --> 00:06:09,300 |
|
formula moreover ุฒู ู
ุง ููุช it is from fundamental |
|
|
|
76 |
|
00:06:09,300 --> 00:06:12,400 |
|
theorem of calculus ุงู second form ุงููู ูู ุณุจุนุฉ |
|
|
|
77 |
|
00:06:12,400 --> 00:06:15,920 |
|
ุชูุงุชุฉ ุฎู
ุณุฉ ููููู ุนูุฏ ุงู EN ุฒุงุฆุฏ ูุงุญุฏ is |
|
|
|
78 |
|
00:06:15,920 --> 00:06:19,280 |
|
differentiable ูู
ุด ููู ูุชูุงุถู ูุฐู ุฒู ู
ุง ุงุญูุง |
|
|
|
79 |
|
00:06:19,280 --> 00:06:24,540 |
|
ุนุงุฑููู ุจุณุงูู ุจูุดูู ุงู integration ุทุจุนุง ุงูุชูุงุถู ุจูุบ |
|
|
|
80 |
|
00:06:24,540 --> 00:06:29,220 |
|
ุงู integrationุจุตูุฑ en of x ูุจุตูุฑ ุนูุฏู ุงู en ุฒุงุฆุฏ |
|
|
|
81 |
|
00:06:29,220 --> 00:06:34,240 |
|
ูุงุญุฏ prime of x ู
ูุฌูุฏุฉ ููุณุงูู en x for all n |
|
|
|
82 |
|
00:06:34,240 --> 00:06:37,720 |
|
element in N ุฅุฐู ุงูุขู ุนู
ููุง sequence ุงู sequence |
|
|
|
83 |
|
00:06:37,720 --> 00:06:40,580 |
|
ูุฐู ุทูุนุช sequence of differentiable functions ู ุงู |
|
|
|
84 |
|
00:06:40,580 --> 00:06:43,860 |
|
derivative ูู en ุฒุงุฆุฏ ูุงุญุฏ prime ูู ุจุชุฑุฌุน ูู
ูู |
|
|
|
85 |
|
00:06:43,860 --> 00:06:50,320 |
|
ุจุชูุฌู ุงููู ูู ุงู en of xุทูุจ ุงูุงู ูุฐุง ููู ู ุฏู |
|
|
|
86 |
|
00:06:50,320 --> 00:06:53,900 |
|
ุฎูููู ุงุณู
ููุง ุชูุงุชุฉ ู ุฎูููู ูุญุถุฑ ุญุงููุง ูุตู ููู ุจุฏูุง |
|
|
|
87 |
|
00:06:53,900 --> 00:06:59,500 |
|
ูุงุฌูููู
ููู ููุตู ูู ุงูุขุฎุฑ ููุตููู
ุงูู ุงููู ูู ุงู |
|
|
|
88 |
|
00:06:59,500 --> 00:07:05,400 |
|
limit ููุฐู ุงู sequence ุงู ููุฐู ุงู sequence ูู ุงู E |
|
|
|
89 |
|
00:07:05,400 --> 00:07:12,300 |
|
of X ุงููู ุงูุง ุจุซุจุช ูุฌูุฏูุงูุณุชููู ุงููู ูู ุจุชุญูู |
|
|
|
90 |
|
00:07:12,300 --> 00:07:16,440 |
|
ุงูุดุฑูุท ุงููู ุญูููุงูุง ุฎููููุง ูุดูู ู
ุง ูุงุณุชุนุฌูุด ูุดูู |
|
|
|
91 |
|
00:07:16,440 --> 00:07:19,900 |
|
ุฅูุด ุงููู ุจุฏูุง ูุตููู ุฅุฐุง ุงููู ุนู
ููุงู ูููููุง |
|
|
|
92 |
|
00:07:19,900 --> 00:07:23,380 |
|
sequence sequence ุฒู ู
ุง ูููุง ุงููู ูู ุงู sequence |
|
|
|
93 |
|
00:07:23,380 --> 00:07:28,160 |
|
ุจุฏุฃุช ุนุดุงู ูุจูู ููู
ุงูุฐุงูุฑูู E1 of X ุจุณุงูู ูุงุญุฏ |
|
|
|
94 |
|
00:07:28,160 --> 00:07:34,760 |
|
ุฒุงุฆุฏ X E and ุฒุงุฆุฏ ูุงุญุฏ of X ุจุณุงูู ุงูุงูุชุฌุฑุฃุช ูุงุญุฏ |
|
|
|
95 |
|
00:07:35,450 --> 00:07:39,790 |
|
ุจุณูุก ูุงุญุฏุฉ ุฒู ุงูู integration ู
ู ุตูุฑ ูุนุฏุฏ X E N of |
|
|
|
96 |
|
00:07:39,790 --> 00:07:47,450 |
|
T DT ุฎูููู ูุฐููุฉ ุฃู
ุงู
ูุง ุทุจุนุงู N element in N ุนูุฏู |
|
|
|
97 |
|
00:07:47,450 --> 00:07:54,630 |
|
ู X ุฃู element ููู in Rุทูุจ ุฅุฐุง ุงูุงู ุณุงุฑ ุนูุฏู ุงููู |
|
|
|
98 |
|
00:07:54,630 --> 00:07:58,430 |
|
ูู ุงู .. ุฏู ุงููู ูุฐู is differential ูุงู ุจููููู |
|
|
|
99 |
|
00:07:58,430 --> 00:08:03,230 |
|
ุงูู ุงุจู ุงูุฏุนู ููู
ูู ูู ุญุฏ ุดุงู ูุจู ุจุดููุฉ ู
ุง ูุตููุง ู |
|
|
|
100 |
|
00:08:03,230 --> 00:08:08,450 |
|
E2 E2 ูุงูุช ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุฒู ุฏูุณุชุฑ ุจูู ุนูู ุงุชููู |
|
|
|
101 |
|
00:08:08,450 --> 00:08:13,070 |
|
ุงููู ูู ุงููู ูู ุงุชููู factorialูู ูู
ููุง ููููู E N |
|
|
|
102 |
|
00:08:13,070 --> 00:08:16,910 |
|
of X ุจุชุณุงูู 1 ุฒูุงุฏ X ุนูู 1 factorial X ุชุฑุจูู ุนูู 2 |
|
|
|
103 |
|
00:08:16,910 --> 00:08:21,170 |
|
factorial ุฒูุงุฏ X ูุตู N ุนูู 100 ุนูู N factorial ููู |
|
|
|
104 |
|
00:08:21,170 --> 00:08:25,750 |
|
X element in R ูุฐู ุงูู N ุตุญูุญุฉ ุงููู ูู ููู N |
|
|
|
105 |
|
00:08:25,750 --> 00:08:31,470 |
|
element in R ุงููู ูู ุทุจุนุง ุงุซุจุงุชูุง ุณูู ูุซุจุชูุง by |
|
|
|
106 |
|
00:08:31,470 --> 00:08:36,010 |
|
induction ุฎูููุง ูุดูู ููููุง ูุซุจุช ุฃุฑุจุนุฉ by induction |
|
|
|
107 |
|
00:08:58,380 --> 00:09:01,020 |
|
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ |
|
|
|
108 |
|
00:09:01,020 --> 00:09:04,640 |
|
ุฃุฑุจุนุฉ |
|
|
|
109 |
|
00:09:04,640 --> 00:09:06,540 |
|
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ |
|
|
|
110 |
|
00:09:06,540 --> 00:09:06,720 |
|
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ |
|
|
|
111 |
|
00:09:06,720 --> 00:09:06,900 |
|
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ |
|
|
|
112 |
|
00:09:06,900 --> 00:09:06,900 |
|
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ |
|
|
|
113 |
|
00:09:06,900 --> 00:09:06,900 |
|
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ |
|
|
|
114 |
|
00:09:06,900 --> 00:09:06,900 |
|
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ |
|
|
|
115 |
|
00:09:06,900 --> 00:09:06,900 |
|
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ |
|
|
|
116 |
|
00:09:06,900 --> 00:09:08,610 |
|
ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุฃfour is |
|
|
|
117 |
|
00:09:08,610 --> 00:09:16,450 |
|
a true four and ุจุชุณุงูู ูุชุงุจุฉ ูุนูู ุตุงุฑ ุนูุฏ ุงูุงูุงูู |
|
|
|
118 |
|
00:09:16,450 --> 00:09:23,550 |
|
E K of X ุจุชุณุงูู 1 ุฒุงุฆุฏ X ุนูู 1 factorial ุฒุงุฆุฏ X |
|
|
|
119 |
|
00:09:23,550 --> 00:09:29,170 |
|
ุชุฑุจูุน ุนูู 2 factorial ุฒุงุฆุฏ X ุฃูุณ K ุนูู K factorial |
|
|
|
120 |
|
00:09:29,170 --> 00:09:33,890 |
|
ูุฐุง ูู
ุง ููุฑุถ ุฅู ุงููู ูู .. ุงููู ูู ุงูุฃุฑุจุนุฉ is true |
|
|
|
121 |
|
00:09:33,890 --> 00:09:39,150 |
|
for N ุจุชุณุงูู K ุจุฏูุง ูุซุจุช ุฅู E K ุฒุงุฆุฏ 1 ูุชุทูุน ุงููู |
|
|
|
122 |
|
00:09:39,150 --> 00:09:43,870 |
|
ูู ูุฐูุฒุงุฆุฏ x ุฃุณ k ุนูู k ุฒุงุฆุฏ ูุงุญุฏ ูููุชูุฑูุง ุงููู |
|
|
|
123 |
|
00:09:43,870 --> 00:09:48,790 |
|
ุนูู ุงู net ุจุชุทูุน ุฃุฑุจุนุฉ ุตุญูุญุฉ for k ุฒุงุฆุฏ ูุงุญุฏ ุฏู |
|
|
|
124 |
|
00:09:48,790 --> 00:09:56,070 |
|
ูุญุณุจ ุฎููููุง ูุญุณุจ ุงูุขู E k ุฒุงุฆุฏ ูุงุญุฏ of x ุญุณุจ ุงููู |
|
|
|
125 |
|
00:09:56,070 --> 00:10:01,370 |
|
ุงุญูุง ู
ูุชุฑุถููู ุฃู ู
ุนุฑููู ุงู sequence ุนูู ุฃุณุงุณู E k |
|
|
|
126 |
|
00:10:01,370 --> 00:10:04,830 |
|
ุฒุงุฆุฏ ูุงุญุฏ of x ุฃูุด ุจุชุณุงูู ูุงุญุฏ ุฒุงุฆุฏ ุงู integration |
|
|
|
127 |
|
00:10:04,830 --> 00:10:14,410 |
|
ู
ู ุตูุฑ ู X E k of T DTู
ุธุจูุทุ ุทูุจ ุงูุงู ุจุฏู ุงุนูุถ ุนู |
|
|
|
128 |
|
00:10:14,410 --> 00:10:20,030 |
|
E K of T ุงุญูุง ู
ูุชุฑุถูููุง ุตุญูุญุฉ ู K ุงุฐุง E K of X |
|
|
|
129 |
|
00:10:20,030 --> 00:10:24,230 |
|
ูููุง ุงุฐุง ุจุงุฌู ุจุนูุถ ุจูุตูุฑ Y ุณุงูู ูุงุญุฏ ุฒุงุฆุฏ ุงู |
|
|
|
130 |
|
00:10:24,230 --> 00:10:29,250 |
|
integration ู
ู ุตูุฑ ู X E K of T ุงููู ูู ูุงุญุฏ ุฒุงุฆุฏ |
|
|
|
131 |
|
00:10:29,250 --> 00:10:33,170 |
|
T ุฒุงุฆุฏ T ุชุฑุจูุน ุทุจุนุง ูุงุญุฏ ูููุชูุฑูุงู ุงููู ูู ูุงุญุฏ |
|
|
|
132 |
|
00:10:33,170 --> 00:10:40,080 |
|
ุนูู ุงุชููู ูููุชูุฑูุงู ุฒุงุฆุฏ ูู
ุง ุฃุตู X ุฃู T ุฃุณ Kุนูู K |
|
|
|
133 |
|
00:10:40,080 --> 00:10:46,520 |
|
ููุชูุฑูุงู ุงููู ุฅุดู
ุงูู DT ูุฃู ุงููู ูู ุฃููุฏ ูุถุญุช |
|
|
|
134 |
|
00:10:46,520 --> 00:10:49,660 |
|
ุงูุตูุฑุฉ ุจุฏู ุงููุงุถู ูุทูุน ููู
ุฉ ุงูุชูุงุตูู ุงููุงู
ู ู ูุทูุน |
|
|
|
135 |
|
00:10:49,660 --> 00:10:54,360 |
|
ููู
ุฉ ุงูุชูุงู
ู ู ูุณุงูู ูุงุญุฏ ูููุฒุงูุฏ ู
ุง ูู ุฌุงุนุฏ ุฒุงุฏ |
|
|
|
136 |
|
00:10:54,360 --> 00:11:00,520 |
|
ูุฐุง ุงู integration ุงููู ูู ุนุจุงุฑุฉ ุนู Tุฒุงุฆุฏ T ุชุฑุจูุน |
|
|
|
137 |
|
00:11:00,520 --> 00:11:06,140 |
|
ุนูู 2 ูู 1 ูุนูู 2 factorial ุฒุงุฆุฏ T ุชูุนูุจ ุนูู 3 ูู |
|
|
|
138 |
|
00:11:06,140 --> 00:11:10,920 |
|
2 factorial ูุนูู 3 factorial ุฒุงุฆุฏ ูู
ุง ุฃุตู ูุขุฎุฑ 1 T |
|
|
|
139 |
|
00:11:10,920 --> 00:11:15,640 |
|
ุฃูุณ K ุฒุงุฆุฏ 1 ุนูู K ุฒุงุฆุฏ 1 ูู K factorial ูู K ุฒุงุฆุฏ |
|
|
|
140 |
|
00:11:15,640 --> 00:11:22,230 |
|
1 ููู factorial ูุฐุง ุงูููุงู
ู
ู 0 ูู
ููุูุนูุฏ X ูุงุถุญุฉ |
|
|
|
141 |
|
00:11:22,230 --> 00:11:26,550 |
|
ุงูุตูุฑุฉ ููุณุงูู ุนุจุงุฑุฉ ุนู ูู
ุง ุงุนูุถ ู
ู 0 ู X ุจูุตูุฑ 1 |
|
|
|
142 |
|
00:11:26,550 --> 00:11:32,090 |
|
ุฒุงุฆุฏ X ุฒุงุฆุฏ X ุชุฑุจูุน ุนูู 2 factorial ูู
ุง ุฃุตู ูุฃุฎุฑ |
|
|
|
143 |
|
00:11:32,090 --> 00:11:38,210 |
|
ูุงุญุฏ X K ุฒุงุฆุฏ 1 ุนูู K ุฒุงุฆุฏ 1ูุงูุชูุฑูุงู ุฅุฐุง ูุนูุงู |
|
|
|
144 |
|
00:11:38,210 --> 00:11:42,110 |
|
ุทูุนุช ุนูุฏู a k ุฒุงุฆุฏ ูุงุญุฏ ุจุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ูุนูู |
|
|
|
145 |
|
00:11:42,110 --> 00:11:46,450 |
|
ุจู
ุนูู ุขุฎุฑ ุฃุฑุจุนุฉ ุทูุนุช ุงู true for n ุจุชุณุงูู k ุฒุงุฆุฏ |
|
|
|
146 |
|
00:11:46,450 --> 00:11:51,830 |
|
ูุงุญุฏ ุฅุฐุง ู
ู ูู ูุฐุง ุงู induction ุจูููู ุฃุซุจุชูุง ุฃู e |
|
|
|
147 |
|
00:11:51,830 --> 00:11:56,430 |
|
n of x ุจุณุงูู ูุฐุง ุงูููุงู
ููู x element in R ููู n |
|
|
|
148 |
|
00:11:56,430 --> 00:12:00,630 |
|
element in Nุฅุฐุงู ูุฐู ุตูุฑุฉ ุงููู ูู ุงููEN of X ุตูุฑุฉ |
|
|
|
149 |
|
00:12:00,630 --> 00:12:05,150 |
|
ุบูุฑ ุงูุตูุฑุฉ ุงููู ุนุฑููุงูุง ููู ุงุณุชูุชุฌูุงูุง ู
ููุง ุงูุขู |
|
|
|
150 |
|
00:12:05,150 --> 00:12:11,770 |
|
ุฎููููุง ูุฑูุญ ุจุงุชุฌุงู ุฅุซุจุงุช ุฅูู ุงู limit ูููEN ูุฐู ุฃู |
|
|
|
151 |
|
00:12:11,770 --> 00:12:17,910 |
|
ุงููEK ุฃู ุงููEN ุฃู ุงููู ูู is uniformly convergent |
|
|
|
152 |
|
00:12:18,680 --> 00:12:23,900 |
|
to some function ูุฐู ุงูู some function ูู ุงููู |
|
|
|
153 |
|
00:12:23,900 --> 00:12:29,120 |
|
ุจุชุฏุนู ุงููุง ูุชููู ุงู exponential ุทูุจ ุงููู ุจูุณู
ููุง |
|
|
|
154 |
|
00:12:29,120 --> 00:12:32,840 |
|
exponential ุจุนุฏ ุดููุฉ ุงููู ูู ุจุชุญูู ุดุฑุทูู ุงููู |
|
|
|
155 |
|
00:12:32,840 --> 00:12:35,400 |
|
ุญูููุง ุนููู
ูุณู ุงุญูุง ุจูุนุฑู ุงู exponential ุงุญูุง |
|
|
|
156 |
|
00:12:35,400 --> 00:12:38,340 |
|
ุจูุนุฑู ุงูุฏุงูุฉ ูุฐู ููู ูุฃู ู
ุนููู
ุงุชูุง ุนุงุฑููู ู
ู ุงูู |
|
|
|
157 |
|
00:12:38,340 --> 00:12:43,000 |
|
ุงู exponentialุงูุงู ุงุญูุง ุงูุฏุงูุฉ ูุฐู ุงููู ููุซุจุช |
|
|
|
158 |
|
00:12:43,000 --> 00:12:46,540 |
|
ูุฌูุฏูุง ุงูููู
ูู ุงููู ุจุนุฏ ุดููุฉ ุจุนุฏ ู
ุง ูุซุจุช ุงู |
|
|
|
159 |
|
00:12:46,540 --> 00:12:50,880 |
|
uniqueness ููุง ุจูุณู
ููุง ุงู exponential ุฒู ู
ุง ููุดูู |
|
|
|
160 |
|
00:12:50,880 --> 00:12:56,620 |
|
ุจุนุฏ ุดููุฉ ุงูุงู ุงุฐุง ุงู sequence ุงููู ุนูุฏู ูุฐู |
|
|
|
161 |
|
00:12:56,620 --> 00:13:05,300 |
|
ูููุถุนูุง ุงูุงู ูููุง E Nof X ูุฐู ุงูู
ุนุงุฏูุฉ ุงูุชุงููุฉ ูู |
|
|
|
162 |
|
00:13:05,300 --> 00:13:11,560 |
|
ูุงุญุฏ ุฒุงุฆุฏ X ุฒุงุฆุฏ X ุชุฑุจูุน ุนูู ุงุชููู factorial ุฒุงุฆุฏ |
|
|
|
163 |
|
00:13:11,560 --> 00:13:15,600 |
|
X ุฃูุณ N ุนูู N factorial ููุฐุง ุงูุดูู ุทุจุนุง ุฃูุชูุง ู
ุด |
|
|
|
164 |
|
00:13:15,600 --> 00:13:20,240 |
|
ุบุฑูุจ ุนูููู
ุจุชุนุฑููู ุงูุขู ุฎูููู ุฃุฎุฏ ุงูุงู let A ุฃูุจุฑ |
|
|
|
165 |
|
00:13:20,240 --> 00:13:24,120 |
|
ู
ู ุณูุฑ ุจูู given ุงูุชุฑุถ ุงู A ุงูู ุงููู ูู real |
|
|
|
166 |
|
00:13:24,120 --> 00:13:28,660 |
|
number ุฃูุจุฑ ู
ู ู
ูู ู
ู ุณูุฑ ุจุงุฎุฏู arbitrarily ููู |
|
|
|
167 |
|
00:13:28,660 --> 00:13:33,470 |
|
ุฎูููู ูุญูู ุนู A ู
ุญุฏุฏุฉุงูุงู if absolute value of X |
|
|
|
168 |
|
00:13:33,470 --> 00:13:37,910 |
|
ุฃุตุบุฑ ุฃู ุชุณุงูู A ูุนูู ุจุชุญูู ุงูุญุฏูุซ ูุงู ุนูู ุงู Xุงุช |
|
|
|
169 |
|
00:13:37,910 --> 00:13:43,590 |
|
ุงููู ูู ุงู R ุงููู ู
ู ุนูุฏ ูุงูุต A ูุนูุฏ ู
ูู ุงู A ูุนูู |
|
|
|
170 |
|
00:13:43,590 --> 00:13:48,610 |
|
ุงู absolute value ููู ูุฐููุฉ ุฃุตุบุฑ ุฃู ุชุณุงูู ุงู A |
|
|
|
171 |
|
00:13:48,610 --> 00:13:52,390 |
|
ูุนูู ูู ุงููุชุฑุฉ ุงูู
ุบููุฉ ุงููู ุฃู
ุงู
ู ุงููู ุจูู ูุงูุต ุงู |
|
|
|
172 |
|
00:13:52,390 --> 00:13:58,870 |
|
A ู ุงู A ุจุชุชุญุฏุซ ุดูู ุงูุขู ุงุญุณุจูู Em of X ูุงูุต En of |
|
|
|
173 |
|
00:13:58,870 --> 00:14:03,750 |
|
Xู ูุณุงูู ู ุจุฏูุง ููุชุฑุถ ููู
ุงู ุงูุงู ุงูู ุดู
ุงููุง ุงูุจุฑ |
|
|
|
174 |
|
00:14:03,750 --> 00:14:07,910 |
|
ู
ู ุงูุงู ู ุงูุงู ุงูุจุฑ ู
ู ุงุชููู ุงูู ุงุชููู ุงูู ู
ูุชูุจ |
|
|
|
175 |
|
00:14:07,910 --> 00:14:10,850 |
|
ุงุชููู ุงูู ูุบุฑุถ ุงูุญุณุงุจุงุช ุงููู ุฌูุช ู
ูุดูููุง ุจููุน |
|
|
|
176 |
|
00:14:10,850 --> 00:14:13,270 |
|
ุชูุงุชุฉ ุงููุ ุจููุน ุงุฑุจุนุฉ ุงููุ ุจููุน ุฎู
ุณุฉ ุงููุ ุจููุน ุณุชุฉ |
|
|
|
177 |
|
00:14:13,270 --> 00:14:16,550 |
|
ุงููุ ุจููุน ููู ุจููุน ูุฐุง ุงูููุงู
ุนูู ุงุณุงุณ ุงูู ู
ุงูููุนุด |
|
|
|
178 |
|
00:14:16,550 --> 00:14:19,550 |
|
ุงููู ูุต ุงูู ุงู ุชูุช ุงูู ุงู ุฑุจุน ุงูู ูุฃููุง ู
ุด ูุชูุฏ |
|
|
|
179 |
|
00:14:19,550 --> 00:14:23,910 |
|
ุงูุบุฑุถ ุงููู ุจุฏู ุงูุงูุฃู ู
ูู ุงุฎุชุฑุช ุฃูุง ุงุฎุชุฑุช ุงููู ูู |
|
|
|
180 |
|
00:14:23,910 --> 00:14:29,650 |
|
ุงูุฃู
ุงุช ูุงูุฃูุงุช ุงููู ุฃูุจุฑ ู
ููู ู
ู ุงุชููู ูู ุงููA |
|
|
|
181 |
|
00:14:29,650 --> 00:14:34,390 |
|
ุงููู ูู ููุจุฉ ู
ูู ุงููA ุงููู ูู ูุต ุงููุชุฑุฉ ุงููู ุนูุฏู |
|
|
|
182 |
|
00:14:34,390 --> 00:14:39,210 |
|
ุฃู ุทูู ูุต ุงููุชุฑุฉ ุทูุจุ ุงุญุณุจูู ุงูู M of X ูุงูุต Y of |
|
|
|
183 |
|
00:14:39,210 --> 00:14:44,360 |
|
XุE M of X ุงููู ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุฒุงุฆุฏ X ุฒุงุฆุฏ X |
|
|
|
184 |
|
00:14:44,360 --> 00:14:49,360 |
|
ุชุฑุจูุน ู ูุฌุงุจู ูู ุงูุทุฑูู ู
ู ุงู X M ูุฃูู M ุฃูุจุฑ X |
|
|
|
185 |
|
00:14:49,360 --> 00:14:52,720 |
|
ุชุฑุจูุน ุนูู M ููุชูุฑูุงู ุฒุงุฆุฏ X M ุฒุงุฆุฏ ูุงุญุฏ ุนูู M ุฒุงุฆุฏ |
|
|
|
186 |
|
00:14:52,720 --> 00:14:57,280 |
|
ูุงุญุฏ ููุชูุฑูุงู ูู
ุง ุฃุตู ุงูุฃุฎุฑ ูุงุญุฏุฉ ู
ู X ุฃูุณ M ุนูู M |
|
|
|
187 |
|
00:14:57,280 --> 00:15:03,400 |
|
ููุชูุฑูุงู ูุนูู ุงูุขู ูุฐู ููููู ุฒู ููู ูู
ุง ุฃุตู ุทุจุนุง X |
|
|
|
188 |
|
00:15:03,400 --> 00:15:10,500 |
|
M ุฒุงุฆุฏ ูุงุญุฏ ุนูู Mุฒุงุฆุฏ ูุงุญุฏ factorial ุฒุงุฆุฏ ูู
ูุง ุฃุตู |
|
|
|
189 |
|
00:15:10,500 --> 00:15:15,760 |
|
ูุนูุฏ X ุฃูุณ M ุนูู M factorial ูุฐู ู
ูู ูู ูุฐู ุนุจุงุฑุฉ |
|
|
|
190 |
|
00:15:15,760 --> 00:15:24,220 |
|
ุนู ุงู EM ูุนูู ุงู EM ูุชุณุงูู ุงููู ูู E of XE N of X |
|
|
|
191 |
|
00:15:24,220 --> 00:15:30,020 |
|
ุฒุงุฆุฏ ุงูู
ุชุจูู ูุฐุง ุงูุงู ุญุงุตู ุทุฑุญ ุงูุงุชูุชูู ููููู |
|
|
|
192 |
|
00:15:30,020 --> 00:15:33,480 |
|
ุนุจุงุฑุฉ ุนู ูุฅู ุงูู
ูุชุฑุถ ุงู M ุฃูุจุฑ ู
ู L ุฒู ู
ุง ูููุง |
|
|
|
193 |
|
00:15:33,480 --> 00:15:37,700 |
|
ุญุงุตู ุทุฑุญ ุงููู ููููู ุงููู ูู ุงูู
ุชุจูู ูุฐุง X N ุฒุงุฆุฏ |
|
|
|
194 |
|
00:15:37,700 --> 00:15:40,840 |
|
ูุงุญุฏ ุนูู N ุฒุงุฆุฏ ูุงุญุฏ ูููุชูุฑูุงู ูู
ุง ุฃุตู ู X M ุนูู M |
|
|
|
195 |
|
00:15:40,840 --> 00:15:46,240 |
|
ุฅูุด ูููุชูุฑูุงู ู
ุงุดู ุงูุญุงู ุฅุฐุง ุงูุฃู ุฃูุตููุง ูุญุงุตู ุทุฑุญ |
|
|
|
196 |
|
00:15:46,240 --> 00:15:51,340 |
|
ุฏููุฉ ุจุณุงูู ูุฐุง ุงูู
ูุฏุฑ ููุฌู ููู
ู ุงูุฃู ุนูุฏู |
|
|
|
197 |
|
00:15:53,560 --> 00:15:58,460 |
|
ุนูุฏ ุงู absolute value ูู X ุฃุตุบุฑ ู
ู 100 ู
ู A |
|
|
|
198 |
|
00:16:10,590 --> 00:16:17,130 |
|
ุฒุงุฆุฏ absolute value ุฒุงุฆุฏ xn ุฒุงุฆุฏ ุงุชููู ุนูู n ุฒุงุฆุฏ |
|
|
|
199 |
|
00:16:17,130 --> 00:16:22,710 |
|
ุงุชููู factorial ุฒุงุฆุฏ ูู
ุง ุฃุตู ูุฃุฎุฑ ูุงุญุฏ x ุฃุณู
ู
ุนูู |
|
|
|
200 |
|
00:16:22,710 --> 00:16:28,150 |
|
m factorial ู
ุงุดู ุงูุญุงู ุทูุจ ุงูุขู ุงู ุงู ูู x ู
ู |
|
|
|
201 |
|
00:16:28,150 --> 00:16:31,270 |
|
ูุฏููุฉ ุงู absolute value ูู ุฃุตุบุฑ ูุณุงูู ู
ููู ุงูู ุฅุฐุง |
|
|
|
202 |
|
00:16:31,270 --> 00:16:36,650 |
|
ุตุงุฑ ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ููุง |
|
|
|
203 |
|
00:16:36,650 --> 00:16:45,550 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู Mุฒุงุฆุฏ ูุงุญุฏ ุนูู N ุขุณู A ุฃูุณ N ุฒุงุฆุฏ |
|
|
|
204 |
|
00:16:45,550 --> 00:16:49,970 |
|
ูุงุญุฏ ูุฃู ุงู absolute value X ุฃุตุบุฑ ุชุณุงูู A ุฅุฐุง X N |
|
|
|
205 |
|
00:16:49,970 --> 00:16:54,510 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุฃุตุบุฑ ุฃู ุณุงูู ุงู A ุฃูุณ N ุฒุงุฆุฏ ูุงุญุฏ ุนูู N |
|
|
|
206 |
|
00:16:54,510 --> 00:17:00,870 |
|
ุฒุงุฆุฏ ูุงุญุฏ factorial ุฒุงุฆุฏ ุงูุชุงูู ุงููู ูู A N ุฒุงุฆุฏ |
|
|
|
207 |
|
00:17:00,870 --> 00:17:07,130 |
|
ุงุชูููุนูู n ุฒุงุฆุฏ 2 factorial ุฒุงุฆุฏ ูู
ุง ุฃุตู ูุขุฎุฑ ูุงุญุฏ |
|
|
|
208 |
|
00:17:07,130 --> 00:17:14,870 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู a ุฃุณ m ุนูู m factorial ู
ุงุดู ุงูุญุงู |
|
|
|
209 |
|
00:17:14,870 --> 00:17:21,080 |
|
ุทูุจุงูุงู ุฎูููู ุงุฎุฏ ู
ู ูุฏููุฉ ุงู a n ุฒุงุฆุฏ ูุงุญุฏ ุนูู ุงู |
|
|
|
210 |
|
00:17:21,080 --> 00:17:24,480 |
|
n ุฒุงุฆุฏ ูุงุญุฏ factorial ุนุงู
ู ู
ุดุชุฑู ูุจู ู
ุง ุงุตูุญ ูุฐู |
|
|
|
211 |
|
00:17:24,480 --> 00:17:28,520 |
|
ุงูุฎุทูุฉ ูุณู ุงู ุฎูููู ุงุฎุฏ ุนุงู
ู ู
ุดุชุฑู ุจูุตูุฑ ุนูุฏู a n |
|
|
|
212 |
|
00:17:28,520 --> 00:17:33,180 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ุฒุงุฆุฏ ูุงุญุฏ factorial ูุงุด ุงููู ุจูุถู |
|
|
|
213 |
|
00:17:33,180 --> 00:17:39,420 |
|
ููุง ููู ุงููู ุจูุถู ููุง ูุงุญุฏ ุฒุงุฆุฏ ููุง ุจูุถู a ุนูู n |
|
|
|
214 |
|
00:17:39,420 --> 00:17:46,280 |
|
ุฒุงุฆุฏ ุงุชููู ุงููุฏ ุฒุงุฆุฏ ุงููู ุจุนุฏูุง a ุชุฑุจูุน ุนูู nุฒุงุฆุฏ |
|
|
|
215 |
|
00:17:46,280 --> 00:17:52,160 |
|
ุงุชููู ูุงู ุฒุงุฆุฏ ุชูุงุชุฉ ุฒุงุฆุฏ ูู
ุง ุฃุตู ูุขุฎุฑ ูุงุญุฏ ู
ูู |
|
|
|
216 |
|
00:17:52,160 --> 00:17:57,080 |
|
ุขุฎุฑ ูุงุญุฏ ุจุดูู ู
ูู ุงู ุฒุงุฆุฏ ูุงุญุฏ ุจูุตูุฑ a ุฃุณ ุงู
ูุงูุต |
|
|
|
217 |
|
00:17:57,080 --> 00:18:03,000 |
|
ุงู ูุงูุต ูุงุญุฏ ุนูู ุงููู ุจูุถู ู
ู ุงู ุฒุงุฆุฏ ุงุชููู ู
ุถุฑูุจ |
|
|
|
218 |
|
00:18:03,000 --> 00:18:09,250 |
|
ูุนูุฏ ุงู ุงู
ูุงูุต ุงู ูุงูุต ูุงุญุฏ ูุฐูู ุงูุฃูู
ุงุดู ุงูุญุงู |
|
|
|
219 |
|
00:18:09,250 --> 00:18:13,470 |
|
ูุฐุง ุฃุฎุฏ ุชู
ูู ูุง ุฌู
ุงุนุฉ ู
ุงุนููุด ุฏุฎู ุงูููุงู
ู
ุน ุจุนุถู ุจุณ |
|
|
|
220 |
|
00:18:13,470 --> 00:18:18,130 |
|
ุฃููุฏ ุฃูุชูุง ู
ุณุชูุนุจูู ุฅูุด ุจููู ุทูุนุช ุงู a n ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
221 |
|
00:18:18,130 --> 00:18:21,090 |
|
ุนูู n ุฒุงุฆุฏ ูุงุญุฏ ูู ูุชูุฑูุง ุงูุนุงู
ุงูู
ุดุชุฑู ุทูุน ุนูุฏู |
|
|
|
222 |
|
00:18:21,090 --> 00:18:26,550 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ุงูุงู ุนูุฏู ุฃููุฏ ุงู n ุฒุงุฆุฏ ุงุชููู ุฃูุจุฑ ู
ู |
|
|
|
223 |
|
00:18:26,550 --> 00:18:32,050 |
|
ู
ูู ู
ู ุงู end ูู
ูููุจู ุฃุตุบุฑุฃู ูุจุตูุฑ ุนูุฏู ุงููู ูู |
|
|
|
224 |
|
00:18:32,050 --> 00:18:38,050 |
|
ุนูุฏู ุงููู ูู ูุฐุง ุงูู
ูุฏุงุฑ a n ุนูู l ุฒุงุฆุฏ 2 ุฃุตุบุฑ ุฃู |
|
|
|
225 |
|
00:18:38,050 --> 00:18:42,170 |
|
ุดุงูู a ุนูู n ู ุงููู ุจุนุฏู a ุชุฑุจูุน ุฃุตุบุฑ ุฃู ุดุงูู ุง ุง |
|
|
|
226 |
|
00:18:42,170 --> 00:18:44,370 |
|
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง |
|
|
|
227 |
|
00:18:44,370 --> 00:18:44,410 |
|
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง |
|
|
|
228 |
|
00:18:44,410 --> 00:18:45,090 |
|
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง |
|
|
|
229 |
|
00:18:45,090 --> 00:18:46,010 |
|
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง |
|
|
|
230 |
|
00:18:46,010 --> 00:18:47,730 |
|
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง |
|
|
|
231 |
|
00:18:47,730 --> 00:18:47,730 |
|
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง |
|
|
|
232 |
|
00:18:47,730 --> 00:18:48,010 |
|
ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง ุง |
|
|
|
233 |
|
00:18:51,320 --> 00:18:55,380 |
|
ุฃูุจุฑ ู
ู ุฃูู ููุฐู ุฃูุจุฑ ู
ู ุฃูู ูู
ูููุจูู
ุจูุตูุฑ ูุฐุง |
|
|
|
234 |
|
00:18:55,380 --> 00:19:00,980 |
|
ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ุงููู ูู ุฃู ูุณุงูู ุงูู
ูุฏุงุฑ ุงููู ุจุนุฏู |
|
|
|
235 |
|
00:19:00,980 --> 00:19:07,730 |
|
ุจูุตูุฑ ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง ุฒู ู
ุง ูู ู |
|
|
|
236 |
|
00:19:07,730 --> 00:19:13,670 |
|
ูุฐู ูุงุญุฏ ูุฐู a ุนูู n ูุฃููุง ูุชููู ุฃูุจุฑ a ุชุฑุจูุน ุนูู |
|
|
|
237 |
|
00:19:13,670 --> 00:19:19,170 |
|
n ุชุฑุจูุน ุงู ุชุฑุจูุน ูุชูุจุฑ ูู
ุง ุฃุตู ู a m minus n ููุต |
|
|
|
238 |
|
00:19:19,170 --> 00:19:25,420 |
|
ูุงุญุฏ ุนูู m minus n ููุต ูุงุญุฏ ูุฃู ููุง ุฏููุฉ ุนุฏุฏูู
ู |
|
|
|
239 |
|
00:19:25,420 --> 00:19:30,200 |
|
ููุต ูุงุญุฏ ู
ู ุงูุงูุฒ ููููู ุงู ุทุจุนุง ุงุณุชุจุฏุงูุช ูู ูุงุญุฏุฉ |
|
|
|
240 |
|
00:19:30,200 --> 00:19:34,400 |
|
ุจุงู ูููุทูุน ุจุงูุดูู ูุฐุง ูุจุชุธู ุงู inequality ุตุญูุญุฉ |
|
|
|
241 |
|
00:19:34,400 --> 00:19:38,540 |
|
ุฎูุตูุง ู
ู ูุฐุง ุทูุจ ุฏุนููุง ูุดูู ููู ุฃุถุจุญ ููู
ูุฐุง ุฏุนููุง |
|
|
|
242 |
|
00:19:38,540 --> 00:19:48,770 |
|
ูุฎูุต ู
ูู ูุฌู ุงูุขู ุงููู ูู ูุฑุฌุนุงููู
ู ุงูุญุณุจุฉ ูุฐุง |
|
|
|
243 |
|
00:19:48,770 --> 00:19:57,670 |
|
ุงูุงู ุงูู
ูุฏุงุฑ ุนูุฏู ุงููู ูู ุงูู
ูุฏุงุฑ ูุฐุง ููู ุงุชุทูุนูุง |
|
|
|
244 |
|
00:19:57,670 --> 00:20:06,710 |
|
ุนูุฏู ุงู a ุงู a ุนูู n ุงูุด ุงูุง ู
ุงุฎุฏ ุงู n ู
ุงุฎุฏ ุงู n |
|
|
|
245 |
|
00:20:06,710 --> 00:20:12,930 |
|
ุงูุจุฑ ู
ู ู
ูู ู
ู ุงุชููู a ูุนูู ุงู a ุงุตุบุฑ ู
ู n ุนูู ู
ูู |
|
|
|
246 |
|
00:20:13,680 --> 00:20:21,900 |
|
ุนูู ุงุชููู ู
ุธุจูุท ุงู A ุฃุตุบุฑ ู
ู N ุนูู ุงุชููู ูุงุถุญุฉ ุฌุณู
|
|
|
|
247 |
|
00:20:21,900 --> 00:20:25,660 |
|
ุงู N ุนูู ุงุชููู ู N ุนูู ุงุชููู ุตุงุฑุช N ุนูู ุงุชููู ุฃูุจุฑ |
|
|
|
248 |
|
00:20:25,660 --> 00:20:29,940 |
|
ู
ู ู
ูู ู
ู ุงูู ุจุฏู ุงุณุชุฎุฏู
ูุง ุงูุขู ูุฐู ุงู N ุจุตูุฑ ุฃุตุบุฑ |
|
|
|
249 |
|
00:20:29,940 --> 00:20:34,020 |
|
ุฃู ูุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ุจุตูุฑ ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง ุจุญูู |
|
|
|
250 |
|
00:20:34,020 --> 00:20:39,590 |
|
ุนู ูุฐุง ุจุตูุฑ ุฃุตุบุฑ ุฃู ูุณุงูู ุงููู ูู Aุฃูุณ ุงู ุฒุงุฆุฏ |
|
|
|
251 |
|
00:20:39,590 --> 00:20:45,410 |
|
ูุงุญุฏ ุนูู ุงู ุฒุงุฆุฏ ูุงุญุฏ ุงููู ููุชูุฑูุงู ููู ุงููู ูู |
|
|
|
252 |
|
00:20:45,410 --> 00:20:56,830 |
|
ูุงุญุฏ ุฒุงุฆุฏ ุง ุนูู ุงู ุฒุงุฆุฏ ุง ุชุฑุจูุฉ ุนูู ุงู ุชุฑุจูุฉ ุฒุงุฆุฏ |
|
|
|
253 |
|
00:20:56,830 --> 00:21:06,530 |
|
ุง ุงููู ูู ุง ุชูุนูุจ ุนูู ุงู ุชูุนูุจุฒุงุฆุฏ ู
ุด ุจุชุตู ููุฐุง |
|
|
|
254 |
|
00:21:06,530 --> 00:21:11,670 |
|
ุฒุงุฆุฏ ู ุจุชุธู ู
ุงุดููุง ูุดู
ุงููุง ุฅูู ู
ุง ูุง ููุงูุฉ ูุนูู |
|
|
|
255 |
|
00:21:11,670 --> 00:21:17,110 |
|
ุจุชุถูู ุนูููุง a ุนูู n ุฃุณ ุงู
ูุงูุต n a ุนูู n ุฃุณ ุงู
|
|
|
|
256 |
|
00:21:17,110 --> 00:21:20,290 |
|
ูุงูุต n ุฒุงุฆุฏ ูุงุญุฏ ูููุฐุง ุชุธููุง ุฅูู ู
ุง ูุง ููุงูุฉ ูุนูู |
|
|
|
257 |
|
00:21:20,290 --> 00:21:23,850 |
|
ุจุชุญูููุง ูู
ูู ู infinite series ุทูุจ ุงุญูุง ูููุง ุงู a |
|
|
|
258 |
|
00:21:23,850 --> 00:21:28,670 |
|
ุฃุตุบุฑ ู
ู n ุนูู 2ูุนูู ุงู a n ุนูู n ุฃุตุบุฑ ู
ู ู
ููุ ู
ู |
|
|
|
259 |
|
00:21:28,670 --> 00:21:32,930 |
|
ูุต ุนุฑูุชู ุงูุฃู ุฅูุด ุจุฏุฃ ุฃุณุฃู ุตุงุฑ ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
260 |
|
00:21:32,930 --> 00:21:39,310 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู a ุฃุณ n ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ุฒุงุฆุฏ ูุงุญุฏ ููู |
|
|
|
261 |
|
00:21:39,310 --> 00:21:45,690 |
|
factorial ู
ุถุฑูุจ ูู ู
ููุ ุงููู ูู ูุงุญุฏ ุฒุงุฆุฏ ูุต ุฒุงุฆุฏ |
|
|
|
262 |
|
00:21:45,690 --> 00:21:50,670 |
|
ูุต ุชุฑุจูุน ุฃู ูุฃู a ุนูู n ุฃุตุบุฑ ู
ู ู
ูู ูุง ุฌู
ุงุนุฉุ ู
ู |
|
|
|
263 |
|
00:21:50,670 --> 00:21:57,850 |
|
ูุต ุฒุงุฆุฏุชุฑุจูุน ุฒุงุฏ ูุต ุชุชุนูุฏ ุฒุงุฏ ุงูุขุฎุฑูู ูุฃู ูุฐู ุตุงุฑุช |
|
|
|
264 |
|
00:21:57,850 --> 00:22:02,470 |
|
ุนุจุงุฑุฉ ุนู geometric series ู
ุฌู
ูุญูุง ูุฐู ุจุชุณุงูู ู
ุฌู
ูุญ |
|
|
|
265 |
|
00:22:02,470 --> 00:22:07,050 |
|
ูุฐู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุนูู ูุงุญุฏ ูุงูุตู ุงููู ูู ูุต ููู |
|
|
|
266 |
|
00:22:07,050 --> 00:22:12,730 |
|
ุณุงูู ุฌุฏุงุด ุงุชูููู
ุงุดู ุฅุฐุง ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู ุตุงุฑ |
|
|
|
267 |
|
00:22:12,730 --> 00:22:16,510 |
|
ุนุจุงุฑุฉ ุนู ุงุชููู ูู ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู ูุตููุง ูู |
|
|
|
268 |
|
00:22:16,510 --> 00:22:20,650 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู a n ุฒุงุฆุฏ ูุงุญุฏ ุนูู n ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
269 |
|
00:22:20,650 --> 00:22:23,890 |
|
ูููุชูุฑูุง ู
ุถุฑูุจ ูู ู
ููุ ูู ุงุชููู ูุนูู ุญุณุงุจุงุช ูุฐู |
|
|
|
270 |
|
00:22:23,890 --> 00:22:28,770 |
|
ุทูุจ ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ูุงู ุงููู ุจุฏู ุฃุตูู ู ุงููู |
|
|
|
271 |
|
00:22:28,770 --> 00:22:31,630 |
|
ูุงุชุจู ุจุงุฎุชุตุงุฑ ูู ูุฅูู ุจูุนุชุจุฑ ุงู ุงูุจุงููุฉ ุญุณุงุจุงุชู |
|
|
|
272 |
|
00:22:31,630 --> 00:22:36,950 |
|
ุจุชุนุฑููุง ุชุญุณุจููุง em-n of x of x ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง |
|
|
|
273 |
|
00:22:36,950 --> 00:22:43,450 |
|
ุงูู
ูุฏุงุฑ ุนูู ู
ููุ ุนูู ุงุชูููุงูุงู ุดูู ู
ุง ูููู ุงูุงู as |
|
|
|
274 |
|
00:22:43,450 --> 00:22:49,590 |
|
n goes to infinity ูุฐุง ุงูู
ูุฏุงุฑ ูุฐุง ุงูู
ูุฏุงุฑ as n |
|
|
|
275 |
|
00:22:49,590 --> 00:22:54,230 |
|
goes to infinity ุงู limit ุจุชุฑูุญ ููุตูุฑ ูุฃู a n ุฒุงุฆุฏ |
|
|
|
276 |
|
00:22:54,230 --> 00:22:57,110 |
|
ูุงุญุฏ ุนูู n ุฒุงุฆุฏ ูุงุญุฏ ูู factorial as n goes to |
|
|
|
277 |
|
00:22:57,110 --> 00:23:01,190 |
|
infinity ุงูุด ุจุฏู ูุฑูุญ ููุตูุฑ ูุนูู ุจู
ุนูู ุงุฎุฑ ู
ุฏุงู
|
|
|
|
278 |
|
00:23:01,190 --> 00:23:04,430 |
|
ุจุฏู ูุฑูุญ ููุตูุฑ ุทุจุนุง ูุฐุง ูุจุฑุช ุงูุงู ุจุชูุจุฑ ู
ูู ุจุฑุถู |
|
|
|
279 |
|
00:23:04,430 --> 00:23:07,850 |
|
ู
ุจุงุดุฑุฉ ุงู
ูุฃู ุงู
ุงูุจุฑ ู
ููุง ุงุฐุง four |
|
|
|
280 |
|
00:23:10,880 --> 00:23:19,800 |
|
for large ู ู ุฃู
we get |
|
|
|
281 |
|
00:23:23,490 --> 00:23:31,050 |
|
E M of X ูุงูุต E N of X ุงููู ูู ุฃุตุบุฑ ุฃู ูุณุงูู ู
ู |
|
|
|
282 |
|
00:23:31,050 --> 00:23:38,070 |
|
ูุฐู ูุฐู ุฃุตูุง for large N as N goes to infinity ูุฐุง |
|
|
|
283 |
|
00:23:38,070 --> 00:23:43,470 |
|
ุงูู
ูุฏุงุฑ ุจูุตูุฑ ุฃุตุบุฑ ู
ู ุฃู ู ูู ุงูุฏููุง ุงููู ูู ุจูุตูุฑ |
|
|
|
284 |
|
00:23:43,470 --> 00:23:49,330 |
|
ุฃุตุบุฑ ู
ู ู
ูู ู
ู ู ุฃู ุฃุตุบุฑ ุฃู ูุณุงูู ู as N ู M |
|
|
|
285 |
|
00:23:49,330 --> 00:23:54,630 |
|
become very very largeู
ุงุดู ุงูุญุงู ูุฅูู ุงู limit ูู |
|
|
|
286 |
|
00:23:54,630 --> 00:23:59,110 |
|
a n ุนูู n ููุชูุฑู ููุด ุจูุณุงูู ุจูุณุงูู ุณูุฑ ุฅุฐุง ุตุงุฑ |
|
|
|
287 |
|
00:23:59,110 --> 00:24:05,950 |
|
ุนูุฏู ุงูุขู ุงููู ูู E m of X E n of X ุฃุตุบุฑ ูุดูู Y |
|
|
|
288 |
|
00:24:05,950 --> 00:24:15,250 |
|
ููู X ููู ู
ูุฌูุฏุฉ ูู ุงููุชุฑุฉ A ู
ุงูุต A ุฃู A ู
ุงุดู |
|
|
|
289 |
|
00:24:15,250 --> 00:24:23,160 |
|
ุงูุญุงู ุงูุขู ุจูุงุก ุนูููุงูุงู ููู X ุจุบุถ ุงููุธุฑ ุนูู ุงู X |
|
|
|
290 |
|
00:24:23,160 --> 00:24:28,000 |
|
ุงููู ูู ุจูููู ุนูุฏู ุฃูู I'm very large ูุจูุนุทููู ูุฐุง |
|
|
|
291 |
|
00:24:28,000 --> 00:24:32,560 |
|
ุฃุตุบุฑ ูุณูุก ู
ู ุฅุจุณููู ููุฐู ุงููู ุณู
ููุงูุง Cauchy's |
|
|
|
292 |
|
00:24:32,560 --> 00:24:37,470 |
|
criterion for uniformุงููู ูู convergence ูู ุงู .. |
|
|
|
293 |
|
00:24:37,470 --> 00:24:43,590 |
|
ุงููู ูู section 81 ุจูุงุก ุนูููุง ุจุทูุน ุนูุฏู E and ุงููู |
|
|
|
294 |
|
00:24:43,590 --> 00:24:47,090 |
|
ูู converges uniformly to some function ู
ุด |
|
|
|
295 |
|
00:24:47,090 --> 00:24:51,410 |
|
ุนุงุฑููููุง ุงููู ูู .. ุงููู ูู converges uniformly on |
|
|
|
296 |
|
00:24:51,410 --> 00:24:59,770 |
|
mean ุณุงูุจ a ุฃู a ุจุงุดู ุงูุญุงูุฉ ุงูุงูุงูุขู ุนูุฏู it |
|
|
|
297 |
|
00:24:59,770 --> 00:25:02,610 |
|
follows the sequence a and a converge uniformly on |
|
|
|
298 |
|
00:25:02,610 --> 00:25:07,210 |
|
the interval ูุงูุต a ู a where a ุฃูุจุฑ ู
ู 0 ููู a |
|
|
|
299 |
|
00:25:07,210 --> 00:25:11,670 |
|
ุฃูุจุฑ ู
ู 0 was a ุดู
ุงููุง arbitrarily ูุนูู ุงููู ูุตููุง |
|
|
|
300 |
|
00:25:11,670 --> 00:25:18,110 |
|
ูู ู
ุง ูุงููุง ูุง ุฌู
ุงุนุฉ ุงููู ูุตููุง ูู ุฃููุนูุฏู ุงููู ูู |
|
|
|
301 |
|
00:25:18,110 --> 00:25:23,210 |
|
ุงูู sequence ูุฐู ูู ุฌูุช ุฃุฎุฏุช for every a element |
|
|
|
302 |
|
00:25:23,210 --> 00:25:27,130 |
|
in R ู a ุฃูุจุฑ ู
ู ุณูุฑ ูู ูุตููุง ูู ุงููู ูุงูุช a |
|
|
|
303 |
|
00:25:27,130 --> 00:25:32,130 |
|
arbitrarily ูุฌุฏูุง ุฃูู ููููู ุนูุฏ ุงูู EL converges |
|
|
|
304 |
|
00:25:32,130 --> 00:25:39,550 |
|
uniformly on ู
ุงูุต a ู ู
ูู ู a ู
ุงุดู ุงูุญุงู ุทูุจ ุจูุงุก |
|
|
|
305 |
|
00:25:39,550 --> 00:25:48,200 |
|
ุนููู ูู ุฃูุช ุฌูุช ุฃุฎุฏุช ุฎุฏ ุงูุขู letX element in Rุ ุฃู |
|
|
|
306 |
|
00:25:48,200 --> 00:25:53,540 |
|
X element in Rุ ู
ุฏุงู
X ูู Rุ ุฅุฐุง ุฃููุฏ ุงูู X ุนุดุฑุ |
|
|
|
307 |
|
00:25:53,540 --> 00:25:59,250 |
|
ุนุดุฑููุ ุชูุงุชููุ ู
ููููุ ู
ู
ูู ู
ุง ุชูููุุจูุฏุฑ ุฃูุงูู A |
|
|
|
308 |
|
00:25:59,250 --> 00:26:05,890 |
|
ุจุญูุซ ุฃู X ุชูุชู
ู ุฅูู ุงููุชุฑุฉ ู
ู ูุงูุต A ูุนูุฏ ู
ูู ูุนูุฏ |
|
|
|
309 |
|
00:26:05,890 --> 00:26:11,590 |
|
ุฅูู ูุนูู ู
ุซูุง ุงู X ูุฌูุชูุง 100 ุจุงุฎุฏ ุงู A 110 ุจุตูุฑ |
|
|
|
310 |
|
00:26:11,590 --> 00:26:17,850 |
|
ุงู X ุจูู ุงููู ูู ูุงูุต 110 ู100 ุฅูุด ู
ุง ุชูุฌู X ุจูุงูู |
|
|
|
311 |
|
00:26:17,850 --> 00:26:24,470 |
|
ููุง Aุฅุฐุง there exists a such that x element in a |
|
|
|
312 |
|
00:26:24,470 --> 00:26:31,410 |
|
minus a ุฃูุจุฑ ู
ู ุตูุฑ ุทุจุนุง minus a ูู
ูู ุฃู a ุฃููุฏ ุทุจ |
|
|
|
313 |
|
00:26:31,410 --> 00:26:34,390 |
|
ู
ุง ูู ุงุญูุง ูุฏ ุฃุซุจุชูุง ุงูู ููู a element in R |
|
|
|
314 |
|
00:26:38,870 --> 00:26:44,730 |
|
Converge uniformly ููู A ุงููู ูุงุฌูุงูุง ูุฐู On ูุงูุต |
|
|
|
315 |
|
00:26:44,730 --> 00:26:49,690 |
|
A ู A ููุฐู ุงูู A ูุนูู ุจู
ุนูู ู
ุนูุงู ู
ุงุฏุงู
Converge |
|
|
|
316 |
|
00:26:49,690 --> 00:26:55,030 |
|
uniformly ูุฅุฐุง E N of Xุงููู ูู converges point |
|
|
|
317 |
|
00:26:55,030 --> 00:26:58,250 |
|
-wise to some function ุนูุฏ ู
ููุ ุนูุฏ ุงูู X ุงููู |
|
|
|
318 |
|
00:26:58,250 --> 00:27:03,670 |
|
ุฃุฎุฏุชูุง ูุงูุง ูุฐู ุฅุฐุง ุงูุฃู for any X element in R |
|
|
|
319 |
|
00:27:03,670 --> 00:27:11,450 |
|
for any X element in R ูููุงูู E N of X convergesู
ุง |
|
|
|
320 |
|
00:27:11,450 --> 00:27:15,250 |
|
ุฏุงู
ุงู E N of X is convergent for every X element |
|
|
|
321 |
|
00:27:15,250 --> 00:27:22,230 |
|
in R ุฅุฐุง ุตุงุฑุช ุนูุฏู limit ุงู E N of X as N goes to |
|
|
|
322 |
|
00:27:22,230 --> 00:27:27,830 |
|
infinity exists for every X element in R ู
ุง ุฏุงู
|
|
|
|
323 |
|
00:27:27,830 --> 00:27:34,210 |
|
exist ุญุณุจ ุงููู ูููุงูุง ุฅุฐุง ุงูุขู ุดุฑุนุช ูุชุนุฑูู ุงูุฏุงูุฉ |
|
|
|
324 |
|
00:27:34,210 --> 00:27:40,600 |
|
ุงูุชุงููุฉ ุงูุขู ุฃูุง ุจููู ุฅูู ุงุญูุง ุตุงุฑ ุนูุฏูุงุงููู ูู |
|
|
|
325 |
|
00:27:40,600 --> 00:27:47,760 |
|
ู
ุดุฑูุน ุงู ูููู we define E ู
ู R ูR by limit E N of |
|
|
|
326 |
|
00:27:47,760 --> 00:27:53,940 |
|
X ุงููู ูู ู
ูุฌูุฏุฉ ุณู
ูุชูุง ุฅูุด ุงุณู
ูุง E of X for X |
|
|
|
327 |
|
00:27:53,940 --> 00:28:00,760 |
|
element of Rูุฌูุฏ ุงููู ูู ุฏุงูุฉ ุงุณู
ูุง E ุฃูุง ุณู
ูุชูุง E |
|
|
|
328 |
|
00:28:00,760 --> 00:28:06,400 |
|
ู
ู R ูุนูุฏ R ุจุญูุซ ุงู E of X ูู limit ุงู E ุฃูู VIX |
|
|
|
329 |
|
00:28:06,400 --> 00:28:11,480 |
|
ุงููู ุฃุซุจุชุช ูุฌูุฏู ุจุฏู ุฃุซุจุชูู ุงูุฃู ุฃู E of X ูุฐู ูู |
|
|
|
330 |
|
00:28:11,480 --> 00:28:16,120 |
|
ุงูุฏุงูุฉ ุงูู
ุจุชุบุฉ ุงููู ุจุชุญูู ุงูุดุฑูุท ุงููู ุทูุจูุง ูู |
|
|
|
331 |
|
00:28:16,120 --> 00:28:21,740 |
|
ุงููุธุฑูุฉ ูุดูู ููู ุทูุจ ุตููุง ุนูู ุงููุจู ุนููู ุงูุตูุงุฉ |
|
|
|
332 |
|
00:28:21,740 --> 00:28:22,160 |
|
ูุงูุณูุงู
|
|
|
|
333 |
|
00:28:35,970 --> 00:28:39,830 |
|
ุงูุงู ุนูุฏู ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
334 |
|
00:28:39,830 --> 00:28:39,910 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
335 |
|
00:28:39,910 --> 00:28:39,970 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
336 |
|
00:28:39,970 --> 00:28:40,290 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
337 |
|
00:28:40,290 --> 00:28:42,410 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
338 |
|
00:28:42,410 --> 00:28:42,810 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
339 |
|
00:28:42,810 --> 00:28:44,810 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
340 |
|
00:28:44,810 --> 00:28:44,810 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
341 |
|
00:28:44,810 --> 00:28:49,770 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
342 |
|
00:28:49,770 --> 00:28:51,450 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
343 |
|
00:28:51,450 --> 00:28:51,610 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
344 |
|
00:28:51,610 --> 00:28:51,610 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
345 |
|
00:28:51,610 --> 00:28:52,610 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
346 |
|
00:28:52,610 --> 00:28:55,710 |
|
.. ุงู .. |
|
|
|
347 |
|
00:29:00,330 --> 00:29:06,370 |
|
converge such that x element ูุงูุต a ุฃู a ูููุง ูุฐู |
|
|
|
348 |
|
00:29:06,370 --> 00:29:12,330 |
|
ุงููen converged uniformly ุงูุงู ูู
ูุ ูููe ู
ุนุงูุง |
|
|
|
349 |
|
00:29:12,330 --> 00:29:19,190 |
|
converged uniformly ูููe for every ุฃู on ูุงูุต a ุฃู |
|
|
|
350 |
|
00:29:19,190 --> 00:29:23,010 |
|
a ูุฃูู ุณู
ูุงูุง ุฅูุด ุงููู ูู ุงู limit ุจุชุฑูุญููุง ุงุณู
ูุง |
|
|
|
351 |
|
00:29:23,010 --> 00:29:27,670 |
|
ุฅูู ุงูุขู en ุงุชูุฌูุง ุฅูู ุฃุซุจุชูุงูุง ุฅููุง ุฅูุด ู
ุนุงููุง |
|
|
|
352 |
|
00:29:28,810 --> 00:29:34,050 |
|
continuous ู
ุงุฏุงู
continuous ู en ุงููู ูู ุทุจุนุง |
|
|
|
353 |
|
00:29:34,050 --> 00:29:36,330 |
|
continuous ู
ุด ุจุณ ุนูู ูุงูุต a ู a continuous ููู |
|
|
|
354 |
|
00:29:36,330 --> 00:29:39,690 |
|
ู
ูุงู ุงุญูุง ุงูุขู ููุญูู ุนู ูุงูุต a ู a continuous ุตุงุฑุช |
|
|
|
355 |
|
00:29:39,690 --> 00:29:42,910 |
|
ุงู en continuous sequence converts uniformly to e |
|
|
|
356 |
|
00:29:42,910 --> 00:29:48,110 |
|
ุนูู ูุงูุต a ู a ุฅุฐุง ุตุงุฑุช ุงู e ูุฐู ุญุณุจ ูุธุฑูุชูุง ูุชููู |
|
|
|
357 |
|
00:29:48,110 --> 00:29:53,560 |
|
continuous ูุธุฑูุฉ ุงูุฃููููู ุณููุดู 8 ุงููู ูู 2 ูุชููู |
|
|
|
358 |
|
00:29:53,560 --> 00:29:57,800 |
|
ุงูู E is continuous ุนูู ูุงูุต A ู A ููููุง if E N is |
|
|
|
359 |
|
00:29:57,800 --> 00:30:00,200 |
|
a sequence of continuous functions that converge |
|
|
|
360 |
|
00:30:00,200 --> 00:30:03,200 |
|
uniformly to some function then this function or |
|
|
|
361 |
|
00:30:03,200 --> 00:30:06,880 |
|
some function is continuous on ูุงูุต A ู Eุฅุฐุง ุตุงุฑุช |
|
|
|
362 |
|
00:30:06,880 --> 00:30:10,200 |
|
ุงู E continuous ุนูู ููุต A ู A ูุนูู ุงู E continuous |
|
|
|
363 |
|
00:30:10,200 --> 00:30:14,520 |
|
ุนูุฏ ู
ูุ ุนูุฏ ุงู X ู since X was arbitrary in R then |
|
|
|
364 |
|
00:30:14,520 --> 00:30:21,180 |
|
E ูุชููู is continuous ุนูู ูู ุงู R ุฅุฐุง ุตุงุฑุช ุนูุฏู E |
|
|
|
365 |
|
00:30:21,180 --> 00:30:26,560 |
|
is continuous at any X element in R ุงูุขู ูู ุฌููุง |
|
|
|
366 |
|
00:30:26,560 --> 00:30:31,600 |
|
ุญุณุจูุง ุงู E N of 0 ู E 1 of 0 ู E 1 of 0 ุฃุดู |
|
|
|
367 |
|
00:30:31,600 --> 00:30:39,410 |
|
ุจุงูุณุงููุฉุ ูู ูุงุญุฏE ุงููู ูู N ุฒุงุฆุฏ ูุงุญุฏ of Zero |
|
|
|
368 |
|
00:30:39,410 --> 00:30:45,630 |
|
ุงููู ูู ุจุณุงูู ู
ู ุณูุฑ ูุณูุฑ ููุทูุน ุณูุฑ ููุฐุง ูุงุญุฏ ูุนูู |
|
|
|
369 |
|
00:30:45,630 --> 00:30:52,470 |
|
ุฏุงูู
ุง ุงู E N of Zero ูุชุทูุน ุฅูุดุ Zero ู
ุฏุงู
E N of |
|
|
|
370 |
|
00:30:52,470 --> 00:31:00,670 |
|
Zero Zero ูุจู
ุง ุฃูู E is continuous ุฅุฐู limit ุงู Eู |
|
|
|
371 |
|
00:31:00,670 --> 00:31:05,930 |
|
of zero as n goes to infinity ุจุณูุก ุงููู ูู E of |
|
|
|
372 |
|
00:31:05,930 --> 00:31:10,990 |
|
zero ุฃู E of X ุฃุณู E of X as n goes to infinity |
|
|
|
373 |
|
00:31:10,990 --> 00:31:18,450 |
|
ุจุณูุก E of X ูุจู
ุง ุฃูู ุงููู ููุงููู ูู ุงู ุงู ุงู ุงู ุงู |
|
|
|
374 |
|
00:31:18,450 --> 00:31:20,590 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
375 |
|
00:31:20,590 --> 00:31:21,370 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
376 |
|
00:31:21,370 --> 00:31:22,190 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
377 |
|
00:31:22,190 --> 00:31:25,670 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
378 |
|
00:31:25,670 --> 00:31:30,470 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
379 |
|
00:31:30,470 --> 00:31:32,430 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
380 |
|
00:31:32,430 --> 00:31:32,790 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
381 |
|
00:31:32,790 --> 00:31:32,790 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
382 |
|
00:31:32,790 --> 00:31:32,950 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
383 |
|
00:31:32,950 --> 00:31:32,950 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
384 |
|
00:31:32,950 --> 00:31:32,950 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
385 |
|
00:31:32,950 --> 00:31:32,950 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
386 |
|
00:31:32,950 --> 00:31:35,550 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
387 |
|
00:31:35,550 --> 00:31:39,680 |
|
ุงู ุงูุฃูุง ููุช ุจุฎูุทูุง ุฃูุง ุจููู E n of 0 ุจุณุงูู 1 |
|
|
|
388 |
|
00:31:39,680 --> 00:31:43,540 |
|
limit E n of X ุจุณุงูู E of X ูุงู E is continuous |
|
|
|
389 |
|
00:31:43,540 --> 00:31:48,900 |
|
ุฅุฐุง ุงูุญูููู ุงู E of 0 ูุฐู ูุชุณุงูู ุฅูุดุ ููุณุงูู 1 |
|
|
|
390 |
|
00:31:48,900 --> 00:31:53,800 |
|
ูุฃูู limit E n of 0 point twice ุจุณุงูู E of 0 ุงููู |
|
|
|
391 |
|
00:31:53,800 --> 00:31:58,580 |
|
ูู 0ุงูุงู e n of zero ุจุชุณุงูู ูุงุญุฏ for all and infim |
|
|
|
392 |
|
00:31:58,580 --> 00:32:04,940 |
|
therefore e of zero ุจุชุณุงูู ูุงุญุฏ ูุฅู ุงููู ูู e |
|
|
|
393 |
|
00:32:04,940 --> 00:32:11,240 |
|
ููุณูุง is continuous ุฅุฐุง ุญุตููุง ุนูู ุงููู ูู ุงูุฌุฒุก |
|
|
|
394 |
|
00:32:11,240 --> 00:32:16,080 |
|
ุงูุฃูู ุฃุฐูุฑูู
ูู ุงูุธุงูุฑูุฉ ุนูู ุงููู ูู ุงูู
ุทููุจ ุฃู |
|
|
|
395 |
|
00:32:16,080 --> 00:32:20,770 |
|
ุงูุฎุงุตูุฉ ุงูุฃูููุงูุฎุงุตูุฉ ุงูุฃููู ูู ุงูุฎุงุตูุฉ ุงูุฃููู ูู |
|
|
|
396 |
|
00:32:20,770 --> 00:32:25,430 |
|
ุนูุฏู ุฃุซุจุชูุง .. ุงูุชุงูู ุฃุณู ุฃุซุจุชูุง E ุงููู ูู E of |
|
|
|
397 |
|
00:32:25,430 --> 00:32:29,370 |
|
Zero ุจุงูุณุงููุฉ ูุงุญุฏุฉ ุจุฏู ุฃุซุจุชูู ุงูุฃู E prime of X |
|
|
|
398 |
|
00:32:29,370 --> 00:32:34,750 |
|
ูุชุณุงูู E of X ุนุดุงู ุฃุซุจุชูุง ุจุฏูุง ูุฐูุฑูู
ูู ูุธุฑูุฉ |
|
|
|
399 |
|
00:32:34,750 --> 00:32:45,750 |
|
ุฃุฎุฏูุงูุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุงููู ูู ุจุชููู ู
ุง ูููู ุฃุฐูุฑูู
|
|
|
|
400 |
|
00:32:45,750 --> 00:32:51,350 |
|
ูุง ุฌู
ุงุนุฉุจุงููุธุฑูุฉ ุงููู ุจุณุชุฎุฏู
ูุง ูุงูุช ุงู ุนูุฏู ูู ูู |
|
|
|
401 |
|
00:32:51,350 --> 00:32:56,330 |
|
ุนูุฏู fn sequence of functions ู ูุฐู fn ุงู |
|
|
|
402 |
|
00:32:56,330 --> 00:33:00,050 |
|
differentiable ูุฃู fn ุจุฑุงูู
ุจุชุฑูุญ ู g uniformly |
|
|
|
403 |
|
00:33:00,050 --> 00:33:08,330 |
|
ู
ุงุดู on some interval on some j ููุงู ุนูุฏู fn of x |
|
|
|
404 |
|
00:33:08,330 --> 00:33:11,050 |
|
not converge |
|
|
|
405 |
|
00:33:12,940 --> 00:33:21,240 |
|
converts to f of x not ู
ุซูุง on j ุงู for x not |
|
|
|
406 |
|
00:33:21,240 --> 00:33:31,300 |
|
element in j then ุจููู ูู ุงููู ูู ุงู f ูุฐู f prime |
|
|
|
407 |
|
00:33:31,300 --> 00:33:39,230 |
|
existsู FN converts uniformly to this F ุงู FN |
|
|
|
408 |
|
00:33:39,230 --> 00:33:46,950 |
|
converts uniformly to this F and F' ูู ู
ูู ูู ุงูู |
|
|
|
409 |
|
00:33:46,950 --> 00:33:50,370 |
|
G ูุฐุง ุญูููุงู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุทูุจุ ุจุฏุฃ ุงุณุชุฎุฏู
ูุง ุงูุขู |
|
|
|
410 |
|
00:33:50,370 --> 00:33:54,510 |
|
ุดูู ุนูุฏูุ ุงู ุดูู ุนูุฏู ุงูู N ุฃุซุจุชูุง ุงู ุงูู N |
|
|
|
411 |
|
00:33:54,510 --> 00:33:57,110 |
|
interval ูุงูุตูุฉ ู ุงููุ we have the uniform |
|
|
|
412 |
|
00:33:57,110 --> 00:34:02,350 |
|
convergence of the sequence EN ุงููู ูู ูุชููู EN |
|
|
|
413 |
|
00:34:04,720 --> 00:34:12,400 |
|
converge uniformly ู
ุงุดู ุงูุญุงูุฉ of you of me of |
|
|
|
414 |
|
00:34:12,400 --> 00:34:15,900 |
|
ุชูุงุชุฉ ุงููู ูู ุชูุงุชุฉ ุงููู ุญูููุงูุง ูุจู ุจุดููุฉ ุฎูููู |
|
|
|
415 |
|
00:34:15,900 --> 00:34:21,540 |
|
ุจุณ ูุฐูุฑูู
ูููุง ุงููู ูู ุชูุงุชุฉ ูู ุนูุฏู ุงููู ูู ุชูุงุชุฉ |
|
|
|
416 |
|
00:34:21,840 --> 00:34:25,980 |
|
ุนูุฏู ุงูุงู conversion formally to some function E |
|
|
|
417 |
|
00:34:25,980 --> 00:34:30,140 |
|
ุณู
ูุงูุง ุงูุงู ุจูุงุก ุนููู ุจุฏูุง ู
ู ุงูุงู ุฒุงุฆุฏ ูุงุญุฏ ูู |
|
|
|
418 |
|
00:34:30,140 --> 00:34:34,820 |
|
ุณุงูุณุฉ ุงูุงู ุฅุฐุง ุตุงุฑุช ุงูุงู ุฒุงุฆุฏ ูุงุญุฏ prime ุจุฑุถู |
|
|
|
419 |
|
00:34:34,820 --> 00:34:38,140 |
|
conversion ูุงุฏู ูุงุฏู ุฃุตูุง conversion formally to |
|
|
|
420 |
|
00:34:38,140 --> 00:34:46,280 |
|
ู
ููุ to ุงู E ุงููู ุนูุฏู ุงูุงู ูุถุญุช ุงูุตูุฑุฉ ุงูุงู ุตุงุฑุช |
|
|
|
421 |
|
00:34:46,280 --> 00:34:53,410 |
|
ุงูุตูุฑุฉ ูุงุถุญุฉ ุงูุงู ุงููู ุญุตููุง ุงููุงูุชุจู ุนููุงุ on any |
|
|
|
422 |
|
00:34:53,410 --> 00:34:56,010 |
|
interval ูุงูุต a ู a, we have the inferred |
|
|
|
423 |
|
00:34:56,010 --> 00:35:01,170 |
|
convergence of E n ููู ุถูุก ุงููู ูู ุชูุงุชุฉ, we also |
|
|
|
424 |
|
00:35:01,170 --> 00:35:04,290 |
|
have the inferred convergence E n prime of the |
|
|
|
425 |
|
00:35:04,290 --> 00:35:08,350 |
|
derivatives ุงูุขู ู
ู ุงู theorem 8.2.3 ุงููู ุญููุชูุง |
|
|
|
426 |
|
00:35:08,350 --> 00:35:13,700 |
|
ููุงุ ู
ุฏุงู
F n prime converges ู Gู
ุงุดู ุงูุญุงู ู ุงู |
|
|
|
427 |
|
00:35:13,700 --> 00:35:17,160 |
|
.. ุงู ุงู Fn X0 ุจุชุฑูุญ ู F of X0 for X0 ุงููู ุจุชูุฌุญ |
|
|
|
428 |
|
00:35:17,160 --> 00:35:21,880 |
|
ุงููู ูู ุงูุชุฑ ู
ู ุงูููุทุฉ ู ุงุตูุง ุนูู ุงุณุงุณ ุนุฑููุง ุงู Fn |
|
|
|
429 |
|
00:35:21,880 --> 00:35:27,420 |
|
of X ุจุงูุณุงูู ุงููู ูู ู
ูู E of X ุจุชุฑูุญ ูู
ูู ูู E of |
|
|
|
430 |
|
00:35:27,420 --> 00:35:31,780 |
|
X ุงุฐุง ุงููุฏ ูุฐู ู
ุชุญููุฉ ูู
ุงู ุจุงููุณุจุฉ ูู
ูู ูู E N |
|
|
|
431 |
|
00:35:31,780 --> 00:35:36,760 |
|
ุตุงุฑุช ูุฐู ู
ุชุญููุฉ ู ูุฐู ู
ุชุญููุฉ ู
ู ุงูุชุญูู ูุฐููุฐู ูุง |
|
|
|
432 |
|
00:35:36,760 --> 00:35:42,140 |
|
ุนุฒูุฒู ุงูุชุญูู ูุฐู ุฅุฐุง ุฅุฐุง ููููู ุนูุฏู ุงู F N ุจุชุฑูุญ |
|
|
|
433 |
|
00:35:42,140 --> 00:35:46,020 |
|
ูู F ุงููู ูู ุงู E N ุจุชุฑูุญ ูู E ุตูุงุฏุฑ ุฃุซุจุชูุงูุง ุจุณ |
|
|
|
434 |
|
00:35:46,020 --> 00:35:51,720 |
|
ุฅูุด ุงูู
ูู
ุฃูู ุงู F prime ููุฐู ุงููู ุจุชุฑูุญููุง ูุฐู |
|
|
|
435 |
|
00:35:51,720 --> 00:35:57,080 |
|
ุงููู ูู ุงู E prime ูู ู
ูู ุงููู ูู ุงููู ุจุชุฑูุญููุง ุงู |
|
|
|
436 |
|
00:35:57,080 --> 00:36:02,340 |
|
E N ุงู F ุงู F N prime ุนูุฏ ุงู E N ุฒุงุฆุฏ ูุงุญุฏ prime |
|
|
|
437 |
|
00:36:02,340 --> 00:36:03,260 |
|
ุจุชุฑูุญ ูู E |
|
|
|
438 |
|
00:36:06,460 --> 00:36:13,560 |
|
ุฅุฐุง ู
ู ูุธุฑูุฉ ุฅูุงู ุณุชุฐูุจ ุฅูู ุงูู E ุจุฑุถู ูููุณ ูุฐูู |
|
|
|
439 |
|
00:36:13,560 --> 00:36:20,250 |
|
ุงูู E' ููุฐููู ูุฐู ูุนูู ุจู
ุนูู ุขุฎุฑ E N ุฒู ุฏูู ุจุฑุงูู
|
|
|
|
440 |
|
00:36:20,250 --> 00:36:25,830 |
|
ุจุฑุงูู
limitูุง ุงู E ุจุฑุงูู
ุฒู ู
ุง ูู ู
ูู ุงู E ูุนูู |
|
|
|
441 |
|
00:36:25,830 --> 00:36:29,950 |
|
ู
ุฏุงู
ุงูุงู limitูุง ูู ุงู E ู ูู ููุณูุง limitูุง ู
ู |
|
|
|
442 |
|
00:36:29,950 --> 00:36:33,370 |
|
ุงููุธุฑูุฉ ุงููู ุจูุณุชูุชุฌูุง E ุจุฑุงูู
ุฅุฐุง ุตุงุฑุช ุงู E ูู |
|
|
|
443 |
|
00:36:33,370 --> 00:36:38,610 |
|
ู
ูู ุงู E ุจุฑุงูู
ุฃู ุจุทุฑููุฉ ุฃุฎุฑู limit ุงู E N ุจุฑุงูู
|
|
|
|
444 |
|
00:36:38,610 --> 00:36:43,440 |
|
ุญุณุจ ุงููุธุฑูุฉ ุจุชุณุงูู ุงู E ุจุฑุงูู
ูู
ู ุฌูุฉ ุฃุฎุฑู limit en |
|
|
|
445 |
|
00:36:43,440 --> 00:36:50,500 |
|
ุจุฑุงู ูู ููุณู limit en ููุณูุงู limit en ุงููู ูู ุทุจุนุง |
|
|
|
446 |
|
00:36:50,500 --> 00:36:53,280 |
|
ุงูุง ู
ุณู
ููุง n ู n ููุต ูุงุญุฏ ุงุญูุง ู
ุณู
ููููุง n ู n ุฒุงุฏ |
|
|
|
447 |
|
00:36:53,280 --> 00:36:57,740 |
|
ูุงุญุฏ ุทุจูุนู en ุจุฑุงูู
ูู limit ู
ู limit en ููุต ูุงุญุฏ |
|
|
|
448 |
|
00:36:57,740 --> 00:37:02,620 |
|
ูุญุงููุง ูุฃู ูุฐู ุจุชุณุงูู ูุฐู ู ูุฐู ุงุตูุง limit ุงุญูุง |
|
|
|
449 |
|
00:37:02,620 --> 00:37:07,140 |
|
ุงุซุจุชูุง ุงูุด ุจุณุงูู ุงู E ุงุฐุง ุตุงุฑุช ุนูุฏ ุงู E ุจุฑุงูู
ูู |
|
|
|
450 |
|
00:37:07,140 --> 00:37:10,720 |
|
ุงูุด ุจุชุณุงูู ุงู E ูุนูู ูุฐู ุงู E ุจุฑุงูู
ุงุณุชูุชุงุฌุง ู
ู |
|
|
|
451 |
|
00:37:10,720 --> 00:37:16,260 |
|
ุงููุธุฑูุฉู ูุฐู ุงููู ูู ู
ู ุงููู ุฃุซุจุชูุง ูู ุงูุจุฏุงูุฉ ู |
|
|
|
452 |
|
00:37:16,260 --> 00:37:19,800 |
|
ุฃูุถุง ููุฏุฑ ูุณุชุฎุฏู
.. ูุณู ูุชุฌู ู
ู ุงููุธุฑูุฉ ููู ุฃุญูุง |
|
|
|
453 |
|
00:37:19,800 --> 00:37:25,540 |
|
ุฃุซุจุชูุง ูููุง ูุจู ู
ุง ูุณุชุนู
ู ุงูู
ุธูุฉุทูุจ ูุฐุง ุงูููุงู
|
|
|
|
454 |
|
00:37:25,540 --> 00:37:30,680 |
|
ุตุญูุญ ููู ููู x ููู ู
ูุฌูุฏุฉ ูู ูุงูุต a ู a ููู a ุงุญูุง |
|
|
|
455 |
|
00:37:30,680 --> 00:37:35,600 |
|
ุฃุฎุฏูุงูุง ุฃุฌู
ุงููุง arbitrary ูุนูู ุงูุขู ุจูุตูุฑ ุนูุฏู |
|
|
|
456 |
|
00:37:35,600 --> 00:37:40,740 |
|
ุงููู ูู ููู x ุจููู ููุงุญุฏุฉ ุฒู ููู ุจุชุญูู ุงูููุงู
ูุฐุง |
|
|
|
457 |
|
00:37:40,740 --> 00:37:44,560 |
|
ุงูุขู ูุจุตูุฑ ุนูุฏู a prime of x ุจุณููุฉ of x ููู x |
|
|
|
458 |
|
00:37:44,560 --> 00:37:50,720 |
|
element in R ูููู ุจูููู ุงุญูุง ุฃุซุจุชูุง ูุฌูุฏ ุงููู ูู |
|
|
|
459 |
|
00:37:50,720 --> 00:37:58,390 |
|
ุงู E of Xุฃุซุจุชูุง ูุฌูุฏ ุฏุงูุฉ ุฃุซุจุชูุง |
|
|
|
460 |
|
00:37:58,390 --> 00:38:06,100 |
|
ูุฌูุฏ ุฏุงูุฉ ุณู
ูุงูุง E of Xูุฐู ุงูุฏุงูุฉ ุจุชุญูู ุดุฑุทูู ุงููู |
|
|
|
461 |
|
00:38:06,100 --> 00:38:11,900 |
|
ูู E prime of X ุจุณุงูู E of X ูุจุชุญูู ุงูุดุฑุท ุงูุชุงูู E |
|
|
|
462 |
|
00:38:11,900 --> 00:38:20,680 |
|
of 0 ุจุณุงูู 1 ุงูุณุคุงู ุงูุขู ูู ูู ุบูุฑูุงุ ูู ูู ุบูุฑูุง |
|
|
|
463 |
|
00:38:20,680 --> 00:38:25,860 |
|
ููุง ูุฃุ ุทุจุนุง ูุญุธุฉ ุงูุญุธ ุฃูู ูุง ููุฌุฏ ุฏุงูุฉ ุบูุฑ ูุฐู |
|
|
|
464 |
|
00:38:25,860 --> 00:38:31,140 |
|
ุงูุฏุงูุฉ ุงููู ุจุชุญูู ูุฐุง ุงูููุงู
ุจุณ ูุจู ู
ุง ูุซุจุช ุงูู |
|
|
|
465 |
|
00:38:31,140 --> 00:38:35,740 |
|
uniqueness ุฎููููุง ูุงุฎุฏ ุจุนุถ ุงููุชุงุฆุฌ ุจุดูู ุณุฑูุน ู |
|
|
|
466 |
|
00:38:35,740 --> 00:38:39,900 |
|
ูุชุงุฆุฌ ุณููุฉ ู ุงููู ูู ุงู ุดุงุก ุงููู ู
ุชุงุฎุฏุด ููุชูุง |
|
|
|
467 |
|
00:38:39,900 --> 00:38:43,040 |
|
ุดูููุง ูุง ุฌู
ุงุนุฉ ุตููุง ุนูู ุงููุจู ุนููู ุงูุตูุงุฉ ูุงูุณูุงู
|
|
|
|
468 |
|
00:38:43,040 --> 00:38:48,080 |
|
ุงูู function E has a derivative of every order and |
|
|
|
469 |
|
00:38:48,080 --> 00:38:51,260 |
|
E N of X ุจูุณุงูู E of X for all N element in N ู X |
|
|
|
470 |
|
00:38:51,260 --> 00:38:54,480 |
|
element in Rูุนูู ุงูุขู ูู ูุถููุงูุง ูู
ุงู ู
ุฑุฉ ู ู
ุฑุชูู |
|
|
|
471 |
|
00:38:54,480 --> 00:38:56,980 |
|
ู ุชูุงุชุฉ ู ุฃุฑุจุนุฉ ูุชุทูุน ุฃูุด ููุณ ุงูุฏุงูุฉ ุทุจุนุง ูุฐุง |
|
|
|
472 |
|
00:38:56,980 --> 00:39:00,360 |
|
ุงูููุงู
ุณูู ู by induction ุฒู ู
ุง ุงูุชูุง ุนุงุฑููู ุฃูู |
|
|
|
473 |
|
00:39:00,360 --> 00:39:03,120 |
|
ุญุงุฌุฉ ู
ุงุซุจุชูุง ููุฑุงู ุจุงูุณุงููุฉ ูุงุญุฏ ููุฑุงู ุจุงูุณุงููุฉ |
|
|
|
474 |
|
00:39:03,120 --> 00:39:06,480 |
|
ูุงุญุฏ ู
ุงุญูุง ุฃุซุจุชูุง E prime of X ุฃูุด ุจุงูุณุงููุฉ E of X |
|
|
|
475 |
|
00:39:06,480 --> 00:39:11,070 |
|
ุฅุฐุง ูุฐู is true ููุฑุงู ุจุงูุณุงููุฉ ูุงุญุฏุทูุจ ูุงู ุงูุชุฑุถ |
|
|
|
476 |
|
00:39:11,070 --> 00:39:15,510 |
|
ุงููุง ูุฐู ุตุญูุญุฉ ูู ุงููุฑุขู ุจูุณุงูู K ุจูุตูุฑ E K of X |
|
|
|
477 |
|
00:39:15,510 --> 00:39:20,010 |
|
ุจูุณุงูู E of X ูู
ุง ุงู ุงุชุจุชูุง ู K ุฒุงุฆุฏ ูุงุญุฏ ุทูุจ ู K |
|
|
|
478 |
|
00:39:20,010 --> 00:39:23,870 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุฎุฏ A K ุฒุงุฆุฏ ูุงุญุฏ of X ุงูุด ูุฐูุ ูุฐู ุงููู |
|
|
|
479 |
|
00:39:23,870 --> 00:39:30,840 |
|
ูู A K of X ุงููู ุงุดู
ุงููุง ุฅุจุฑุงููู
ุงูุงู a k of x |
|
|
|
480 |
|
00:39:30,840 --> 00:39:33,540 |
|
ูุฑุถูุงูุง ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู |
|
|
|
481 |
|
00:39:33,540 --> 00:39:33,940 |
|
ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ |
|
|
|
482 |
|
00:39:33,940 --> 00:39:34,880 |
|
ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู |
|
|
|
483 |
|
00:39:34,880 --> 00:39:34,880 |
|
ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ |
|
|
|
484 |
|
00:39:34,880 --> 00:39:35,180 |
|
ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู |
|
|
|
485 |
|
00:39:35,180 --> 00:39:37,200 |
|
ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ |
|
|
|
486 |
|
00:39:37,200 --> 00:39:43,180 |
|
ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู |
|
|
|
487 |
|
00:39:43,180 --> 00:39:54,500 |
|
ุจุงูุณุงููุฉ ุงูู ุจุงูุณุงููุฉ ุงูู ุจุงูุณุง |
|
|
|
488 |
|
00:39:55,640 --> 00:40:01,620 |
|
ูุถูู ูุงุถู ุฅูู ู
ุง ูุง ููุงูุฉ ุญูุธู ุชุทูุน ููุณ ุงูุฏุงูุฉ ูุฌู |
|
|
|
489 |
|
00:40:01,620 --> 00:40:07,340 |
|
ุงูุขู ูู Corollary ุฃู ุงูุฎุงุตูุฉ ุงููู ุจุนุฏูุง ููุฐู |
|
|
|
490 |
|
00:40:07,340 --> 00:40:15,040 |
|
ุงูุฏุงูุฉ ูุฐู ุงูุฏุงูุฉ Fx ุฃูุจุฑ ู
ู 0 ุจูููู ุฏุงูู
ุงู ุญูููู |
|
|
|
491 |
|
00:40:15,040 --> 00:40:21,280 |
|
ุงููุงุญุฏ ุฒุงุฆุฏ X strictly ุฃุตุบุฑ ู
ู ู
ูู ู
ู E of X ู
ู E |
|
|
|
492 |
|
00:40:21,280 --> 00:40:32,910 |
|
of X ุงู ุงูุนูุฏู ุงููู ูู ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุนุดุงู ุชุดูู ุฃูุด |
|
|
|
493 |
|
00:40:32,910 --> 00:40:40,550 |
|
ุฃุฑุจุนุฉ ุงูุฃุฑุจุนุฉ ุงููู ูู ุงู E prime of X ุฃุธู ููู ููุง |
|
|
|
494 |
|
00:40:40,550 --> 00:40:51,590 |
|
ุญุงููู ุงู E ุงููุงุณ ูู ุงู E of X ุนูุฏู |
|
|
|
495 |
|
00:40:51,590 --> 00:40:53,390 |
|
E |
|
|
|
496 |
|
00:40:55,380 --> 00:41:03,750 |
|
ุงูุง of Xุฃูุจู ุฃู ุฃุตุบุฑ strictly ู
ู E N ุฒุงุฆุฏ ูุงุญุฏ of |
|
|
|
497 |
|
00:41:03,750 --> 00:41:09,850 |
|
X ููู X ุฃูุจุฑ ู
ู ู
ูู ู
ู ุตูุฑ ูููุ ูุฃู ูุฐู ููุฒูุฏ |
|
|
|
498 |
|
00:41:09,850 --> 00:41:12,630 |
|
ุนูููุง term ุงููู ูู X ุฃุณูุงู ุฒุงุฆุฏ ูุงุญุฏ ุนูู N ุฒุงุฆุฏ |
|
|
|
499 |
|
00:41:12,630 --> 00:41:15,630 |
|
ูุงุญุฏ ููุชูุฑูุง ููุฐุง ุงู term ุงูุงูุณุงุชู ุงููู ุฃูุจุฑ ู
ู |
|
|
|
500 |
|
00:41:15,630 --> 00:41:19,810 |
|
ุตูุฑ ุฃุดู
ุงูู ุงููู ูู ู
ูุฏุฉ ุฅุฐุง ุตุงุฑุช ุงู sequence ุงููู |
|
|
|
501 |
|
00:41:19,810 --> 00:41:25,010 |
|
ุนูุฏู ูุง ุฌู
ุงุนุฉ ูุฐู ุนุจุงุฑุฉ ุนู strictly increasing |
|
|
|
502 |
|
00:41:25,680 --> 00:41:29,120 |
|
sequence strictly increasing sequence ุจูุงุกู ุนููู |
|
|
|
503 |
|
00:41:29,120 --> 00:41:36,240 |
|
ููููู ุนูุฏ E1 of X ุฃุตุบุฑ strictly ู
ู E2 of X ููุฐุง |
|
|
|
504 |
|
00:41:36,240 --> 00:41:42,020 |
|
ุฃุตุบุฑ strictly ู
ู E N of X ููู N ุฃูุจุฑ ุฃู ูุณุงูู |
|
|
|
505 |
|
00:41:42,020 --> 00:41:51,440 |
|
ุชูุงุชุฉ ูุงู X ุฃุดู
ุงููุง ุฃูุจุฑ ู
ู ุณูุฑ ู
ุงุดู ุงูุญุงู ุทูุจ E1 |
|
|
|
506 |
|
00:41:51,440 --> 00:42:02,170 |
|
of X ู
ูู ููุ ูุงุญุฏ ุฒุงุฏ Xููุฐุง ุฃุตุบุฑ ู
ู E2 of X ููุฐุง |
|
|
|
507 |
|
00:42:02,170 --> 00:42:08,170 |
|
ุฃุตุบุฑ ู
ู E N of X ุฅุฐุง ูุฎุฏ ุงู limit ููู ุงูุฌูุงุช as N |
|
|
|
508 |
|
00:42:08,170 --> 00:42:10,670 |
|
goes to infinity ููุฐุง independent of N ููุฐุง |
|
|
|
509 |
|
00:42:10,670 --> 00:42:15,590 |
|
independent of N ุฅุฐุง ุณูุตุจุญ ุฃุตุบุฑ ุฃู ูุณุงูู limit E N |
|
|
|
510 |
|
00:42:15,590 --> 00:42:20,430 |
|
of X as N goes to infinityู limit E n of X as n |
|
|
|
511 |
|
00:42:20,430 --> 00:42:25,350 |
|
goes to infinity ูู ุนุจุงุฑุฉ ุนู ู
ูู ูููุง ุนูู E of X |
|
|
|
512 |
|
00:42:25,350 --> 00:42:31,350 |
|
ุฅุฐุง ุตุงุฑุช 1 ุฒุงุฆุฏ X strictly ุฃุตุบุฑ ู
ู E of X ุฃู E of |
|
|
|
513 |
|
00:42:31,350 --> 00:42:39,850 |
|
X ุฃูุจุฑ strictly ู
ู 1 ุฒุงุฆุฏ Xุทูุจ ููุฌู ุงููู ูู ูุซุจุช |
|
|
|
514 |
|
00:42:39,850 --> 00:42:45,310 |
|
ุงูู uniqueness ููุฏุงูุฉ ุงููู ุฃุซุจุชูุง ูุฌูุฏูุง ุงูุขู ุฅุฐุง |
|
|
|
515 |
|
00:42:45,310 --> 00:42:51,290 |
|
ุฃุซุจุชูุง ูุฌูุฏ ุฏุงูุฉ ุณู
ููุงูุง E of X ูุฐู ุงูุฏุงูุฉ ุชุญูู |
|
|
|
516 |
|
00:42:51,290 --> 00:43:01,390 |
|
ุงูุดุฑุทูู ุงููู ูููุงูู ุงููู ูู E of E primeof X ุจุณุงูู |
|
|
|
517 |
|
00:43:01,390 --> 00:43:07,430 |
|
E of X ููู X element in R ุงูุดุฑุท ุงูุฃูู ูุงูุดุฑุท |
|
|
|
518 |
|
00:43:07,430 --> 00:43:14,350 |
|
ุงูุชุงูู ุงููู ูู E of Zero ุจุชุณุงูู ุฅูุงุด ูุงุญุฏ ุงูุขู ูุฐู |
|
|
|
519 |
|
00:43:14,350 --> 00:43:17,390 |
|
ุงูุดุฑุท ุฏู ุงููู ุฃูุจุฑูุง ูุฌูุฏูุง ููุชุจุช ุฅููุง ุฅูุงุด ูุญูุฏุฉ |
|
|
|
520 |
|
00:43:17,700 --> 00:43:22,860 |
|
ุงูุฃู ุงูู function E ู
ู R ูู R that satisfies I and |
|
|
|
521 |
|
00:43:22,860 --> 00:43:29,200 |
|
I I ููุฐุง of theorem 8.3.1 is unique ุฅุฐุง ู
ุง ููุง ูุฐู |
|
|
|
522 |
|
00:43:29,200 --> 00:43:32,940 |
|
ุงูุฏุงูุฉ ูุญูุฏุฉ ููุดูู ููู ูุซุจุช ูุญูุฏุฉ ุทุจุนุง ุงูุชูุง |
|
|
|
523 |
|
00:43:32,940 --> 00:43:36,140 |
|
ุนุงุฑููู ุงู .. ุงูุงุณุชุฑุงุชูุฌูุฉ ุชุซุจุช ุงููุง ูุญูุฏุฉ ูููุชุฑุถ |
|
|
|
524 |
|
00:43:36,140 --> 00:43:39,340 |
|
ุงู ูู ุฏุงูุชูู ููู ุงูุขุฎุฑ ูุง ุจูุณุฃู ูุชูุงูุถ ุฃู ุจูุณุฃู |
|
|
|
525 |
|
00:43:39,340 --> 00:43:43,260 |
|
ูุฅู ุงูุฏุงูุชูู ุฅุดู
ุงููู
ู
ุชุณุงููุชูู ุฎูููุง ูุดูู |
|
|
|
526 |
|
00:43:47,010 --> 00:43:52,110 |
|
ูุฃู let E1 and E2 be two functions on R ู
ุงุดู ุงูุญุงู |
|
|
|
527 |
|
00:43:52,110 --> 00:43:59,470 |
|
E1 ูE2 ุนุจุงุฑุฉ ุนู ุฏุงูุชูู ู
ู R ูR ุชุญูููุงู ุงูุจุฑู ุจุงุฑุชุฒ |
|
|
|
528 |
|
00:43:59,470 --> 00:44:03,010 |
|
I and I I of T ูุงูู
ุชู
ูู ูู ุชูุงุชุฉ ูุงุญุฏ ุงููู ูุชุจู ุงู |
|
|
|
529 |
|
00:44:03,010 --> 00:44:08,700 |
|
ุงูุง ุนูู ุงูุฌูุจ ููุงูุงูุงู ู ุฎููููุง ูุณู
ู E1-E2 ูุชุณุงูู |
|
|
|
530 |
|
00:44:08,700 --> 00:44:14,840 |
|
F ุฑุงูุญูู
ุจุงุชุฌุงูุฉ F ูุชุณุงูู 0 ุฅุฐุง ุฃุซุจุชูุง F ูุชุณุงูู 0 |
|
|
|
531 |
|
00:44:14,840 --> 00:44:21,630 |
|
ุฅุฐุง ุณูุตุจุญ E1 ูุชุณุงูู E2 ูููู ุฎูุตูุงุทูุจ then ูุถูู ูุฐู |
|
|
|
532 |
|
00:44:21,630 --> 00:44:24,510 |
|
.. ูุถูู ูุฐู ูุฃู ูุฐุง ูุจู ุงูุชูุงุถู ู ูุฐุง ูุจู ุงูุชูุงุถู |
|
|
|
533 |
|
00:44:24,510 --> 00:44:27,350 |
|
ุฅุฐุง F prime of X ุจูุณุงูู E1 prime of X ูุงูุต E2 |
|
|
|
534 |
|
00:44:27,350 --> 00:44:32,230 |
|
prime of X E1 prime of X ุฅูุด ูุชุณุงูู ุงููู ูู ููุณูุง |
|
|
|
535 |
|
00:44:32,230 --> 00:44:35,730 |
|
ูุฃู ู
ูุชุฑุถูู ุงุญูุง ู E2 prime of X ุจุฑุถู ูุชุณุงูู ููุณูุง |
|
|
|
536 |
|
00:44:35,730 --> 00:44:39,770 |
|
ุฅุฐุง E1 ูุงูุต E2 ูุนูู ู
ูู ุจูุณุงูู F ูุนูู ุตุงุฑุช F prime |
|
|
|
537 |
|
00:44:39,770 --> 00:44:44,610 |
|
ุชุจุนุชูุง ู
ูู ูู ุจูุณุงูู F of X ููู X element ุงูู
ูู |
|
|
|
538 |
|
00:44:44,610 --> 00:44:50,090 |
|
ุฅูุง ุงุญุณุจ ุงููู ุฏู ุฅูุด ูุง ุฌู
ุงุนุฉ ุงุญุณุจ ูููู F ูู ุตูุฑุฃู |
|
|
|
539 |
|
00:44:50,090 --> 00:44:53,350 |
|
ุงู ุตูุฑ ุจูุณุงูู ุง ูุงุญุฏ ุงู ุตูุฑ ูุงูุต ุงุชููู ุงู ุตูุฑ ุง |
|
|
|
540 |
|
00:44:53,350 --> 00:44:56,710 |
|
ูุงุญุฏ ุงู ุตูุฑ ูุงุญุฏ ู ุงุชููู ุงู ุตูุฑ ุจุฑุถู ุงุด ุจุชุณุงูู |
|
|
|
541 |
|
00:44:56,710 --> 00:44:59,510 |
|
ูุงุญุฏ ูุฅู ู
ูุชุฑุถูู ุง ูุงุญุฏ ู ุงุชููู ุจุชุญูู ุงููู ูู |
|
|
|
542 |
|
00:44:59,510 --> 00:45:02,970 |
|
ุงูุดุทู ุงูุฃู
ุงู
ูุง ุฅุฐุง ุจูุณุงูู ูุงุญุฏ ูุงูุต ูุงุญุฏ ู ุงู ุณุงูู |
|
|
|
543 |
|
00:45:02,970 --> 00:45:04,350 |
|
ุงุด ุตูุฑ |
|
|
|
544 |
|
00:45:07,320 --> 00:45:13,380 |
|
by induction f double prime ูุชุณุงูู f ููุณูุง f |
|
|
|
545 |
|
00:45:13,380 --> 00:45:18,060 |
|
triple ุจุชุณุงูู f ููุณูุง fn of x ุจูุณุงูู f of x ูุนู
ูุช |
|
|
|
546 |
|
00:45:18,060 --> 00:45:21,920 |
|
ูุจู ุจุดููุฉ ูุงุญุฏุฉ ุฒููุง ุฅุฐุง by induction fn of x |
|
|
|
547 |
|
00:45:21,920 --> 00:45:28,280 |
|
ุจูุณุงูู f of x ููู x element in R ุฅุฐุง ุญููุช ุงูุขู f |
|
|
|
548 |
|
00:45:28,280 --> 00:45:34,500 |
|
of 0 ุจูุณุงูู 0 ู fn of x ุจูุณุงูู ู
ููุ f of x ุดูู |
|
|
|
549 |
|
00:45:34,500 --> 00:45:42,870 |
|
ุงูุขูุฃุฐุง ุตุงุฑ ุนูุฏู F of Zero ุจุณุงูู Zero ุฃู F |
|
|
|
550 |
|
00:46:10,090 --> 00:46:17,830 |
|
ุจุณุงูุฉ 0ุทุจ ุงูุด ุนูุงูุชูุง ุงุจููุง ุงูุฌูุช ุจุชุดูู ุนุดุงู ุจุฏูุง |
|
|
|
551 |
|
00:46:17,830 --> 00:46:20,690 |
|
ูุทุจู ุงููู ูู taylor's theorem ุชุจุนุช ุงู derivative |
|
|
|
552 |
|
00:46:20,690 --> 00:46:25,930 |
|
ูุต ุงููู ุงููู ุจุฏูุง ูุนูู ุจุฑูุงู ุญูู let x element in |
|
|
|
553 |
|
00:46:25,930 --> 00:46:29,550 |
|
R be arbitrary ุฃุฎุฏูุง ุฅุฐุง x element in R arbitrary |
|
|
|
554 |
|
00:46:29,550 --> 00:46:33,810 |
|
x ุงููู ูุนูู let I x be the closed interval with |
|
|
|
555 |
|
00:46:33,810 --> 00:46:40,760 |
|
end point 0x ูุนูู I xููุงุฎุฏูุง ุจุชุณุงูู 0 ู X ุฃู ุงููู |
|
|
|
556 |
|
00:46:40,760 --> 00:46:47,080 |
|
ูู X ู 0 ุนูู .. ุนูู ุงููู ูู ุงููู ูู ุญุณุจ X ุงููู ูู |
|
|
|
557 |
|
00:46:47,080 --> 00:46:51,980 |
|
ุณุงูุจุฉ ุฃู ู
ุฌุจุฉ ุฅุฐุง ุฃุฎุฏูุง ุงู I X ุนุจุงุฑุฉ ุนู ุงููู ูู ุงู |
|
|
|
558 |
|
00:46:51,980 --> 00:46:56,600 |
|
closed interval ุงููู within point 0 X ุงูุขู F is |
|
|
|
559 |
|
00:46:56,600 --> 00:47:01,020 |
|
continuous on I Xุนูู ุงูู closed interval ู
ุฏุงู
|
|
|
|
560 |
|
00:47:01,020 --> 00:47:03,320 |
|
continuous ุนูู closed interval and function that |
|
|
|
561 |
|
00:47:03,320 --> 00:47:06,460 |
|
is continuous ุนูู closed interval then it is |
|
|
|
562 |
|
00:47:06,460 --> 00:47:09,200 |
|
bounded on this interval ูุนูู ุจู
ุนูู ุฃุฎุฑ there |
|
|
|
563 |
|
00:47:09,200 --> 00:47:12,880 |
|
exist k ุจุญูุซ ุฃู absolute value of f of t ุฃุตุบุฑ ุฃู |
|
|
|
564 |
|
00:47:12,880 --> 00:47:17,960 |
|
ูุณุงูู k for all t element in I X ูุนูู f is bounded |
|
|
|
565 |
|
00:47:17,960 --> 00:47:23,580 |
|
on this intervalุงูุงู ุจุฏูุง ูุทุจู if we apply |
|
|
|
566 |
|
00:47:23,580 --> 00:47:27,540 |
|
taylor's theorem 6 4 1 to F ุจุฏูุง ูุทุจููุง ุนูู |
|
|
|
567 |
|
00:47:27,540 --> 00:47:31,800 |
|
ุงูููุทุชูู ุงูููุทุฉ ุงูุฃููู ุงููู ูู ุงู X X ู X naught 0 |
|
|
|
568 |
|
00:47:31,800 --> 00:47:35,640 |
|
ูุนูู ุจูุทุจููุง ุนูู ู
ูู ุงููู ูู X X ุงููู ูู ุทุจุนุง |
|
|
|
569 |
|
00:47:35,640 --> 00:47:41,370 |
|
ุงูุชูุง ู
ุชุฐูุฑูู F of Xุฃู of X ุชููุฑ ุณููุฑูู
there |
|
|
|
570 |
|
00:47:41,370 --> 00:47:46,370 |
|
exists C in ุงููู ูู ุงู interval ู
ุซูุง X not ู X |
|
|
|
571 |
|
00:47:46,370 --> 00:47:52,690 |
|
such that F of X ุจูุณุงูู ุงููู ูู F of X not ุฒุงุฆุฏ F |
|
|
|
572 |
|
00:47:52,690 --> 00:47:58,490 |
|
prime of X not ุนูู ูุงุญุฏ factorial ูู X minus X not |
|
|
|
573 |
|
00:47:58,490 --> 00:48:05,910 |
|
ุฒุงุฆุฏ ุฒุงุฆุฏ Fn of x0 ุนูู n factorial ูู x minus x0 |
|
|
|
574 |
|
00:48:05,910 --> 00:48:11,610 |
|
ุงููููุณ n ุฒุงุฆุฏ ุงู remainder ุงููู ูู fn ุฒุงุฆุฏ ูุงุญุฏ of |
|
|
|
575 |
|
00:48:11,610 --> 00:48:15,730 |
|
ุงููู ูู ุงู c ุงููู ูุงุฌููุงูุง there exists c ุงููู ูู |
|
|
|
576 |
|
00:48:15,730 --> 00:48:19,170 |
|
of c ุทุจุนุง ุงู c ููุง ูุชุนุชู
ุฏ ุนูู ุงู n ุงููู ุงุญูุง |
|
|
|
577 |
|
00:48:19,170 --> 00:48:24,850 |
|
ุงุฎุชุงุฑูุงูุง ูุงุดุชุบููุง ุนูููุง ูู ู
ุณู
ููุง cn ุนูู ุงููู ูู |
|
|
|
578 |
|
00:48:24,850 --> 00:48:28,670 |
|
n ุฒุงุฆุฏ ูุงุญุฏ factorial ูู x |
|
|
|
579 |
|
00:48:33,180 --> 00:48:37,920 |
|
ุงูู N ูู |
|
|
|
580 |
|
00:48:37,920 --> 00:48:42,580 |
|
ู
ุง ุฎุฏูุง ูุนูุฏ ู
ูู ุจุฏู ู
ุง ูู remainder N ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
581 |
|
00:48:42,580 --> 00:48:45,880 |
|
ูุณู
ูู remainder N ููุณ ุงูุดูุก ู
ุงููุด ู
ุดููุฉ ุงุญูุง |
|
|
|
582 |
|
00:48:45,880 --> 00:48:51,880 |
|
ูู
ููุงูุง ูุนูู ุจุฏู ู
ุง ุงุดุชุบู ุนูู N ุฒู ู
ุง ุงุดุชุบู ุนูู N |
|
|
|
583 |
|
00:48:51,880 --> 00:48:54,460 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุงุดุชุบู ุนูู ุงู N ูู ุงู
ุง ูู ุงู Taylor's |
|
|
|
584 |
|
00:48:54,460 --> 00:48:59,460 |
|
theorem ุทูุจ ุงูู
ูู
ุงูุชุจููุง ุนู ุฏูููุจู Taylor's |
|
|
|
585 |
|
00:48:59,460 --> 00:49:03,580 |
|
theorem ุนูู ุงู interval Ix ุงููู X0 ุจูุณุงูู 0 |
|
|
|
586 |
|
00:49:03,580 --> 00:49:08,040 |
|
ูุฎููููุง ูุณุชุฎุฏู
Fk of 0 ุงููู ูุชุจุชูุง ููุงู ุงููู ูู |
|
|
|
587 |
|
00:49:08,040 --> 00:49:12,020 |
|
ูุชุณุงูู Fk of 0 ูุชุณุงูู 0 ุฏุงูู
ุง ุงููู ูู ู ููู k |
|
|
|
588 |
|
00:49:12,020 --> 00:49:15,740 |
|
element n it follows thatfor each n unlimited on |
|
|
|
589 |
|
00:49:15,740 --> 00:49:20,000 |
|
there exist a point cn unlimited on x ูุฐู ุงููู ูู |
|
|
|
590 |
|
00:49:20,000 --> 00:49:23,920 |
|
ุงู cn ุจุชุนุชู
ุฏ ุนูู ู
ูู ุนูู n ูุนูู ุงูุฃู ูู ุฃุฎุฏุช ุจุจุฏู |
|
|
|
591 |
|
00:49:23,920 --> 00:49:28,860 |
|
ุงููู ููุง ุนูู ุงููู ูู on ุจุชุณุงูู ู
ุซูุง ุงุชููู ุฃุฎุฏ on |
|
|
|
592 |
|
00:49:28,860 --> 00:49:31,660 |
|
ุจุชุณุงูู ุชูุชุฉ ุฃุฎุฏ ุจุชุณุงูู on ุจุชุณุงูู ุฃุฑุจุนุฉ ุฏู ูุชุฎุชูู |
|
|
|
593 |
|
00:49:31,660 --> 00:49:35,740 |
|
ู
ู ุงู cn ุงููู ุจููุงูููุง such that f of x ุจูุณุงูู f |
|
|
|
594 |
|
00:49:35,740 --> 00:49:39,420 |
|
of zero ุฒูุฏ f prime of zero ุนูู ูุงุญุฏ factorial ูู |
|
|
|
595 |
|
00:49:39,420 --> 00:49:44,390 |
|
xุทุจุนุงู ููุต ุตูุฑ X ูุชุธููุง ุฒุงุฆุฏ FN ููุต ูุงุญุฏ ูุฃู ููุต |
|
|
|
596 |
|
00:49:44,390 --> 00:49:47,630 |
|
ูุงุญุฏ factorial ูู X minus X note ุงููู ูู ุตูุฑ ุทุจุนุงู |
|
|
|
597 |
|
00:49:47,630 --> 00:49:52,830 |
|
ูุชุตูุฑ X ููุต ูุงุญุฏ ุฒุงุฆุฏ FN of CN ุนูู N factorial X |
|
|
|
598 |
|
00:49:52,830 --> 00:49:56,530 |
|
ุฃุซู ูุนูู ููุง ูุงุฎุฏ ุงู remainder ุงููู ูู RN ู
ุด RN |
|
|
|
599 |
|
00:49:56,530 --> 00:50:01,410 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุฒู ู
ุง ูุนู
ูู ุทุจุนุงู ู
ุงุชูุฑุฌุดุจุชุฒูุฏู ู ุจุชุดุชุบู |
|
|
|
600 |
|
00:50:01,410 --> 00:50:04,910 |
|
ุนููู ููุณ ุงูุงุดู ุงูุงู ุจุณ ุงู cn ุงููู ุจุชุฎุชูู ู
ู n ุฒุงุฆุฏ |
|
|
|
601 |
|
00:50:04,910 --> 00:50:07,650 |
|
ูุงุญุฏ ุจุตูุฑ cn ุฒุงุฆุฏ ูุงุญุฏ ู
ุซูุง ูุฃูู ุญุงุฌุฉ ุชุงููุฉ ู
ู
ูู |
|
|
|
602 |
|
00:50:07,650 --> 00:50:11,290 |
|
ุชูุฌู ุบูุฑ ุงู cn ุงููู ูุงุฌููุงูุง ุญุณุจ ุงููุธุฑูุฉ ู ูุณุงูู |
|
|
|
603 |
|
00:50:11,290 --> 00:50:16,350 |
|
ูุฃู ูู ูุฏูู ุงูุชุงุฑูุฌ ุฒู ุดู
ุงู ูู ุงูุตูุงุฑ ูุฅูู fk of |
|
|
|
604 |
|
00:50:16,350 --> 00:50:21,290 |
|
00 ุฅุฐุง ูุฐุง ุณูุฑ ููุฐุง ุณูุฑ ุทุจุนุง ูุฐุง ุนูุฏ ู
ูู ู
ุญุณุจ ุนูุฏ |
|
|
|
605 |
|
00:50:21,290 --> 00:50:25,800 |
|
ุงูุณูุฑ ููุฐุง ุนูุฏ ุงูุณูุฑ ุฅูู ุขุฎุฑูุฅุฐุง ูู ูุฐูู ููููู |
|
|
|
606 |
|
00:50:25,800 --> 00:50:30,700 |
|
ุงูุตูุงุฑ ููุธู ุนูุฏู ุจุณ ุงูููู
ุฉ ูุฐู ุงูุด ุงูููู
ุฉ ูุฐู ุงููู |
|
|
|
607 |
|
00:50:30,700 --> 00:50:35,320 |
|
ูู fn of cn ุทุจูุนู ูุชููู f of min of cn ูุฃูู ุงุญูุง |
|
|
|
608 |
|
00:50:35,320 --> 00:50:41,070 |
|
ุนุฑููุง ุงูู ุงู derivative f primeุฃู ุฏุงุจู ุจุฑุงูู
ุฃู |
|
|
|
609 |
|
00:50:41,070 --> 00:50:45,710 |
|
ุชุฑูุจู ูู ููุงุด ุจูุณุงูู ุงูุฃู ุฅุฐุง ุญูููู ุฃู of CN ุนูู N |
|
|
|
610 |
|
00:50:45,710 --> 00:50:50,710 |
|
ูููุชูุฑูุงู ูู X ุฃูุณ N ุฅุฐุง ูุตููุง ูู ุงูุขู ุฃูู ุจุนุฏ ู
ุง |
|
|
|
611 |
|
00:50:50,710 --> 00:50:57,170 |
|
ุทุจููุง Taylor's theorem ุทูุน ุนูุฏู ุงูุขู F of X ูุฐู |
|
|
|
612 |
|
00:50:57,170 --> 00:51:04,710 |
|
ุงููู ุจูุตุจู ุฅูู ุฃู ูุซุจุชูุง ุจุชุณุงูู ุตูุฑ ุทูุนุช ุนูุฏู F of |
|
|
|
613 |
|
00:51:04,710 --> 00:51:10,230 |
|
X ุจูุณุงูู F of CN ุนูู N ูููุชูุฑูุงู ูู X ุฃูุณ Nุงูุงู ุฎุฏ |
|
|
|
614 |
|
00:51:10,230 --> 00:51:14,510 |
|
ูู absolute value ููุง absolute value ูู F of X |
|
|
|
615 |
|
00:51:14,510 --> 00:51:20,090 |
|
ููุตูุฑ ุงุตุบุฑ ุงู ูุณุงูู ุงู absolute value ุงู ุจูุณุงูู |
|
|
|
616 |
|
00:51:20,090 --> 00:51:26,870 |
|
ุจุงูุธุจุท absolute value F of C N ูุงู absolute value |
|
|
|
617 |
|
00:51:27,400 --> 00:51:33,440 |
|
ููู X ุฃูุณ N ุนูู N ููุชูุฑูุงูุ ู
ุธุจูุทุ ููู F of C N |
|
|
|
618 |
|
00:51:33,440 --> 00:51:37,200 |
|
ูุฐู is .. ุงูู F is bounded ุนูู ุงููุชุฑุฉ ุงููู ูุฌููุงูุง |
|
|
|
619 |
|
00:51:37,200 --> 00:51:40,180 |
|
ุงููู ูู ุงููุชุฑุฉ ุงููู
ูู ุงููู ููุช ุนููุง ุงููู ูู ุงูู I |
|
|
|
620 |
|
00:51:40,180 --> 00:51:44,380 |
|
X ู
ุฏุงู bounded ูููุง ูุฐู ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู K ุฅุฐุง |
|
|
|
621 |
|
00:51:44,380 --> 00:51:47,380 |
|
ูุฐู ุจูุตูุฑ ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู K ูู ุงู absolute value |
|
|
|
622 |
|
00:51:47,380 --> 00:51:52,750 |
|
X ุฃุณ N ุนูู N ููุชูุฑูุงู ููุฌู ุงูุขููุฐู as n goes to |
|
|
|
623 |
|
00:51:52,750 --> 00:51:56,770 |
|
infinity ูุฐู independent of n ูุฐู ุฃูุจุฑู ูุณุงูู ุณูุฑ |
|
|
|
624 |
|
00:51:56,770 --> 00:51:59,430 |
|
ู ุฃุตุบุฑู ูุณุงูู ูุฐู as n goes to infinity ูุฐู ุจุชุฑูุญ |
|
|
|
625 |
|
00:51:59,430 --> 00:52:05,590 |
|
ููุณูุฑ ุฅุฐุง ูุฐู ุจุชุฑูุญ ุฃุดู
ุงููุง ุจุฏูุง ุชุตูุฑ f of x ุชุณุงูู |
|
|
|
626 |
|
00:52:05,590 --> 00:52:11,230 |
|
ุงูุณูุฑ ูู
ูู ุงู E1 ุจุชุณุงูู ุงู E2 ูุฃู f ุจุชุณุงูู E1 ูุงูุต |
|
|
|
627 |
|
00:52:11,230 --> 00:52:17,350 |
|
Eุฅุชููู ููู ุงูู
ุทููุจ ููุฐุง ุงูููุงู
ุตุญูุญ ููู X element |
|
|
|
628 |
|
00:52:17,350 --> 00:52:25,050 |
|
in R ูุฃู X ุงููู ุฃุฎุฏูุงูุง arbitrary element in R ููู |
|
|
|
629 |
|
00:52:25,050 --> 00:52:31,990 |
|
ุจูููู ุฃุซุจุชูุง ูุฌูุฏ ุงู E ูุงุญุฏ ุงู E ุงูุชู ุชุญูู ุงูุดุฑุทูู |
|
|
|
630 |
|
00:52:31,990 --> 00:52:38,590 |
|
ุงููู ุนูุฏูุง ููู ููุณ ุงูููุช ุฃุซุจุชูุง ุฃู ูุฐู ุงูุฏุงูุฉ ุงููู |
|
|
|
631 |
|
00:52:38,590 --> 00:52:46,680 |
|
ุจุชุญูู ุงูุดุฑุทูููู ุฏุงูุฉ ูุญูุฏุฉู
ุฏุงู
ุงูุฏุงูุฉ ูุงุญุฏุฉ ุฅุฐู |
|
|
|
632 |
|
00:52:46,680 --> 00:52:53,280 |
|
ุงูุขู ูุนูู ุดุฑูุนูุง ุฅูู ูุนุทููุง ุงุณู
ุฅูู ููุฏุฑ ูุนุฑู |
|
|
|
633 |
|
00:52:53,280 --> 00:52:59,200 |
|
ุงูุฏุงูุฉ ุงููู ุจุชุญูู ูุฐูู ุงูุดุฑุทูู ุฅููุง ุงุณู
ูุง ูุฐุง the |
|
|
|
634 |
|
00:52:59,200 --> 00:53:02,660 |
|
unique definition ุซู
ุงููุฉ ุชูุงุชุฉ ุฎู
ุณุฉ the unique |
|
|
|
635 |
|
00:53:02,660 --> 00:53:06,140 |
|
function E ู
ู R ูR such that E prime of X ูู ุณูุก E |
|
|
|
636 |
|
00:53:06,140 --> 00:53:10,120 |
|
of X for all X elements in R ูุชุญูู ุงู E ุฒูุฑู |
|
|
|
637 |
|
00:53:10,120 --> 00:53:15,190 |
|
ุจุงูุณูุก ูุงุญุฏ ู
ูุฌูุฏุฉููุญูุฏุฉ ุฅุฐุง ุจุญู ุงููู ุฃููู is |
|
|
|
638 |
|
00:53:15,190 --> 00:53:18,450 |
|
called the exponential function ููู ุงูู |
|
|
|
639 |
|
00:53:18,450 --> 00:53:22,350 |
|
exponential ุงููู ุฃูุชูุง ู
ุจุณูุทูู ุนูููุง ู ุจุชุณุชุฎุฏู
ููุง |
|
|
|
640 |
|
00:53:22,350 --> 00:53:27,530 |
|
ุฃุซุจุชูุง ุงูุขู ู
ู ุฎูุงู ุงููู ูู ุงููู ูู ุงูุชุฑุชูุจ ุงููู |
|
|
|
641 |
|
00:53:27,530 --> 00:53:31,690 |
|
ุฑุชุจูุงู ูู ุงูู
ุงุฏุฉ differentiability integrability ู |
|
|
|
642 |
|
00:53:31,690 --> 00:53:36,350 |
|
ุจุนุฏูู ุงููู ูู sequences of functions ูุตููุง ุฅูู |
|
|
|
643 |
|
00:53:36,350 --> 00:53:41,190 |
|
ุงููู ูู ุงู exponential ูุฐู function existsุงูุชู |
|
|
|
644 |
|
00:53:41,190 --> 00:53:43,850 |
|
ุณู
ูุงูุง ุงูู Exponential Function |
|
|
|
645 |
|
00:53:48,710 --> 00:53:53,850 |
|
ุจุฏูุง ูุณู
ู ุงูู E of ูุงุญุฏ ููู
ุฉ ุงูุฏุงูุฉ ุงูููู
ุฉ ุงูุฏุงูุฉ |
|
|
|
646 |
|
00:53:53,850 --> 00:53:58,650 |
|
ุงูู E ูุฐู ุนูุฏ ุงููุงุญุฏ ุจุฏูุง ูุณู
ููุง E E ู ูุฐุง ุงููู |
|
|
|
647 |
|
00:53:58,650 --> 00:54:04,410 |
|
ุจูุณู
ูู Ehlers number ู ุงุญูุง ูุนูู ุจุนุฏ ููู ููุตูุฑ |
|
|
|
648 |
|
00:54:04,410 --> 00:54:09,410 |
|
ุนูุฏู ุงููู ูู ุงูุฑู
ุฒ E of X ุงู ูู ุงู exponential X |
|
|
|
649 |
|
00:54:09,410 --> 00:54:15,710 |
|
ุงู ุฃุณูููุง ูู ุงูุงุณุชุฎุฏุงู
ุงู E of X ุงูุด ูุชุณุงููุงูู E X |
|
|
|
650 |
|
00:54:15,710 --> 00:54:21,530 |
|
ูุฐุง ุงูู E ูุงุญุฏ ููู
ุฉ ุงูุฏุงูุฉ ุนูุฏ ู
ูู ุนูุฏ ุงููู ูู |
|
|
|
651 |
|
00:54:21,530 --> 00:54:26,750 |
|
ุงูุฑูู
ูุงุญุฏ ุณู
ูุงูุง E ู
ุงุดู ุงูุญุงูุฉ ุงูุงู E of X |
|
|
|
652 |
|
00:54:26,750 --> 00:54:32,610 |
|
ุจุงูุณุงูู E to the X ูุฐู ุนุจุงุฑุฉ ุนู ุงููู ูู ุงูุฏุงูุฉ E |
|
|
|
653 |
|
00:54:32,610 --> 00:54:37,550 |
|
of X ุจุงูุณุงูู X notation ููุง ููู ุจุนุฏ ุดููุฉ ูููุงูู ุงู |
|
|
|
654 |
|
00:54:37,550 --> 00:54:42,310 |
|
notation consistent of ุงููู ูู ู
ุน ู
ูู ู
ุน ุงููู ูู |
|
|
|
655 |
|
00:54:42,310 --> 00:54:47,480 |
|
ุงู exponentูุนูู ููุตูุฑ ุงูู E to the exponent X ูู |
|
|
|
656 |
|
00:54:47,480 --> 00:54:51,960 |
|
ุนุจุงุฑุฉ ุนู ุจุงูุธุจุท ุงููู ูู ููู
ุฉ ุงูู E of X ูุฃู ุงูู E |
|
|
|
657 |
|
00:54:51,960 --> 00:54:54,620 |
|
of X ุจูุณุงูู E to the X ู ุงู E of ูุงุญุฏ ุจูุณุงูู E |
|
|
|
658 |
|
00:54:54,620 --> 00:54:59,440 |
|
ูุงุญุฏ ุจูุตูุฑ ุนูุฏู E ูู
ุง ุฃุฑูุญูุง ููููุฉ X ูุทูุน ููู
ุชูุง |
|
|
|
659 |
|
00:54:59,440 --> 00:55:05,840 |
|
ูู ุนุจุงุฑุฉ ุนู ุงููู ูู ููู
ุฉ ุฏู E of X ุญุณุจ ุงููู ุงุญูุง |
|
|
|
660 |
|
00:55:05,840 --> 00:55:11,550 |
|
ู
ุนุฑูููู ููุงูุนูู ู
ู ุงูุฅุญุณุงุจุงุช ูู
ู ุชุนุฑูููุง ููุฏุงูุฉ |
|
|
|
661 |
|
00:55:11,550 --> 00:55:23,070 |
|
ููููู ููู consistent it is consistent ูู ุงูุญุงูุชูู |
|
|
|
662 |
|
00:55:23,070 --> 00:55:28,990 |
|
ุทูุจูุฌู ุงูุขู ูู
ุง ุงูููุงู
ูุฐุง ุงู number E can be |
|
|
|
663 |
|
00:55:28,990 --> 00:55:32,570 |
|
obtained as a limit and thereby approximated in |
|
|
|
664 |
|
00:55:32,570 --> 00:55:36,410 |
|
several different ways ุทุจูุนุง ุงุญูุง ู
ุงุฏุงู
ุนูุฏู ุงููู |
|
|
|
665 |
|
00:55:36,410 --> 00:55:42,990 |
|
ูู ุนุจุงุฑุฉ ุนู limit ูู E N of Xุงููู ูู ุจุชุทูุน ุนูุฏู |
|
|
|
666 |
|
00:55:42,990 --> 00:55:47,450 |
|
limit ุนูุฏ ุงู .. ุงู .. ุงู .. ุงู end of ูุงุญุฏ ูุฃููุง |
|
|
|
667 |
|
00:55:47,450 --> 00:55:52,130 |
|
continuous ุจุตูุฑ ุนูุฏู ู
ุฏุงู
limit ุฅุฐุง ุจุตูุฑ ุฃูุฏุฑ ุฃูุฑุจ |
|
|
|
668 |
|
00:55:52,130 --> 00:55:56,490 |
|
ูุฐู ุงูููู
ุฉ ุงููู ูู ู ูุญุตู ุนูู ููู
ุฉ ุชูุฑูุจูุฉ ุจุงู E ู |
|
|
|
669 |
|
00:55:56,490 --> 00:56:00,010 |
|
ูุฐุง ู
ุด ุดุบููุง ุดุบู ุชุจุนูู ุงููู ูู numerical analysis |
|
|
|
670 |
|
00:56:00,010 --> 00:56:05,530 |
|
ุฃู ุงููุงุณ ุงููู ุจุฏุฃุช .. ุงููู ูู ุชุดุชุบู ูู ุงูุชูุฑูุจ ุฃู |
|
|
|
671 |
|
00:56:05,530 --> 00:56:09,270 |
|
ู
ุด ุดุบู ููุงูู ูุนูู ุจุตุฏูุฅูู ุฃู ุงูู use of notation E |
|
|
|
672 |
|
00:56:09,270 --> 00:56:15,050 |
|
ู X of E X ุฒู ู
ุง ูููุง ููู ุชู
ุงู
ุชู
ุงู
consistent ุฅูู |
|
|
|
673 |
|
00:56:15,050 --> 00:56:19,910 |
|
ุฃู ูุฌู ุงููู ูู ูุจุนุถ ุงูุฎูุงุต ุงูุฃุฎุฑู ููุฐู ุงููู ูู |
|
|
|
674 |
|
00:56:19,910 --> 00:56:24,130 |
|
ุงูุฏุงูุฉ ุฅูู ุฃู ุงูู exponential function satisfies |
|
|
|
675 |
|
00:56:24,130 --> 00:56:26,150 |
|
the following properties |
|
|
|
676 |
|
00:56:32,620 --> 00:56:35,960 |
|
ุฃูู ุญุงุฌุฉ ุฃู ุงูู E of X ูุง ุชุณุงูู ุณูุฑ ููู X element |
|
|
|
677 |
|
00:56:35,960 --> 00:56:40,140 |
|
in R ูู ุฃูู ุญุงุฌุฉ ุฃู ูุฐู ุงูุฏุงูุฉ ุฏุงูู
ุง ูุง ุชุณุงูู ุณูุฑ |
|
|
|
678 |
|
00:56:40,140 --> 00:56:45,980 |
|
ุทุจุนุง ุดุบุงูุฉ ุนูู R E of X ุฒู Y ุจุณูุก E of X ูู E of Y |
|
|
|
679 |
|
00:56:45,980 --> 00:56:50,880 |
|
for all X element .. Y element in R ุงูุขู E of R |
|
|
|
680 |
|
00:56:50,880 --> 00:56:56,080 |
|
ููุง ุงููู ูู E of R ููู
ุฉ ุงูู function ูุฐู ูุชุทูุน ููุง |
|
|
|
681 |
|
00:56:56,080 --> 00:57:00,260 |
|
ุจุงูุธุจุทูู ุนุจุงุฑุฉ ุนู ุงูู E ุงููู ูููุง ุนููุง ุงูุฑูู
ุงููู |
|
|
|
682 |
|
00:57:00,260 --> 00:57:06,000 |
|
ูุจู ู ุดููุฉ ูู
ุง ูุฑูุน ููููุฉ R ูุจุตูุฑ ุงูุงู consistency |
|
|
|
683 |
|
00:57:06,000 --> 00:57:11,440 |
|
between the definition of the exponential and the |
|
|
|
684 |
|
00:57:11,440 --> 00:57:15,700 |
|
exponent of E to the power R ุจุณ ูุฐู ุงูู R ุฅูุด ุงููู |
|
|
|
685 |
|
00:57:15,700 --> 00:57:21,880 |
|
ู
ู ุงูููุ NQ ูุงู ู
ุงุดู ุงูุญุงูุฉ ุฏู ูุดูู ูุจุฑูู ุงููู ูู |
|
|
|
686 |
|
00:57:21,880 --> 00:57:27,390 |
|
ุงูุฃููู by contradictionุจุฏู ุงูุชุฑุถ ุงูู ูู ุนูุฏู E of |
|
|
|
687 |
|
00:57:27,390 --> 00:57:31,930 |
|
ฮฑ for some ฮฑ element in R ูุงูู E of ฮฑ ุงูุด ุชุณุงูู |
|
|
|
688 |
|
00:57:31,930 --> 00:57:35,870 |
|
ุชุณุงูู ุณูุฑ ูููุตู ูcontradiction ูุงู suppose that |
|
|
|
689 |
|
00:57:35,870 --> 00:57:39,550 |
|
there exists ฮฑ element in R such that E of ฮฑ ุงูุด |
|
|
|
690 |
|
00:57:39,550 --> 00:57:44,750 |
|
ุจุณุงูู ุจุณุงูู ุณูุฑุงูุขู and let G ฮฑ be the closed |
|
|
|
691 |
|
00:57:44,750 --> 00:57:49,710 |
|
interval with endpoints mean ฮฑ ู 0 ูุนูู ุงูู G of ฮฑ |
|
|
|
692 |
|
00:57:49,710 --> 00:57:54,230 |
|
ุฒู ุงููู ููู ูุง ุจุณุงูู ุงููู ูู 0 ุฃููุฉ ุฃู ุฃูู ู ุฒูุฑู |
|
|
|
693 |
|
00:57:54,230 --> 00:57:59,440 |
|
ุญุณุจ ููู
ุฉ ุงูุฃูู ู
ูุฌุจุฉ ุฃู ุณุงูุจุฉ ุทูุจุงูุงู ุฒู ู
ุง ููุช |
|
|
|
694 |
|
00:57:59,440 --> 00:58:02,480 |
|
ูุจู ุจุดููุฉ ุจู
ุง ุงู E is continuous on a closed |
|
|
|
695 |
|
00:58:02,480 --> 00:58:07,700 |
|
interval Iฮฑ ุงู Jฮฑ ุงููู ูู ู
ุณู
ููุง then there exist |
|
|
|
696 |
|
00:58:07,700 --> 00:58:10,280 |
|
case such that ุงููู ูู ุงู absolute value E of D |
|
|
|
697 |
|
00:58:10,280 --> 00:58:16,030 |
|
ุฃุตูุฑ ุณูู K ููู T element in Gุงูุฃู ู
ุดุงุจู ููู ูุจู ุฏู |
|
|
|
698 |
|
00:58:16,030 --> 00:58:19,930 |
|
ุฑุจุงููู
ุงูุงู ุจุฏูุง ูุณุชุฎุฏู
mean taylor theorem ุงููู |
|
|
|
699 |
|
00:58:19,930 --> 00:58:24,890 |
|
ูู ุนูู ุงููู ูู ุงู function ุงููู ุนูุฏู ูุฐู ุงููู ูู |
|
|
|
700 |
|
00:58:24,890 --> 00:58:29,310 |
|
ุจุณ ูู ู
ูู ุงูุขู ูู ุงู end points ุฃูู ูู
ูู ุฃูู ูุตูุฑ |
|
|
|
701 |
|
00:58:29,310 --> 00:58:32,610 |
|
ุงุฐุง there exist cn element in dn such that ู
ุณุฑุน |
|
|
|
702 |
|
00:58:32,610 --> 00:58:35,950 |
|
ูุฅูู ูุงุนุฏ ุจุนูุฏ ููุณ ุงูุจุฑูุงู ุงููู ูุจูู ุดููุฉ such |
|
|
|
703 |
|
00:58:35,950 --> 00:58:42,200 |
|
that ุงููู ูู E of ุตูุฑุจุทุจู ุนูุฏ e of 0 ุจุณุงูู e of |
|
|
|
704 |
|
00:58:42,200 --> 00:58:44,340 |
|
alpha ุฒุงุฆุฏ e prime of alpha ุนูู ูุงุญุฏ factorial ูู |
|
|
|
705 |
|
00:58:44,340 --> 00:58:47,280 |
|
ูุงูุต alpha ุงููู ูู zero ูุงูุต alpha ุฒุงุฆุฏ e n ูุงูุต |
|
|
|
706 |
|
00:58:47,280 --> 00:58:50,780 |
|
ูุงุญุฏ ุนูู ูุงูุต ูุงุญุฏ factorial alpha ูุงูุต alpha ุฃูุณ |
|
|
|
707 |
|
00:58:50,780 --> 00:58:54,160 |
|
n ูุงูุต ูุงุญุฏ ูู
ุง ุฃุตู ูุนูุฏ ุงู remainder e n of alpha |
|
|
|
708 |
|
00:58:54,160 --> 00:59:00,060 |
|
ุนูู n factorial ูู ูุงูุต alpha ุฃูุณ n ุงูุขู ุงุฎูู ูุฐู |
|
|
|
709 |
|
00:59:00,060 --> 00:59:05,770 |
|
ู
ุด e alpha ูุฐู ุงููCnูุฐู ุงูู C ุฃูุง ู
ุฎุฑุจุท ุจุตูุญุฉ ุงููู |
|
|
|
710 |
|
00:59:05,770 --> 00:59:11,430 |
|
ู
ุงุดู ุงูุญุงูุฉ ุงูุงู E of Zero ุทุจูุนู ุงูุด ูุณุงูู ูุงุญุฏ |
|
|
|
711 |
|
00:59:11,430 --> 00:59:14,510 |
|
ู
ุงุญูุง ุนุงุฑููู ุงู ุฎูุงุต ุนุฑุถูุงูุง ุงูุฏุงูุฉ ูุฐู E of Zero |
|
|
|
712 |
|
00:59:14,510 --> 00:59:17,630 |
|
ุจุชุณุงูู ูุงุญุฏ ุงุชุณุงูู ูุงุญุฏ ูุณุงูู E of Zero ู ูุณุงูู |
|
|
|
713 |
|
00:59:20,060 --> 00:59:23,400 |
|
ุงูุฃู E of Alpha ูุฑุถูุงูุง ุฅูุด ุจุงูุณุงููุฉ ุณูุฑ ููู |
|
|
|
714 |
|
00:59:23,400 --> 00:59:28,280 |
|
ู
ูุชุฑุถูููุง E prime of Alpha ุงููู ูู ููุณ E of Alpha |
|
|
|
715 |
|
00:59:28,280 --> 00:59:32,880 |
|
ุฅุฐุง ุณูุฑ ุจุฑุถู ููุฐุง ููุณ ุงูุดูุก ุฅุฐุง ูููุง ุฏูู ุฃุตูุฑ ู
ุน |
|
|
|
716 |
|
00:59:32,880 --> 00:59:36,100 |
|
ุฏู
ูู ุงูุฃุฎูุฑุฉ ุฅุฐุง ูุชุณุงูู E of Cn ุนูู N factorial |
|
|
|
717 |
|
00:59:36,100 --> 00:59:42,340 |
|
ูุงูุต Alpha ุฃุณุนู ูุฒู ู
ุง ูููุง ุฅูู ุงุญูุง ุงูุขู ูุฐุง |
|
|
|
718 |
|
00:59:42,340 --> 00:59:48,390 |
|
ุงูู
ูุฏุงุฑ ุนูุฏู ุตุงุฑ .. ููุถุญ ููู
ูุฐููุดูู ููู ูุตู ูู |
|
|
|
719 |
|
00:59:48,390 --> 00:59:53,770 |
|
contradiction ูุงู gate ุตุงุฑ ุนูุฏ ู
ุงูุง ููู ูุง ุฌู
ุงุนุฉ |
|
|
|
720 |
|
00:59:53,770 --> 00:59:57,190 |
|
ุตุงุฑุช ุนูุฏ ุงููุงุญุฏ ูุฐู ุงููู ุจูุณุงูู E to the zero |
|
|
|
721 |
|
00:59:57,190 --> 01:00:03,630 |
|
ุจูุณุงูู E to the zero ุงููู ูู ุฃุตุบุฑ ุฃู ูุณุงูู ุงู |
|
|
|
722 |
|
01:00:03,630 --> 01:00:07,510 |
|
absolute value ููุฐู ุจูุณุงูููุง ุจุนุฏ ุฅูู ุฃุตุบุฑ ุฃู ูุณุงูู |
|
|
|
723 |
|
01:00:07,510 --> 01:00:14,420 |
|
ุจูุณุงูู ุงู absolute value E of CL ุนูู N factorialูู |
|
|
|
724 |
|
01:00:14,420 --> 01:00:22,320 |
|
absolute value ูุงูุต Alpha ุฃูุณ N ู ูุฐู ุฒู ู
ุง ูููุง E |
|
|
|
725 |
|
01:00:22,320 --> 01:00:25,880 |
|
of C N ุฅูุด ู
ุง ุงููู ูููุง ูุจู ุจุดููุฉ ูุฐู ุฃุตุบุฑ ุฃูู ู |
|
|
|
726 |
|
01:00:25,880 --> 01:00:32,960 |
|
ุณุงูู K ุฅุฐุง K ุนูู N factorial ูู ูุงูุต Alpha ุฃูุณ N |
|
|
|
727 |
|
01:00:32,960 --> 01:00:38,710 |
|
ู
ุงุดู ุงูุขู ูุฐุง ุงูู
ูุฏุงุฑas n goes to infinity ุจูุฑูุญ |
|
|
|
728 |
|
01:00:38,710 --> 01:00:42,910 |
|
ูู0 ูุฐุง independent of n ู ูุฐุง independent of n |
|
|
|
729 |
|
01:00:42,910 --> 01:00:48,650 |
|
ุตุงุฑ ุนูุฏู ุงูุงู ูุฐุง ุงูุงู ูู ุงููุงุญุฏ ุฃุตุบุฑ ุฃู ูุณุงูู |
|
|
|
730 |
|
01:00:48,650 --> 01:00:53,390 |
|
ุงููู ูู ูุฐุง ุงูู
ูุฏุงุฑ ุฎุฏ ุงู limit as n goes to |
|
|
|
731 |
|
01:00:53,390 --> 01:00:57,430 |
|
infinity ุจูุตูุฑ ุงููุงุญุฏ ุฃุตุบุฑ ุฃู ูุณุงูู ุณูุฑ ู ูุฐุง ุฅูุด |
|
|
|
732 |
|
01:00:57,430 --> 01:01:03,250 |
|
ู
ุงูู contradictionุฅุฐุง ุตุงุฑ ูู ุนูุฏู ุงููุฑุถูุฉ ุงูุฃููู |
|
|
|
733 |
|
01:01:03,250 --> 01:01:07,770 |
|
ุฎุงุทุฆุฉ ุฅุฐุง there is no such Alpha ุงููู ูู ุจุชููู |
|
|
|
734 |
|
01:01:07,770 --> 01:01:10,530 |
|
ุนูุฏูุง ุงู K of Alpha ุจุชุณุงูู ุณูุฑ ุฅุฐุง ุงู K of Alpha |
|
|
|
735 |
|
01:01:10,530 --> 01:01:16,090 |
|
ุจุชุณุงูู ุฃูุจุฑ ูุง ุชุณุงูู ุณูุฑ ุฏุงุฆู
ุง ุฅุฐุง ุตุงุฑ ุนูุฏู ุงููู |
|
|
|
736 |
|
01:01:16,090 --> 01:01:22,150 |
|
ูู ููู
ุฉ ุงููู ูู E to the X ูุง ุชุณุงูู ุณูุฑ ุฃุจุฏุง ููุฌู |
|
|
|
737 |
|
01:01:22,150 --> 01:01:29,110 |
|
ุงูุขู ุฅู ุจุฏูุง ูุซุจุช ุฃูููุซุจุช ุงูุฎุงุตูุฉ ุงููู ุจุนุฏูุง ุงููู |
|
|
|
738 |
|
01:01:29,110 --> 01:01:38,430 |
|
ูู ุนุจุงุฑุฉ ุนู E of X ุฒุงุฆุฏ Y ุจุณุงูุฉ E of X ูู E of Y |
|
|
|
739 |
|
01:01:38,430 --> 01:01:42,670 |
|
ููู X ู Y element in R ูุฐู ุงูุฎุงุตูุฉ ุงููู ุจุฏูุง |
|
|
|
740 |
|
01:01:42,670 --> 01:01:48,410 |
|
ูุซุจุชูุง ุดูู ุทุฑููุชู ุญููุฉ ูู ุงูุฅุซุจุงุช ุจูููู ููู ููุชุฑุถ |
|
|
|
741 |
|
01:01:48,410 --> 01:01:53,030 |
|
Y fixed arbitrary ููู ูููุงุด fixed ุจูุญูู ุนู Y ู
ุญุฏุฏุฉ |
|
|
|
742 |
|
01:01:53,030 --> 01:01:59,760 |
|
arbitrary ููู ูุญูู ุนู Y ู
ุญุฏุฏุฉุงูุงู ู
ุงุฏุงู
Y ุงููู ูู |
|
|
|
743 |
|
01:01:59,760 --> 01:02:05,240 |
|
ุงู E of Y ุฃููุฏ ูุดู
ููุง ูุง ุชุณุงูู ุณูุฑ ุงุชูุฌูุง ุนูููุง |
|
|
|
744 |
|
01:02:05,240 --> 01:02:11,520 |
|
ุงูุงู ุนุฑููู ุงูุงู function G ู
ู R ูR ุนุฑููุง ูููุG of |
|
|
|
745 |
|
01:02:11,520 --> 01:02:15,720 |
|
X ุงูู
ุชุบูุฑ X ุงูุงู Y ุงููู ูู ุนุจุงุฑุฉ ุนู ุงุดู Fix ุซุงุจุช |
|
|
|
746 |
|
01:02:15,720 --> 01:02:19,080 |
|
ุจุญูู ุนูู ููู ูุงู arbitrary ุงููู ูู G of X ุจูุณุงูู E |
|
|
|
747 |
|
01:02:19,080 --> 01:02:24,420 |
|
of X ุฒุงุฆุฏ Y ุนูู E of Y for X element in R ุฃุฎุฏูุง |
|
|
|
748 |
|
01:02:24,420 --> 01:02:30,060 |
|
ูุฐู ุงูุฏุงูุฉ ุงูุขู ุดูู ูุฐู ุงูุฏุงูุฉ ุงุนู
ูู G prime ููุง G |
|
|
|
749 |
|
01:02:30,060 --> 01:02:33,920 |
|
prime of X ุจุงููุถู ุจุงููุณุจุงูู XY ุซุงุจุชุฉ ุงููู ูู ุจูุตูุฑ |
|
|
|
750 |
|
01:02:33,920 --> 01:02:38,280 |
|
ูุฐู E prime of X ุฒุงุฆุฏ Y ุนูู E of Y ุนุฏุฏ ู
ุง ูุงุด |
|
|
|
751 |
|
01:02:38,280 --> 01:02:43,080 |
|
ุนูุงูุฉ ููู Y ุณุงููุงูู E' ูู ููุณ ู
ููุ ุงูู E of X ุฒู Y |
|
|
|
752 |
|
01:02:43,080 --> 01:02:48,720 |
|
ุนูู E of Y ู
ุงุดูุ ุทูุจุ ุงูุขู ุตุงุฑ ูุฐุง ุงูู E X ุฒู Y |
|
|
|
753 |
|
01:02:48,720 --> 01:02:53,280 |
|
ุนูู E of Y ูู ู
ููุ ุฑุฌุน G ุฅุฐุง ุฑุฌุนุช ุฅู ุงูู G' ู
ุด |
|
|
|
754 |
|
01:02:53,280 --> 01:03:01,770 |
|
ุจูุณุงูู ุงูู G ุงูุขู andุฃุญุณุจ ูู g of 0 ุจุณุงููุฉ e of 0 |
|
|
|
755 |
|
01:03:01,770 --> 01:03:06,070 |
|
ุฒุงุฆุฏ y ุนูู e of y ูุนูู ุจุณุงููุฉ ูุงุญุฏุฉ ุฅุฐุง ุงูุฏุงูุฉ |
|
|
|
756 |
|
01:03:06,070 --> 01:03:11,050 |
|
ุงููู ุนุฑููุงูุง ูุฐู g of x ุทูุนุช ูู g prime ููุง ููุณูุง |
|
|
|
757 |
|
01:03:11,050 --> 01:03:15,310 |
|
ูุทูุนุช ูู g of 0 ูุงุญุฏุฉ ูุนูู
ุฉ ูุจู ูููู ุนู
ุงู ุจูููู |
|
|
|
758 |
|
01:03:15,310 --> 01:03:18,610 |
|
ู
ุงููุด ูุบูุฑ ูุงุญุฏุฉ ูู ุงูุฏููุง ุจุชูุจูุง ุงูุฎุงุตูุชูู ุงููู |
|
|
|
759 |
|
01:03:18,610 --> 01:03:23,190 |
|
ูู ู
ูู ุงู E of X ุฅุฐุง ูุฐู ุบุตุจ ุนููุง ูุงุฒู
ุชุทูุน ู
ูู ุงู |
|
|
|
760 |
|
01:03:23,190 --> 01:03:27,080 |
|
E of X because of the uniqueness of Eุฅุฐุง ุตุญูุญ ุฃูุง |
|
|
|
761 |
|
01:03:27,080 --> 01:03:31,000 |
|
ุนูุฏู E of X ุจุณุงูู E X Z Y ุนูู E E of Y ูุนูู E X Z |
|
|
|
762 |
|
01:03:31,000 --> 01:03:37,940 |
|
Y ุจุณุงูู E of Y ูู ุงู E of X ู ูู ุงูู
ุทููุจ ุทูุจ ููุฌู |
|
|
|
763 |
|
01:03:37,940 --> 01:03:46,800 |
|
ุงูุขู ูุซุจุช ุงููู ุจุนุฏูุง ุงููู ูู ุจุฏูุง ูุซุจุช E of R |
|
|
|
764 |
|
01:03:46,800 --> 01:03:54,870 |
|
ุจุณุงูู E to the RR ุงูู
ูุชููู LQ ุงููู ูู rational |
|
|
|
765 |
|
01:03:54,870 --> 01:04:00,870 |
|
number ุทูุจ ุฌู
ุงุนุฉ ูููู
ุชุตู ุนูู ุงููุจู ุนููู ุงูุตูุงุฉ |
|
|
|
766 |
|
01:04:00,870 --> 01:04:09,370 |
|
ูุงูุณูุงู
ููุดูู ููู ููุฌู |
|
|
|
767 |
|
01:04:09,370 --> 01:04:14,690 |
|
ุงูุจุฑูู ุงููู ูู ุงูุฌุฒุก ุงูุซุงูุซ ุฃู ูุฐุง ุฌุฒุก ู
ู ุงููุธุฑูุฉ |
|
|
|
768 |
|
01:04:14,690 --> 01:04:18,830 |
|
ุฃูู |
|
|
|
769 |
|
01:04:18,830 --> 01:04:24,560 |
|
ุญุงุฌุฉูุฐู ุตุญูุญุฉ ููู ุฃููู ุงูู
ุชูุงูุฉ ูููุ by induction |
|
|
|
770 |
|
01:04:24,560 --> 01:04:53,330 |
|
E of X ุจุณุงูู E of Xุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ |
|
|
|
771 |
|
01:04:53,330 --> 01:04:56,270 |
|
ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ |
|
|
|
772 |
|
01:04:56,270 --> 01:04:56,330 |
|
ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ |
|
|
|
773 |
|
01:04:56,330 --> 01:04:57,110 |
|
ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ |
|
|
|
774 |
|
01:04:57,110 --> 01:05:00,170 |
|
ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ |
|
|
|
775 |
|
01:05:00,170 --> 01:05:00,170 |
|
ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ |
|
|
|
776 |
|
01:05:00,170 --> 01:05:00,170 |
|
ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ |
|
|
|
777 |
|
01:05:00,170 --> 01:05:02,740 |
|
ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃููุฏ ุฃูE |
|
|
|
778 |
|
01:05:02,740 --> 01:05:08,660 |
|
of K ูู X ุฒุงุฆุฏ X ููุณุงูู ู
ู ุงูุฎุงุตูุฉ ุงููู ุงุญูุง ูุณู |
|
|
|
779 |
|
01:05:08,660 --> 01:05:12,880 |
|
ู
ุงุฎูุตููุงุด ูุฐู ุจุณุงูู E ููุฃูู ุฒุงูุฏ ูู E ููุชุงูู ุงููู |
|
|
|
780 |
|
01:05:12,880 --> 01:05:17,960 |
|
ูู E ููุฃูู ุงููู ูู KX ูู E ููุชุงูู ุงููู ูู EX |
|
|
|
781 |
|
01:05:17,960 --> 01:05:22,780 |
|
ููุณุงูู EKX ุงููู ูู E of X ุฃูุณ K ูุฃูู ูุฑุถููุง ุฃูุง |
|
|
|
782 |
|
01:05:22,780 --> 01:05:31,260 |
|
ุตุญูุญุฉ ุงููู ูู K ุจูุตูุฑ ุนูุฏู E of X ุฃูุณ K ูู E of Xู |
|
|
|
783 |
|
01:05:31,260 --> 01:05:39,800 |
|
ูุณุงูู E of X ุงููู ุฃูุณ K ุฒุงุฆุฏ ูุงุญุฏ ุฅุฐุง ุตุงุฑุช |
|
|
|
784 |
|
01:05:39,800 --> 01:05:49,580 |
|
ูุฐู is true for all N element in N ุทูุจ .. ุงูุขู ุดูู |
|
|
|
785 |
|
01:05:49,580 --> 01:05:53,920 |
|
ู
ุง ูููู ููุงุญุธ ู
ุง ูููู |
|
|
|
786 |
|
01:06:02,460 --> 01:06:06,080 |
|
Lit x ุจุชุณุงูู ุงูุดุ ูุงุญุฏุฉ ุนูู ุงู ูุงุฎุฏ ุงูู x ุงูุด |
|
|
|
787 |
|
01:06:06,080 --> 01:06:10,540 |
|
ุจุชุณุงูู ูุงุญุฏุฉ ุนูู ุงูุ ุจุชุตูุฑ ูุฐุง E of ูุงุญุฏ ูุฃู ุงู ูู |
|
|
|
788 |
|
01:06:10,540 --> 01:06:13,840 |
|
ูุงุญุฏุฉ ุนูู ุงู ูุงุญุฏ ุงู E of ูุงุญุฏ ุฑู
ุฒูุงูุง ู
ู ุฑู
ุฒ ุงูุด |
|
|
|
789 |
|
01:06:13,840 --> 01:06:17,940 |
|
ูุง ุฌู
ุงุนุฉุ E ููุฐุง ุงููู ุจุฏุฃ ุงุตููู ูุฐุง ุฑู
ุฒูุงูุง ู
ู ุฑู
ุฒ |
|
|
|
790 |
|
01:06:17,940 --> 01:06:22,420 |
|
E ูุงู E ุนุจุงุฑุฉ ุนู ุฑูู
ุงู E of ูุงุญุฏ ูู ููู
ุฉ ุงูุฏุงูุฉ |
|
|
|
791 |
|
01:06:22,420 --> 01:06:28,100 |
|
ุงููู ุชุจุนุชูุง ุนูุฏ ุงููู ูู ุงููุงุญุฏ ุณู
ูููุง Eุงูุงู E of N |
|
|
|
792 |
|
01:06:28,100 --> 01:06:33,380 |
|
ูู 1 ุนูู N ุชุณุงูู ุงููู ูู ุนุจุงุฑุฉ ุนู ุงู X ูุฐู ุงููู ูู |
|
|
|
793 |
|
01:06:33,380 --> 01:06:40,720 |
|
ุนุจุงุฑุฉ ุนู 1 ุนูู N E of 1 ุนูู N ุงููู ุงุณู
ู ุฃูุณ N ูุนูู |
|
|
|
794 |
|
01:06:40,720 --> 01:06:48,380 |
|
ุงูุขู ุนูุฏู ูุฐู ุงู X E N X ุจุณุงูู E X ุฃูุณ N X ู
ูู 1 |
|
|
|
795 |
|
01:06:48,380 --> 01:06:53,210 |
|
ุนูู N E of 1 ุนูู N ุฃูุณ Nุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ูู ูุฐุง |
|
|
|
796 |
|
01:06:53,210 --> 01:06:59,010 |
|
ุงูููู
ุฉ ุจุณุงููุฉ ูุฐุง ุฅุฐุง ุจู
ุนูู ุขุฎุฑ E of ูุงุญุฏุฉ ุงูุงู |
|
|
|
797 |
|
01:06:59,010 --> 01:07:05,830 |
|
ุจุณุงููุฉ E ุงูุนุฏุฏ ุฃุณ ูุงุญุฏ ุนูู N ูุฐุง ุงูุงู E of ูุงุญุฏุฉ |
|
|
|
798 |
|
01:07:05,830 --> 01:07:14,050 |
|
ุงูุงู ุจุณุงููุฉ E ุฃุณ ูุงุญุฏ ุนูู N ุงูุขู ู
ู ุฌูุฉ ุฃุฎุฑู ูู |
|
|
|
799 |
|
01:07:14,050 --> 01:07:23,700 |
|
ุฌูุช E ุฃุณ minus Mูุชุณุงูู ูุงุญุฏ ุนูู E ุฃูุณ M ุฎุฏ |
|
|
|
800 |
|
01:07:23,700 --> 01:07:26,760 |
|
ุงู |
|
|
|
801 |
|
01:07:26,760 --> 01:07:33,460 |
|
E of M ูุงูุต M ุงููู ูู ุจูุณุงูู E of Zero ุงููู ูู |
|
|
|
802 |
|
01:07:33,460 --> 01:07:41,020 |
|
ุจูุณุงูู ูุงุญุฏ ุตุญ ูุฅูู ุณุงูู E of Mูู E of ูุงูุต M ุญุณุจ |
|
|
|
803 |
|
01:07:41,020 --> 01:07:45,900 |
|
ุงูุฎุงุตูุฉ ุงููู ูู ุฒุงุฆุฏ ูุงูุต M ูุฐู X ููุฐู ุงู Y E |
|
|
|
804 |
|
01:07:45,900 --> 01:07:49,760 |
|
ุงูุฃููู ูู E ุงูุชุงููุฉ ุงูุงู ุตุงุฑ ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
805 |
|
01:07:49,760 --> 01:07:57,600 |
|
ุจุณุงูู ูุงุญุฏ ูุนูู ุฅุฐุง E of ูุงูุต M ุจุณุงูู ุจูุฌู ูุฏูุงู |
|
|
|
806 |
|
01:07:57,600 --> 01:08:03,260 |
|
ูุงุญุฏ ุนูู E of M ุฅุฐุง ุตุงุฑุช ุนูุฏู E of ูุงูุต M ุจุณุงูู |
|
|
|
807 |
|
01:08:03,260 --> 01:08:09,360 |
|
ูุงุญุฏ ุนูู E of M ูุงู E of M ุงู E of Mู
ู ููู E of M |
|
|
|
808 |
|
01:08:09,360 --> 01:08:14,280 |
|
ูุฐุง X ุจูุงุญุฏ ูุนูู ุจูุณุงูู E of ูุงุญุฏ ุฃูุณ M ูุนูู ุนุจุงุฑุฉ |
|
|
|
809 |
|
01:08:14,280 --> 01:08:19,500 |
|
ุนู E ุฃูุณ M ููู ููู ุฅูุด ูุงุญุฏ ุงูุขู ูุฐู ุงููู ูู ุนุฏุฏ |
|
|
|
810 |
|
01:08:19,500 --> 01:08:23,800 |
|
ุนุงุฏู ุงููู ูู E ู
ุฑููุน ููุฃูุณ M ุงููู ูู ููุณู E to the |
|
|
|
811 |
|
01:08:23,800 --> 01:08:27,360 |
|
minus M ูุฃู ูุฐู ู
ุนููู
ุฉ ูุฏูู
ุฉ ูุฐุง ุงูุตุงุฑ ุนูุฏู ุงูุขู E |
|
|
|
812 |
|
01:08:27,360 --> 01:08:34,820 |
|
of minus M ุจูุณุงูู E ุฃูุณ ู
ุงูุต M ูุงู E ุฃูุณ ูุงุญุฏ ุนูู |
|
|
|
813 |
|
01:08:34,820 --> 01:08:43,460 |
|
N ุจูุณุงูู Eุฃูุณ ูุงุญุฏ ุนูู N ูุฌู |
|
|
|
814 |
|
01:08:43,460 --> 01:08:46,780 |
|
ุงูุขู ุงุญูุง ุบุงูุชูุง ู
ููุ E of R ุงูู R ุฅูุด ุงููู ููุฏุฑ |
|
|
|
815 |
|
01:08:46,780 --> 01:08:50,640 |
|
ููุชุจูุงุ ุงูู R ูู ุงูู Q ุฅุฐุง ุงูู R ุจุชููุชุจ ุนูู ุตูุฑุฉ M |
|
|
|
816 |
|
01:08:50,640 --> 01:08:54,780 |
|
ุนูู N ุฅุฐุง ูุฎุฏ R ูู ุงููู ูู
ุชูู Q ุฅุฐุง there exists M |
|
|
|
817 |
|
01:08:54,780 --> 01:08:58,820 |
|
ู N ุงู ูุงุญุฏุฉ ูู ุฒุฏ ูุงุญุฏุฉ ูู N ุตุญูุญ ุฏูุ R ุจุชุณุงูู M |
|
|
|
818 |
|
01:08:58,820 --> 01:09:03,320 |
|
ุนูู N ุจุชุซุจุชูู ุฅู E of M ุนูู N ุจุณุงูู E to the M ุนูู |
|
|
|
819 |
|
01:09:03,320 --> 01:09:12,580 |
|
N ุดูู ูููE of M ุนูู N ุงูุด ููุณุงูู E ุฃูุณ ูุงุญุฏุฉ ู N |
|
|
|
820 |
|
01:09:12,580 --> 01:09:21,400 |
|
ุงููู A ุดู
ุงูู ุฃูุณ M ุฃูุณ M E of ูุงุญุฏุฉ ู N ุฃูุณ M ู
ูู |
|
|
|
821 |
|
01:09:21,400 --> 01:09:28,870 |
|
ุงููู ุดุฑุนูู ุงููู ููุนูุฏู ุงููู ูู E-M ู ูู ุณุงูุจุฉ ุทูุนุช |
|
|
|
822 |
|
01:09:28,870 --> 01:09:33,870 |
|
E ุฃุต ู
ููุณ M ู ุงููู ุดุฑุนูู E ู ูุงุญุฏุฉ ู N ู N ู
ูุฏุจุฉ |
|
|
|
823 |
|
01:09:33,870 --> 01:09:41,130 |
|
ูู E ุฃุต ูุงุญุฏ ุนูู N ูุจุตูุฑ ุนูุฏู ุงูุฃู E ุฃุต M ุนูู N ุฃุต |
|
|
|
824 |
|
01:09:41,130 --> 01:09:45,970 |
|
M ุนูู N ุจุณุงูู E ุฃุต ูุงุญุฏ ุนูู N ูุฐู ุงููู ุฌูุง ุงููู |
|
|
|
825 |
|
01:09:45,970 --> 01:09:53,650 |
|
ุฃุณู
ูู ุงููู ุฃุต M ู
ุงุดู ุงูุญุงู ูู ูุณุงูู E |
|
|
|
826 |
|
01:09:58,010 --> 01:10:03,730 |
|
ูุฐู ุดุฑุนุงุช ูุฅู ู ูุงุญุฏุฉ ุงูุงู ูู ุงุณ ุงู
ููุฐุง ุนุฏุฏ ุนุงุฏู |
|
|
|
827 |
|
01:10:03,730 --> 01:10:08,730 |
|
ุงูุงู ููุฐุง ุนุฏุฏ ุนุงุฏูุฉ ุจูุตูุฑ ุงู ุฃุณ ุงู
ุนุงูู
ูุง ุนูู ุงู ู |
|
|
|
828 |
|
01:10:08,730 --> 01:10:14,850 |
|
ูุฐู ุจูููู ุนูุฏู ุงู ุฃุณ ุงู ุงู ุงู
ุนูู ุงู ุจุณุงูู ุงููู ูู |
|
|
|
829 |
|
01:10:14,850 --> 01:10:18,870 |
|
ุนุจุงุฑุฉ ุนู ุงู ุฃุณ ุงู
ุนูู ุงู ู ุงู
ุนูู ุงู was our |
|
|
|
830 |
|
01:10:18,870 --> 01:10:21,710 |
|
arbitral rational number ุงุฐุง ุตุงุฑ ุนูุฏู ุงู ุฃุณ ุงุฑ |
|
|
|
831 |
|
01:10:21,710 --> 01:10:24,210 |
|
ุจุณุงูู ุงู ุฃุณ ุงุฑ |
|
|
|
832 |
|
01:10:29,400 --> 01:10:35,160 |
|
ูุฌู ุงูุขู ูููุธุฑูุฉ ุงููู ูู ุชู
ุงููุฉ ุชูุงุชุฉ ุณุจุนุฉ ุงููู ูู |
|
|
|
833 |
|
01:10:35,160 --> 01:10:39,980 |
|
ุงููุธุฑูุฉ ุงูุฃุฎูุฑุฉ ูู ุงููู ูู ุงูุญุฏูุซ ุนู ุงููู ูู ุงู |
|
|
|
834 |
|
01:10:39,980 --> 01:10:45,260 |
|
exponential function ู ุจุนุฏูุง ุทุจุนุง ุจูุญูู ุนู ุงููู ูู |
|
|
|
835 |
|
01:10:45,260 --> 01:10:48,060 |
|
ุงู logarithmic function ุจุณ ุฎูููุง ุงูุขู ูุญูู ุนุงูู
ูุง |
|
|
|
836 |
|
01:10:48,060 --> 01:10:54,340 |
|
ุงููู
ู ูุธุฑูุชูุง ุนูู ุงู exponential function ุจูุดูู |
|
|
|
837 |
|
01:10:55,540 --> 01:11:00,240 |
|
ุงูุฃู ุจูููู ุงูู exponential function E is strictly |
|
|
|
838 |
|
01:11:00,240 --> 01:11:04,840 |
|
increasing on R ูุนูู ุงูู derivative ุฅููุง ุฃูุจุฑ ู
ู |
|
|
|
839 |
|
01:11:04,840 --> 01:11:11,460 |
|
ุณูุฑ ู
ุงุดูุ and this range ุงููู ูู Y ุงูู
ุชูุฑุณุฌ ุฏู Y |
|
|
|
840 |
|
01:11:11,460 --> 01:11:16,720 |
|
ุฃูุจุฑ ู
ู ุณูุฑ ูุนูู ุงูู E ูุชููู ุจุงูุธุจุท ุฏู ุงููู ู
ู R |
|
|
|
841 |
|
01:11:16,720 --> 01:11:24,080 |
|
ุจุชุตุจ ุฅูู R positive ุฅูู R positive ูุนูู ุนุจุงุฑุฉ ุนู |
|
|
|
842 |
|
01:11:24,080 --> 01:11:31,370 |
|
Zeroูู
ุงูุฉ ููุงูุฉ ูู ุงูุชู ูู range ุฏุงูุฉ range ุฏุงูุฉ |
|
|
|
843 |
|
01:11:31,370 --> 01:11:34,610 |
|
ูุฐู ูู ู
ู ุณูุฑ ุฅูู ู
ุงูุฉ ููุงูุฉ ูุฃู ูุชุงุจุฉ ุนูู ุณูุฑุฉ |
|
|
|
844 |
|
01:11:34,610 --> 01:11:40,210 |
|
function is on to ุทูุจ ู
ุด ููู limit E of X ูู
ุง X |
|
|
|
845 |
|
01:11:40,210 --> 01:11:43,470 |
|
ุชุฑูุญ ูุณุงูุจ ู
ุงูุฉ ููุงูุฉ ุจุชุณุงูู ุณูุฑ and limit E of X |
|
|
|
846 |
|
01:11:43,470 --> 01:11:47,110 |
|
ูู
ุง X ุชุฑูุญ ูู
ุงูุฉ ููุงูุฉ ุงูุด ุจุชุณุงููุ ุจุชุณุงูู ู
ุงูุฉ |
|
|
|
847 |
|
01:11:47,110 --> 01:11:55,670 |
|
ููุงูุฉูุนูู ุงูุฏุงูุฉ ูุฐู ูู ุญุงูุฉ ุงู ุงู E of X ุงููู |
|
|
|
848 |
|
01:11:55,670 --> 01:11:59,070 |
|
ุงุญูุง ุณู
ููุงูุง ุงู X exponential ูู X ูุฐู ุงูุฏุงูุฉ ูุฐู |
|
|
|
849 |
|
01:11:59,070 --> 01:12:03,130 |
|
ุงูุฏุงูุฉ ุฒู ู
ุง ุงูุชูุง ุนุงุฑููู ูู
ุง X ุชุฑูุญ ุฅูู ุณุงูุจ ู
ุงูู |
|
|
|
850 |
|
01:12:03,130 --> 01:12:06,830 |
|
ููุงูุฉ ูุฐุง ููุฑูุญ ููุณูุฑ ุงู E of X ูุชุฑูุญ ููุณูุฑ ู ูู
ุง |
|
|
|
851 |
|
01:12:06,830 --> 01:12:10,890 |
|
ุงู X ุชุฑูุญ ูู
ุงูู ููุงูุฉ ุงู E of X ูุชุฑูุญ ุฅูุด ุฅูู ู
ุงูู |
|
|
|
852 |
|
01:12:10,890 --> 01:12:14,810 |
|
ููุงูุฉ ูุดูู ุฃูู ุดู ุจุงููุณุจุฉ ูู
ูุ ูู range |
|
|
|
853 |
|
01:12:19,570 --> 01:12:24,250 |
|
ุงูุงู we know that E of 0 ุจูุณุงูู Eุงุด ูุงุญุฏ ุงูุจุฑ ู
ู |
|
|
|
854 |
|
01:12:24,250 --> 01:12:29,770 |
|
Eุงุด ู
ู ุณูุฑ ุงููุฏุุธุจุท ููุง ูุงุ and E of X ุฏู ุจูุณุงูู |
|
|
|
855 |
|
01:12:29,770 --> 01:12:36,390 |
|
ุณูุฑ for X element in R ุตุงุฑ ุนูุฏู ุงูุงู ูุงู ุฏุงูุฉ E of |
|
|
|
856 |
|
01:12:36,390 --> 01:12:38,650 |
|
0 ุฅููุง ูุงุญุฏุู
ุงุดูุ |
|
|
|
857 |
|
01:12:40,360 --> 01:12:46,000 |
|
ุฃู E of X ู
ุด ุณูุฑ ูุนูู ุฅูู ุดู
ุงููุง ูุง ุชูุทุน ู
ุญูุฑ |
|
|
|
858 |
|
01:12:46,000 --> 01:12:51,910 |
|
ุงูุณููุงุช ุฅุทูุงูุงุงููู E of X ููุณูุง ู 0 ู
ู ุณูุฑูุง ุงูุฃู |
|
|
|
859 |
|
01:12:51,910 --> 01:12:57,110 |
|
ุฃูุง ุจููู ู
ุณุชุญูู ุชููู ูู ุฅููุง ููู
ุณุงูุจุฉ ูุนูู ู
ุณุชุญูู |
|
|
|
860 |
|
01:12:57,110 --> 01:13:02,030 |
|
ููุงูู E of X naught ุงููู ูู ุฃุตุบุฑ ู
ู 0 ููุดุ ูุฃูู ูู |
|
|
|
861 |
|
01:13:02,030 --> 01:13:05,990 |
|
ูุฌููุง E of X naught ุณุงูุจุฉ ูู ูุงูุฌูุช ุนูุฏูุง X naught |
|
|
|
862 |
|
01:13:05,990 --> 01:13:09,910 |
|
ู ูููุง ููู
ุชูุง E of X naught ุงููู ูู ุณุงูุจุฉ ูุนูู |
|
|
|
863 |
|
01:13:09,910 --> 01:13:16,460 |
|
ูุชููู ุชุญุชุทุจ ู
ุง ูู ุงูุฏุงูุฉ ู
ุชุตูุฉ ู
ุฏุงู
ู
ุชุตูุฉ ุฅุฐุง ุบุตุจ |
|
|
|
864 |
|
01:13:16,460 --> 01:13:20,940 |
|
ุนููุง ูุชูุฌู ุชูุทุน ุงููู ูู ู
ุง ูุชูุฌู ู
ููุง ููุง ูุชูุทุน |
|
|
|
865 |
|
01:13:20,940 --> 01:13:24,760 |
|
ู
ุญูุฑ ุงูุณููุงุช ุฅุฐุง ูุชุตูุฑ ุณูุฑ ููุฐุง Contradiction ู
ู |
|
|
|
866 |
|
01:13:24,760 --> 01:13:28,380 |
|
ุฃูู ุงูููุงู
ูุฐุงุ By Bolzano Intermediate Value |
|
|
|
867 |
|
01:13:28,380 --> 01:13:32,760 |
|
Theorem ุจู
ุง ุฃูู ุงุญูุง ูู ุนูุฏูุง X0 ูุฑุถูุงูุง ุงู E of |
|
|
|
868 |
|
01:13:32,760 --> 01:13:39,260 |
|
X0 ุฃุตุบุฑ ู
ู ุณูุฑ ููู ุนูุฏู ุงููู ูู E of Zero ุจุณุงูู |
|
|
|
869 |
|
01:13:39,260 --> 01:13:40,980 |
|
ูุงุญุฏ ุงููู ูู |
|
|
|
870 |
|
01:13:44,440 --> 01:13:48,620 |
|
ุฃู ูู ูุฑุถูุง ุงู ูู ุงูุณ ููุช ุงูุณ ููุช ุชููู ุงููู ูู |
|
|
|
871 |
|
01:13:48,620 --> 01:13:56,300 |
|
ุณุงูุจุฉ ุงูุณ ููุช ุงุตุบุฑ ู
ู ุณูุฑ ูุนูุฏู E of X naught ุงุตุบุฑ |
|
|
|
872 |
|
01:13:56,300 --> 01:14:05,740 |
|
ู
ู ุณูุฑ ูุนูุฏู ุงููู ูู ูู ุงููู ูู E of X ุจุณุงูู |
|
|
|
873 |
|
01:14:05,740 --> 01:14:14,470 |
|
ูุงุญุฏ ุงู ููุงุฏู ุงูุจุฑ ู
ู ุณูุฑุฃู ููุฑุถูุง ูุฌูุฏ ูุฐู ููุฑุถูุง |
|
|
|
874 |
|
01:14:14,470 --> 01:14:18,810 |
|
ูุฌูุฏ ูุฐู ุงุฐุง by intermediate value theorem ุบุตุจู |
|
|
|
875 |
|
01:14:18,810 --> 01:14:23,650 |
|
ุนููุง there exists c element ุงููุชุฑุฉ ุงููู ุงุญูุง ุจูุญูู |
|
|
|
876 |
|
01:14:23,650 --> 01:14:28,510 |
|
ุนููุง R such that f of ูุฐู ุงูู c ุงููู ูู E of C |
|
|
|
877 |
|
01:14:28,510 --> 01:14:33,330 |
|
ุจุชุณุงูู ูู
ูุฉ ุงููู ุจูููู ุงููู ูู ุงุณู
ูุง ุณูุฑ ููุฐุง |
|
|
|
878 |
|
01:14:33,330 --> 01:14:41,860 |
|
contradictionุจุงูุชุงูู ุจูุญูู ุงูุจูุฒุงู ุงููุง ู
ุณุชู
ุฑุฉ ุนูู |
|
|
|
879 |
|
01:14:41,860 --> 01:14:47,060 |
|
ุงู ุงูุชูุงู ู
ุบูู ุนูู ูู ุฃุฑุถ ูุงููุง ุจูุญูู ุงูุจูุฒุงู ุงููุง |
|
|
|
880 |
|
01:14:47,060 --> 01:14:47,260 |
|
ู
ุณุชู
ุฑุฉ ุนูู ุงู ุงูุชูุงู ู
ุบูู ุนูู ูู ุฃุฑุถ ูุงููุง ุจูุญูู |
|
|
|
881 |
|
01:14:47,260 --> 01:14:47,280 |
|
ุงูุจูุฒุงู ุงููุง ู
ุณุชู
ุฑุฉ ุนูู ุงู ุงูุชูุงู ู
ุบูู ุนูู ูู ุฃุฑุถ |
|
|
|
882 |
|
01:14:47,280 --> 01:14:47,700 |
|
ูุงููุง ุจูุญูู ุงูุจูุฒุงู ุงููุง ู
ุณุชู
ุฑุฉ ุนูู ุงู ุงูุชูุงู ู
ุบูู |
|
|
|
883 |
|
01:14:47,700 --> 01:14:48,880 |
|
ุนูู ูู ุฃุฑุถ ูุงููุง ุจูุญูู ุงูุจูุฒุงู ุงููุง ู
ุณุชู
ุฑุฉ ุนูู ุงู |
|
|
|
884 |
|
01:14:48,880 --> 01:14:49,100 |
|
ุงูุชูุงู ู
ุบูู ุนูู ูู ุฃุฑุถ ูุงููุง ุจูุญูู ุงูุจูุฒุงู ุงููุง |
|
|
|
885 |
|
01:14:49,100 --> 01:14:51,280 |
|
ู
ุณุชู
ุฑุฉ ุนูู ุงู ุงูุชูุงู ู
ุบูู ุนูู ูู ุฃุฑุถ ูุงููุง ุจูุญูู |
|
|
|
886 |
|
01:14:51,280 --> 01:14:54,390 |
|
ุงูุจูุฒุงู ุงููุง ู
ุณุชู
ุฑุฉ ุนูู ุงู ุงูุชูู
ู ุณูุฑ ุทูุจ ู
ุฏุงู
ุงู |
|
|
|
887 |
|
01:14:54,390 --> 01:14:57,010 |
|
E of X ุฃูุจุฑ ู
ู ุณูุฑ ู ุงุญูุง ุจูุนุฑู ุงู ุงู E prime of X |
|
|
|
888 |
|
01:14:57,010 --> 01:15:00,690 |
|
ุจูุชุณุงูู E of X ุงุฐุง ุตุงุฑุช ุงู E prime ุฃูุจุฑ ู
ู ู
ูู ู
ู |
|
|
|
889 |
|
01:15:00,690 --> 01:15:04,890 |
|
ุณูุฑ ูู X element ุงู R ูู
ู ุซู
ูุฐุง ู
ุนูุงุชู ุงู E is |
|
|
|
890 |
|
01:15:04,890 --> 01:15:10,450 |
|
strictly increasing on R ุงุฐุง ุงููู ูู ุงูู
ุทููุจ ุงูุฃูู |
|
|
|
891 |
|
01:15:10,450 --> 01:15:15,810 |
|
ุฃุซุจุชูุงู ุงู E is strictly increasing on R ุทูุจ |
|
|
|
892 |
|
01:15:24,230 --> 01:15:30,250 |
|
ุนูุฏู ุงุชููู strictly increasing ุงู function ู
ุธุจูุท |
|
|
|
893 |
|
01:15:30,250 --> 01:15:41,510 |
|
ูุนูู ุงุชููู ุงุตุบุฑ ู
ู ู
ูู ู
ู ุงูุงุด ู
ู ุงู E ููุด ูุฃู |
|
|
|
894 |
|
01:15:41,510 --> 01:15:53,730 |
|
ุนูุฏู ุงููุงุญุฏ E ูุงุญุฏ ุงู E of Xูููุง ุฃุตุบุฑ strictly ููุง |
|
|
|
895 |
|
01:15:53,730 --> 01:15:57,890 |
|
ุฃูุจุฑ strictly ู
ู ูุงุญุฏ ุฒุงุฏ X ุตุญุ ูุฐู ุงูููุฑููุง |
|
|
|
896 |
|
01:15:57,890 --> 01:16:02,810 |
|
remained ุชู
ุงููุฉ ุชูุงุชุฉ ุชูุงุชุฉ ุงุซุจุชูุงูุง ุฅุฐุง ุตุงุฑ ุนูุฏ E |
|
|
|
897 |
|
01:16:02,810 --> 01:16:08,050 |
|
of ูุงุญุฏุฃูุจุฑ strictly ู
ู ูุงุญุฏ ุฒุงุฆุฏ ูุง ุฃูุจุฑ strictly |
|
|
|
898 |
|
01:16:08,050 --> 01:16:13,970 |
|
ู
ู ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ูุงู E of ูุงุญุฏ ู
ูู ูู E ุฃุณ ูุงุญุฏ |
|
|
|
899 |
|
01:16:13,970 --> 01:16:17,390 |
|
ู
ุด ููู ุงุชูุงุฌูุง ูุนูู ูุฐุง ุฅูุงุด ุงุชููู ูุนูู ุงู E ุฃูุจุฑ |
|
|
|
900 |
|
01:16:17,390 --> 01:16:22,450 |
|
strictly ู
ู ู
ูู ู
ู ุงูุงุชููู ุงุชูุงุฌูุง ุทูุจ ุงุชูุงุฌูุง ุฅุฐุง |
|
|
|
901 |
|
01:16:22,450 --> 01:16:26,410 |
|
ุตุงุฑ ุนูุฏ ุงู E of ุงุชููู ุฃูุจุฑ strictly ุงู E ุฃูุจุฑ ู
ู |
|
|
|
902 |
|
01:16:26,410 --> 01:16:29,950 |
|
ู
ูู ู
ู ุงุชููู ุฎูููุง ูุจุฏุฃ ุนูููุง ูุฐู ุงู E ุฃูุจุฑ ู
ู |
|
|
|
903 |
|
01:16:29,950 --> 01:16:41,000 |
|
ุฅูุงุด ู
ู ุงุชูููุงูุงู ุงููุฏ ุนูุฏู ุงู E of R ุงููู ุจูุณูู E |
|
|
|
904 |
|
01:16:41,000 --> 01:16:48,440 |
|
R ุงู E N ุฎูููู ุงููู E N ุงูุจุฑ ู
ู ุงุชููู ูุชููู ุงุตุบุฑ |
|
|
|
905 |
|
01:16:48,440 --> 01:16:53,700 |
|
ุงููู ูู ุงูุจุฑ ู
ู ุงุชููู ุฃูุณ N ุงูุงู as N goes to |
|
|
|
906 |
|
01:16:53,700 --> 01:16:57,680 |
|
infinity ุงุฐุง |
|
|
|
907 |
|
01:16:57,680 --> 01:17:04,230 |
|
ุงููุฏ ูุฐู ูุชุฑูุญ ูู
ูู ูุฅูููููุชููุงูู E ููุณูุง ุงููู ูู |
|
|
|
908 |
|
01:17:04,230 --> 01:17:08,750 |
|
is strictly increasing is strictly increasing ุฅุฐุง |
|
|
|
909 |
|
01:17:08,750 --> 01:17:12,370 |
|
ุงู E of X ุชุจุนุชูุง ุจุฑุถู ูุชุฑูุญ ูู
ูู ู Infinity ูู
ุง X |
|
|
|
910 |
|
01:17:12,370 --> 01:17:18,650 |
|
ุชุฑูุญ ุฅูู ููู ุฅูู ู
ุงูุฉ ููุงูุฉ ููุด ูุฃู ููู L ูู X |
|
|
|
911 |
|
01:17:18,650 --> 01:17:24,670 |
|
ุฃูุจุฑ ู
ููุงุจุญูุซ ุงูู ุงููู ูู ุชุตูุฑ E of X ุงููู ูู |
|
|
|
912 |
|
01:17:24,670 --> 01:17:30,110 |
|
ุจูุณุงูู E to the X ุฃูุจุฑ ู
ู E to the N ููู N ูู X |
|
|
|
913 |
|
01:17:30,110 --> 01:17:33,850 |
|
ุฃูุจุฑ ู
ููุง ุจุชุตูุฑ E of X ุฃูุจุฑ ู
ููุง ูุฃููุง strictly |
|
|
|
914 |
|
01:17:33,850 --> 01:17:37,710 |
|
increasing ููุงู ูู
ุง ุชุฑูุญ ูุฐู ุฅูู ู
ุงูุฉ ููุงูุฉ ุงููุจุงุฑ |
|
|
|
915 |
|
01:17:37,710 --> 01:17:41,170 |
|
ุชุจุนุชูุง ููุฐู ุทุจุนุง ุฃูุจุฑ ุฏุงูู
ุง ู
ูุฌูุฏุฉ ูุฐุง ูุชุฑูุญ ุฅูู |
|
|
|
916 |
|
01:17:41,170 --> 01:17:45,540 |
|
ุฃูู ุจุฑุถู ุฅูู ู
ุงูุฉ ููุงูุฉ ูุนูู limit ุงู E of Xูู
ุง X |
|
|
|
917 |
|
01:17:45,540 --> 01:17:48,980 |
|
ุชุฑูุญ ุฅูู ู
ุงูุฉ ููุงูุฉ ุจุชุณุงูู ู
ุงูุฉ ููุงูุฉ ููููู
ุงููู |
|
|
|
918 |
|
01:17:48,980 --> 01:17:54,040 |
|
ูู ูู ุชุฌุฑุจุชู ุงููู ูู ุชุซุจุชู ุฃูู ุจู
ุง ุฃูู limit E of |
|
|
|
919 |
|
01:17:54,040 --> 01:17:58,840 |
|
N ุจุชุฑูุญ ุฅูู ู
ุงูุฉ ููุงูุฉ by ุงููู ูู limit definition |
|
|
|
920 |
|
01:17:58,840 --> 01:18:03,020 |
|
ุฅุฐุง limit E of X ูู
ุง X ุชุฑูุญ ุฅูู ู
ุงูุฉ ููุงูุฉ ุจุชุณุงูู |
|
|
|
921 |
|
01:18:03,020 --> 01:18:08,080 |
|
ู
ุงูุฉ ููุงูุฉ ุงูุขู similarly for mean for ุงููู ูู |
|
|
|
922 |
|
01:18:08,080 --> 01:18:11,120 |
|
limit |
|
|
|
923 |
|
01:18:12,620 --> 01:18:16,560 |
|
ุงูู E of X ูู
ุง X ุชุฑูุญ ูุณุงูุจ ู
ูุง ููุงูุฉ ูุฐู ุงูุงู |
|
|
|
924 |
|
01:18:16,560 --> 01:18:22,840 |
|
ุจูุตูุฑ ุงุชููู ุฃู minus N ุฃูุจุฑ ู
ู E ุฃู minus N ู
ุงุดู |
|
|
|
925 |
|
01:18:22,840 --> 01:18:28,000 |
|
ุงูุญุงู ุงูุงู ุงู limit ููุฐู as N goes to infinity |
|
|
|
926 |
|
01:18:28,000 --> 01:18:31,940 |
|
ุฃูุจุฑ ุฃู ุณุงูู ุงู limit ููุฐู as N goes to infinity |
|
|
|
927 |
|
01:18:31,940 --> 01:18:33,420 |
|
ุงูุงู |
|
|
|
928 |
|
01:18:35,300 --> 01:18:40,100 |
|
ูุฐู ุงุด ู
ุงููุง ุจูุณุงูู ุณูุฑ ููุฐู ุงูุชูู
ุงุชูู ููุณุงูู ุงูุดุ |
|
|
|
929 |
|
01:18:40,100 --> 01:18:44,840 |
|
ููุณุงูู ุณูุฑ ุงูุงู as N goes to infinity ูุนูู ุงู E to |
|
|
|
930 |
|
01:18:44,840 --> 01:18:49,720 |
|
the minus N ุจุชุฑูุญ ููุณูุฑ ู
ู ูููุู
ู ุงููู
ููุ ู
ุธุจูุท ุฃู |
|
|
|
931 |
|
01:18:49,720 --> 01:18:53,060 |
|
ุชุฑูุญ ููู Zeroุ ู
ุธุจูุท ูุฃู at E minus N ุชุฑูุญ ูู
ุง |
|
|
|
932 |
|
01:18:53,060 --> 01:18:57,440 |
|
ูููุงูุฉ As N goes to infinity E to the minus N ุชุฑูุญ |
|
|
|
933 |
|
01:18:57,440 --> 01:19:03,460 |
|
ูุฅูููููุชู ูุฃู as X ุจุชุฑูุญ ุฅูู ุณุงูุจ ู
ุง ูููุงูุฉ ุงู E |
|
|
|
934 |
|
01:19:03,460 --> 01:19:07,560 |
|
to the minus X ุจุฑุถู ูุชุฑูุญ ุฅูู ูููุ ุฅูู ุงูุณูุฑ ูุนูู |
|
|
|
935 |
|
01:19:07,560 --> 01:19:11,220 |
|
ุงู E to the X ููุณูุง ูู
ุง ูุงุฎุฏ ุงู limit ูู
ุง X ุชุฑูุญ |
|
|
|
936 |
|
01:19:11,220 --> 01:19:14,580 |
|
ุจุฏู ู
ุง ูููุงูุฉ ุชุฑูุญ ุฅูู ู
ููุ ุณุงูุจ ู
ุง ูููุงูุฉ ุจุฑุถู |
|
|
|
937 |
|
01:19:14,580 --> 01:19:20,200 |
|
ูุชุณุงูู ุฅูุดุ ุงูุณูุฑุฅุฐุง ุตุงุฑ ุนูุฏู limit E ุถู X ูู
ุง X |
|
|
|
938 |
|
01:19:20,200 --> 01:19:23,560 |
|
ุชุฑูุญ ุงูุณูู
ุฉ ููุง ูุงุจุณุฉ ุฃู ุณูุฑ ู ุจุนุชู
ุฏ ุนูู ุงููู ูู |
|
|
|
939 |
|
01:19:23,560 --> 01:19:26,780 |
|
ุงูุฌูุชูู ุนูู ุงู strictly increasing ุชุจุน ุงู E ู |
|
|
|
940 |
|
01:19:26,780 --> 01:19:30,580 |
|
ุงูุชูุงุตูู ุงููู ูู ุงู definition ุจุชุธูุฑ ุนูุฏูู
ุฃูุง |
|
|
|
941 |
|
01:19:30,580 --> 01:19:34,220 |
|
ู
ุงูุตูุชุงุด ูุฅูู ูู ุฅูู ูุฐุง ุงููุงุฆู
|
|
|
|
|