abdullah's picture
Add files using upload-large-folder tool
6d205e9 verified
raw
history blame
101 kB
1
00:00:04,940 --> 00:00:11,820
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ูŠูˆู… ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 13 ู…ุณุงู‚
2
00:00:11,820 --> 00:00:17,100
ุชุญู„ูŠู„ ุญู‚ูŠู‚ู‡ 2 ู„ุทู„ุงุจ ุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู„ูŠุฉ
3
00:00:17,100 --> 00:00:21,800
ุงู„ุนู„ูˆู… ู‚ุณู… ุฑูŠุงุถูŠุงุช ุงู† ุดุงุก ุงู„ู„ู‡ ุณุชูƒูˆู† ุงู„ู…ุญุงุถุฑุฉ ุนู„ู‰
4
00:00:21,800 --> 00:00:28,620
ุฌุฒุฆูŠู†ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู‡ู†ุณุชู…ุฑ ููŠ ุงู„ุญุฏูŠุซ ุนู† ุณุจุนุฉ ุงุชู†ูŠู†
5
00:00:28,620 --> 00:00:34,240
ูˆู‡ูˆ ุงู„ุญุฏูŠุซ ุฃูˆ ุณุจุนุฉ ุชู„ุงุชุฉ ูˆู‡ูˆ ุงู„ุญุฏูŠุซ ุณุจุนุฉ ุงุชู†ูŠู† ููŠ
6
00:00:34,240 --> 00:00:40,130
ุงู„ุจุฏุงูŠุฉ ูˆู‡ูˆ ุงู„ุญุฏูŠุซ ุนู† ุงู„ุฎูˆุงุต ุงู„ุชูƒุงู…ู„ ุงู„ุฑูŠู…ุงู†ุญูƒูŠู†ุง
7
00:00:40,130 --> 00:00:45,310
ุนู† ุงู„ู„ูŠ ู‡ูˆ ู…ุฌู…ูˆุน ุฏุงู„ุชูŠู† ู‚ุงุจู„ุงุช ุงู„ุชูƒุงู…ู„ ุงู„ู„ูŠ ู‡ูˆ
8
00:00:45,310 --> 00:00:48,510
ู‚ุงุจู„
9
00:00:48,510 --> 00:00:52,510
ุงู„ุชูƒุงู…ู„ ูˆุนุงุตู„ ุถุฑุจ ุซุงุจุช ููŠ ุฏุงู„ุฉ ู‚ุงุจู„ ุงู„ุชูƒุงู…ู„ ุจุฑุถู‡
10
00:00:52,510 --> 00:00:58,630
ู‚ุงุจู„ ุงู„ุชูƒุงู…ู„ูˆุงู„ูŠูˆู… ู‡ู†ูƒู…ู„ ุงู„ุฃู…ุฑ ุงู„ุญุฏูŠุซ ุนู†
11
00:00:58,630 --> 00:01:04,550
composition of two integrable functions ู‡ู„ ู‚ุงุจู„
12
00:01:04,550 --> 00:01:08,270
ุงู„ุชูƒุงู…ู„ ุฃู… ู„ุง ูˆุฅุฐุง ู‚ุงุจู„ ุงู„ุชูƒุงู…ู„ ุจุฏู†ุง ู†ุจุฑู‡ู† ูˆุฅุฐุง ู…ุด
13
00:01:08,270 --> 00:01:14,750
ู‚ุงุจู„ ุจุฏู†ุง ู†ุฌูŠู‡ counter exampleุงู„ุงู† ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
14
00:01:14,750 --> 00:01:18,110
ู‡ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุจุฑุถู‡ ุชุทุจูŠู‚ ุงู„ู„ูŠ ู‡ูˆ composition
15
00:01:18,110 --> 00:01:25,410
theorem ุงู„ู„ูŠ ู‡ูŠ ู‡ู†ุดูˆู ุจุนุฏ ุดูˆูŠุฉ ุงูŠุด ุงู„ู…ุชุทู„ุจ ุงู† ูŠูƒูˆู†
16
00:01:25,410 --> 00:01:30,190
composition of two functions is integrableุฃูŠุถู‹ุง
17
00:01:30,190 --> 00:01:35,230
ู‡ู†ุชุญุฏุซ ุนู† ุงู„ู„ูŠ ู‡ูˆ ู†ูˆุธูู‡ุง ููŠ ุฅุซุจุงุช ุงู„ู„ูŠ ู‡ูˆ ุฃู†
18
00:01:35,230 --> 00:01:38,950
ุงู„ุฏุงู„ุฉ ุงู„ุฃุณูŠุฉ ูˆุงู„ู€ absolute value of the function
19
00:01:38,950 --> 00:01:43,530
F ูˆ ุฃูŠุถู‹ุง ุงู„ู„ูŠ ู‡ูˆ ู…ู‚ู„ูˆุจ ุงู„ุฏุงู„ุฉ 1 ุนู„ู‰ F ููŠ ุญุงู„ุฉ F
20
00:01:43,530 --> 00:01:50,090
ู„ุง ุชุณุงูˆูŠ 0 ุนู„ู‰ ุงู„ domain ุงู„ู…ูุนุทูŽุน ุฅู†ู‡ุง ุชูƒูˆู† ู‚ุงุจู„ุฉ
21
00:01:50,090 --> 00:01:54,830
ู„ู„ุชูƒุงู…ู„ ูˆ ุฃูŠุถู‹ุง ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠูƒูˆู† ููŠ ุนู†ุง ุงู„ู„ูŠ ู‡ูˆ ุชุทุจูŠู‚
22
00:01:54,830 --> 00:01:59,640
ุฃุฎุฑ ุงู„ู„ูŠ ู‡ูˆุญุงุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูƒูŠู ูŠูƒูˆู† ุงู†ุชุฌุฑุงุจู„ ุฃูˆ
23
00:01:59,640 --> 00:02:03,080
ูƒูŠู ุชูƒูˆู† ุงู†ุชุฌุฑุงุจู„ ููŠ ุญุงู„ุฉ ูƒู„ุง ุงู„ุฏุงู„ุชูŠู† ุงู†ุชุฌุฑุงุจู„
24
00:02:03,080 --> 00:02:06,200
ู†ุจุฏุฃ ุงู„ุขู† ููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ุงู„ู€ composition
25
00:02:06,200 --> 00:02:09,600
theorem ูˆุงุทูˆู„ูˆุง ุฑูˆุญูƒู… ุนู„ูŠู†ุง ุดูˆูŠุฉ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ
26
00:02:09,600 --> 00:02:14,930
ุงู„ุจุฑู‡ุงู† ูˆ ุงู„ุจุฑู‡ุงู† ุดูˆูŠุฉ ุจุฏู‡ ุชุฑูƒูŠุฒ ูˆ ุงู„ุจุฑู‡ุงู†ุทูˆูŠู„
27
00:02:14,930 --> 00:02:20,110
ุดูˆูŠุฉ ุฎู„ู‘ูŠู†ุง ุงู† ู†ุนู…ู„ ุงู„ุงู† focusing ุนู„ู‰ ู†ุต ุงู„ู†ุธุฑูŠุฉ ูˆ
28
00:02:20,110 --> 00:02:25,410
ุจุนุฏูŠู† ุจู†ุจุฏุฃ ู†ุญูƒูŠ ุนู† ุงู„ุจุฑู‡ุงู† ู†ุนู…ู„ outline ู„ู„ุจุฑู‡ุงู† ูˆ
29
00:02:25,410 --> 00:02:27,610
ู…ู† ุซู… ู†ุฏุฎู„ ู„ุชูุงุตูŠู„ ุงู„ุจุฑู‡ุงู†
30
00:02:30,230 --> 00:02:35,470
ุจู†ุฃุฎุฏ I ุนุจุงุฑุฉ ุนู† close bounded interval A ูˆB ูˆJ
31
00:02:35,470 --> 00:02:38,550
ุนุจุงุฑุฉ ุนู† close bounded interval ุณู…ูŠู†ุงู‡ุง C ูˆD
32
00:02:38,550 --> 00:02:44,830
ูˆู†ูุชุฑุถ ุฃู† F ู…ู† I ู„ุนู†ุฏ R ูŠุนู†ูŠ F ุนุจุงุฑุฉ ุนู† ุฏู„ุฉ ู…ู† ุนู†ุฏ
33
00:02:44,830 --> 00:02:49,350
ุงู„ A ูˆ ุงู„ B ู„ุนู†ุฏ R ุฃู†ู‡ุง ุชูƒูˆู† integrable on I and
34
00:02:49,350 --> 00:02:52,050
Phi ู…ู† J ู„ุนู†ุฏ R
35
00:02:55,070 --> 00:02:58,390
ุงู„ู†ุธุฑูŠุฉ ุจุชุณุชู„ุฒู… ุฃู† ู†ู‚ูˆู„ continuous ู„ุฃู† ุงู„ Integra
36
00:02:58,390 --> 00:03:03,270
ุจุงู„ุญุงู„ู‡ุง ู…ุด ู‡ุชุนุทูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุชูŠุฌุฉ ุฒูŠ ู…ุง ู‡ู†ุดูˆู ู‚ุฏุงู…
37
00:03:03,270 --> 00:03:07,610
ููŠ ุงู„ู„ูŠ ู‡ูˆ counter example ุงู„ุขู† ูุฑุถู†ุง ุฃู† ูุงูŠู„ ู…ู† J
38
00:03:07,610 --> 00:03:12,890
ู„ุนู†ุฏ R is continuous ูˆุจุฏู†ุง ู†ูุชุฑุถ ุฃู† F of I .. F of
39
00:03:12,890 --> 00:03:17,450
I ุฌุฒุฆูŠุฉ ู…ู† ู…ูŠู†ุŸ ู…ู† J ุนุดุงู† ู†ุนุฑู .. ู†ุนุฑู ุงู„
40
00:03:17,450 --> 00:03:21,670
composition ุจูŠู† ุงู„ two functions ุงู„ุขู† ููŠ ุถูˆุก ู‡ุฐู‡
41
00:03:21,670 --> 00:03:26,050
ุงู„ู…ุนุทูŠุงุชุฅู† ุงู„ู€ function F is integrable ูˆ ุงู„ู€
42
00:03:26,050 --> 00:03:30,410
function Phi is continuous ู„ุงุฒู… ูŠุทู„ุน ุนู†ุฏูŠ ุงู„ุขู† Phi
43
00:03:30,410 --> 00:03:37,450
composite F is integrable on mean on I ุฅุฐู† F ู…ู† I
44
00:03:37,450 --> 00:03:43,130
ู„R ุงู†ุชุฌุฑุงุจู„ Phi ู…ู† J ู„ุนู†ุฏ R continuous ุงู„ุขู† Phi
45
00:03:43,130 --> 00:03:46,170
composite J continuous composite integrable
46
00:03:46,170 --> 00:03:53,500
ู‡ูŠุนุทูŠู†ูŠ ุงู†ุชุฌุฑุงุจู„ function on I ุงู„ุขู† ุจุฏู†ุง ู†ุซุจุชุงู„ุฃู†
47
00:03:53,500 --> 00:04:00,600
ูุงูŠ composite F ู…ู† I ู„ุนู†ุฏ R ุงู†ู‡ุง is integrable
48
00:04:00,600 --> 00:04:04,900
ุงู„ุงู† ูƒูŠู ุจุฏู‰ ุฃุซุจุชู‡ุงุŸ ุจุฏู‰ ุฃุซุจุชู‡ุง .. ุจุฏู‰ ุฃู„ุงู‚ูŠ
49
00:04:04,900 --> 00:04:09,040
partition .. ุฏู‡ ุฃู‚ูˆู„ ู„ูƒู„ ูŠุจุณู† ุฃูƒุจุฑ ู…ู† 0 ุจุฏู„ุงู‚ูŠ
50
00:04:09,040 --> 00:04:16,060
partition B element in B of I such that L of ุฃูˆ U
51
00:04:16,060 --> 00:04:24,200
ofB ูˆ F ู‡ุฐุง ุงู„ู„ูŠ ู„ุฌูŠุชู‡ ู…ุงุนุฑู ุฃุณุฃู„ ุฃุณู ุงู†ุง ูุนู„ุง
52
00:04:24,200 --> 00:04:30,690
composed of G and FูุงูŠ ูƒูˆู…ุจูˆุฒูŠุช F ู†ุงู‚ุต L of B ูˆูุงูŠ
53
00:04:30,690 --> 00:04:35,730
ูƒูˆู…ุจูˆุฒูŠุช F ุฃู† ูŠูƒูˆู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุฅุฐุง
54
00:04:35,730 --> 00:04:40,590
ูˆุตู„ุช ู„ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ ู…ุนู†ุงุชู‡ ุฃู†ู‡ ุฃู†ุง ุฃุซุจุชุช ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูŠ
55
00:04:40,590 --> 00:04:46,490
ุงู„ูุงูŠ ูƒูˆู…ุจูˆุฒูŠุช F is integrable ุจู†ุงุก ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„
56
00:04:46,490 --> 00:04:48,870
criterion of integrability ุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู†ู‡ุง
57
00:04:48,870 --> 00:04:53,700
ุงู„ู…ุญุงุถุฑุฉ ู‚ุจู„ ุงู„ุจุงุถูŠุฉุงู„ุงู† ู‡ุฐุง ุงู„ู‡ุฏู ุงู„ู„ูŠ ุจุฏู‡ ุฃุตู„ู‡
58
00:04:53,700 --> 00:04:58,020
ู‡ูŠูƒ ุจุฏู‡ ุฃุตู„ ู‡ูŠูƒ ุงู„ุงู† ุนุดุงู† ุฃุตู„ ู‡ูŠูƒ ุจุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
59
00:04:58,020 --> 00:05:02,900
ุฃุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนุทูŠุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ุงู„ุงู†
60
00:05:02,900 --> 00:05:08,380
ู‡ุณุชุฎุฏู… ุฃู…ุฑูŠู† ู‡ุณุชุฎุฏู… ุงูƒูŠุฏ ุงู„ continuity ู„ู„ู€ Phiูˆู‡ูŠ
61
00:05:08,380 --> 00:05:14,320
continuous ุนู„ู‰ closed bounded interval ุฅุฐุง ุญุณุจ
62
00:05:14,320 --> 00:05:18,080
ู†ุธุฑูŠุฉ ููŠ ุชุญู„ูŠู„ ูˆุงุญุฏ ู‡ุชูƒูˆู† Phi is uniformly
63
00:05:18,080 --> 00:05:23,880
continuous ูˆู‡ุฐุง ู‡ุณุชุบู„ู‡ุง ููŠ ุงู„ูˆุตูˆู„ ุฅู„ู‰ ู‡ุฏููŠุงู„ุงู† ู‡ุฐู‡
64
00:05:23,880 --> 00:05:27,960
ุงู„ู…ุนู„ูˆู…ุฉ ุจุนุฏ ุดูˆูŠุฉ ู‡ู†ุฎุฒู†ู‡ุง ูˆู†ุญุทู‡ุง ููŠ .. ููŠ ู…ูƒุงู† ู…ุง
65
00:05:27,960 --> 00:05:33,420
ู„ุญูŠู† ู†ุณุชุฎุฏู…ู‡ุง ู…ุน ุงู„ู„ูŠ ู‡ูˆ ุงู† F is integrable ู…ุฒุงู… F
66
00:05:33,420 --> 00:05:37,240
is integrable ุงุฐุง ู†ุจู„ุฌ Partitional I ุจุญูŠุซ ุงู†ู‡ ุงู„ู€
67
00:05:37,240 --> 00:05:40,500
U ู„ู„ู€ B ูˆุงู„ู€ F ู†ู‚ุต ุงู„ู€ B ูˆุงู„ู€ F ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†
68
00:05:40,500 --> 00:05:44,220
some .. ู…ู† ุงู„ู€ Epsilon Epsilon ุชุฎุฏู…ู†ูŠุŒ ู‡ุจุฏุฃ ุฃุณู…ูŠู‡ุง
69
00:05:44,220 --> 00:05:47,490
EpsilonุŒ ู‡ุจุฏุฃ ุฃุณู…ูŠู‡ุง DeltaุŒ ุฃู†ุง ุญูˆุฑุงู„ู…ู‡ู… ุฃูƒูŠุฏ ู…ุฏุงู…
70
00:05:47,490 --> 00:05:51,610
ุงู„ููŠู‡ ุนู†ุฏูŠ integrability ู„ู„ู€ F ู‡ุชุญู‚ู‚ ุฃู†ู‡ ู„ูƒู„ ุงู„ู„ูŠ
71
00:05:51,610 --> 00:05:56,010
ู‡ูˆ Epsilon there exists partition B ูˆุญู†ู„ุงู‚ูŠ ุฃู†ู‡ ุงู„
72
00:05:56,010 --> 00:05:59,510
partition ู‡ุฐุง ุงู„ู„ูŠ .. ุงู„ู„ูŠ ู†ูุน ู„ู„ู€ F ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠู†ูุน
73
00:05:59,510 --> 00:06:04,300
ู„ู„ู€ Phi composite Fู‡ู†ุฌู…ุฌ ุงู„ู…ุนู„ูˆู…ุชูŠู† ุงู„ุชู†ุชูŠู† ู…ุน ุจุนุถ
74
00:06:04,300 --> 00:06:06,680
ุงู„ู„ูŠ ู‡ูŠ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ู€ uniform
75
00:06:06,680 --> 00:06:10,260
continuity ู„ู„ูุนู„ ู…ุน ุงู„integrability ู„ู„ุฃู ู„ู„ูˆุตูˆู„
76
00:06:10,260 --> 00:06:14,920
ุฅู„ู‰ ู†ุชูŠุฌุชู†ุง ูˆู‡ูŠ ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ ู‡ุฐู‡ ุฎู„ูŠู†ุง ู†ู‚ูˆู„ ุงู„
77
00:06:14,920 --> 00:06:19,660
outline ู„ู„ุจุฑู‡ุงู† ู†ุจุฏุฃ ุงู„ุขู† ููŠ ุชูุงุตูŠู„ ุงู„ุจุฑู‡ุงู† ูˆุทูˆู„
78
00:06:19,660 --> 00:06:25,400
ุฑูˆุญูƒู… ุนู„ูŠู‡ุง ููŠ ุงู„ู„ูŠ ู‡ูˆ ุชูุงุตูŠู„ ุงู„ุจุฑู‡ุงู†ู„ู„ูˆุตูˆู„
79
00:06:25,400 --> 00:06:31,780
ู„ู„ู†ุชูŠุฌุฉ ุงู„ู„ู‰ ุญูƒูŠุชู‡ุง ุงู„ู„ู‰ ูƒุชุจุช ุนู„ู‰ ุงู„ู„ูˆุญ ุจุฏูŠ ุงู‚ูˆู„
80
00:06:31,780 --> 00:06:39,240
ุงู„ุงู† ุงูˆู„ ุญุงุฌุฉ given epsilon ุฃูƒุจุฑ ู…ู† ุณูุฑ ุงู†ุง ุงุฎุฏุช
81
00:06:39,240 --> 00:06:44,600
ุงูŠ epsilon ุฃูƒุจุฑ ู…ู† ุณูุฑ ุจุฏูŠ ุงุตู„ ุงู„ U ุจูŠ ูุงูŠ
82
00:06:44,600 --> 00:06:50,610
composite F ู†ุงู‚ุต ุงู„ ุจูŠูุงูŠ ูƒูˆู…ุจูˆุฒูŠุช F ุฃุฒุฑ ู…ู† ุฅุจุณู„ูˆู†
83
00:06:50,610 --> 00:06:55,150
for some ุงู„ู„ูŠ ู‡ูˆ ุจุงุฑุชูŠ ุดู†ุจูŠ ุฅุฐุง ูˆุตู„ุช ู„ู‡ูƒ ุจูƒูˆู† ุฎู„ุตุช
84
00:06:55,150 --> 00:06:58,770
ุงู„ู„ูŠ ู‡ูˆ ู†ุธุฑูŠุชูŠ ุทูŠุจ ุณู„ู…ูˆุง ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ
85
00:06:58,770 --> 00:07:03,850
ูˆุงู„ุณู„ุงู… ุงู„ู„ูŠ ู„ุฃู† ูุงูŠ ุนู†ุฏู‰ ูุงูŠ ุนู†ุฏู‰ continuous ุนู„ู‰
86
00:07:03,850 --> 00:07:08,950
ู…ูŠู† ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ J ุงู„ J ุนุจุงุฑุฉ ุนู† closed bounded
87
00:07:08,950 --> 00:07:12,650
intervalู…ุฏุงู… continuous ุนู„ูŠู‡ุง ุฅุฐุง uniformly
88
00:07:12,650 --> 00:07:16,690
continuous ู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ู…ุฏุงู… uniformly
89
00:07:16,690 --> 00:07:23,170
continuous ุฅุฐุง ุฃูƒูŠุฏ .. ุฃูƒูŠุฏ ุญุชูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ู…ุฏุงู… ..
90
00:07:23,170 --> 00:07:26,750
ุญุชู‰ ููŠ ุงู„ continuity ุฃูƒูŠุฏ ุญุชูƒูˆู† ุฅูŠุด ู…ุง ู„ู‡ุง bounded
91
00:07:26,750 --> 00:07:34,710
ุฅุฐุง ุจู‚ุฏุฑ ุงู„ู„ูŠ ู‡ูˆ ุฃู‚ูˆู„ K ุจุชุณุงูˆูŠ ุงู„ supremum ู„ู„ Phi
92
00:07:34,710 --> 00:07:41,540
of T such that T elementุงู„ู€ C ูˆ D ุงู„ุชูŠ ู‡ูŠ ุงู„ู€ J
93
00:07:41,540 --> 00:07:45,900
ู‡ุฐู‡ ุงู„ุขู† ุจู‚ุฏุฑ ุงุญูƒูŠ ุนู† ุญุงุฌุฉ ุงุณู…ู‡ุง Supremum ุงู‡ ุทุจุนุง
94
00:07:45,900 --> 00:07:51,720
ู…ุด ู‡ูŠ ูƒูƒู„ูƒู… ูƒู…ุงู† ูˆ ุงู„ู€ K ู‡ุฐู‡ ู‡ุชูƒูˆู† attains for
95
00:07:51,720 --> 00:07:55,500
some T ุจูŠู† C ูˆ D ู„ูŠู‡ุŸ ู„ุฃู†ู‡ ูุงูŠุฒ continuous on a
96
00:07:55,500 --> 00:07:58,340
closed bounded interval then it attains its
97
00:07:58,340 --> 00:08:00,920
absolute maximum and absolute minimum on this
98
00:08:00,920 --> 00:08:05,120
interval ุฅุฐู† ุฃูƒูŠุฏ ููŠ ุนู†ุฏูŠK ุจูŠุชุณุงูˆู‰ ุงู„ู€ Supremum ู„ูˆ
99
00:08:05,120 --> 00:08:09,200
ุณู„ูˆูƒ ูŠุฏูุน ู„ู‡ 5T T Element in C ูˆD ุณู…ูŠู„ูŠู‡ุง ุฏูŠ K ู„ูŠุด
100
00:08:09,200 --> 00:08:13,280
ู‡ุชุฌู‡ุช ุจุชุนุฑู ู„ูŠุด ู‡ุชุณุชุฎุฏู…ู‡ุง ููŠ ุงู„ูˆุตูˆู„ ุฅู„ู‰ ู‡ุฏููŠ ุฅุฐุง
101
00:08:13,280 --> 00:08:16,960
ุงู„ุฃู† ุงู„ู„ูŠ ุนู…ู„ุชู‡ ู„ุญุฏ ุงู„ุขู† ุฃุฎุฏุช epsilon arbitrarily
102
00:08:16,960 --> 00:08:21,860
ุฃุฎุฏุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ supremum ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูˆุณู…ูŠุชู‡ K ู‡ู„
103
00:08:21,860 --> 00:08:24,440
ุงู„ supremum ู…ูˆุฌูˆุฏุŸ ุฃู‡ ุงู„ supremum ู…ูˆุฌูˆุฏ ูˆ maximum
104
00:08:24,440 --> 00:08:27,480
ูƒู…ุงู† ู„ุฅู† ุงู„ Phi is continuously on a closed
105
00:08:27,480 --> 00:08:31,840
bounded interval COD ุทูŠุจ
106
00:08:34,510 --> 00:08:39,830
ุงู„ุงู† ุจุฏูŠ ุงุฎุฏ ุจุนูŠุฏ ุงุฐู†ูƒู… ุญุงุฌุฉ ุงุณู…ูŠู‡ุง let epsilon
107
00:08:39,830 --> 00:08:45,490
ุจุฑุงูŠู… ุจุงู„ุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ epsilon ุนู„ู‰ b ู†ุงู‚ุต a ุฒุงุฆุฏ
108
00:08:45,490 --> 00:08:49,670
ุงุชู†ูŠู† k ุงู„ k ู‡ุฐู‡ ุงู„ู„ูŠ ููˆู‚ ุฒุงุฆุฏ ุงุชู†ูŠู† k ูˆุงู„ b ูˆ ุงู„
109
00:08:49,670 --> 00:08:54,010
a ุงู„ู„ูŠ ู‡ูŠ ุทูˆู„ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ I ุงู„ู„ูŠ ุงู†ุง ุนู…ุงู„ ุจุดุชุบู„
110
00:08:54,010 --> 00:09:01,100
ุนู„ูŠู‡ุง ู…ุนุฑู ุนู„ูŠู‡ุง Fู„ูŠุด ู‡ูŠูƒุŸ ุจุบุฑุถ ุงู„ุญุณุงุจุงุช ุจุนุฏ ุดูˆูŠุฉ
111
00:09:01,100 --> 00:09:06,060
ู‡ุชุดูˆููˆุง ู„ูŠุด ูˆ ู„ูˆ ุฃุตู„ุง ุงุญู†ุง ููŠ ุงู„ู†ู‡ุงูŠุฉ ุงู„ู€ Epsilon
112
00:09:06,060 --> 00:09:10,140
ุงู„ู€ Prime ู‡ุฐู‡ ู…ุง ูƒุชุจู†ุงุด ุจุงู„ุดูƒู„ ู‡ุฐุง ูˆ ุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ
113
00:09:10,140 --> 00:09:19,940
ู‡ูˆ ุงู„ู€ U of B ุฃูˆ Phi Composite F ู†ุงู‚ุต ุงู„ู€ B Phi
114
00:09:19,940 --> 00:09:26,070
Composite FูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู…ุถุฑูˆุจุฉ ููŠ something
115
00:09:26,070 --> 00:09:32,270
ุฃูŠ ุฅุดูŠ something ุซุงุจุชุจุฑุถู‡ ู‡ุชู‚ุฏูŠ ุงู„ุบุฑุถ ู„ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูŠ
116
00:09:32,270 --> 00:09:35,310
ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู„ู…ุฏุงู… ุตุญูŠุญุฉ ู„ูƒู„ epsilon
117
00:09:35,310 --> 00:09:38,150
ููŠ ุงู„ุฏู†ูŠุง ุฅุฐุง ุตุญูŠุญ ุงู„ูˆุงุญุฏ ุนู„ู‰ n ุฎุฏ ุงู„ limit
118
00:09:38,150 --> 00:09:41,530
ู„ู„ุฌู‡ุชูŠู† as n goes to infinity ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง
119
00:09:41,530 --> 00:09:45,670
ุงู„ู„ูŠ ู‡ูˆ ูŠุคุฏ ุงู„ุบุฑุถ ุฃูˆ ุงู„ epsilon ุงู„ู„ูŠ ู‡ู†ุง ุจุชูƒูˆู†
120
00:09:45,670 --> 00:09:50,730
ุงู„ู„ูŠ ู‡ูˆ ุจูŠุตูŠุฑ ูŠุนู†ูŠ ุชุคุฏูŠ ุบุฑุถ ุฃูŠ ุฃุตุบุฑ ู…ู† epsilon ููŠ
121
00:09:50,730 --> 00:09:53,510
ุงู„ุฏู†ูŠุง ู„ุฅู† ุงู„ epsilon ู…ุฏุงู… ุงุชู…ุถุฑูˆุจุฉ ุถุฑุจ ููŠ ุงู„ุชุงุจุท
122
00:09:53,510 --> 00:09:57,930
ุจู‚ุฏุฑ ุงู„ epsilon ุฃุฒุบุฑู‡ุง ุฌุฏ ู…ุง ุจุฏูŠ ูˆ ุชุคุฏูŠ ุงู„ุบุฑุถ
123
00:09:58,610 --> 00:10:05,280
ุงู„ู…ูุฑูˆุถ ูุงู‡ู…ูŠู† ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู†ู†ุฑุฌุน ู†ู‚ูˆู„ ุฃู†ู‡ ุฃุฎุฏุช
124
00:10:05,280 --> 00:10:08,980
ุฅุจุณู„ูˆู† ู…ุฑุงูŠ ุจูŠุณุงูˆูŠ ุฅุจุณู„ูˆู† ุนู„ู‰ P minus A ุฒุงุฏ 2K ุนู„ู‰
125
00:10:08,980 --> 00:10:12,680
ุฃุณุงุณ ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ุชุทู„ุน ุนู†ุฏู†ุง ุงู„ุญุณุงุจุงุช ููŠ ุงู„ุขุฎุฑ
126
00:10:12,680 --> 00:10:16,480
ู…ุฑุชุจุฉ ูˆุฎุงู„ุตุฉ ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุทุจุนุง ู‡ูˆ
127
00:10:16,480 --> 00:10:20,720
ุงู„ุงุดุนุฑู ุฃู† ุฅุจุณู„ูˆู† ู…ุฑุงูŠ ุจุงู„ุดูƒู„ ู‡ุฐุง ุฃุตู„ุง ู‡ูˆ ุจุฑู‡ู†
128
00:10:20,720 --> 00:10:23,680
ุงู„ู†ุธุฑูŠุฉ ุฃูˆ ุจุฑู‡ู†ู†ุง ุงู„ู†ุธุฑูŠุฉ ูˆููŠ ุงู„ุขุฎุฑ ุทู„ุน ุฃู† ุฅุจุณู„ูˆู†
129
00:10:23,680 --> 00:10:28,440
ู…ุถุฑูˆุจุฉ ููŠ ุฑู‚ู… ุฌูŠุช ุงู„ู„ูŠ ู‡ูˆ ุฑุชุจุช ุญุงู„ูŠ ุจุญูŠุซ ุฃู†ู‡ ุญุณุจุช
130
00:10:28,440 --> 00:10:32,320
ุฃู†ู‡ ุนุดุงู† ุฃุทู„ุญ ุฅุจุณู„ูˆู† ู„ุญุงู„ู‡ุง ุฎุฏ ุฅุจุณู„ูˆู† ู…ุจุฑุงู† ุจุงู„ุดูƒู„
131
00:10:32,320 --> 00:10:39,070
ู‡ุฐุงุทูŠุจ ู†ุดูˆู .. ู†ุดูˆู ุงู„ุขู† ุนู†ุฏูŠ ูุงูŠ ุฒูŠ ู…ุง ูˆุนุฏู†ุงูƒู…
132
00:10:39,070 --> 00:10:49,690
ูุงูŠ is continuous on ุงู„ู„ูŠ ู‡ูˆ cod ู…ุฏุงู… ูุงูŠ
133
00:10:49,690 --> 00:10:53,010
continuous on cod ูŠุง ุฌู…ุงุนุฉ ุฅุฐุง ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‚ุจู„
134
00:10:53,010 --> 00:11:01,660
ุจุดูˆูŠุฉ ุฅุฐุง5 is uniformly continuous on COD ุฃูŠุด
135
00:11:01,660 --> 00:11:07,680
ู…ุนู†ุงุฉ uniformly continuous ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูˆ for every
136
00:11:07,680 --> 00:11:12,100
ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง for every ุฅุจุณู„ูˆู† .. ุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏ
137
00:11:12,100 --> 00:11:15,020
ุฅุจุณู„ูˆู† ุงู„ู€ prime for every ุฅุจุณู„ูˆู† ุงู„ู€ prime ุฃูƒุจุฑ
138
00:11:15,020 --> 00:11:21,680
ู…ู† ุณูุฑ there exists delta prime such that
139
00:11:21,680 --> 00:11:29,560
uniformly continuousFor every S ูˆT element in C ูˆD
140
00:11:29,560 --> 00:11:38,690
ุชุญู‚ู‚ S minus T ุฃุตุบุฑ ู…ู† Delta Prime ูŠุคุฏูŠ ุฅู„ู‰ Phiof
141
00:11:38,690 --> 00:11:43,690
S ู†ุงู‚ุต Phi of T ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† Epsilon ุจุฑุงูŠู… ุงู„ู„ูŠ
142
00:11:43,690 --> 00:11:49,450
ุฃุฎุฏุชู‡ุง ุนู†ุฏูŠ ู„ุฃูŠ Epsilon ููŠ ุงู„ุฏู†ูŠุง ู‡ุฐุง ุงู„ูƒู„ุงู…
143
00:11:49,450 --> 00:11:52,210
ุจูŠุชุญู‚ู‚ ู…ู† ุฏูˆู† ุฃู† ู‡ู… Epsilon ุจุฑุงูŠู… ุงู„ู„ูŠ ุญูƒูŠุช ุนู†ู‡ุง
144
00:11:52,210 --> 00:11:58,090
ููˆู‚ ุทูŠุจ ุฅุฐุง ุงู„ุฃู† ุงู„ู„ูŠ ุงุณุชุฎุฏู…ุชู‡ ุจู…ุง ุฃู† Phi
145
00:11:58,090 --> 00:12:02,010
continuous ุนู„ู‰ C ูˆD ุฅุฐุง Phi is uniformly
146
00:12:02,010 --> 00:12:08,210
continuous on ู…ูŠู†ุŸ on C ุฃูˆ Dุฅุฐู† ุงู„ุขู† ุญุณุจ ุงู„ุชุนุฑูŠู
147
00:12:08,210 --> 00:12:11,530
ุงู„ู€ Uniformly Continuous ู„ุฃูŠ ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง ู…ู†
148
00:12:11,530 --> 00:12:14,530
ุถู…ู†ู‡ู† ุงู„ุฅุจุณู„ูˆู† ุงู„ู€ prime ุงู„ุฃูƒุจุฑ ู…ู† 0 there exists
149
00:12:14,530 --> 00:12:17,430
delta prime ุฎุงุตุฉ ุจุงู„ุฅุจุณู„ูˆู† ุงู„ู€ prime ุจุญูŠุซ ุฃู†ู‡ ู„ู…ุง
150
00:12:17,430 --> 00:12:20,770
S ูˆ T ููŠ ุงู„ู€ C ูˆ ุงู„ู€ D ูˆ ูŠูƒูˆู† ุงู„ู€ S minus T ุฃุตุบุฑ
151
00:12:20,770 --> 00:12:24,950
ู…ู† delta prime ูŠุนุทูŠู†ูŠ ุฃู† 5S ู†ุงู‚ุต 5T ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
152
00:12:24,950 --> 00:12:30,990
ุฅุจุณู„ูˆู† ุงู„ู€ primeุงู„ุงู† ุงู†ุง ููŠ delta ู…ุนูŠู†ุฉ ุจุฏูŠ
153
00:12:30,990 --> 00:12:35,830
ุฃู„ุงู‚ูŠู‡ุง ุฃุฑุจุทู‡ุง ุจู‡ุฐู‡ ูˆุงุชุญู‚ู‚ู„ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ุดูˆููˆุง ูƒูŠู
154
00:12:35,830 --> 00:12:44,030
ุงุตุจุฑูˆุง ุนู„ูŠู‡ุง ุงู„ุงู† if ุนู†ุฏูŠ delta prime ู‡ุฐู‡ ุฃุตุบุฑ ู…ู†
155
00:12:44,030 --> 00:12:49,430
epsilon prime thenThere exists Delta ุจุชุณุงูˆูŠ Delta
156
00:12:49,430 --> 00:12:53,130
Prime ุจุชุงุฎุฏ Delta ุฅูŠุด ุจุชุณุงูˆูŠ ุฃุณู…ูŠู‡ ุจุชุณู…ูŠ Delta
157
00:12:53,130 --> 00:12:56,370
Prime ู…ูŠู† ูŠุง ุฌู…ุงุนุฉุŸ Delta ูˆ ู‡ุงุฏ ุงู„ Delta ุงู„ู„ูŠ
158
00:12:56,370 --> 00:12:58,790
ุณู…ูŠุชู‡ุง ุงู„ู„ูŠ ู‡ูŠ Delta Prime ุงู„ู„ูŠ ุณู…ูŠุชู‡ุง Delta ู‡ุงุฏ
159
00:12:58,790 --> 00:13:03,670
ุงู„ Delta ู‡ุชุญู‚ู‚ู‡ุง ู„ูŠุดุŸ ู„ุฃู†ู‡ุง ู†ูุณู‡ุง ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ
160
00:13:03,670 --> 00:13:08,150
ุฅุฐุง ูƒุงู†ุช ุงู„ S minus T ุฃุตุบุฑ ู…ู† Delta Prime ุจูŠุนุทูŠู†ูŠ
161
00:13:08,150 --> 00:13:10,830
Automatic ุฃุตุบุฑ ู…ู† Delta Prime ุงู„ู„ูŠ ุณู…ูŠุชู‡ุง Delta
162
00:13:10,830 --> 00:13:15,810
ุจูŠุนุทูŠู†ูŠ Phi of S ู†ุงู‚ุต Phi of T ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†
163
00:13:15,810 --> 00:13:23,530
Epsilon PrimeุทูŠุจ ุชุดูˆููˆุง ุงู„ุงู† if delta prime ุฃูƒุจุฑ
164
00:13:23,530 --> 00:13:26,430
ุฃูˆ ูŠุณุงูˆูŠ epsilon prime ูŠุง ุฃูŠ ุญุงู„ุชูŠู† ู…ุงููŠุด ุบูŠุฑ ู‡ูŠูƒ
165
00:13:26,430 --> 00:13:28,830
ูŠุง delta prime ุฃุตุบุฑ ู…ู† epsilon ูŠุง delta prime ุฃูƒุจุฑ
166
00:13:28,830 --> 00:13:32,090
ุณุงูˆูŠ epsilon prime ุงู„ุงู† if delta .. ุฃู‡ู„ ุฌุงูŠ ุชูู‡ู…ูˆุง
167
00:13:32,090 --> 00:13:34,530
ู„ูŠุด ุนู…ู„ุช ู‡ูŠูƒ if delta prime ุฃูƒุจุฑ ุณุงูˆูŠ epsilon
168
00:13:34,530 --> 00:13:41,100
prime thenุงู„ู„ูŠ ู‡ูˆ there exists Delta ุฃุตุบุฑ ู…ู†
169
00:13:41,100 --> 00:13:45,540
Epsilon ุจุฑุงูŠู… ุจู„ุงุฌูŠ ูˆู„ุง ุจู„ุงุฌูŠุด Epsilon ุจุฑุงูŠู… ุฃูƒุจุฑ
170
00:13:45,540 --> 00:13:50,200
ู…ู† 0 ุฃูƒูŠุฏ between ุงู†ุง ุงุจุณู„ูˆู† ุจุฑุงูŠู… ุฃูƒุจุฑ ู…ู† 0 ุฅุฐุง
171
00:13:50,200 --> 00:13:52,620
ุฃู†ุง ุฃูƒูŠุฏ ุจู„ุงุฌูŠ ุจูŠู† Epsilon ุจุฑุงูŠู… ุฃูƒุจุฑ ู…ู† 0 ุจู„ุงุฌูŠ
172
00:13:52,620 --> 00:13:57,340
Deltaุจู„ุงุฌูŠ ุนุฏุฏ ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุฃุนุฏุงุฏ ุงู„ู„ูŠ ู‡ูˆ Delta ุฃูƒุจุฑ
173
00:13:57,340 --> 00:14:01,400
ู…ู† ุณูุฑ ูˆุฃุตุบุฑ ู…ู† ุฅุจุณู„ ูˆ ุจุฑุงูŠู† ุฅุฐุงู‹ ุจู„ุงุฌูŠ Delta ุฃุตุบุฑ
174
00:14:01,400 --> 00:14:04,820
ู…ู† ุฅุจุณู„ ูˆ ุจุฑุงูŠู† ุจู„ุงุฌูŠ ุฃู‡ ุจู„ุงุฌูŠ ู„ุฅู† ุจูŠู† ุงู„ู€ two
175
00:14:04,820 --> 00:14:09,820
real numbers ุงู„ู„ูŠ ู‡ูˆ ุจูŠู† ุงู„ุณูุฑ ูˆุจูŠู† ุฃูŠ positive
176
00:14:09,820 --> 00:14:14,360
real number ููŠ infinite number of numbers ุจูŠู†ู‡ู…
177
00:14:14,360 --> 00:14:17,600
ุณู…ูŠุช ูˆุงุญุฏ ู‚ู„ุช there exists Delta ุฃุตุบุฑ ู…ู† ุฅุจุณู„ ูˆ
178
00:14:17,600 --> 00:14:21,860
ุจุฑุงูŠู† such that .. ุทูŠุจ ุฅูŠุด ุจุฏูƒ ููŠู‡ุง ู‡ุฐู‡ุŸ such that
179
00:14:21,860 --> 00:14:27,400
.. ุฃุญู†ุง ุงู„ู€ gate ุชุดูˆููˆุงIf S minus T ุฃุตุบุฑ ู…ู† Delta
180
00:14:27,400 --> 00:14:34,000
ูู‡ุฐู‡ ุงู„ู€ Delta If S minus T ุฃุตุบุฑ ู…ู† Delta ุฅุฐุง ุฃูƒูŠุฏ
181
00:14:34,000 --> 00:14:37,860
ู‡ุฐู‡ ุงู„ู€ Delta ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ุงู„ู…ุฎุชุงุฑ ู‡ูŠ ุฃุตุบุฑ ู…ู† Y'
182
00:14:38,320 --> 00:14:42,480
ูˆY' ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ุฃุตุบุฑ ุฃูˆ ูŠุณูˆู‰ Delta Prime ู…ู† ู‡ู†ุง
183
00:14:43,910 --> 00:14:50,290
ุงู„ุงู† if S-C ุฃุตุบุฑ ู…ู† Delta ุฅุฐุง .. ุฅุฐุง ุญูŠุซ ุงู„ู€ S-C
184
00:14:50,290 --> 00:14:54,910
ู‡ุชูƒูˆู† ุฃุตุบุฑ ู…ู† Y' ูˆุงู„ู„ูŠ ุจุฏูˆุฑู‡ุง SY' ุฃุตุบุฑ ุจุณุงูˆูŠ Delta
185
00:14:54,910 --> 00:14:59,090
.. ุฃุตุบุฑ ุจุณุงูˆูŠ Delta Prime ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ S-C ุฃุตุบุฑ
186
00:14:59,090 --> 00:15:03,010
ู…ู† Delta ู‚ุทุนู‹ุง S-C ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Delta Prime
187
00:15:03,010 --> 00:15:07,450
ูˆุจู†ุงุกู‹ ุนู„ู‰ ุงู„ู„ูŠ ูƒุชุจุชู‡ ุจุงู„ุฃุญู…ุฑ ู‡ุฐุง ูƒู„ ุฅุดูŠ S-C ุฃุตุบุฑ
188
00:15:07,450 --> 00:15:15,270
ู…ู† Delta Prime ุฅุดูŠ ุจูŠุนุทูŠู†ูŠ5s-5t ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†
189
00:15:15,270 --> 00:15:20,550
ุจุฑุงูŠู… ุฅุฐุง ูŠุง ุฌู…ุงุนุฉ ุณูˆุงุก ุฏู„ุชุง ุจุฑุงูŠู… ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†
190
00:15:20,550 --> 00:15:25,710
ุจุฑุงูŠู… ุฃูˆ ุฏู„ุชุง ุจุฑุงูŠู… ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุฅุจุณู„ูˆู† ุจุฑุงูŠู…
191
00:15:25,710 --> 00:15:33,020
ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ ุฏู„ุชุงุชุชุญู‚ู‚ ููŠู‡ุง ุงู„ุฎุงุตูŠุฉ ู„ู…ุง S minus T
192
00:15:33,020 --> 00:15:36,900
ุฃุตุบุฑ ู…ู† Delta ู„ู…ุง S minus T ุฃุตุบุฑ ู…ู† Delta ูŠุนุทูŠู†ูŠ
193
00:15:36,900 --> 00:15:39,900
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† Epsilon Prime ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ
194
00:15:39,900 --> 00:15:44,580
ู…ู† Epsilon Prime ุฅุฐุง ุฃู†ุง ููŠ ุงู„ู†ู‡ุงูŠุฉ there exist
195
00:15:44,580 --> 00:15:50,690
ู„ูˆุตู„ุช ู„ู‡ there exist Deltaุฃูƒุจุฑ ู…ู† 0 ูˆู†ูุณ ุงู„ูˆุฌุฏ
196
00:15:50,690 --> 00:15:55,170
ุฃุดู…ุงู„ู‡ุง Delta ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ุจุฑุงูŠู… ู„ุฃู†ู‡ ููŠ ุงู„ุญุงู„ุฉ
197
00:15:55,170 --> 00:15:59,650
ุฏู‡ ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ุจุฑุงูŠู… ูˆููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ุจุฑุถู‡ ุงู„ู€
198
00:15:59,650 --> 00:16:03,630
Delta ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ุจุฑุงูŠู… ู„ุฃู†ู‡ ุงุฎุชุงุฑ ุงู„ุฏู„ุชุฉ ู‡ูŠ
199
00:16:03,630 --> 00:16:08,490
Delta ุฅุจุฑุงูŠู… ุฅุฐู† ููŠ ูƒู„ ุงู„ุญุงู„ุงุช ู‡ูŠ ุงู„ู…ุฑุจุท ุงู„ูู„ุณููŠ
200
00:16:08,490 --> 00:16:13,950
ุงู„ุขู† there exists Delta ุฃูƒุจุฑ ู…ู† 0 ูˆุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู†
201
00:16:13,950 --> 00:16:22,170
ุจุฑุงูŠู… such thatู„ูƒู„ S ูˆT element in C ูˆD ุฅุฐุง ุญู‚ู‚ุช
202
00:16:22,170 --> 00:16:27,610
ุงู„ุฎุงุตูŠุฉ S minus T ุฃุตุบุฑ ู…ู† Delta ุจูŠุนุทูŠู†ูŠ ุนู„ู‰ ุทูˆู„ 5S
203
00:16:27,610 --> 00:16:34,130
ู†ุงู‚ุต 5T ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุฅุจุฑุงู‡ูŠู… ุฅุฐู† ู‡ูŠ
204
00:16:34,130 --> 00:16:41,710
ู…ุนู„ูˆู…ุฉ ุฃุฎุฑู‰ ุจุฏูŠ ุฃุฎุฐู†ู‡ุง ู„ุฃู†ู†ูŠ ู‡ุญุชุงุฌู‡ุงู‡ูŠ ูƒู…ุงู† ู…ุนู„ูˆู…ุฉ
205
00:16:41,710 --> 00:16:46,270
ุงู„ุงู† ุงุณู…ุญูˆู„ูŠ ุฃู…ุณุญ ู‡ุฐุง ุงู„ hand ุนุดุงู† ุฃุฎุฒู† ู…ุนู„ูˆู…ุชูŠ
206
00:16:46,270 --> 00:16:49,770
ุงู„ู„ูŠ ูˆุตู„ุช ุฅู„ู‡ุง ู…ุน ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ููˆู‚
207
00:16:49,770 --> 00:16:57,090
ุทูŠุจ ุงู„ุงู† ุดุทุจู†ุง ุงู„ู„ูŠ ุนู†ุฏู†ุง hand ุฎู„ุตู†ุง ู…ู†ู‡ ูˆูˆุตู„ู†ุง
208
00:16:57,090 --> 00:17:03,030
ุฅู„ู‰ ุงู„ู…ุนู„ูˆู…ุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ุจุฏุฃ ุฃุฎุฒู†ู‡ุง ุงู„ุขู† ู…ุน ุงู„ู„ูŠ
209
00:17:03,030 --> 00:17:10,620
ู…ุฎุฒู† ููˆู‚ ู„ุฃู† there existDelta ุฃูƒุจุฑ ู…ู† 0 ูˆุฃุตุบุฑ ู…ู†
210
00:17:10,620 --> 00:17:18,140
Y' Such that for every S ูˆT element in C ูˆD ุฅุฐุง
211
00:17:18,140 --> 00:17:25,340
ุญู‚ู‚ S minus T ุฃุตุบุฑ ู…ู† Delta ุจูŠุนุทูŠู†ูŠ ุงู„ู„ูŠ ู‡ูˆ 5S
212
00:17:25,340 --> 00:17:34,140
minus 5T ุฃุตุบุฑ ู…ู† Y' ูˆู‡ุฐุง ุณู…ูˆู†ูŠู‡ุง 1 ุณู…ูˆู†ูŠู‡ุง 2
213
00:17:34,140 --> 00:17:38,630
ุณู…ูˆู†ูŠู‡ุง Star ุงู„ู„ูŠ ุจุฏูƒู… ุฅูŠุงู‡ุง ู…ุงุดูŠ ุงู„ุญุงู„ู‡ุฐุง ุงู„ุงู†
214
00:17:38,630 --> 00:17:44,170
ูˆุตู„ุช ู„ู‡ ูˆุงู†ุง ุจุฏูŠ ุงุณุชุฎุฏู…ู‡ ุจุนุฏ ุดูˆูŠุฉ
215
00:17:49,890 --> 00:17:54,390
ุงู„ู„ูŠ ุงู„ู„ูŠ ุจุญุจ ูŠุชุงุจุน ุนู„ู‰ ุงู„ุชู„ุฎูŠุต
216
00:17:54,390 --> 00:17:58,130
ู‡ุงูŠ ุงู„ู„ูŠ ูˆุตู„ุช ุฅู„ูŠู‡ ุงู„ุขู† ู‡ุงูŠู‡ุง there exists delta ูˆ
217
00:17:58,130 --> 00:18:01,390
ุงู„ู€ delta ุฃุตุบุฑ ู…ู† epsilon prime if S ูˆ T element
218
00:18:01,390 --> 00:18:04,470
in J and S minus T ุฃุตุบุฑ ู…ู† Delta then Phi of S
219
00:18:04,470 --> 00:18:08,030
ู†ุงู‚ุต Phi of T ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุจุฑุงูŠู… ู‡ุฐู‡ ุงู„ู„ูŠ ูˆุตู„ู†ุง
220
00:18:08,030 --> 00:18:15,670
ุฅู„ูŠู‡ุง ุงู„ู„ูŠ ู‚ุฏุฑู†ุง ุฃู† ู†ุตู„ู‡ุง ุนุดุงู† ุจุนุฏ ุดูˆูŠุฉ ุจุชุณุชุฎุฏู…ู‡ุง
221
00:18:15,670 --> 00:18:20,950
ุงู†ุชุจู‡ ุนู„ูŠู‡ุง ุงู„ุขู†ุงู„ุขู† ุงุณุชุบู„ู‚ู†ุง ู…ุนู„ูˆู…ุฉ ุงู„ู€ if I is
222
00:18:20,950 --> 00:18:24,490
continuous ูˆุญุตู„ู†ุง ุนู„ู‰ ู…ุนู„ูˆู…ุฉ ู…ู‡ู…ุฉ ุฌุฏุงู‹ ู‡ูŠ ู‡ุฐู‡
223
00:18:24,490 --> 00:18:28,630
ุงู„ู…ุนู„ูˆู…ุฉ ุงู„ุขู† ุจุฏูŠ ุฃุณุชุฎุฏู… ุงู„ู…ุนู„ูˆู…ุฉ ุงู„ู…ูˆุงุฒูŠุฉ ู„ู‡ุง ุฃู†
224
00:18:28,630 --> 00:18:37,770
F is integrable ุงู„ุงู† ุนู†ุฏูŠ F is integrable on I ุฅุฐุง
225
00:18:37,770 --> 00:18:43,010
ุญุณุจ then ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„ .. ุงู„ integrability
226
00:18:43,010 --> 00:18:48,570
criterionุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู†ู‡ุง there exists partition B
227
00:18:48,570 --> 00:18:56,690
element in B of I ุจุฌุฒุก ู…ูŠู† I such that ุงู„ู„ูŠ ู‡ูˆ U
228
00:18:56,690 --> 00:19:05,920
of B ูˆFู…ุนู‚ุณ L ุจูŠูˆู‚ู ุฃุตุบุฑ ู…ู† ุฃูŠ ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง
229
00:19:05,920 --> 00:19:08,360
ุงู„ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ููŠ ุงู„ุฏู†ูŠุง ุงู„ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ุจุฏู‡ุง
230
00:19:08,360 --> 00:19:12,040
ุงุณุชุฎุฏู…ู‡ุง ุงู„ู„ูŠ ุญุชุฉ ููŠ ุงู„ุฏู†ูŠุง ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† ู‡ูŠ Delta
231
00:19:12,040 --> 00:19:17,000
ุชุฑุจูŠุน ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† Delta ุชุฑุจูŠุน ุจู‚ุฏุฑ ุฃู‡ ุจู‚ุฏุฑ ุทุจุนุง
232
00:19:17,000 --> 00:19:19,960
ู…ุด ุงุญู†ุง ุจู†ู‚ูˆู„ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู…ุงุฏุงู… F is
233
00:19:19,960 --> 00:19:23,040
integrable ู„ุฐุง ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ there exist
234
00:19:23,040 --> 00:19:27,590
ุงู„ partition B ุจุญูŠุซ ุฃู†ู‡ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†ุงู„ุฃู†
235
00:19:27,590 --> 00:19:30,330
ุฃุจุณุท ู…ู† ุงู„ู„ูŠ ุจุญูƒูŠ ุนู†ู‡ุง ุฏู„ุชุฉ ุชุฑุจูŠุน ุฏู„ูุฉ ุงู„ุชุฑุจูŠุน
236
00:19:30,330 --> 00:19:35,650
ุฃูƒุจุฑ ู…ู† ุตูุฑ ุฅุฐุง for delta ุชุฑุจูŠุน there exists B
237
00:19:35,650 --> 00:19:40,070
element in B of I such that U ู†ุงู‚ุต L ุฃุตุบุฑ ู…ู† ู…ูŠู†
238
00:19:40,070 --> 00:19:44,650
ู…ู† Delta ุชุฑุจูŠุน ู‡ุฐุง ุงู„ partition B ุจูŠุฌุฒุฆู„ูŠ ู…ูŠู†ุŸ
239
00:19:44,650 --> 00:19:51,670
ุจูŠุฌุฒุฆู„ูŠ I ุจุนุฏ ุฃุฐู†ูƒู… ุณู…ูˆู„ูŠู‡ุง ุจูŠู‡ X0 ูˆ X1 ู„ุนู†ุฏ ู…ูŠู†ุŸ
240
00:19:51,670 --> 00:19:55,230
ู„ุนู†ุฏ X ุณู…ูˆู„ูŠู‡ุง ุงู„ partition ุจุณ ุนุดุงู† ุฃุชุนุงู…ู„ ู…ุนุงู‡ุง
241
00:19:55,660 --> 00:19:57,540
ุงู„ู„ูŠ ู‡ูˆ partition ู„ู„ู€ I partition ู„ู„ู€ I ู…ุนู†ุงู‡
242
00:19:57,540 --> 00:20:00,880
ุจุฌุฒู‘ู‡ I ุฌุฒู‘ู‡ ุงูˆ ู„ X note X ูˆุงุญุฏ X ุงู†ุช ุฌุฏุงุด ุฃุนุฏุงุฏู‡ุง
243
00:20:00,880 --> 00:20:07,080
ู…ุด ุนุงุฑู ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุฌู†ุงู‡ ุจูŠู‡ ุทูŠุจ ุดูˆู ุงู„ุขู† ุจุฏูŠ
244
00:20:07,080 --> 00:20:13,520
ุฃุนู…ู„ ุงู„ู„ูŠ ู‡ูˆ ุดุบู„ุฉ ุจุญูŠุซ ุนู† ุงู„ุงู† ุฃู‚ุฏุฑ ุฃุณุชุฎุฏู…ู‡ุง ุงู„ู„ูŠ
245
00:20:13,520 --> 00:20:18,360
ู‡ูŠ ุฃุตู„ ู„ู„ูŠ ุจุฏูŠ ู…ู† ุฎู„ุงู„ู‡ุง ุงู„ุขู† ู‡ุฌูŠุชูˆุง ุชุดูˆููˆุง ู„ูŠุด
246
00:20:18,360 --> 00:20:23,400
ุฌุฒุนูŠู† ุฎุฏูˆุง Aุงู„ุงู† ูŠุง ุฌู…ุงุนุฉ ุตุงุฑุช ุฏู„ุชุฉ ุจูŠู† ุฅูŠุฏูŠุง
247
00:20:23,400 --> 00:20:28,520
ู„ุฌู‡ุชู‡ุง ุฏู„ุชุฉ ุทูŠุจ ุงู„ุงู† ุฎุฏูˆุง ุงูŠู‡ 6 ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูƒู„ ุงู„
248
00:20:28,520 --> 00:20:34,160
indices K ุงู„ู„ูŠ ู‡ุงู† ู‡ุฐูˆู„ุฉ ูˆ 0,1,2,3 ูƒุฏู‡ ู‡ุฐู‡ ุฌุฒุก
249
00:20:34,160 --> 00:20:38,520
ุงุซู†ูŠู† ุงู„ I ู‡ูŠ ุนู†ุฏ X note ู„ุนู†ุฏ X end ู‡ุฐู‡ ุงู„ูุชุฑุฉ
250
00:20:38,520 --> 00:20:44,000
ุงู„ู„ูŠ ู‡ูŠ ู…ู† A ู„ุนู†ุฏ B ูŠุง ุฌู…ุงุนุฉ ู„ุนู†ุฏ Bู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ
251
00:20:44,000 --> 00:20:49,380
ุฎุฏูˆู„ู‡ A ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูƒู„ ุงู„ K ุจุญูŠุซ ุงู† M K ู†ุงู‚ุต M K
252
00:20:49,380 --> 00:20:54,900
small ุชูƒูˆู† ุฃุตุบุฑ ู…ู† Delta ูˆุฎุฏูˆู„ ุงู„ B ุจูŠุณุงูˆูŠ ูƒู„ ุงู„ K
253
00:20:54,900 --> 00:20:59,740
such that M K ู†ุงู‚ุต M K ุฃูƒุจุฑ ูŠุณุงูˆูŠ Delta ุฅูŠุด ู‡ุฐูˆู„
254
00:20:59,740 --> 00:21:04,700
ุนุงู…ู„ุงุŸ ู‡ุฐูˆู„ ุจุณ ุงู„ indices ุนู†ุฏ ู…ู† ู‡ู†ุง ุตูุฑ ูˆ ูˆุงุญุฏ ูˆ
255
00:21:04,700 --> 00:21:08,480
ุงุชู†ูŠู† ุนู†ุฏ ู…ู†ุŸ ุนู†ุฏ ุงู„ K ุฅุฐุง ุงุชุฌุช ุฌุฒุกุงุช ุงู„ indices
256
00:21:08,480 --> 00:21:15,500
ู‡ุฐูˆู„ ุฅู„ู‰ ุฌุฒุก ุงูŠู‡ุŸุงู„ุฌุฒุก ุงู„ู„ู‰ ู‡ูˆ ุนู†ุฏู‰ ุงู„ู„ู‰ ุจุฎุงุตูŠุฉ
257
00:21:15,500 --> 00:21:19,980
ุงู„ู„ู‰ ู‡ูˆ ุงู„ mk ู†ุงู‚ุต mk ุฃุตุบุฑ ู…ู† ุฏู„ุชุง ุจุฏู‡ ุญุทู‡ ูู‡ุฐุง ุงู„
258
00:21:19,980 --> 00:21:24,280
set ุฅุฐุง ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุฅูŠุด ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ู…ู† ุงู„ .. ู…ู†
259
00:21:24,280 --> 00:21:27,680
ุงู„ .. ู…ู† ุงู„ .. ู…ู† ุงู„ .. ู…ู† ุงู„ .. ู…ู† ุงู„ ูƒ ู…ู† ุณูุฑ
260
00:21:27,680 --> 00:21:36,490
ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ุฃู†ุง .. ู„ุนู†ุฏ ุฃู†ุงุงู„ุฃู† ู‡ุฐู‡ P
261
00:21:36,490 --> 00:21:40,870
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู…ุชุจู‚ู‰ ู…ู†ู‡ู†ุŒ ู…ูŠู† ุงู„ู…ุชุจู‚ู‰ ุงู„ู„ูŠ ุงู„ู€ M K
262
00:21:40,870 --> 00:21:44,170
ู†ู‚ุต M K ุฃุตุบุฑ ุฃูƒุจุฑ ุฃูˆ ุดูˆูŠู‡ ุฏู„ุชุงุŒ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ
263
00:21:44,170 --> 00:21:49,430
ุฃุฏุงุฉ ุงู„ุชุฌุฒุฆุฉ ู„ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎุงุตูŠุฉ ุฃู†ู‡ M K ู†ู‚ุต M K
264
00:21:49,430 --> 00:21:52,010
ุฃุตุบุฑ ู…ูŠู† ู…ูŠู† ุฏู„ุชุงุŒ ุฃู†ุชูˆุง ุนุงุฑููŠู† ุฅูŠุด ุงู„ู€ M K
265
00:21:52,010 --> 00:21:55,730
Capital ูˆ M K SmallุŸ ุฃูƒูŠุฏุŒ ุงู„ู€ M K Capital ู‡ูŠ
266
00:21:55,730 --> 00:21:59,710
ุนุจุงุฑุฉ ุนู† ุงู„ู€ supremum ู„ู„ F of X such that X
267
00:21:59,710 --> 00:22:04,740
element in X K minus 1 ู„ุนู†ุฏ ุงู„ู€ X Kูˆ ุงู„ู€ mk small
268
00:22:04,740 --> 00:22:09,560
ุจูŠุณุงูˆูŠ ุงู„ู€ infimum ู„ู„ F of X such that X element
269
00:22:09,560 --> 00:22:16,640
in XK minus ูˆุงุญุฏ ูˆุงู„ู€ XK ุฅุฐู† ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ุฌุฒุฃู„ูŠ
270
00:22:16,640 --> 00:22:21,900
ุงู„ู€ A ูˆ ุงู„ู€ B ู‡ูˆ ุฎุงุตูŠุชู‡ ุฅู† ุงู„ู€ mk capital ูŠุนู†ูŠ
271
00:22:21,900 --> 00:22:25,340
ุฃุนู„ู‰ ู‚ูŠู…ุฉ ู‡ูŠ .. ู‡ูŠ .. ู‡ูŠ .. ู‡ูŠ ุนู†ุฏูŠ ุฃู†ุง XK minus
272
00:22:25,340 --> 00:22:29,860
ูˆุงุญุฏ ูˆู‡ูŠ XK ูุฑุถู†ุง ุฃู† ุงู„ุฏุงู„ุฉ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุฒูŠ ู‡ูŠูƒ ู…ุซู„ุง
273
00:22:29,860 --> 00:22:35,250
ููŠ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ุงู„ุงู† ู‡ูŠ ุฃุนู„ู‰ ู‚ูŠู…ุฉ ูˆู‡ูŠ ุฃู‚ู„ ู‚ูŠู…ุฉ
274
00:22:35,250 --> 00:22:41,070
ุงู„ุญุงุตู„ ุทุฑุญ ุฃุนู„ู‰ ู‚ูŠู…ุฉ ูˆ ุฃู‚ู„ ู‚ูŠู…ุฉ ููŠ ูƒู„ ูุชุฑุฉ .. ูƒู„
275
00:22:41,070 --> 00:22:44,770
sub interval ุจุงุฏูŠ ุจู‚ูˆู„ ู‡ู„ ู‡ุฐุง ุฃูƒุจุฑ ู…ู† .. ุฃุตุบุฑ ู…ู†
276
00:22:44,770 --> 00:22:49,270
delta ูˆู„ุง ุฃูƒุจุฑ ูŠุณุงูˆูŠ delta ุงู„ู„ูŠ ุฎุงุตูŠุชู‡ู… ุงู„ูุฑู‚
277
00:22:49,270 --> 00:22:53,930
ุจูŠู†ู‡ู… ุฃุตุบุฑ ู…ู† delta ุจุญุท ู‡ู†ุงุงู„ุงู†ุฏุณูŠุฒ ู‡ุฐุง ูƒู‡ู† ูˆุงู„ู„ูŠ
278
00:22:53,930 --> 00:22:59,930
ุฃูƒุจุฑ ุจุญุทู‡ ู†ู‡ู† ูˆ ุจุญุท ุชุฌุฒูŠุชู‡ุง ู„ูŠุด ู‡ุฐู‡ุŸ ู‡ุฐู‡ ุทุฑูŠู‚ุฉ
279
00:22:59,930 --> 00:23:07,130
ู„ู„ูˆุตูˆู„ ุฅู„ู‰ ุงู„ู„ูŠ ุจุฏูŠู‡ุง ูˆ ู‡ุชุดูˆูู‡ ุงู„ุขู† ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู†
280
00:23:07,130 --> 00:23:20,690
ู„ุงู„ู„ูŠ ู‡ูˆ ู†ุดูˆู ุงู„ู€ K F K Element A ู…ุฏุงู… K Element A
281
00:23:22,110 --> 00:23:26,470
ุฅุฐุง ุชุชุญู‚ู‚ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ูŠุนู†ูŠ Mk ู†ู‚ุต Mk ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ
282
00:23:26,470 --> 00:23:32,430
ู…ู† Delta ุฎุฏูˆู„ูŠ ุงู„ุขู† ุฃูŠ X ูˆ Y ููŠ ุงู„ูุชุฑุฉ ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ
283
00:23:32,430 --> 00:23:39,330
XK minus ูˆุงุญุฏ ู„ุนู†ุฏ XK ุดูˆููˆุง ุฅูŠุด ุงู„ู„ูŠ ุจุฏูŠู‡ุงุงู„ .. ุงู„
284
00:23:39,330 --> 00:23:43,130
.. ุงู„ .. ุงู„ .. ุงู„ X ูˆ ุงู„ Y ู‡ู†ุง ู‡ู‰ ุงู„ X ูˆ ุงู„ Y ูˆู‡ู‰
285
00:23:43,130 --> 00:23:46,430
ุฑุณู…ุฉ ุงู„ุฏู„ุฉ ูู‰ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ุงู„ X ูˆ ุงู„ Y ูู‰ ุฏุงุฎู„ ู‡ุฏูˆู„
286
00:23:46,430 --> 00:23:53,930
ุทูŠุจ ุงู„ุงู† ุงู„ X ูˆ ุงู„ Y ู‡ู†ุง ุฅุฐุง ุฃูƒูŠุฏ ุงู„ F of X ุงู„ F
287
00:23:53,930 --> 00:24:00,090
of X ู†ุงู‚ุต F of Y ู†ู‚ุทุชูŠู† ู‡ู†ุง ู†ู‚ุทุชูŠู† ู…ู† ู‡ู†ุง ู„ู‡ู†ุง ุตูˆุฑ
288
00:24:00,090 --> 00:24:03,750
ู‡ู†ุง ุตูˆุฑ ู‡ู†ุง ูŠุนู†ูŠ ู…ู…ูƒู† ุตูˆุฑุฉ ูˆุงุญุฏุฉ ู‡ู†ุง ูˆ ุตูˆุฑุฉ
289
00:24:03,750 --> 00:24:08,440
ุงู„ุชุงู†ูŠุฉ ู‡ู†ุงูŠุนู†ูŠ ู…ู…ูƒู† ุตูˆุฑุฉ ุงู„ุชุงู„ุชุฉ ู‡ู†ุง ูˆุตูˆุฑุฉ ุงู„ุฃูˆู„ู‰
290
00:24:08,440 --> 00:24:15,500
ู‡ู†ุง ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู„ูˆ ุงู„ X ู‡ู†ุง ูˆ ุงู„ Y ู‡ู†ุง ู‡ูŠ ุตูˆุฑุฉ
291
00:24:15,500 --> 00:24:21,400
ุงู„ X ูˆู‡ูŠ ุตูˆุฑุฉ ู…ูŠู† ุงู„ Y ู„ูˆ ุฌูŠุชูˆุง .. ุฃุฎุฏุชูˆุง .. ู‡ูŠ
292
00:24:21,400 --> 00:24:26,760
ุตูˆุฑุฉ ุงู„ Y ู„ูˆ ุฃุฎุฏุชูˆุง ุงู„ูุฑู‚ ุจูŠู† ู‡ุฐู‡ ูˆ ุจูŠู† ู‡ุฐู‡ุงู„ูุฑู‚
293
00:24:26,760 --> 00:24:31,020
ุจูŠู† ู…ุง ู‡ูˆ ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ F of X ู‡ู†ุง ูˆ ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ F
294
00:24:31,020 --> 00:24:36,280
of Y ู‡ู†ุง ุฃูƒูŠุฏ .. ุฃูƒูŠุฏ .. ุฃูƒูŠุฏ ุงู„ูุฑู‚ ุจูŠู†ู‡ู… ู‡ูŠูƒูˆู†
295
00:24:36,280 --> 00:24:42,320
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ M K ู†ุงู‚ุต ู…ู† M K ู„ุณุจุจ ุจุณูŠุท ุฃุตู„ุง ู„ุฃู†
296
00:24:42,320 --> 00:24:49,660
ุฃุตู„ุง F of X ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ุง ู‡ูˆ M K ุฃูƒูŠุฏ ูˆ F
297
00:24:49,660 --> 00:24:54,400
of Y ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠู‡ุง ู…ุงุดูŠ ุงู„ุญุงู„ูˆ ู†ูุณ ุงู„ .. ูŠุนู†ูŠ ..
298
00:24:54,400 --> 00:24:57,080
ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..
299
00:24:57,080 --> 00:24:57,100
ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..
300
00:24:57,100 --> 00:24:57,360
ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..
301
00:24:57,360 --> 00:24:57,720
ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..
302
00:24:57,720 --> 00:24:58,100
ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..
303
00:24:58,100 --> 00:24:59,480
ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..
304
00:24:59,480 --> 00:25:00,040
ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..
305
00:25:00,040 --> 00:25:07,580
ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
306
00:25:07,580 --> 00:25:08,160
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
307
00:25:08,160 --> 00:25:11,200
.. ูˆ .. ูˆ .. ูˆ ..
308
00:25:19,040 --> 00:25:24,000
ูุจูŠุธู„ ู‚ูŠู…ุฉ f of x ู†ุงู‚ุต f of y ุฃุตุบุฑ ุดุงูˆู…ูŠู† ู…ูƒ ู†ุงู‚ุต
309
00:25:24,000 --> 00:25:28,460
ู…ูƒ ุงู„ู„ูŠ ู…ุด ูˆุงุถุญ ู„ู‡ ู…ู† ุฎู„ุงู„ ุงู„ุฑุณู…ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ู†ุง
310
00:25:31,440 --> 00:25:34,520
ูŠุนู†ูŠ ุงู„ุขู† ุฎู„ู‘ูŠู†ูŠ ุฃุฑู‰ ุฃุถุญู‰ ู„ุญุณู† ุชูƒูˆู† ู…ุด ูˆุงุถุญุฉ ู„ู„ุจุนุถ
311
00:25:34,520 --> 00:25:41,360
ู‡ุงูŠ ุงู„ุฑุณู…ุฉ ู‡ุงูŠ XK minus ูˆุงุญุฏ ูˆู‡ูŠ XK ุฎู„ู‘ูŠู†ูŠ ุฃูƒุจุฑ
312
00:25:41,360 --> 00:25:46,180
ุงู„ุฑุณู…ุฉ ุนุดุงู† ุชูƒูˆู† ุฃูˆุถุญ ูˆู‡ูŠ XK ู„ุฃู† ู†ูุชุฑุถู‡ุง ุฃู† ู‡ุงูŠ
313
00:25:46,180 --> 00:25:53,520
ุฑุณู…ุชู†ุง ู‡ูŠูƒ ูˆุทู„ุนุช ุฒูŠ ู‡ูŠูƒ ู…ุงุดูŠ ูˆู‡ูŠ ุนู†ุฏูŠ ุฃุนู„ู‰ ู†ู‚ุทุฉ
314
00:25:53,520 --> 00:25:58,710
ุฎู„ู‘ูŠู†ูŠ ุฃุฒุบุฑ ู‡ุฐู‡ ุดูˆูŠุฉูˆู‡ูŠ ุฃุตุบุฑ ุงู„ู†ู‚ุทุฉ ู‡ุฐูŠ ุงู„ู„ูŠ
315
00:25:58,710 --> 00:26:03,970
ุจุชุชู…ุซู„ ู„ู€ M K ูˆู‡ุฐู‡ ุจุชุชู…ุซู„ ู„ู€ M K Small ู‡ุงูŠ ุงู„ู…ุณุงูุฉ
316
00:26:03,970 --> 00:26:09,030
ุจูŠู†ู‡ู… ุงู„ูุฑู‚ ุจูŠู†ู‡ู… ุงู„ุขู† ุงู„ุซุงู†ูŠุฉ ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุฃูŠ ู†ู‚ุทุฉ
317
00:26:09,030 --> 00:26:17,190
ู‡ู†ุง X ูˆ ุฃูŠ ู†ู‚ุทุฉ Y ู‡ู†ุง ู‡ุงูŠ X ูˆู‡ูŠ Y ุงู„ู…ุณุงูุฉ ุจูŠู†ู‡ุง ุฏูŠ
318
00:26:17,190 --> 00:26:21,310
ูˆ ุจูŠู†ู‡ุง ุฏูŠ ู‚ูŠู…ุชู‡ุง ุฏูŠ ุจูŠุตูŠุฑ F of X ุฃู†ุง ุจุตูŠุฑ F of X
319
00:26:22,380 --> 00:26:26,700
ูˆู‡ู†ุง ุจูŠุตูŠุฑ F of Y ุงู„ูุฑู‚ ุจูŠู† F of X ูˆ F of Y ุฃูƒูŠุฏ
320
00:26:26,700 --> 00:26:31,140
ุฃุตุบุฑ ู…ู† ุงู„ูุฑู‚ ู‡ุฐุง ูˆูƒู„ ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ุจูŠู† ู‡ุฐู‡ ูˆ ู‡ุฐู‡
321
00:26:31,140 --> 00:26:37,340
ู‡ูŠูƒูˆู† ูŠุง ุฅู…ุง ุฒูŠ ุงู„ูุฑู‚ ู‡ุฐุง ุฃูˆ ุฃุตุบุฑ ู…ู†ู‡ ุฅุฐุง ุฃูƒูŠุฏ
322
00:26:37,340 --> 00:26:45,820
ุนู†ุฏูŠ ุตุงุฑ ุงู„ู…ูุฑูˆุถ ูˆุถุญ ุงู„ุฃู…ุฑ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง
323
00:26:45,820 --> 00:26:50,910
ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ุดู‡ูˆ ู‡ุฐุง ุทุจ ู„ูŠู‡ ู„ูŠุด ู‡ุฐุงุŸู‡ุฐุง ู…ู† ู…ูŠู† ู„ู„ู€
324
00:26:50,910 --> 00:26:53,990
K ุงู„ู„ูŠ ููŠ ุงู„ู€ A ูˆุงู„ู€ K ุงู„ู„ูŠ ููŠ ุงู„ู€ A ุดุฎุตูŠุชู‡ุง Mk
325
00:26:53,990 --> 00:26:57,610
ู†ู‚ุตู‡ุง Mk ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ุฅุฐุง ุตุงุฑุช ุฃุตุบุฑ ู…ู† ุงู„ู€ Delta
326
00:26:57,610 --> 00:27:04,470
ุฅุฐุง ุตุงุฑุช F of X ูˆ F of Y ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸู…ู† Delta ุทูŠุจ
327
00:27:04,470 --> 00:27:08,430
ู…ุงุฏุงู… F of X ุงูŠุด ุนู„ุงู‚ุงุช ู‡ู†ุง F of X ูˆ F of Y ู…ุง ู‡ูŠ
328
00:27:08,430 --> 00:27:13,950
ุงุตู„ุง ุงุญู†ุง ู…ูุชุฑุถูŠู† ู…ู† ุงู„ุงูˆู„ ุงู† F of I ุฌุฒุฆูŠุฉ ู…ู† ุงู„ู€
329
00:27:13,950 --> 00:27:18,430
J ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† C ูˆ D ู…ุธุจูˆุท ูˆู„ุง ู„ุฃ ุงุฐุง ุญูŠุตูŠุฑ
330
00:27:18,430 --> 00:27:23,600
ุนู†ุฏูŠ F of X ูˆ F of Y ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ู€ C ูˆ DF of X ูˆ
331
00:27:23,600 --> 00:27:27,000
F of Y ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ู€ C ูˆ ุงู„ู€ D ูˆ ุจุชุญู‚ู‚ ุงู„ู…ุณุงูุฉ
332
00:27:27,000 --> 00:27:32,200
ุฃุตุบุฑ ู…ู† Delta ุจูŠู†ู‡ู… ุฅุฐุง ุญุณุจ ูˆุงุญุฏ ุงู„ู„ูŠ ุงุญู†ุง ุฃุซุจุชู†ุง
333
00:27:32,200 --> 00:27:35,960
ุฃูŠ ู†ู‚ุทุชูŠู† ููŠ ุงู„ู€ S ูˆ ุงู„ู€ D ุงู„ู…ุณุงูุฉ ุจูŠู†ู‡ู… ุฃุตุบุฑ ู…ู†
334
00:27:35,960 --> 00:27:39,600
Delta ู„ุงุฒู… ุตูˆุฑุฉ ุงู„ .. ุตูˆุฑุฉ Phi of S ูˆ Phi of T
335
00:27:39,600 --> 00:27:42,540
ุงู„ู…ุณุงูุฉ ุจูŠู†ู‡ู… ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Epsilon ูˆ Prime ุฅุฐุง
336
00:27:42,540 --> 00:27:47,640
ู‡ุฐุง Automatic ู‡ูŠุนุทูŠู†ูŠ Phi of ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ
337
00:27:47,640 --> 00:27:56,290
F of X ู†ุงู‚ุตูุงูŠ ุฃูุถู„ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ูŠูƒูˆู† ุฃุตุบุฑ ู…ู†
338
00:27:56,290 --> 00:28:06,890
ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุจุฑุงูŠ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ู„ูƒู„ ุงู„ู„ูŠ ุนู†ุฏูŠ
339
00:28:06,890 --> 00:28:13,740
ุงู„ K ุงู„ู„ูŠ ููŠ ุงู„ A ูˆุงู„ X ูˆ Y ููŠ ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉF of X
340
00:28:13,740 --> 00:28:17,920
minus F of Y ุทู„ุน ู„ูŠู‡ ุฃุตุบุฑ ู…ู† Delta ุญุชู‰ ู…ู„ูŠ ุงู„ู€ 5 F
341
00:28:17,920 --> 00:28:25,000
of X ู†ุงู‚ุต 5 F of Y ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Y ุฅุจุฑุงู‡ูŠู… ู…ุงุดูŠ
342
00:28:25,000 --> 00:28:29,820
ุงู„ุญุงู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูƒู„ X ูˆ Y ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ู€ XK minus
343
00:28:29,820 --> 00:28:33,460
ูˆุงุญุฏ ูˆุงู„ู€ XK ู„ุฎุต ุงู„ุขู† ุงู„ู„ูŠ ูˆุตู„ู†ุง ู„ู‡ ู„ุฃู†ู‡ ุจุฏูŠ
344
00:28:33,460 --> 00:28:36,920
ุฃุณุชุฎุฏู…ู‡ ุฎู„ูŠู†ูŠ ุฃู„ุฎุต ุฎู„ูŠู†ูŠ ุฃุดูŠู„
345
00:28:41,000 --> 00:28:45,820
ุฎู„ู‘ูŠู†ูŠ ุจุณ ุณุงุนุฏูƒ ุงูƒุชุจู„ูƒู… ููŠ ู…ูƒุงู† ู‡ู†ุง ุงุชุญู…ู„ูˆู†ูŠ ุงู†ู‡
346
00:28:45,820 --> 00:28:54,640
ุนุดุงู† ุงู„ู„ูˆุญ ุดูˆูŠุฉ A ุจุณุงูˆูŠ ูƒู„ ุงู„ K ู…ู‚ุตุฏ MK ุงุตุบุฑ ู…ู†
347
00:28:54,640 --> 00:29:05,600
ุฏู„ุชุง ูˆุนู†ุฏ B ุจุณุงูˆูŠ ูƒู„ุงู„ู€ K ุจุญูŠุซ ุฃู† M K ู†ู‚ุต M K ุฃูƒุจุฑ
348
00:29:05,600 --> 00:29:10,060
ุฃูˆ ูŠุณุงูˆูŠ ุฏู„ุชุฉ ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„ู‡ุง ููŠ ุงู„ุฐุงูƒุฑุฉ ุงู„ุขู† ุฎู„ู‘ูŠู†ูŠ
349
00:29:10,060 --> 00:29:16,140
ุฃู…ุณุญ ุญุงุฌุฉ ูˆ ุฃู„ุฎุต ู…ุนู„ูˆู…ุชูŠ ุฅูŠุด ู…ุนู„ูˆู…ุชูŠ ุจุชู‚ูˆู„ ุฏูŠ ู„ู€ K
350
00:29:16,140 --> 00:29:26,610
ุงู„ู„ูŠ ููŠ ุงู„ู€ A ู…ุงุดูŠ ุงู„ุญุงู„ ู„ูƒู„ X ูˆ Y ููŠ ุงู„ูุชุฑุฉ X K-1
351
00:29:26,610 --> 00:29:32,750
ู„ุนู†ุฏูŠ ุงู„ู€ xk ุจูŠุทู„ุน ุนู†ุฏู‰ ุงู„ู€ Phi f of x ูŠุนู†ูŠ Phi
352
00:29:32,750 --> 00:29:40,990
composite f of x ู†ู‚ุต Phi composite f of y ุฃุดู…ุงู„ู‡
353
00:29:40,990 --> 00:29:48,600
ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุจุฑุงูŠ ูˆุงุถุญุŸุฅุฐู† ุงู„ู„ูŠ ูˆุตู„ู†ุงู„ู‡ ู„ู€ K
354
00:29:48,600 --> 00:29:53,700
ุงู„ู„ูŠ ููŠ ุงู„ู€ A ุนู†ุฏูŠ ู„ู€ K ุงู„ู„ูŠ ููŠ ุงู„ู€ A ู‡ุฐุง ุงู„ู€
355
00:29:53,700 --> 00:29:58,380
absolute value ุฃุธู‡ุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฅุจุณู„ูˆู† ุฅุจุฑุงู‡ูŠู… ู„ูƒู„
356
00:29:58,380 --> 00:30:05,580
ู…ูŠู† ู„ูƒู„ XY ููŠ ุงู„ XK minus XK minus 1 ุทูŠุจ ู†ูƒู…ู„ ู„ูƒู…
357
00:30:05,580 --> 00:30:10,860
ุนู„ูŠู‡ุง ู‡ุฐุง ุฎู„ุตู†ุง ู…ู†ู‡ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุดูˆููˆุง
358
00:30:19,430 --> 00:30:24,070
ุงู„ุดุบู„ ุนู…ูŠุฏูŠ ูŠุง ุฌู…ุงุนุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุทูŠุจ ุดูˆู ุนู†ุฏูŠ
359
00:30:24,070 --> 00:30:31,590
Phi composite F of X ู†ุงู‚ุต Phi composite F of Y
360
00:30:31,590 --> 00:30:37,770
ุฃูƒุจุฑ ู…ู† Y ูˆ ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ู†ุงู‚ุต Y ุจุฑุงูŠู… ุจุฏุฃ ุฃุฎุฏ
361
00:30:37,770 --> 00:30:43,970
ู‡ุฐู‡ ุงู„ุฌู‡ุฉ ุฎู„ูŠู†ูŠ ุฃุฎุฏ ุงู„ุฌู‡ุฉ ู…ู† ุงู„ุฌู‡ุชูŠู† ูˆ ุฃุจุฏุฃ ุฃุดุชุบู„
362
00:30:43,970 --> 00:30:51,300
ุนู„ูŠู‡ุง ูˆุงุถุญุฉ ู‡ุฐู‡ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† Y' ุฃูƒุจุฑ ู…ู† ู†ุงู‚ุต Y ุจุฏูŠุด
363
00:30:51,300 --> 00:30:56,980
ู‡ุฐุง ุจุชุดุบู„ ู‡ุฐู‡ ุงู„ุงู† ู„ุงู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ู„ู…ู†ุŸ ู„ูƒู„ X
364
00:30:56,980 --> 00:31:02,740
ูˆY ููŠ ุงู„ sub interval ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู„ูƒู„ ู…ูŠู† ุงู„ caseุŸ
365
00:31:02,740 --> 00:31:06,600
ุงู„ case ุงู„ู„ูŠ ู…ู† A ุจุณ ุทูŠุจ ุดูˆู ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ Phi
366
00:31:06,600 --> 00:31:14,580
composite F of X ุฃุตุบุฑ ู…ู† Y' ุจุฒุงูŠุฏ Phi composite F
367
00:31:14,580 --> 00:31:21,720
of Yู…ุงุดูŠ ูŠุง ุฌู…ุงุนุฉ .. ู…ุงุดูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูƒู„ x ูˆ y ููŠ
368
00:31:21,720 --> 00:31:26,980
.. ุงู„ู„ูŠ ู‡ูˆ xk minus .. ู…ู† xk minus 1 ุนู†ุฏ xk ุงู„ู„ูŠ
369
00:31:26,980 --> 00:31:31,600
ู‡ู†ุง .. ู‡ุฐุง ู„ูƒู„ x ูˆ y ุซุจุชู„ูŠ y .. ุซุจุชู„ูŠ y .. ุฎู„ูŠู†ุง
370
00:31:31,600 --> 00:31:34,380
ู†ุญูƒูŠ ุนู† y ู…ุญุฏุฏ .. arbitrary y ู„ูƒู† ุฎู„ูŠู†ุง .. ุซุจุชู‡ุง
371
00:31:34,380 --> 00:31:40,180
.. ุฎู„ูŠู†ุง ู†ุญูƒูŠ ุนู† arbitrary fixed yุจุธู„ y' ุฒูŠ ุงู„ู€
372
00:31:40,180 --> 00:31:47,140
phi composite f of y is true ุฃูƒุจุฑ ู…ู† ู‡ุฐู‡ ู„ูƒู„ x
373
00:31:47,140 --> 00:31:52,500
element in xk minus 1 ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ ุงู„ู€ xk ุฃูƒูŠุฏ
374
00:31:52,500 --> 00:32:00,060
ุฃูƒูŠุฏ ู‡ุฐุง ุฃูƒุจุฑ ู…ู† ู‡ุฐุง ู„ูƒู„ x well ู…ูˆุฌูˆุฏุฉ ููŠ xk minus
375
00:32:00,060 --> 00:32:04,540
1 ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ ุงู„ู€ xk ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุฅูŠุด
376
00:32:04,540 --> 00:32:08,880
ูŠุง ุฌู…ุงุนุฉ ุนุจุงุฑุฉ ุนู† upper bound ู„ู‡ุฐุง ุงู„ setู…ุฏุงู…
377
00:32:08,880 --> 00:32:13,900
upper bound ุฅู„ู‡ุง ุฅุฐุง ู‡ูŠูƒูˆู† ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ least
378
00:32:13,900 --> 00:32:19,340
upper bound ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ supremum ู„ูุงูŠ
379
00:32:19,340 --> 00:32:25,280
composite F of X such that X element in XK minus 1
380
00:32:25,280 --> 00:32:31,240
ู„ุนู†ุฏ ุงู„ XK ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ Y prime ุฒูŠ ูุงูŠ
381
00:32:31,240 --> 00:32:38,520
composite F of mean of Y for any fixed YุทูŠุจุŒ ู‡ุฐุง
382
00:32:38,520 --> 00:32:45,140
ู…ูŠู† ู‡ูˆุŸ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ู€ M K ูˆุณู…ูŠู‡ุง Delta ุฃุณุงุณ ุฃูˆ
383
00:32:45,140 --> 00:32:48,080
ุชู„ุฏุง ุฃุณุงุณ ุงู„ู„ูŠ ู‡ูŠ ุฎุงุตุฉ ุจู…ูŠู† ุงู„ุขู† ููŠ ุงู„ู€ Phi
384
00:32:48,080 --> 00:32:53,100
Composite F ุนุดุงู† ู†ู…ูŠุฒู‡ุง ุจุงู„ู€ M K ุงุณู…ู‡ ุจุงู„ู€ M K
385
00:32:53,100 --> 00:32:59,400
ุงู„ู„ูŠ ุฎุงุตุฉ ุจุงู„ู€ F ุงู„ู„ูŠ ุนู†ุฏูŠุŒ ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ุทูŠุจุตุงุฑ
386
00:32:59,400 --> 00:33:02,800
ุนู†ุฏู‰ MKุชู„ ุฏู‡ ุจุณุงูˆูŠ ุงู„ู€ Supremum ู„ู‡ุฐุง ุฃุตุบุฑ ูŠุณุงูˆูŠ
387
00:33:02,800 --> 00:33:07,680
ู‡ุฐุง ู‡ุฐุง ุตุงุฑ ุนุฏุฏ ุตุงุฑ ุงู„ุนุฏุฏ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ุจุฑุงูŠู…
388
00:33:07,680 --> 00:33:11,640
ููŠ ูƒูˆู…ุจูˆุฒูŠุช F of Y for any fixed Y ูŠุนู†ูŠ ุตุญูŠุญ ุนู„ู‰
389
00:33:11,640 --> 00:33:16,320
ูƒู„ Y ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู†
390
00:33:16,320 --> 00:33:21,680
ุฌูŠุจูˆู„ูŠ ู‡ุฐู‡ ุนู„ู‰ ุงู„ุฌู‡ุฉ ู‡ุฐู‡ ูˆู‡ุฐู‡ ุนู„ู‰ ุงู„ุฌู‡ุฉ ู‡ุฐู‡ ุจูŠุตูŠุฑ
391
00:33:21,680 --> 00:33:28,050
ุนู†ุฏู‰ ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต ููŠ ูƒูˆู…ุจูˆุฒูŠุช F of Yุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ
392
00:33:28,050 --> 00:33:34,770
ุฃุจุณู„ูˆู† ูˆ ุจุฑุงูŠู† ู†ุงู‚ุต ู…ูŠู† ู…ูƒ ุชู„ุฏุฉ ูˆุฅุฐุง ุจุฏูƒ ู…ู…ูƒู† ู†ุฌูŠุจ
393
00:33:34,770 --> 00:33:40,050
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุจุณู„ูˆู† ูˆ ุงู„ุจุฑุงูŠู† ุนู„ู‰ ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ู…ุด
394
00:33:40,050 --> 00:33:50,310
ู…ุดูƒู„ุฉ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ู‡ุฐุง ูŠุง ุฌู…ุงุนุฉ ุตุงุฑ
395
00:33:50,310 --> 00:33:58,380
ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† upper boundู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
396
00:33:58,380 --> 00:34:07,020
ุฃูƒูŠุฏ ูˆู„ุง ู„ุงุŸ ุนุงุฑููŠู† ู„ูŠุดุŸ ู„ุฃู† ู‡ุฐุง ุงู„ุฃู† ุฃูƒุจุฑ ุฃูˆ
397
00:34:07,020 --> 00:34:11,000
ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู„ูƒู„ Y ู„ุฃู† ูƒู„ ุงู„ู…ุฎุฏูŠู† Y
398
00:34:11,000 --> 00:34:14,600
arbitrarily fixed ู„ูƒู† arbitrarilyุŒ ุฅุฐุง ุตุญูŠุญ ุนู„ู‰
399
00:34:14,600 --> 00:34:19,640
ูƒู„ู‡ุŒ ุฅุฐุง ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ
400
00:34:19,640 --> 00:34:24,260
ุงู„ supremum ู„ู‡ุฐุงุŒ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ุงู„ supremumุŒ ู„ุง
401
00:34:24,860 --> 00:34:32,200
ุงู„ู†ุงู‚ุต Phi composite F of Y such that Y element in
402
00:34:32,200 --> 00:34:39,360
YK as if XK minus 1 ุนู†ุฏ XK ู‡ุฐุง ุงู„ู€ Supremum ู„ู‡
403
00:34:39,360 --> 00:34:48,670
ุฃุธู‡ุฑ ุฃูˆ ูŠุณูˆู‰ Y' ู†ุงู‚ุต M K ุชู„ุฏุฉุทูŠุจ ู‡ุงุช ุงูŠุด ุจุชุณุงูˆูŠ
404
00:34:48,670 --> 00:34:56,670
ุทู„ุนูˆู† ุงู„ู†ุงู‚ุต ุจุฑุง ุจูŠุณุงูˆูŠ ู†ุงู‚ุต ุงู„ุงู†ู ู…ุงู… ู…ุนุงูŠุง ู„ุฃ
405
00:34:56,670 --> 00:34:59,790
ู„ุฃู†ู‡ ู…ุฏุงู… ู†ุงู‚ุต ูˆุงุญุฏ ุทู„ุน ุงุฐุง ุจูŠู‚ู„ุจ ุงู„ super mum ู„
406
00:34:59,790 --> 00:35:05,530
ุงู†ู ู…ุงู… ูุงูŠ composite F of Y such that Y element
407
00:35:05,530 --> 00:35:09,610
in XK minus ูˆุงุญุฏ ู„ุนู†ุฏ ุงู„ XK ุนุฑูุชูˆุง ุงูŠุด ุงู„ู„ูŠ ุจุฏู‡
408
00:35:09,610 --> 00:35:16,060
ุงู‚ูˆู„ู‡ ู‡ุงุฏ ู…ูŠู† ู‡ูŠ ูŠุง ุดุจุงุจู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„ู€ M K ุชู„ุฏุฉ
409
00:35:16,060 --> 00:35:19,680
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ infimum ู„ู„ู€ Phi Composite F ูƒุชุจุช
410
00:35:19,680 --> 00:35:22,800
ุงู„ุชู„ุฏุฉ ุนุดุงู† ุชุฑู…ุฒ ู„ู…ูŠู† ู„ู„ู€ Phi Composite F ูˆููŠ ุนู†ุฏูŠ
411
00:35:22,800 --> 00:35:28,460
ู†ุงู‚ุต ู‚ุจู„ู‡ุง ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ู†ุงู‚ุต ุงู„ู€ M K ุชู„ุฏุฉ ุฃุตุบุฑ
412
00:35:28,460 --> 00:35:33,400
ูŠุณุงูˆูŠ ุฅุจุณู„ูˆู† ู†ุงู‚ุต ุงู„ู€ M K ุชู„ุฏุฉ ุจุฏูŠ ุฃุฌูŠุจ ู‡ุฐู‡ ู‡ู†ุง
413
00:35:33,400 --> 00:35:42,400
ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุฅุฐุง M K ุชู„ุฏุฉุฃุตุบุฑ ู†ู‚ุต ุงู ู†ุงู‚ุต ู…ูƒ ุชู„ุฏ ุง
414
00:35:42,400 --> 00:35:51,080
small ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ู…ูŠู† ุงุจุณู„ูˆู† ุงุฐุง ุงู„ู„ูŠ ูˆุตู„ุชู„ู‡ ู…ุง
415
00:35:51,080 --> 00:35:59,440
ูŠู„ูŠ ูˆู‡ุฐู‡ ุจุฏู‡ ุงุตู„ู‡ุง ุงู†ู‡ ู„ูƒู„ู ุงู„ a ุทู„ุน ุนู†ุฏูŠ ู…ูƒ ุชู„ุฏ
416
00:35:59,440 --> 00:36:05,300
ู†ุงู‚ุต ู…ูƒ prime ุงุตุบุฑ ุงุด ู‡ูˆ ุงูŠุด ุงุจุณู„ูˆู† ุฎู„ูŠู†ุง ู†ุณุฌู„ู‡ุง
417
00:36:05,300 --> 00:36:11,830
ุนุดุงู† ู†ุจู†ูŠ ุนู„ูŠู‡ุงุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ูŠุง ุฌู…ุงุนุฉ ุทูˆู„ูˆุง ุฑูˆุญูƒู…
418
00:36:11,830 --> 00:36:18,670
ุนู„ูŠุง ุงู† ุดุงุก ุงู„ู„ู‡ ู…ุด ู‡ู… ุทูˆุงู„ูŠู† ู†ุฎู„ุต M K ุชู„ุฏู‰ ู†ุงู‚ุต M
419
00:36:18,670 --> 00:36:22,890
K ุชู„ุฏู‰ small ุฃุตุบุฑ ูŠู…ุดูŠ ู‡ูˆ ุฅุจุณู„ูˆู† ู‡ุฐุง ู„ูƒู„ K ูˆูŠู†
420
00:36:22,890 --> 00:36:30,330
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ A ู„ูƒู„ K ููŠ ุงู„ A ุทูŠุจ ู‡ุฐุง ุงู„ู„ู‰ ุงุญู†ุง ุฅูŠุด
421
00:36:30,330 --> 00:36:38,150
ู…ุงู„ู‡ ุฃูˆุตู„ู†ุง ุฅู„ู‡ุตุงุฑ ุนู†ุฏู‰ ุงู„ุงู† ุงู„ู€ M K ุชู„ุฏู‰ ู†ุงู‚ุต M K
422
00:36:38,150 --> 00:36:52,190
ุชู„ุฏู‰ ุฃุตุบุฑ ู…ู† ุงู„ู€ E' ู„ูƒู„ K ููŠู‡ ุงู„ู„ู‰ ู‡ู‰ N A ุงู„ุงู†
423
00:36:52,190 --> 00:36:58,330
ุฎุฏ ุงู„ summation ุงู„ summation ู„ู„ M K ุชู„ุฏู‰ ู†ุงู‚ุต M K
424
00:36:58,330 --> 00:37:05,490
ุชู„ุฏู‰ small K element in A ุงู„ู„ู‰ ู‡ูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ
425
00:37:05,490 --> 00:37:09,310
ุฃูˆ ูŠุณุงูˆูŠ ููŠ .. ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ .. ุงู„ุขู† ู‚ุฏูˆุง .. ู‚ุฏูˆุง
426
00:37:09,310 --> 00:37:11,470
.. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง ..
427
00:37:11,470 --> 00:37:12,010
ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง ..
428
00:37:12,010 --> 00:37:13,570
ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง ..
429
00:37:13,570 --> 00:37:15,170
ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง ..
430
00:37:15,170 --> 00:37:17,810
ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง ..
431
00:37:17,810 --> 00:37:31,850
ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง .. ู‚ุฏูˆุง
432
00:37:31,850 --> 00:37:39,180
..K element in A ุงู„ุนุฏุงุฏ ู‡ุฐุง ุจุนูŠุฏ ุจุนุฏุฏ ุงู„ู€ K's ุงู„ู„ูŠ
433
00:37:39,180 --> 00:37:43,180
ููŠ ุงู„ู€ A ูŠุนู†ูŠ ุฅุจุณู„ูˆู† ู…ุถุฑูˆุจ ููŠ ุนุฏุฏ ุงู„ู€ K's ุงู„ู„ูŠ
434
00:37:43,180 --> 00:37:48,060
ู…ูˆุฌูˆุฏุฉ ููŠ ู…ูŠู† ููŠ ุฅูŠู‡ ู‡ุฐุง ุฃูƒูŠุฏ ุฃูƒูŠุฏ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ
435
00:37:48,060 --> 00:37:55,320
ูŠุณุงูˆูŠ ุงู„ summation ู„ู„ุฅุจุณู„ูˆู† ุนู„ู‰ ูƒู„ ุงู„ู€ K ู…ู† ุนู†ุฏ
436
00:37:55,320 --> 00:38:00,980
ุตูุฑ ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ H N
437
00:38:03,340 --> 00:38:09,620
ุจุณ ุงู†ุง ุงู„ุงู† ุจุฏูŠ ุงุฌูŠ ุงูˆุฏูŠ ุงู„ summation ูˆ ุงุถุฑุจู‡ ูู‰
438
00:38:09,620 --> 00:38:13,460
ู…ูŠู† ูู‰ ุทูˆู„ ุงู„ูุชุฑุฉ ู„ุฅู†ู‡ ู‡ูŠ ู„ุงุฒู… ู„ุทูˆู„ ุงู„ูุชุฑุฉ ุจุนุฏ
439
00:38:13,460 --> 00:38:20,660
ุงุณู…ู‡ู… ู‡ุฐุง ุงุถุฑุจู‡ ู„ูŠู‡ ูู‰ XK ุจุฏูŠ ุงุถุฑุจู‡ ุจุณ ุงูˆุณุน ุนู‚ู„ู‡
440
00:38:20,660 --> 00:38:23,700
ู…ุนู„ุด ุจุฏูŠ ุงุถุฑุจู‡ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ summation ุงู„ู„ู‰ ุญุตู„ุช
441
00:38:23,700 --> 00:38:29,320
ุนู„ูŠู‡ ุจุฏูŠ ุงุฎุฏ ุงู„ summation MK ุชู„ุฏู‡ู†ู‚ุต mk ุชู„ุฏู‰
442
00:38:29,320 --> 00:38:34,540
ูˆุงุฏุฑุจู‡ ูŠุง ุดุจุงุจ ููŠ xk minus xk minus ูˆุงุญุฏ k element
443
00:38:34,540 --> 00:38:39,000
in a ู‡ูŠุตูŠุฑ ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ุงู„ summation ู„ู„ุฅูŠุจุณู„ูˆู† ููŠ
444
00:38:39,000 --> 00:38:48,620
xk minus xk minus ูˆุงุญุฏ ุนู„ู‰ ุงู„ุงู† k element in aุฃูƒูŠุฏ
445
00:38:48,620 --> 00:38:52,120
ุฃุตุบุฑ ุฒูŠ ู…ุง ู‚ู„ู†ุง ู…ู† ุงู„ summation ุงู„ู„ูŠ ููˆู‚ epsilon
446
00:38:52,120 --> 00:38:59,980
ููŠ xk minus xk minus 1k ู…ู† 0 ู„ุนู†ุฏ n ู„ูŠุดุŸ ู‡ุฐุง ุงู„
447
00:38:59,980 --> 00:39:02,420
summation ุจุณ ุนู„ู‰ ุงู„ุนุฑุงุตุฑ ุงู„ู„ูŠ ููŠ ุงู„ A ู‡ุฐุง ุงู„
448
00:39:02,420 --> 00:39:05,260
summation ุนู„ู‰ ูƒู„ู‡ ุนู„ู‰ ุงู„ู„ูŠ ููŠ ุงู„ A ูˆุนู„ู‰ ุงู„ู„ูŠ ููŠ ุงู„
449
00:39:05,260 --> 00:39:08,760
B ุนู„ู‰ ูƒู„ ุจู‚ู‰ ุงู„ุนุฑุงุตุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ partition ุงู„ู„ูŠ
450
00:39:08,760 --> 00:39:15,420
ุนู†ุฏู‡ ู…ู† 0 ู„1 ุงุชู†ูŠู† ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู„ N ุทูŠุจ ุงู„ N ู‡ุฐุง
451
00:39:15,420 --> 00:39:20,200
ุงู„ู…ู‚ุฏุฑ ู‡ูŠ ุงู„ู„ูŠ ุจุฏูŠู‡ุงู„ุฃู† ู‡ุฐุง bridge ูƒุงู† ุฃูˆ ุฌุณุฑ
452
00:39:20,200 --> 00:39:23,860
ู„ู„ูˆุตูˆู„ ู„ู„ูŠ ุจุฏูŠู‡ุง ูˆ ุญุชู‰ ู…ู…ูƒู† ู†ู‡ุงู† ู…ุจุงุดุฑุฉ ู„ู‡ุฐู‡ ู‡ุฐู‡
453
00:39:23,860 --> 00:39:27,760
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ู‡ุฐุง ู…ุด ู‡ูˆ ุงู„ู„ูŠ ุจุชุทู„ุน ุนู„ูŠู‡ ุจุชุทู„ุน
454
00:39:27,760 --> 00:39:32,640
ุนู„ูŠู‡ ู‡ุฐุง ูˆ ุจุชุทู„ุน ุนู„ูŠู‡ ู‡ุฐุง ู‡ุฐุง ุฎู„ู‘ูŠู‡ ู„ุฃู† ุฃุตุบุฑ ูŠุณุงูˆูŠ
455
00:39:32,640 --> 00:39:36,460
ู…ูŠู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงูŠุด ุจุณุงูˆูŠ epsilon ููŠ
456
00:39:36,460 --> 00:39:43,790
ู…ูŠู†x note ู†ุงู‚ุต x ูˆุงุญุฏ ุฒุงุฏ x ูˆุงุญุฏ ู†ุงู‚ุต x ุงุชู†ูŠู† ุฒุงุฏ
457
00:39:43,790 --> 00:39:47,810
x ุงุชู†ูŠู† ู†ุงู‚ุต x ุซู„ุงุซุฉ ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ ูˆุงุญุฏ ูŠุถู„ ุงู„ู„ูŠ
458
00:39:47,810 --> 00:39:53,330
ุนุจุงุฑุฉ ุนู† y ููŠ x n ู†ุงู‚ุต x note ุนู…ู„ู†ุงู‡ุง ูƒุชูŠุฑ ูˆูŠุณุงูˆูŠ
459
00:39:53,330 --> 00:39:58,710
y prime ูˆูŠุณุงูˆูŠ y prime ููŠ ู…ูŠู† ููŠ b minus a ู„ุฃู† ุงู„
460
00:39:58,710 --> 00:40:03,950
xn ู‡ูŠ ุนุจุงุฑุฉ ุนู† b ูˆ ุงู„ x note ู‡ูŠ ู…ูŠู† ูƒุงู†ุช ู‡ูŠ ุงู„ a
461
00:40:03,950 --> 00:40:10,110
ุฅุฐุง ุงู„ู„ูŠ ูˆุตู„ุชู„ู‡ ูŠุง ุฌู…ุงุนุฉุงู„ุงู† ูˆุตู„ุช ุงู„ู‰ ู…ุง ูŠู„ูŠ ุงู†ู‡
462
00:40:10,110 --> 00:40:19,170
ุงู„ summation ู„ู„ mk ุชู„ุฏู‰ ู†ุงู‚ุต mk ุชู„ุฏู‰ small ู„ูƒูŠ
463
00:40:19,170 --> 00:40:25,790
element ุงูŠู‡ ููŠ xk minus xk minus ูˆุงุญุฏ ุงุตุบุฑ ุงูˆ
464
00:40:25,790 --> 00:40:34,550
ูŠุณุงูˆูŠ epsilon prime ููŠ b minus ุงูŠุด minus a ูˆุงุถุญ
465
00:40:34,550 --> 00:40:42,680
ุงู„ุงู†ู‡ุฐู‡ ุฎุฒูŠู†ู‡ุง ู„ุฅู†ู‡ ุจุฏู‘ูŠู‡ุง ุจุนุฏ ุดูˆูŠุฉ ุงุชุญู…ู„ูˆู†ุง
466
00:40:42,680 --> 00:40:46,880
ุงู„ุจุฑู‡ุงู† ุทูˆูŠู„ ุดูˆูŠุฉ ู‡ูŠ ูˆุตู„ู†ุง ุฅู„ูŠู‡ุง summation ุฃุฒุฑุน
467
00:40:46,880 --> 00:40:50,980
ุดูˆูŠู‡ ุฃุจุณู„ูˆู† ุฑุงุจุน ููŠ b minus a ู„ุฅู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ูŠู†
468
00:40:50,980 --> 00:40:59,140
ูŠุง ุฌู…ุงุนุฉ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ุงู„ู„ูŠ ู‡ูˆุงู†ุชุจู‡ูˆุง ุนู„ูŠู‡ุงุŒ ุจุฏู†ุง
469
00:40:59,140 --> 00:41:03,280
ู†ูŠุฌูŠ ู„ู„ู€ M ู„ู„ู€ K ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ู…ูŠู†ุŸ ู‡ุฐุง ุงู„ู€ K ููŠ
470
00:41:03,280 --> 00:41:06,820
ุงู„ู€ AุŒ ุถุงู„ ุนู†ุฏ ู…ูŠู†ุŸ ุงุญู†ุง ุฌุฒุฃุชู‡ุง ุฅู„ู‰ ุฌุฒุฆูŠู† ุงู„ู„ูŠ ู‡ูŠ
471
00:41:06,820 --> 00:41:11,340
ุงู„ู€ indices ุงู„ู„ูŠ ุนู†ุฏู‡ุŒ K ุงู„ู„ูŠ ู‡ูŠ ููŠ ุงู„ู€ A ูˆ K ุงู„ู„ูŠ
472
00:41:11,340 --> 00:41:18,060
ู‡ูŠ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ B ุฎุฏ ุงู„ุขู† K element in BุŒ ุดูˆู
473
00:41:18,060 --> 00:41:26,980
ุฅูŠุดุŸ ุงู„ู€ MK ุชู„ุฏ ุฅู„ู‡ุงู†ู‚ุต mk ุชู„ุฏ ุฅู„ู‡ุง ุฃูŠุด ุจุชุณุงูˆูŠุŸ
474
00:41:26,980 --> 00:41:32,380
ุจุชุณุงูˆูŠ ุญุณุจ ุงู„ุชุนุฑูŠู Supremum ู„ู„ู€ Phi Composite F of
475
00:41:32,380 --> 00:41:38,240
X ู„ู„ู€ K ุงู„ู„ูŠ ูˆูŠู† ููŠ ุงู„ู€ B ุงู„ู„ูŠ ู‡ูŠ mk ุชู„ุฏู‡ุง ู†ู‚ุต mk
476
00:41:38,240 --> 00:41:42,540
ุชู„ุฏู‡ุง ุงู„ู„ูŠ ู‡ูŠ small Supremum ู„ู„ู€ Phi F of X ุงู„ู„ูŠ
477
00:41:42,540 --> 00:41:47,980
ู‡ูŠ ุงู„ุฃูˆู„ู‰ ู‡ุฐู‡ Such that X element in XK minus ูˆุงุญุฏ
478
00:41:47,980 --> 00:41:54,860
ูˆ XK ุงู„ู„ูŠ ู‡ูŠ ุฒุงุฆุฏุฃูˆ ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† ู‡ุฐู‡ ุงู„ู€
479
00:41:54,860 --> 00:42:01,200
infimum ู„ุฃ ูุงูŠ composite F of X such that X
480
00:42:01,200 --> 00:42:10,220
ูˆุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ X K minus ูˆุงุญุฏ ูˆุงู„ X K ู…ุธุจูˆุท ูˆู„ุง
481
00:42:10,220 --> 00:42:18,690
ู„ุฃ ุงุญู†ุง ู‚ู„ู†ุงุงู„ู€ Supremum ู„ูƒู„ ุงู„ู€ Phi of T T ุนู„ู‰ ูƒู„
482
00:42:18,690 --> 00:42:24,130
ุงู„ู€ C ูˆุงู„ู€ D ุจูŠุณุงูˆูŠ ุงูŠุด ุงุณู…ู‡ุŸ ุจูŠุณุงูˆูŠ K ู‡ุฐู‡ ุนุจุงุฑุฉ
483
00:42:24,130 --> 00:42:29,790
ุนู† ู…ูŠู†ุŸ ุดุงูŠููŠู†ุŒ ู…ุงุจุฏูŠุด ุฃุนูŠุฏูƒุŒ ุจู‚ู‰ ุฃูƒุชุจ ู…ุฑุชูŠู† ุฎู„ูŠู†ูŠ
484
00:42:29,790 --> 00:42:33,890
ุฃูƒุชุจู‡ุง ุนู„ู‰ ุดูˆุฑุฉ ุจุชุตูŠุฑ Phi of F of X ูŠุนู†ูŠ ุจุชุตูŠุฑ
485
00:42:33,890 --> 00:42:42,250
ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ Phi of F of X ู…ุนุงูŠุงุŸ
486
00:42:43,040 --> 00:42:48,280
ูˆู‡ุงุฏ ุงูŠุด ุงุณู…ู‡ุงุŸ ุจุฏูŠ ุฃุฏุฎู„ ุงู„ุณุงู„ุจ ุฌูˆุง ูŠุง ุฌู…ุงุนุฉ ุฃูˆ
487
00:42:48,280 --> 00:42:56,440
ู‚ุจู„ ู…ุง ุฃุฏุฎู„ู‡ุŒ ู‡ุฏ ุจูŠุตูŠุฑ ูุงูŠ ูุงูŠ of F of X ุจุนุฏ
488
00:42:56,440 --> 00:43:01,560
ุฃุฐู†ูƒู…ุŒ ุจุฏูŠ ุฃุฏุฎู„ ุงู„ุณุงู„ุจ ุฌูˆุง ุงู„ infimum ู‡ุชุตูŠุฑ ุฅูŠุด ู…ุง
489
00:43:01,560 --> 00:43:06,240
ู„ู‡ุงุŸ supremum ุฅุฐุง ุจูŠุตูŠุฑ ู‡ุฐุง ุฒุงุฆุฏ ูˆู‡ุฏ ุจุชุตูŠุฑ
490
00:43:06,240 --> 00:43:14,100
supremum ูˆุงู„ุณุงู„ุจ ุจุฏุฎู„ ุฌูˆุงุทูŠุจ .. ุนู†ุฏูŠ ุงู„ู€ Phi F of
491
00:43:14,100 --> 00:43:19,800
Xูˆุงู„ู€ Phi F of X ู„ู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุงู„ู€ F of X
492
00:43:19,800 --> 00:43:25,460
ู‡ุฏูˆู„ุฉ ู…ู† ู…ูŠู† ุฌุงูŠุช ู…ู† ุงู„ูุชุฑุฉ C ูˆ D ู„ุฃู† ุฒูŠ ู…ุง ู‚ู„ู†ุง F
493
00:43:25,460 --> 00:43:30,680
of A ูˆ F of I subset ู…ู† ุงู„ุฌู‡ุฉ ุงู„ู„ูŠ ู‡ูŠ C ูˆ D ู„ุฐุง ูƒู„
494
00:43:30,680 --> 00:43:35,040
ุงู„ element ู‡ู†ุง ู…ูˆุฌูˆุฏ ู‡ู†ุง ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ุงู„ .. ุงู„
495
00:43:35,040 --> 00:43:38,720
supreme ู…ู† ุงู„ู„ูŠ ู‡ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ K ุนู†ุฏูŠ ุงู„ absolute
496
00:43:38,720 --> 00:43:45,400
value ู„ู„ู€ Phi of T ุฃูƒูŠุฏ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠุงู„ู€ Phi ุณุงู„ุจ
497
00:43:45,400 --> 00:43:51,080
Phi of T ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ Phi of T ุฃูˆ ุจุงู„ุณูˆูŠุฉ
498
00:43:51,080 --> 00:43:55,280
ุญุชู‰ ุฃูƒูŠุฏ
499
00:43:55,280 --> 00:43:57,900
ุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏู‡ุง ุนู„ู‰ ุฎุทูˆุงุชูŠู† ุจุชุณูˆูŠู‡ุง ุฏูŠ ู„ุฃู† ุงู„
500
00:43:57,900 --> 00:44:06,260
absolute value Phi of T ุฃูƒุจุฑ ุณูˆู‰ ู…ูŠู†ุŸ ุณุงู„ุจ ุงู„ Phi
501
00:44:06,260 --> 00:44:11,300
of T ูุจุตูŠุฑ ุนู†ุฏูŠ ุงู„ supremum ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ุงู„ุฉ
502
00:44:11,300 --> 00:44:18,410
ู‡ุฐุงSupermom ู„ู‡ุฐู‡ ุงูƒูŠุฏ ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
503
00:44:18,410 --> 00:44:22,170
Supremum ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ K ู„ุฃู† ุงู„ู€ Supremum ู‡ุฐุง ุนุงู„ู…ูŠู†
504
00:44:22,170 --> 00:44:26,370
ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ C ูˆD ู‡ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุนุงู„ู…ูŠู† ุนู„ู‰ X
505
00:44:26,370 --> 00:44:30,890
element in XK ู…ุงู†ุณ ูˆุงุญุฏ ูˆ XK ู„ุฃู† ู‡ุฐุง Similarly
506
00:44:30,890 --> 00:44:35,910
ุฃูƒูŠุฏ ุงู„ู€ Supremum ู„ู„ู€ Absolute Value ู‡ูŠูƒูˆู† ุฃูƒุจุฑ ุฃูˆ
507
00:44:35,910 --> 00:44:39,070
ูŠุณุงูˆูŠ ุงู„ู€ Supremum ู„ู‡ุฐู‡ ู…ู† ุฌู‡ุชูŠู† ุฃู†ู‡ Absolute
508
00:44:39,070 --> 00:44:42,790
Value ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุฌู…ูˆุน ู‡ุฐู‡ ุฌุฒุฆูŠุฉ ู…ู†
509
00:44:42,790 --> 00:44:48,380
ุงู„ู„ูŠ ููˆู‚ ุฅุฐู† ุฏู‡ ุจุฑุถู‡ ุจูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠK ุงุฐุง ุตุงุฑ
510
00:44:48,380 --> 00:44:53,800
automatic ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุฒุงุฆุฏ ู‡ุฐู‡ ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ู…ูŠู†
511
00:44:53,800 --> 00:45:01,440
ุงุชู†ูŠู† K ู…ู† ุงูŠ ุญุงุฌุฉ ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ุงุชู†ูŠู† K ุงู„ุงู† ู‡ุฐู‡
512
00:45:01,440 --> 00:45:06,160
ุงู„ supremum ุฒุงุฆุฏ ุงู„ supremum ู‡ุฐู‡ ุจุณ ู„ุง ูŠุงุด ู„ุณุงู†ูƒ
513
00:45:06,160 --> 00:45:11,900
ูŠุง ุดุจุงุจ ูˆ ู‡ุฐู‡ K ุงุตุบุฑ ูŠุณุงูˆูŠ K ุฒุงุฆุฏ K ุนุดุงู† ุงู„ุชู„ุฎูŠุต
514
00:45:11,900 --> 00:45:19,460
ุจูŠุตูŠุฑ ุงุดู…ู„ู‡ ุงุชู†ูŠู† Kูˆุงุถุญ ุฅุฐุง ู†ุฎุฒู† ุงู„ุชุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ K
515
00:45:19,460 --> 00:45:24,480
element in B ุจุนุฏ ุฅุฐู†ูƒู… ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ M K ู†ู‚ุต ุจู„ุงุด
516
00:45:24,480 --> 00:45:30,200
ุงู„ุชูุงุตูŠู„ ู‡ุฐู‡ ุฎู„ุตู†ุง ู…ู†ู‡ุง ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ M K ู†ู‚ุต M K
517
00:45:30,200 --> 00:45:37,180
small ุฃุตุบุฑ ู…ู† ุชู„ุฏ ุชู„ุฏ ุทุจุนุง ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงุชู†ูŠู† K
518
00:45:37,180 --> 00:45:43,280
ุทุจุนุง ุงู„ K ู‡ู†ุง index ุงู„ K ู‡ุฐู‡ capital ู‡ุฐู‡ ุงู„ K ู…ูŠู†ุŸ
519
00:45:43,280 --> 00:45:48,590
ุงู„ K ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡ู‡ุฐุง ุงู„ู€ K ู‡ูˆ ุงู„ุงู†ุฏูƒุณ ู„ู„ู€ B ูˆู‡ุฐุง
520
00:45:48,590 --> 00:45:50,690
ุงู„ู€ K ู‡ูˆ ุงู„ุงู†ุฏูƒุณ ู„ู„ู€ B ูŠุนู†ูŠ ุงู„ู€ K ู‡ุฐู‡ ู„ูŠุณุช ุฅูŠุงุฏุฉ
521
00:45:50,690 --> 00:45:57,370
ู‡ุฐู‡ K ู‡ูŠ ุงู„ู€ Supremum ุงู„ู„ูŠ ููˆู‚ ุทูŠุจ ู†ุฌู…ุญ
522
00:45:57,370 --> 00:46:03,190
ู…ุนู„ูˆู…ุงุชู†ุง ูˆู†ุจุฏุฃ ู†ุฌู…ุญู‡ุง ุงู„ุขู† ูˆู†ูƒูˆู† ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู„ูŠ
523
00:46:03,190 --> 00:46:08,410
ุจุฏู‡ุฏ ุงุชู†ูŠู† Kุฃู‡ ู„ุจ ุชู„ุฎูŠุต 2K ูŠุง ุดุจุงุจ ู„ู…ุง ุชุดูˆููˆู‡ุง ู„ุจ
524
00:46:08,410 --> 00:46:13,770
ุชู„ุฎูŠุต 2K ุงู„ุงู† ุงูˆุฌุฏุช ุงู„ summation ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงูŠู‡ุŸ
525
00:46:13,770 --> 00:46:16,710
ุจุฏูŠ ุงูˆุฌุฏ ุงู„ summation ุนู„ู‰ ุงู„ P ุจุงู‚ูŠ ุงู„ indices ู„ุฅู†
526
00:46:16,710 --> 00:46:21,650
ู‡ุงู„ุฌุงุช ุจุฏูŠ ุฃู‚ูˆู„ูƒู… ู„ูŠุด ุจุงู„ุถูŠู‚ุฉ ุงู„ุงู† ุงุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„
527
00:46:21,650 --> 00:46:29,930
summation ู„ู„ Mk ู†ุงู‚ุต Mk ุชู„ุฏุฉ ุชู„ุฏุฉ ููŠ Xk minus Xk
528
00:46:29,930 --> 00:46:40,680
minus ูˆุงุญุฏ K element in B ุงู„ุขู†ู…ุธุจูˆุท ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
529
00:46:40,680 --> 00:46:45,120
ุงู„ู„ูŠ ู‡ูˆ 2K ุจุฑุถู‡ ุนู„ู‰ ุงู„ summation ู‡ุฐุง ุงู„ summation
530
00:46:45,120 --> 00:46:53,040
ุงู„ู„ูŠ ู‡ูˆ 2K ูƒุงุจูŠุชุงู„ ูƒุงุจูŠุชุงู„ ู‡ุฐู‡ ู…ุงู„ู‡ุงุด ุนู„ุงู‚ุฉ ุจุงู„ K
531
00:46:53,040 --> 00:47:00,840
ุงู„ element in B ู‡ู†ุง ููŠ XK minus XK minus 1 ุฃุฎุฏุช ุงู„
532
00:47:00,840 --> 00:47:03,700
summation ุนู„ู‰ ุงู„ุฌู‡ุชูŠู† ุนู„ู‰ ูƒู„ ุงู„ K ุงู„ element in B
533
00:47:06,360 --> 00:47:20,220
ู…ุงุดูŠ ุทูŠุจ ูˆูŠู† ุฃูƒุชุจ ุทูŠุจ ุงุชุญู…ู„ูˆู†ูŠ ู‡ู„ุฌูŠุช ุนู†ุฏูŠ ุฎู„ูŠู†ูŠ
534
00:47:20,220 --> 00:47:25,300
ุฃูƒุชุจ ู‡ู†ุง ุฃุดุฑุญ ุฃู†ุง ุดูˆูŠุฉ ุจู‡ู…ุด ุฎู„ูŠู†ูŠ ุฃุดุฑุญ ุนู„ู‰ ุงู„ ..
535
00:47:25,300 --> 00:47:33,740
ุงู„ูƒู„ู ุงู„ B ุงู„ูƒู„ู ุงู„ B ุงุญู†ุง ู…ู† ุชุนุฑูŠู ุงู„ูƒู„ู ุงู„ BุจุฏูŠ
536
00:47:33,740 --> 00:47:39,160
ูŠูƒูˆู† ุงู„ุงู… ูƒูŠ ู†ุงู‚ุต ุงู… ูƒูŠ ุฃูƒุจุฑ ุดูˆ ู…ูŠู†ุŸ Delta ุตุญุŸ
537
00:47:39,160 --> 00:47:41,980
ุจูŠุตูŠุฑ ุนู†ุฏู‰ ุงู„ุขู† Delta ูŠุนู†ูŠ ุฃุตุบุฑ ุดูˆ ุงู… ูƒูŠ ู†ุงู‚ุต ุงู…
538
00:47:41,980 --> 00:47:47,000
ูƒูŠ ุงู„ู‡ small ุงูŠู‡ ุจูŠุณู…ุนูˆุง ุนู„ู‰ ุงู„ Delta ู‡ู†ุงุŸ ู‡ูˆ ุงู†ุง
539
00:47:47,000 --> 00:47:50,920
ุนู„ู‰ ุงู„ Delta ุจูŠุตูŠุฑ ู‡ุฐุง ุฅูŠู‡ ุดุจุงู„ุŒ ู‡ูˆ ูˆุงุญุฏุŒ ู…ุนุงูŠุงุŸ
540
00:47:50,920 --> 00:48:02,180
ูุจูŠุตูŠุฑ ุนู†ุฏู‰ ุงู„ุขู† ุงู„ summation ุนู„ู‰ ุงู„ูˆุงุญุฏXK-XK- XK
541
00:48:02,180 --> 00:48:07,650
- XK- XK- XK- XK- XK- XK- XKุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ mk ู†ู‚ุต
542
00:48:07,650 --> 00:48:13,130
mk ุนู„ู‰ delta ู…ุงุดูŠ ุฎุฏ ุงู„ summation ู„ู„ุฌู‡ุชูŠู† ุงู„
543
00:48:13,130 --> 00:48:19,030
summation ู„ู„ุฌู‡ุชูŠู† xk minus xk minus ูˆุงุญุฏ ูˆุงู†ุง ุงู„
544
00:48:19,030 --> 00:48:24,310
summation xk minus xk minus ูˆุงุญุฏ k element in b
545
00:48:24,310 --> 00:48:28,850
ู„ุฃู† ู‡ุฐุง ุตุญ ู„ู„ b ุจุณ ู„ูƒูŠ element in b ู…ุธุจูˆุท ู…ู…ูƒู†
546
00:48:28,850 --> 00:48:33,880
ุญุตู„ู†ุง ุนู„ู‰ ู‡ุฐุง ู‡ูŠู‡ุงู„ู„ูŠ ู…ูˆุตูˆู„ ูˆู‡ุฐุง ูˆุงุญุฏ ุนู„ู‰ ุฏู„ุชุง
547
00:48:33,880 --> 00:48:38,720
ุทู„ุนู‡ุง ุจุฑุง ููŠ ุงู„ summation ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุง ู…ุงุดูŠ ูˆุตู„ู†ุง
548
00:48:38,720 --> 00:48:45,620
ู„ ู‡ูŠูƒ ุฅุฐุง ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆูŠ ุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰
549
00:48:45,620 --> 00:48:56,360
ุฏู„ุชุง ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ุงู† ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ UPUF ุทุจ ุฃู†ุง ุฏูŠ
550
00:48:56,360 --> 00:49:00,500
MK ูˆMK ุงู‡ ู…ุด MK ุชู„ุฏ ู‡ุฐู‡ ุงู‡
551
00:49:03,350 --> 00:49:07,230
ู„ูŠุดุŸ ู„ุฃู†ู‡ .. ุงุดูƒุฑูˆุง ุงู† ุงู†ุง ูƒุชุจูŠู† ู‡ู†ุง Mk ูˆ Mk ุชู„ุชุฉ
552
00:49:07,230 --> 00:49:15,130
ู„ุฃู† ู‡ุฐู‡ ุงู„ู€ A ุงู„ู€ B ุงู„ู€ B ุงู„ู€ K ุงู„ู„ูŠ ููŠู‡ุง ู…ุตู†ูุฉ
553
00:49:15,130 --> 00:49:19,530
ุนู„ู‰ ุฃุณุงุณ Mk ุงุณู…ู‡ ู†ู‚ุต Mk ุฃูƒุจุฑ ุฒูŠ ุฏู„ุชุฉ ูุจุตูŠุฑ ุนู†ุฏู‰
554
00:49:19,530 --> 00:49:25,800
ุงู„ุขู†ุงู„ู€ Mk ู†ู‚ุต Mk ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ Delta ู…ุด
555
00:49:25,800 --> 00:49:31,520
Delta ู‡ุฐู‡ ู‡ุฐู‡ ู„ู…ูŠู†ุŸ ุงู„ู„ูŠ ู…ุตู†ู ุนู„ูŠู‡ุง ุงู„ู€ B ุงู„ู„ูŠ ู‡ูŠ
556
00:49:31,520 --> 00:49:35,860
ุจุงู„ู†ุณุจุฉ ู„ู„ู€ F ู‡ุฐู‡ ู…ุด ู„ู€ Alpha Composite F ุฅุฐุง ู‡ุฐุง
557
00:49:35,860 --> 00:49:38,560
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ Delta ุนู„ู‰ Delta ุจูŠุตูŠุฑ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ
558
00:49:38,560 --> 00:49:41,740
ูˆุงุญุฏ ุนู„ู‰ ุงู„ summation ุงู„ู„ูŠ ุนู…ู„ู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุฃุตุบุฑ
559
00:49:41,740 --> 00:49:44,720
ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ Delta ููŠ ุงู„ summation ู‡ุฐุง ุงู„ุขู†
560
00:49:44,720 --> 00:49:55,810
.. ุงู„ุขู† ู‡ุฐุง ู…ูŠู† ู‡ูˆุŸ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ UP ูˆ F ู…ุด ูƒู„ู‡
561
00:49:55,810 --> 00:50:01,210
ุญุชู‰ ุฌุฒุก ู…ู†ู‡ ู„ุฃู† ุงู„ U P ูˆ F ุงูŠุด ู…ุงู„ู‡ ุงู„ M ูƒุฏู‡ ุชุจุนุชู‡
562
00:50:01,210 --> 00:50:08,310
ุงู„ U P ูˆ F ุงูŠุด ู‡ูˆ ูŠุง ุดุจุงุจ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ summation
563
00:50:08,310 --> 00:50:14,090
ูƒูŠ ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ N ุงูˆ ู…ู† Zero ู„ุนู†ุฏ N ู…ู† ูˆุงุญุฏ
564
00:50:14,090 --> 00:50:25,770
ู„ุนู†ุฏ N ู…ุธุจูˆุท ู„ู…ูŠู† ู„ุฃ ุงู„ Mูƒ ููŠ xk minus xk minus
565
00:50:25,770 --> 00:50:30,070
ูˆุงุญุฏ ู‡ุฐุง ุงู„ summation ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ูƒู„ ุงู„ case ู…ู†
566
00:50:30,070 --> 00:50:35,290
ูˆุงุญุฏ ู„ุนู†ุฏ n ุจูŠู†ู…ุง ู‡ุฐุง ุงู„ summation ู„ู…ูŠู†ุŸ ุจุณ ู„ู„ุฌุฒุก
567
00:50:35,290 --> 00:50:39,130
ุงู„ู„ูŠ ู‡ูˆ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ B ูุฃูƒูŠุฏ ุงู„ summation ุนู„ู‰ ู‡ุฐู‡
568
00:50:39,130 --> 00:50:44,410
ุฃุธู‡ุฑ ุฃูˆูŠ ุณุงูˆูŠ ุงู„ summation ุนู„ู‰ ู‡ุฐู‡ ุจุงุดูŠ ู„ุฃู† ุงู„
569
00:50:44,410 --> 00:50:48,430
summation ุนู„ู‰ ู‡ุฐู‡ ู†ุงู‚ุต ู‡ุฐู‡ ุจุฑุถู‡ ุจุธู‡ุฑ ุฃูˆูŠ ุณุงูˆูŠ ู‡ุฐุง
570
00:50:48,430 --> 00:50:55,190
ู†ุงู‚ุต ู‡ุฐุงู„ูŠุดุŸ ู„ุฃู† ุงู„ู€ M K ู†ุงู‚ุต M ู†ุนู…ู„ ูƒู…ูŠุฉ ุนู„ู‰ ุฌู‡ุฉ
571
00:50:55,190 --> 00:50:59,290
ู†ุนู…ู„ู‡ุง
572
00:50:59,290 --> 00:51:03,690
.. ู†ุนู…ู„ู‡ุง
573
00:51:03,690 --> 00:51:04,770
.. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง
574
00:51:04,770 --> 00:51:09,950
.. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง
575
00:51:09,950 --> 00:51:10,210
.. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง
576
00:51:10,210 --> 00:51:10,270
.. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง
577
00:51:10,270 --> 00:51:10,410
.. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง
578
00:51:10,410 --> 00:51:18,420
.. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง .. ู†ุนู…ู„ู‡ุง ..ุฃูŠุด ู‡ูŠุณุงูˆูŠ ุงู„ู€
579
00:51:18,420 --> 00:51:24,940
summation ู„ู„ู€ mk ู†ุงู‚ุต mk small ููŠ xk minus xk
580
00:51:24,940 --> 00:51:30,880
minus ูˆุงุญุฏ ู‡ุฐุง k ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ n ู…ุธุจูˆุท ูˆู„ุง ู„ุฃุŸ
581
00:51:30,880 --> 00:51:35,360
ุงู„ุงู† ุฃูƒูŠุฏ ุฃูƒูŠุฏ ู‡ุฐุง ู„ุฃู† ู‡ุฐุง ู…ูˆุฌุจุฉ ูˆู‡ุฐุง ู…ูˆุฌุจุฉ ู„ุฃู†
582
00:51:35,360 --> 00:51:42,060
ู‡ุฐุง ุฃูƒูŠุฏ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ summation ู„ู„ mk ู†ุงู‚ุต mk
583
00:51:43,610 --> 00:51:51,390
xk-xk-1 k element in B ู„ุฃู† ู‡ุฐูˆู„ู‡ ุฌุฒุก ู…ู† ู‡ุฐูˆู„ู‡ ูŠุนู†ูŠ
584
00:51:51,390 --> 00:51:56,150
ู†ู‚ุตุช ู…ู† ุงู„ summation ู‡ุฐุง ุจุนุถ ุงู„ terms ุงู„ู„ูŠ ุฃูƒุจุฑ ุฃูˆ
585
00:51:56,150 --> 00:51:57,810
ูŠุณุงูˆูŠ 0 ุฅุฐุง ู†ู‚ุต ุงู„ summation
586
00:52:12,960 --> 00:52:19,320
ุทูŠุจ ุงู„ู…ูุฑูˆุถ ุงู† ู‡ุฐุง ูˆุงุถุญ ุฎู„ู‘ูŠู†ุง ุงู„ุงู† ู†ุชุทู„ุน ุนู„ูŠู‡
587
00:52:19,320 --> 00:52:25,060
ุนู†ุฏู‰ ุงุฐุง ุงู„ summation ู„ู„ XK minus XK minus ูˆุงุญุฏ K
588
00:52:25,060 --> 00:52:30,860
element ุจูŠุทู„ุนู„ูŠ ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ุฏู„ุชุง ููŠ ุงู„
589
00:52:30,860 --> 00:52:39,040
U ู†ุงู‚ุต L ุจุณ ู‡ุฐุง ุงู†ุง ู…ุฎุฒู†ู‡ ู„ุณู‡ ุนู†ุฏู‰ ุงู„ U ู†ุงู‚ุต Lุงู„ู„ูŠ
590
00:52:39,040 --> 00:52:40,940
ู‡ูˆ ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุงู„ู€ partition ุงู„ู„ูŠ ุจู†ุดุชุบู„ ุนู„ูŠู‡ ุงู„ู„ูŠ
591
00:52:40,940 --> 00:52:45,860
ู„ุงุฌูŠู†ุงู‡ ููŠ ุงู„ุฃูˆู„ ุงู„ู€U-L ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ู…ูŠู† ุทู„ุนุช ุฃุตู„ุง
592
00:52:45,860 --> 00:52:48,880
ู…ู† ุฏู„ุชุฉ ุชุฑุจูŠุน ู„ุฃู† ู‡ุฐุง ุงุนุชู…ุฏู†ุง ุนู„ูŠู‡ ุนู„ู‰
593
00:52:48,880 --> 00:52:53,660
ุงู„ู€integrability ู„ู„ู€F ุงู„ุฃูˆู„ ุฅุฐุง ู„ุงุฒู…ุชู†ูŠ ู‡ู†ุง ุงู„ู„ูŠ
594
00:52:53,660 --> 00:52:57,800
ู‡ูˆ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฏู„ุชุฉ ุชุฑุจูŠุน ููŠ ูˆุงุญุฏ ุนู„ู‰ ุฏู„ุชุฉ ุจูŠุตูŠุฑ
595
00:52:57,800 --> 00:53:04,160
ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฏู„ุชุฉ ูˆู‡ุฐุง ูƒู„ู‡ูู‰ ุถูˆุก ุงู„ู€ Delta ุงู„ู„ู‰
596
00:53:04,160 --> 00:53:08,060
ุฃู†ุง ุจุฏุฃุช ููŠู‡ุง ุฃุตุบุฑ ู…ู† ู…ูŠู† ุฃูˆ ุฃุซุจุชุชู‡ุง ุฃุตุบุฑ ู…ู†
597
00:53:08,060 --> 00:53:11,860
Epsilon ุฅุจุฑุงู‡ูŠู… ุงู„ู„ู‰ ูˆุฌู‡ุชู‡ุง ุฃุตุบุฑ ู…ู† Epsilon
598
00:53:11,860 --> 00:53:16,340
ุฅุจุฑุงู‡ูŠู… ุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ ุงู„ summation ู‡ุฐุง ุฃุตุบุฑ ู…ู† Ash
599
00:53:16,340 --> 00:53:22,280
ู…ู† Epsilon ุฅุจุฑุงู‡ูŠู… ู„ู…ูŠู†ุŸ ู„ู„ K ุงู„ู„ู‰ Ash ููŠ B ุฅุฐุง
600
00:53:22,280 --> 00:53:25,340
ุงู„ู„ู‰ ูˆุตู„ุช ุฅู„ูŠู‡ ุงู„ุขู† ุงู„ summation
601
00:53:28,540 --> 00:53:32,980
ุงู„ู€ summation ุงู„ู„ูŠ ูˆุตู„ุช ุฅู„ูŠู‡ ุงู„ู€ summation ู„ู„ู€ xk
602
00:53:32,980 --> 00:53:41,600
ู†ุงู‚ุต xk minus 1 k element in B ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†
603
00:53:41,600 --> 00:53:46,920
ุฅุจุฑุงู‡ูŠู… ุงู„ุขู†
604
00:53:46,920 --> 00:53:53,760
ุจุณ ุฅุญู†ุง ุฃุซุจุชู†ุง ุฅู† ุงู„ู€ summation ู‡ุฐุง ุฃูŠู‡ ุฃุตุบุฑ ุฃูˆ
605
00:53:53,760 --> 00:54:00,430
ูŠุณุงูˆูŠ 2kุงุชู†ูŠู† ูƒูŠู ุงู„ summation ู‡ุฐุง ู…ุธุจูˆุท ุจุฏูŠ ุงุนูˆุถ
606
00:54:00,430 --> 00:54:06,850
ุงู„ุงู† ุงุดูŠู„ ู‡ุฐุง ุจูŠุตูŠุฑ ุนู†ุฏูŠ ู‡ุงูŠ ุดุงูŠููŠู† ูŠุง ุดุจุงุจ ู‡ุงูŠ
607
00:54:06,850 --> 00:54:14,070
ุนู†ุฏ ุงู„ summation ู‡ุฐุง ุงุซุจุชู‡ ุงู†ู‡ ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ
608
00:54:14,070 --> 00:54:24,580
ู‡ูˆ epsilon prime ูˆุงุถุญ ูˆู…ู† ุงุฑุจุนุฉุจุตูŠุฑ ุนู†ุฏู‰ ุจุนูˆุถ ุงู„
609
00:54:24,580 --> 00:54:28,980
summation ุฃุตุบุฑ ู…ู† 2 ูƒูŠู ุงู„ summation ุงู„ู„ู‰ ุฃุซุจุชู†ุงู‡
610
00:54:28,980 --> 00:54:34,840
ุจุญูŠุชู‡ ุจุณ ู‚ุจู„ ุดูˆูŠุฉ ุงู„ summation ุฃุตุบุฑ ู…ู† 2 ูƒูŠู ุงู„
611
00:54:34,840 --> 00:54:40,140
summation ุจุดูŠู„ ู‡ุฐุง ุงู„ู„ู‰ ู‡ูˆ ู‡ุฐุง ูˆ ุฃู‚ูˆู„ ุฃุตุบุฑ ู…ู† ู…ูŠู†
612
00:54:40,140 --> 00:54:43,760
ู…ู† epsilon prime ุจุตูŠุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ู‰ ู‡ูˆ ู‡ุฐุง ุงู„
613
00:54:43,760 --> 00:54:45,680
summation ู‡ูŠู‡
614
00:54:47,550 --> 00:54:54,290
ู‡ูŠูˆ ู‡ุฐุง ู‡ูŠูˆ ุฃุตุบุฑ ู…ู† ู…ู† 2k ููŠ ash ููŠ ุงู„ epsilon
615
00:54:54,290 --> 00:55:00,110
prime ุฅุฐุง ุทู„ุน ุนู†ุฏูŠ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ summation ุฎู„ุตู†ุง ู…ู†
616
00:55:00,110 --> 00:55:07,610
ู‡ุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ุฃุซุจุชู‡ summation ู„ู„
617
00:55:07,610 --> 00:55:19,240
mk ุชู„ุฏู‰ ู†ุงู‚ุต mk ุชู„ุฏู‰ููŠ xk-xk-1 k element in B ุฃุตุบุฑ
618
00:55:19,240 --> 00:55:26,980
ู…ู† ู…ูŠู† ุทู„ุน ู…ู† epsilon prime ููŠ 2k ุงุจุณู„ูˆู† ุจุฑุงูŠู… ููŠ
619
00:55:26,980 --> 00:55:36,650
2k ุงู„ุขู† ุฎู„ุตู†ุงุงุญุณุจูˆู„ูŠ ุฅุฐุง ุงุญู†ุง ู„ู‚ูŠู†ุง ุงู„ partition B
620
00:55:36,650 --> 00:55:44,330
ู„ูƒู„ option ุฃูƒุจุฑ ู…ู† 0 ู„ู‚ูŠู†ุง B ุจุญูŠุซ ุฃู†ู‡ U B of I
621
00:55:44,330 --> 00:55:54,210
composite F ู†ุงู‚ุต ุงู„ B of I composite F ู‡ุฐุง ุฃุดู…ุงู„ู‡
622
00:55:54,210 --> 00:55:59,310
ุจุณุงูˆูŠุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ summation ุงู„ู„ูŠ ู‡ูŠุถุน ุนู„ู‰ ูƒู„ ุงู„ู€ K
623
00:55:59,310 --> 00:56:02,390
ูˆ ุงู„ู€ summation ุงู„ู„ูŠ ู‡ูŠุถุน ุนู„ู‰ ูƒู„ ุงู„ู€ K ูˆ ุงู„ู€ K
624
00:56:02,390 --> 00:56:05,910
ุฌุฒู‘ุงู†ู‡ุง ู„ุฌุฒูŠู† ุฅูŠุด ููŠ ุงู„ู€ A ูˆ ุฅูŠุด ููŠ ุงู„ู€ B ุฅุฐุง
625
00:56:05,910 --> 00:56:14,110
ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ summation ู„ ุงู„ู€ A ุงู„ู€ MK ู†ุงู‚ุต
626
00:56:14,110 --> 00:56:23,140
MK ุชู„ุฏุฉ ุชู„ุฏุฉููŠ xk-xk-1 k ู…ู† ูˆุงุญุฏ ู„ ุนู†ุฏ n ุตุญ ูˆู„ุง ู„ุฃ
627
00:56:23,140 --> 00:56:28,220
ุงู‡ ุทุจุนุง ู‡ูˆ ุงู„ุชุนุฑูŠู ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจูŠุซุงูˆูŠุงู„ุงู† ุงู„ู€ K
628
00:56:28,220 --> 00:56:32,460
ุงู„ู„ูŠ ุนู†ุฏูƒ ุฌุฒู‘ุงู„ุช ู„ุฌุฒูŠู† ูˆุงุญุฏ ููŠ ุงู„ู€ A ูˆุงุญุฏ ููŠ ู…ูŠู†ุŸ
629
00:56:32,460 --> 00:56:37,080
ููŠ ุงู„ู€ BุŒ ุฅุฐุงู‹ ู‡ุฐุง ุงู„ู€ summation ุงู„ูƒู„ ุจูŠุณุงูˆูŠ ุงู„
630
00:56:37,080 --> 00:56:41,340
summation ุนู„ู‰ K ููŠ ุงู„ู€ A ุฒุงุฆุฏ ุงู„ summation ู†ูุณู‡
631
00:56:41,340 --> 00:56:45,720
ุนู„ู‰ K ูˆูŠู† ู…ุงู„ู‡ุŸ ููŠ ุงู„ู€ B ุงู„ summation ู„ู…ูŠู†ุŸ ู„ู‡ุฐู‡
632
00:56:45,720 --> 00:56:53,280
ุงู„ู„ูŠ ู‡ูŠ MK ุชู„ุฏ ู†ุงู‚ุต MK ุชู„ุฏ small ููŠ XK minus XK
633
00:56:53,280 --> 00:57:01,450
minus ูˆุงุญุฏ ุฒุงุฆุฏ MKุชู„ุฏุฉ ู†ุงู‚ุต mk small ููŠ xk minus
634
00:57:01,450 --> 00:57:08,990
xk minus ูˆุงุญุฏ ุงู‡ ุทูŠุจ ูŠุนู†ูŠ ุงู„ุงู† ู‡ุฐุง ุงู„ U ูˆ ู‡ุฐุง ุงู„ L
635
00:57:08,990 --> 00:57:12,030
ุตุงุฑ ุจุณุงูˆูŠ ู‡ุฐุง ุงู„ุฌุฒุก ูˆ ู‡ุฐุง ุงู„ุฌุฒุก ูˆ ู‡ุฐุง ุงู„ุณุจุจ ุฃุตู„ุง
636
00:57:12,030 --> 00:57:17,590
ุงู„ู„ูŠ ุฎู„ุงู†ู‡ ุฃุฌุฒุก ู‡ุฐุง ุทู„ุน ู„ูŠ ุงู„ุงู† ู…ูŠู† ู‡ูˆ ุทู„ุน ู„ูŠ ุฃุตุบุฑ
637
00:57:17,590 --> 00:57:22,970
ู…ู† epsilon prime ุฃุตุบุฑ ู…ู† epsilon prime ููŠ b minus
638
00:57:22,970 --> 00:57:32,330
aูˆุงู„ุชุงู†ูŠ ุทู„ุน ุฃุตุบุฑ ู…ู† E' ููŠ 2K E' ููŠ 2K ูŠุนู†ูŠ ู‡ุฏูˆู„
639
00:57:32,330 --> 00:57:40,140
ุงู„ุงุชู†ูŠู† ู…ุน ุจุนุถ ุฅูŠุด ุจูŠุณุงูˆู†ุŸ ุจูŠุณุงูˆู† E' ููŠู‡2k ุจูŠุฒุงู‚
640
00:57:40,140 --> 00:57:56,220
ุจูŠุฒุงู‚ ุจูŠุฒุงู‚ ุจูŠุฒุงู‚ ุจูŠุฒุงู‚ ุจูŠุฒุงู‚ ุจูŠุฒุงู‚
641
00:57:56,310 --> 00:58:04,950
ุนู„ู‰ b minus a ุฒูŠ ุงุชู†ูŠู† k ููŠ ุงุชู†ูŠู† k ุฒูŠ b minus a
642
00:58:04,950 --> 00:58:10,030
ูˆู‡ุฐู‡ ุจุชุฑูˆุญ ู…ุน ุญุฏ ุจูŠุณุงูˆูŠ ุงูŠุด ุงุจุณู„ูˆู† ุงุฐุง ุงู„ู„ูŠ ูˆุตู„ุชู„ู‡
643
00:58:11,120 --> 00:58:17,600
ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„
644
00:58:17,600 --> 00:58:22,480
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„
645
00:58:22,480 --> 00:58:25,660
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„
646
00:58:25,660 --> 00:58:27,320
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„
647
00:58:27,320 --> 00:58:28,360
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„
648
00:58:28,360 --> 00:58:32,200
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„
649
00:58:32,200 --> 00:58:34,180
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„
650
00:58:34,180 --> 00:58:36,880
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ูƒู„
651
00:58:36,880 --> 00:58:47,340
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุณูุฑุทูŠุจ ุงู„ุขู† ู†ูŠุฌูŠ ุจุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ู†ุงุฎุฏ
652
00:58:47,340 --> 00:58:55,660
ุงู„ู„ูŠ ู‡ูˆ ุชุทุจูŠู‚ุงุช ุนู„ู‰ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ูˆู†ุดูˆู
653
00:58:55,660 --> 00:59:02,600
ูƒูŠู ุจุฏู†ุง ู†ุทุจู‚ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ู„ู„ูˆุตูˆู„ ุฅู„ู‰ ู†ุชุงุฌ ุฃุฎุฑู‰
654
00:59:02,600 --> 00:59:09,280
ุชุชุนู„ู‚ ุจุฎูˆุงุต ุงู„ุชูƒุงู…ู„ ุฃูˆ ุจุฎูˆุงุต ุชูƒุงู…ู„ ู„ุฑูŠู…ุงู† ู„ุฃู†
655
00:59:09,280 --> 00:59:15,300
ุนุฑูู†ุงูˆ ุฌูˆุงุจู†ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุฌู…ูˆุน ูˆุนู„ู‰ ุญุณุจ ุถุฑุจ K
656
00:59:15,300 --> 00:59:20,100
ููŠ ุงู„ .. ููŠ ุงู„ F ูˆู„ู‚ู†ุง ุนู„ู‰ ุงู„ composition ูˆ ุชุญุช ุงูŠ
657
00:59:20,100 --> 00:59:24,360
ุถุงุฑู ูƒุงู† ู I composite F is integrable ุงู„ุงู† ู†ูƒู…ู„
658
00:59:24,360 --> 00:59:30,120
ุงู„ู„ูŠ ู‡ูˆ ู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ corollary ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ
659
00:59:30,120 --> 00:59:39,150
ู‡ูŠ ุจุชู‚ูˆู„ูŠ ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุชู„ุช ูุฑูˆุน ู„ูˆ ูƒุงู†ุชI ุนุจุงุฑุฉ ุนู†
660
00:59:39,150 --> 00:59:43,990
ุงู„ู€ closed interval A ูˆ B ูˆ F ู…ู† I ู„ุนู†ุฏ R is
661
00:59:43,990 --> 00:59:47,370
integrable on I then the absolute value of a
662
00:59:47,370 --> 00:59:50,630
function F obtained by the absolute value is
663
00:59:50,630 --> 00:59:54,410
integrable on Iูˆุงู„ู€ absolute value of integration
664
00:59:54,410 --> 00:59:56,470
ุฃุตุบุฑ ูŠุณุงูˆูŠ ุงู„ู€ integration ู„ู„ู€ absolute value ู„ู„ู€
665
00:59:56,470 --> 01:00:02,810
F ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ูŠุณุงูˆูŠ K K ููŠ ุงู„ B minus A ุญูŠุซ ุงู„ K
666
01:00:02,810 --> 01:00:06,750
ู‡ุฐู‡ ู…ู† ุฃูŠู† ุฌุงูŠุฉ ู‡ูŠ ุงู„ bound ู„ู„ F of X ู„ุฃู† F is
667
01:00:06,750 --> 01:00:12,260
integrable ุฅุฐุง ุฃูƒูŠุฏ boundedูู† element in F ูŠุนู†ูŠ
668
01:00:12,260 --> 01:00:15,280
ุงู„ู„ูŠ ุจุชู‚ูˆู„ูŠ ู‡ุฐุง ุจุงุฎุชุตุงุฑ ุฏู‡ ูƒุงู†ุช F is integrable ุงู„
669
01:00:15,280 --> 01:00:18,100
absolute value ู„ู„ F ุฅูŠุด ู…ุง ู„ู‡ุง integrable ูˆุงู„
670
01:00:18,100 --> 01:00:20,160
absolute value ู„ู„ integration ุฃุตุบุฑ ุณูˆู‰ ุงู„
671
01:00:20,160 --> 01:00:22,860
integration ู„ู„ absolute value ุฃุตุบุฑ ุณูˆู‰ K ุงู„ู„ูŠ ู‡ูŠ
672
01:00:22,860 --> 01:00:26,580
ุงู„ maximum ู„ู„ ุฃูˆ ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„ ุงู„ bound ู„ู„ F of X
673
01:00:26,580 --> 01:00:31,080
absolute value ู„ F of X ููŠ B minus Aุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
674
01:00:31,080 --> 01:00:35,460
ุงู„ู„ูŠ ู‡ูˆ ู‡ุชุทู„ุน ู„ูŠ ุจุฑุถู‡ ุงู„ู€ Fn is integrable ู„ุฃู† Fn
675
01:00:35,460 --> 01:00:41,560
ู‡ูˆ ุฅู†ุชุฌุฑ
676
01:00:42,100 --> 01:00:46,780
ุงู„ุขู† ุฅุฐุง ูƒุงู† ุงู„ุดุบู„ ุงู„ุซุงู†ูŠ ุฅุฐุง ูƒุงู† ููŠู‡ Delta ุจุญูŠุซ
677
01:00:46,780 --> 01:00:50,400
ุฃู† F of X ุฃูƒุจุฑ ูŠุณุงูˆูŠ Delta ูŠุนู†ูŠ F of X ุฃูƒุจุฑ ุฃูˆ
678
01:00:50,400 --> 01:00:53,900
ูŠุณุงูˆูŠ Delta ุฃูƒุจุฑ ูŠุณุงูˆูŠ Delta ู„ูŠุดุŸ ุนู„ู‰ ุฃุณุงุณ ุฅู†ู‡
679
01:00:53,900 --> 01:00:58,140
ูŠุถู…ู† ู…ู‚ู„ูˆุจ ู‡ูŠูƒูˆู† bounded ุจูŠุตูŠุฑ 1 ุนู„ู‰ F of X ุฃุตุบุฑ
680
01:00:58,140 --> 01:01:00,680
ุฃูˆ ูŠุณุงูˆูŠ 1 ุนู„ู‰ Delta ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃูƒุชุฑ F is bounded
681
01:01:00,680 --> 01:01:04,720
ุฅุฐู† ุจุญู‚ู„ู‡ ูŠุญูƒูŠ ุนู† ุงู„ Integrability ู„1 ุนู„ู‰ F ูˆูŠู‚ูˆู„
682
01:01:04,720 --> 01:01:07,780
ู„ูŠ ุชุญุช ุงู„ุธุฑู ู‡ุฐุง ู„ูˆ ูƒุงู†ุช F of X ุฃูƒุจุฑ ูŠุณุงูˆูŠ Delta
683
01:01:08,470 --> 01:01:12,210
ูˆDelta ุฃูƒุจุฑ ู…ู† 0 ู‡ูŠูƒูˆู† 1 ุนู„ู‰ ุงู„ู€ F ุฅูŠู‡ ุงุดู…ุงู„ู‡ุง is
684
01:01:12,210 --> 01:01:15,830
integrable on I ุฎู„ู‘ูŠู†ูŠ ุฃุชุจุฑุฌุญ ูˆุงุญุฏุฉ ูˆุงุญุฏุฉ ุงู„ู„ูŠ
685
01:01:15,830 --> 01:01:24,690
ุนู†ู‡ุง ุงู„ gate F ุนู†ุฏูŠ ู…ู† I ู„ุนูŠู† ุจR is integrable ุฅุฐุง
686
01:01:24,690 --> 01:01:29,350
there exists K ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ ู…ู† 0 such that
687
01:01:29,350 --> 01:01:33,330
absolute value of F of Xุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฅูŠุงุด K ู…ุฏุงู…
688
01:01:33,330 --> 01:01:36,430
ุงู† ุชู‚ุฑุฃ ุจุงู„ู€ F ุฅุฐุง ุฃูƒูŠุฏ is bounded ุฅุฐุง ุงู„ absolute
689
01:01:36,430 --> 01:01:43,030
value of X ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ K ุทูŠุจ ุงู„ุขู† ูŠุง ุฌู…ุงุนุฉ
690
01:01:43,030 --> 01:01:47,230
ุนู†ุฏูŠ ู‡ุงุฏ ุงู„ corollary ุฃุตู„ุง ุงู„ู„ูŠ ุฌุงุจู„ู‡ุง ุจุฏูŠ ุฃุธุจุทู„ูŠ
691
01:01:47,230 --> 01:01:54,070
two functions ุจุฏูŠ ุฃุนุฑู ุงู„ุขู† ุตุงุฑุช ุนู†ุฏ ุงู„ F of I ุงู„
692
01:01:54,070 --> 01:02:00,230
F of I ุตุงุฑุช ุงู„ F of I ุฃูƒูŠุฏ subset ุจูŠู† ู†ู‚ุต K ูˆู…ูŠู†
693
01:02:00,230 --> 01:02:01,210
ุฃูˆ K
694
01:02:07,180 --> 01:02:19,960
ุทูŠุจ ูŠุนู†ูŠ ุงู„ุขู† ู„ูˆ ุฌูŠุช ุนุฑูุช Phi ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏู‡ ู†ุงู‚ุต
695
01:02:19,960 --> 01:02:27,990
K ู„ุนู†ุฏ ุงู„ K ู„ุนู†ุฏ ุงู„ R ุนุฑูุชู‡ุง ุนู„ู‰ ุฃุณุงุณูุงูŠ ู…ุง ู‡ูˆ
696
01:02:27,990 --> 01:02:30,950
absolute value ุฅุฐุง ู…ุถุญูƒุช ุชุฌูŠุจ ุงู„ absolute value
697
01:02:30,950 --> 01:02:38,250
ูุงูŠ of T ุจุณุงูˆุฉ absolute value ู„ู…ู†ุŸ ู„ู„ T ู…ุงุดูŠ ุงู„ุญุงู„
698
01:02:38,250 --> 01:02:42,430
ู‡ูŠ ุงู„ุฏู„ุงู„ ุนู†ุฏู‰ ุฃูƒูŠุฏ ุงู„ absolute value ุฅูŠุด ู…ุง ู„ู‡ุง
699
01:02:42,430 --> 01:02:47,370
is continuous ู…ุฏุงู… ุงู„ absolute value ุงู„ูุงูŠ is
700
01:02:47,370 --> 01:02:52,870
continuous ูˆ ุงู„ F ู…ุนุทูŠู„ู‡ ุฅูŠู‡ุง integrable ุฃูŠุถุง by
701
01:02:52,870 --> 01:03:00,670
the above theoremูุงูŠ ูƒูˆู…ุจูˆุฒูŠุช F is integrable ูุงูŠ
702
01:03:00,670 --> 01:03:07,610
ูƒูˆู…ุจูˆุฒูŠุช F of T ุจูŠุณุงูˆูŠ ูุงูŠ of F of T ุงู„ู„ูŠ ู‡ูŠ
703
01:03:07,610 --> 01:03:12,330
ุจุชุณุงูˆูŠ ุงูŠุดุŸ ูˆุงุญุฏุฉ absolute value ูุงูŠ of T ุจุชุณุงูˆูŠ
704
01:03:12,330 --> 01:03:17,490
absolute value ู„ู…ูŠู†ุŸ ู„ู„ู€ F of T ุฅุฐุง ุดุงุฑ ุนู†ุฏูŠ
705
01:03:17,490 --> 01:03:23,460
absolute value ู„ู„ู€ F is integrableุฅุฐุงู‹ ู…ุฏุงู…ุฉ Phi
706
01:03:23,460 --> 01:03:27,460
is continuous ูˆ F integrable ู„ุฃู† ุญุณุจ ุงู„ู†ุธุฑูŠุฉ Phi
707
01:03:27,460 --> 01:03:30,640
composite F is integrable ูˆ Phi composite F ู‡ูŠ
708
01:03:30,640 --> 01:03:33,400
ุทู„ุนุช ู…ู† ุงู„ู€ absolute value ู„ู„ู€ F ุทุจุนุง Phi
709
01:03:33,400 --> 01:03:36,880
composite F ู…ู† ูˆูŠู† ู‡ุชุดุชุบู„ ู…ู† ุนู†ุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„
710
01:03:36,880 --> 01:03:42,920
interval I ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ R ู„ุฃู† Phi ุงู„ู„ูŠ ู‡ูˆ F of T
711
01:03:42,920 --> 01:03:49,980
ู‡ูŠุฌูŠ ูŠู‚ุนุฏ ููŠ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ูˆ Phi ู‡ุชุฑุณู„ ุงู„ู„ูŠ ุจูŠุฌูŠ ู„ูˆูŠู†
712
01:03:49,980 --> 01:03:55,250
ู„ุนู†ุฏ Iู…ุงุถุญ ู‡ุง ุทูŠุจ ุงู„ุงู† ุนู†ุฏูŠ ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„
713
01:03:55,250 --> 01:03:58,590
integration ุงู„ absolute value ุงู„ integration ุฃุตุบุฑ
714
01:03:58,590 --> 01:04:01,350
ุณุงูˆูŠ ุงู„ integration ู„ absolute value ู‡ุฐู‡ ุตุงุฑุช
715
01:04:01,350 --> 01:04:07,670
ุจุนุถู‡ุง ู…ุนู„ูˆู…ุงุช ุตุงุฏู‚ุฉ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ุงู„ F ุฃูƒุจุฑ ุฃูˆ ุณุงูˆูŠ
716
01:04:07,670 --> 01:04:11,610
ุงู„ู„ูŠ ู‡ูŠ absolute value ู„ู„ F ุจุงู„ุณุงู„ุจ ูˆ ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ
717
01:04:11,610 --> 01:04:14,790
ุงู„ absolute value ู„ 100 ู„ู„ F ุตุงุฑุช ุงู„ุงู† ุงุญู†ุง ุฃุชุจุนุช
718
01:04:14,790 --> 01:04:17,990
ุฃู† ุงู„ absolute value is integrableุฅุฐุง ุงู„ุงู† ุจู…ุง ุฃู†
719
01:04:17,990 --> 01:04:21,270
F ุจูŠู† ู‡ุฐูˆู„ุฉ ุงู„ุฏุงู„ุชูŠู† ุญุณุจ ู†ุธุฑูŠู‡ุง ุฃุฎุฏู†ุงู‡ุง ุงู„ู…ุฑุฉ
720
01:04:21,270 --> 01:04:24,910
ุงู„ู…ุงุถูŠุฉ ุฃูˆ remark ุฅุฐุง ุจูŠุตูŠุฑ ุงู„ integration ู„ู„
721
01:04:24,910 --> 01:04:28,590
absolute value ู„ู„ F ู…ู† A ู„ B ุฃุตุบุฑ ุฃุณุงูˆูŠ ุงู„
722
01:04:28,590 --> 01:04:32,330
integration ู„ู„ F ู…ู† A ู„ B ุฃุตุบุฑ ุฃุณุงูˆูŠ ุงู„
723
01:04:32,330 --> 01:04:38,190
integration ู„ู„ F ู…ู† A ู„ B ูˆู‡ุฐุง ุฅูŠุด ู…ุนู†ุงุชู‡ุŸ ู‡ุฐุง
724
01:04:38,190 --> 01:04:43,610
ู…ุนู†ุงุชู‡ ุฅุฐุง ุงู„ absolute value ู„ู„ integration ู„ู„ F
725
01:04:43,610 --> 01:04:49,150
ู…ู† A ู„ B ุฃุตุบุฑ ุฃุณุงูˆูŠุงู„ู„ูŠ ู‡ูˆ ุงู„ integration ู„ุฃ ู„ุฃุจุณู„
726
01:04:49,150 --> 01:04:57,690
ูˆ ู„ุฃ ู„ุฃู ู…ู† A ู„B ู…ุงุดูŠ ุงู„ุญุงู„ุฉ ูˆ ุทุจูŠุนูŠ ุนู†ุฏูŠ ู‡ุฐู‡
727
01:04:57,690 --> 01:05:02,270
ุฃุซุจุชู†ุงู‡ุง ุจู‡ุฐู‡ ูˆ ุทุจูŠุนูŠ ู…ุฏุงู… ุนู†ุง ู„ุณู‡ ู…ุง
728
01:05:07,890 --> 01:05:12,470
ุฃูˆ ู…ู„ุงุญุธุฉ ุณุงุจู‚ุฉ ู„ุจุณ ุงู„ู€ integration ู…ู† a ู„b ู„ุจุณ ุงู„
729
01:05:12,470 --> 01:05:18,070
value of f of x ุฃุตุบุฑ ุฃูˆ ุดุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ู† k ููŠ ุทูˆู„
730
01:05:18,070 --> 01:05:27,050
ุงู„ูุชุฑุฉ ุจู€-aู…ุน ู‡ุฐู‡ together ุจู†ุญุตู„ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ
731
01:05:27,050 --> 01:05:30,750
ุงู„ู…ุทู„ูˆุจ ุงู„ absolute value ุงู„ integration ุฃุตุบุฑ ุณูˆุง
732
01:05:30,750 --> 01:05:34,690
ุงู„ integration ู„ู„ absolute value ุฃุตุบุฑ ุณูˆุง K ููŠ ุงู„
733
01:05:34,690 --> 01:05:39,510
B minus A ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ corollary
734
01:05:39,510 --> 01:05:44,310
ุฎู„ูŠู†ุง ู†ุดูˆู ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ corollary ุจุฑุถู‡ ุงู„ู„ูŠ
735
01:05:44,310 --> 01:05:51,270
ู‡ูˆ ุจุฑู‡ุงู†ู‡ ุณู‡ู„ ูˆ ุจุฑู‡ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ุดุงุจู‡ู„ู„ู…ู†ุทู‚ ุงู„ู„ูŠ
736
01:05:51,270 --> 01:05:57,070
ุญูƒูŠู†ุงู‡ุง ุนู†ุฏู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุทูŠุจ ุตู„ู‰ ุงู„ู„ู‡ ุนู†ู†ุง ูŠุง ุนุฒูŠุฒูŠ
737
01:05:57,070 --> 01:06:01,410
ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุงู„ุขู† ูŠุง ุดุจุงุจ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
738
01:06:01,410 --> 01:06:05,110
ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุจุฏู†ุง ู†ุซุจุช ุฃู† ุงู„ู€ F ุฃุณุฆู† is integrable
739
01:06:05,110 --> 01:06:09,110
ููŠ ุญุงู„ุฉ ุงู„ู€ F integrable ู„ุฃู† ุฃูƒูŠุฏ ุดูƒู„ู†ุง ุจุฏู†ุง ู†ูŠุฌูŠ
740
01:06:09,110 --> 01:06:16,950
ุนู†ุฏ ุงู„ู€ F ู…ู† I ู„ุนู†ุฏ R is integrableุงู„ุงู† ุนู†ุฏูŠ ุงู„ู„ูŠ
741
01:06:16,950 --> 01:06:21,470
ู‡ูˆ .. ุจุฏูŠ ุฃุณุฃู„ ุฃู† ุฃุซุจุช ุงู†ู‡ุง Integrable ูู„ูˆ ุฌูŠุช ุฃู†ุง
742
01:06:21,470 --> 01:06:30,170
ุนุฑูุช F F ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ Phi function ู…ู† ุงู„ู„ูŠ ู‡ูˆ domain
743
01:06:30,170 --> 01:06:35,150
ุงู„ู„ูŠ ู‡ูˆ F of I ู…ู† ุงู„ู„ูŠ ู‡ูˆ range ุงู„ F range ุงู„ F
744
01:06:35,150 --> 01:06:45,640
range ุงู„ F ู„ุนู†ุฏ ุงู„ R ุจุญูŠุซ ุงู† ุงู‚ูˆู„ Phi of TุจุณุงูˆูŠ T
745
01:06:45,640 --> 01:06:51,120
ุฃูุณ ุฃู†ุช five of T ุฃูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ T ุฃูุณ ุฃู†ุช ุฃูˆ
746
01:06:51,120 --> 01:06:54,180
ุฅุฐุง ูƒุงู† ุจุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุจุฏูƒุงุด ุชูƒูˆู† ุงู„ range ู„ F ุฎู„ุงุต
747
01:06:54,180 --> 01:06:57,460
ู…ู† ุนุงุฑูู‡ุง ู…ู† ูˆูŠู† ู…ู† ุงู„ู„ูŠ ู…ู† ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ู…ู† ู†ุงู‚ุต
748
01:06:57,460 --> 01:07:01,980
K ู„ุนู†ุฏ K ุนุงุฑููŠู† ู„ูŠู‡ุŸ ู„ุฃู† ุงู„ absolute value ู„ู„ F of
749
01:07:01,980 --> 01:07:06,840
X ุฃุตุบุฑ ู…ุด ู‡ูˆ ุงู„ K ุฅุฐุง ุฃูƒูŠุฏ ู„ู…ุง ุชุฑู…ูŠ ุงู„ F of X
750
01:07:06,840 --> 01:07:11,410
ู‡ุชูƒูˆู† ุชุฑู…ูŠ ููŠ ุงู„ูุชุฑุฉ ู…ู† ู†ุงู‚ุต K ู„ุนู†ุฏูƒุฃูˆ subset
751
01:07:11,410 --> 01:07:15,970
ุจูŠุตูŠุฑ ุงู„ู€ F of I subset ู…ู† ู†ุงู‚ุต K ูˆ K ุฅุฐุงู‹ ุตุงุฑุช
752
01:07:15,970 --> 01:07:22,510
ุงู„ู€ Phi composite F Phi composite F is defined ู…ู†
753
01:07:22,510 --> 01:07:31,140
I ู„ุนู†ุฏ ุงู„ R ูˆุนู†ุฏูŠ Phi composite F ofT ุจูŠุณุงูˆูŠ Phi
754
01:07:31,140 --> 01:07:37,200
of F of T ูˆูŠุณุงูˆูŠ F of T ุงู„ู„ูŠ ู‡ูˆ Phi of T ุจูŠุณุงูˆูŠ T
755
01:07:37,200 --> 01:07:41,560
ุฃูุณ N ุจูŠุตูŠุฑ Phi of F of T ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† F of T
756
01:07:41,560 --> 01:07:48,540
ูŠุง ุฌู…ุงุนุฉ ุฃูุณ N ุงู„ุขู† ูƒู„ ุงู„ุฃู…ูˆุฑ ุทูŠุจุฉ ูˆู…ู†ูŠุญุฉ ู„ูŠุด
757
01:07:48,540 --> 01:07:53,260
ูˆูˆุตู„ู†ุง ูƒู…ุงู†ุนู†ุฏูŠ F-integrable ูˆ F-continuous
758
01:07:53,260 --> 01:07:57,420
ู‡ุชุชุฏู„ู„ูˆุง ุงู„ู€ C ุฃุดู…ุงู„ู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ T ุฃุณุงู† is
759
01:07:57,420 --> 01:08:03,540
continuous ุงู„ู„ูŠ ุฌุฒุก ู…ู† ุงู„ุจู„ูˆู†ูˆู…ูŠุงู„ ุจูŠุตูŠุฑ ุนู†ุฏูŠ FI
760
01:08:03,540 --> 01:08:06,660
is continuous ูˆ F-integrable ู„ุฐู„ูƒ ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
761
01:08:06,660 --> 01:08:10,680
ู‚ุจู„ ูˆ ุดูˆูŠุฉ ุฅูŠุด ู‡ูŠุทู„ุน ุนู†ุฏูŠ FI composite F is
762
01:08:10,680 --> 01:08:16,440
integrable ุจู…ุนู†ู‰ ุฃู† ู FN is integrable ููƒุฑุฉ ู…ุนุงุฏุฉ
763
01:08:16,440 --> 01:08:22,570
ุฃุตู„ุงู„ุฃู†ู‡ ุณู†ุฉ ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฃู…ูˆุฑ ูˆุงุถุญุฉ ุงู„ุขู† ุถุงู„
764
01:08:22,570 --> 01:08:30,190
ุนู†ุฏ ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ู†ุซุจุช ุงู„ุฌุฒุก
765
01:08:30,190 --> 01:08:36,010
ุงู„ุซุงู„ุซ ู…ู† ุงู„ corollary ุงู„ู„ูŠ ู‡ูŠ ุจุฏู†ุง ู†ุซุจุช ุฃู†ู‡ ู„ูˆ
766
01:08:36,010 --> 01:08:43,490
ูƒุงู†ุช ุงู„ F of X ุฃูƒุจุฑ ุฃูˆ ุดูˆูŠู‡ ูˆุงุญุฏ ุนู„ู‰ ุฏู„ุชุงุงู„ู„ูŠ ู‡ูŠ
767
01:08:43,490 --> 01:08:47,530
for every x element in I ูˆุนู†ุฏูŠ there exists ุฏู„ุชุง
768
01:08:47,530 --> 01:08:52,390
ูƒู…ุงู† ูˆุตูุฑ ุณุงุดุฑุงุช ุฅุฐุง ูƒุงู† ู‡ุฐุง ู…ุชุญู‚ู‚ ุฅุฐู† ู‡ุชุทู„ุน ุนู†ุฏู‰
769
01:08:52,390 --> 01:08:55,970
ุงู„ู„ูŠ ู‡ูŠ ุงู„ูˆุงุญุฏ ุนู„ู‰ ุงู„ F ุจูŠุฏุซุจุช ุฃู† ุงู„ูˆุงุญุฏ ุนู„ู‰ ุงู„ F
770
01:08:55,970 --> 01:08:58,950
ุฅูŠุด is integrable ุจุฏู†ุง ู†ุนู…ู„ .. ู†ุฌูŠุจ continuous
771
01:08:58,950 --> 01:09:02,890
function ุฃูƒูŠุฏ ูƒู„ ุฌู…ุฌุงู„ ู†ุฌูŠุจ ู…ู‚ู„ูˆุจุฉ ุฏู„ุฉ ูŠุนู†ูŠ ููŠ ุญูˆุถ
772
01:09:02,890 --> 01:09:09,800
five ู…ู† ู†ุงู‚ุต K ู„ุนู†ุฏ Kู„ุนู†ุฏ R ูˆุฎุฏ ูุงูŠ ุนุงุฑููŠู† ู…ุง ู‡ูˆ
773
01:09:09,800 --> 01:09:13,000
ุงู„ scale ูƒุฏู‡ ุณุจุจ ุงู„ู„ูŠ ู‚ู„ุช ู‚ุจู„ ุดูˆูŠุฉ ูุงูŠู ุฏูŠ ุงูŠุด
774
01:09:13,000 --> 01:09:17,600
ู…ุชุณุงูˆูŠ ุงูƒูŠุฏ ูƒู„ูƒู… ุญูŠู‚ูˆู„ ูˆุงุญุฏ ุนู„ู‰ ุชูŠ ู…ุงุดูŠ ุงู„ุญุงู„ ูˆุงุญุฏ
775
01:09:17,600 --> 01:09:26,180
ุนู„ู‰ ุชูŠ ุจุณ ุงู‡ ู„ุฃ ุนุฏู… ุฏูŠุด ุงู‚ุฏุฑ ุงุนู…ู„ hand ุงูุนู„ ุนุดุงู†
776
01:09:26,180 --> 01:09:31,250
ู…ุงู†ุจุฏุนุด ููŠ ุงู„ุณูุฑุฉ ูŠุง ุดุจุงุจ ุฎุฏูˆู‡ุง ู…ู† ุนู†ุฏ Deltaู„ุนู†ุฏ
777
01:09:31,250 --> 01:09:36,470
ู…ูŠู†ุŸ ู„ุนู†ุฏ K ู„ูŠุด .. ู„ูŠุด .. ู„ูŠุด ุงู„ู„ูŠ ู‡ูˆ ุนูƒูŠููƒุŸ ุฃู‡ F
778
01:09:36,470 --> 01:09:40,670
of X ุงู„ู„ูŠ ู‡ูˆ absolute value ุฃุตุบุฑ ุฃูˆ ุชุณูˆู‰ K ูŠุนู†ูŠ F
779
01:09:40,670 --> 01:09:46,160
of X ุฃุตุบุฑ ุฃูˆ ุชุณูˆู‰ K ูˆุฃูƒุจุฑ ุฃูˆ ุชุณูˆู‰ ู†ู‚ุต Kูˆ ุฃุซู†ุงุก ู‡ุฐู‡
780
01:09:46,160 --> 01:10:12,580
ุฃูƒูŠุฏ ู…ุงุนุทูŠู†ูŠู‡ุง ุฃูƒุจุฑ ุดูˆ ู…ูŠู† ุฏู„ุชุง
781
01:10:14,710 --> 01:10:21,230
ุงู„ู„ูŠ ู‡ูˆ .. ุฅูŠู‡ ุงู„ูƒู„ุงู… ู‡ุฐุงุŸ ู…ุดุฑูˆุน ู‡ูˆ ุจูŠุตูŠุฑ ุนู†ุฏู‡ ..
782
01:10:21,230 --> 01:10:24,170
ุงู„ู„ูŠ ู‡ูˆ Phi of T ุจุณูˆุงุญุฏุฉ ุนู„ู‰ T ู…ุงููŠุด ุฃูŠ ู…ุดูƒู„ุฉุŒ
783
01:10:24,170 --> 01:10:27,470
ู…ุงููŠุด ู…ุดุงูƒู„ ุฃุณูุงุฑุŒ ู…ุงููŠุด ู…ุดุงูƒู„ ูƒุฏู‡ุŒ ุฅุฐุง ุตุงุฑุช ุฏู‡
784
01:10:27,470 --> 01:10:31,490
ุงู„ู„ูŠ ุฅูŠุด ู…ุงู„ู‡ุงุŸ continuous continuous ู‡ูู‡ู… ุฅู† ูู‡ู…ุช
785
01:10:31,490 --> 01:10:34,810
ุงู„ู‚ุตุฉ Phi composite of F continuous ูˆ integrable
786
01:10:34,810 --> 01:10:38,310
ุฅุฐุง ูƒู„ู‡ุง ุนู„ู‰ ุจุนุถู‡ุง integrable ูŠุนู†ูŠ Phi of T ุจุชุตูŠุฑ
787
01:10:38,310 --> 01:10:44,750
Phiof F of T ูŠุนู†ูŠ ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ F of T ูŠุนู†ูŠ ุตุงุฑุช
788
01:10:44,750 --> 01:10:51,650
ุงู„ุฏุงู„ุฉ ูˆุงุญุฏ ุนู„ู‰ F is integrable ูˆู‡ูƒ
789
01:10:51,650 --> 01:10:55,670
ู…ูƒูˆู† ุงุญู†ุง ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ corollary ุถุงู„ ุนู†ุฏู‰ ุงู„ุขู†
790
01:10:55,670 --> 01:11:01,570
ู†ุฌุงูˆุจ ุนู„ู‰ ุงู„ุณุคุงู„ ุงู„ุซุงู†ูŠ ู‡ู„ ุญุงุตู„ ุถุฑุจ ุถุฑุจ ุฏุงู„ุชูŠู†
791
01:11:01,570 --> 01:11:06,650
integrable is integrable ุจู†ู‚ูˆู„ ุงู‡ integrable ูŠุนู†ูŠ
792
01:11:06,650 --> 01:11:11,380
ุจู…ุนู†ู‰ ุงุฎุฑ ุจู‚ูˆู„ ู„ูŠู‡ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุนุฏู‡ุง 7,2,7
793
01:11:11,380 --> 01:11:18,020
ุจุชู‚ูˆู„ ู…ุง ูŠู„ูŠ ุจุชู‚ูˆู„ ู„ูˆ ูƒุงู†ุช F ูˆ G integrable ูŠุนู†ูŠ
794
01:11:18,020 --> 01:11:25,480
ู„ูˆ ูƒุงู† ุนู†ุฏูŠ ุฎู„ูŠู†ูŠ ุงูƒุชุจ ุจุงู„ุฃุตู…ุฑ ุฃูุถู„ F ูˆ G ู…ู† I
795
01:11:25,480 --> 01:11:33,700
ู„ุนู†ุฏ R ูƒุงู†ุช integrable functions ุจูŠุนุทูŠู†ูŠ ู‡ุฐุง ุงู† FG
796
01:11:33,700 --> 01:11:42,500
ู…ู† I ู„ุนู†ุฏ R ุจุฑุถู‡ ุงูŠุด ู…ุงู„ู‡ุŸIntegrable Function ุงู„ู€
797
01:11:42,500 --> 01:11:46,740
L ุตุงุฑ ุฅู† ุญุตูŠู„ุฉ ู…ู† ุงู„ู…ุนู„ูˆู…ุงุช ุจุชุณู‡ู„ ุนู„ูŠ ุงู„ูˆุตูˆู„
798
01:11:46,740 --> 01:11:53,820
ู„ู„ู†ุชูŠุฌุฉ ูˆ Proof ูˆ Proof ุจู…ุง ุฃู† F is Integrable ุฅุฐู†
799
01:11:53,820 --> 01:11:57,700
ูุงู„ Corollary ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ุฃูƒูŠุฏ F ุชุฑุจูŠุน ุงู„ู„ูŠ ู‡ูŠ
800
01:11:57,700 --> 01:12:01,040
Integrable ูˆ G Integrable ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‚ุจู„
801
01:12:01,040 --> 01:12:04,940
ุจุดูˆูŠุฉ ูˆ Corollary ุจุฑุถู‡ ุฅุดู…ุงู„ู‡ุง G ุชุฑุจูŠุน ุจุฑุถู‡
802
01:12:04,940 --> 01:12:10,060
Integrable ุตุญ ูˆู„ุง ู„ุง ูŠุง ุฌู…ุงุนุฉ ุตุญุทูŠุจ F ุชุฑุจูŠุน
803
01:12:10,060 --> 01:12:14,260
Integrable ูˆ G ุชุฑุจูŠุน Integrable ูˆ ุจุฑุถู‡ ู…ู† ู†ุธุฑูŠุฉ
804
01:12:14,260 --> 01:12:18,580
ุณุงุจู‚ุฉ ู…ุฏุงู… F ูˆ G Integrable ุฅุฐุง F ุฒุงุฆุฏ G ุจุฑุถู‡ ุฅูŠุด
805
01:12:18,580 --> 01:12:24,980
Integrable ู„ุฃ F ุฒุงุฆุฏ G ุชุฑุจูŠุน Integrable ูƒู…ุงู† ู„ุฃู† F
806
01:12:24,980 --> 01:12:27,800
ูˆ G Integrable ุฃุฏุช ู„ F ุฒุงุฆุฏ G Integrable ูˆ F ุฒุงุฆุฏ
807
01:12:27,800 --> 01:12:31,640
G Integrable ุฃุฏุช ู…ู† ุงู„ู‚ุฑูˆู„ ุงู„ู„ูŠ ู‚ุจู„ ุดูˆูŠุฉ ุฃู†ู‡ ุชุฑุจูŠุญ
808
01:12:31,640 --> 01:12:40,520
ูŠูƒูˆู† ุฅูŠุด Integrable ุทูŠุจ ุฎู„ุตู†ุง ุฅุฐุง ุฅุฐุงF ุชุฑุจูŠุน ุฒุงุฆุฏ
809
01:12:40,520 --> 01:12:49,780
D ุชุฑุจูŠุน is integrable ุตุญุŸ ู…ุธุจูˆุท ูˆู†ุงู‚ุต F ุชุฑุจูŠุน
810
01:12:49,780 --> 01:12:54,220
ูˆู†ุงู‚ุต D ุชุฑุจูŠุน ุจุฑุถู‡ integrable ู…ุธุจูˆุท ุจุฑุถู‡ู„ุฃู†ู‡ ุงู„ู„ูŠ
811
01:12:54,220 --> 01:13:00,060
ู‡ูˆ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุซุงุจุช ููŠ ู‡ุฐู‡ integrable ูˆ ุซุงุจุช ููŠ
812
01:13:00,060 --> 01:13:03,560
ุงู„ integrable integrable ูˆู…ุฌู…ูˆุญ ุงู†ุตุงุฑ ุงู†ุชุฌุฑุงุจู„ ุฅุฐุง
813
01:13:03,560 --> 01:13:09,020
ุงู†ุตุงุฑ ู‡ุฐุง integrable ุฒุงุฆุฏ F ุฒุงุฆุฏ G ู„ูƒู„ ุชุฑุจูŠุน ู‡ุฐู‡
814
01:13:09,020 --> 01:13:12,980
integrable ูˆู‡ุฐู‡ integrable ูˆู‡ุฐู‡ integrable ู…ุฌู…ูˆุญูŠู†
815
01:13:12,980 --> 01:13:17,520
ู‡ุฐุง ุฅูŠุด ุจูŠุณุงูˆูŠู‡ุฐุง .. ู‡ุฐุง integrable ูˆ ู‡ุฐุง
816
01:13:17,520 --> 01:13:19,860
integrable ูˆ ู‡ุฐุง integrable ุฅุฐุง ุงู„ู…ุฌู…ูˆุน integrable
817
01:13:19,860 --> 01:13:23,220
ุฅุฐุง ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุจุนุถ integrable ุทุจ ู‡ุฐุง ู…ูŠู† ู‡ูˆุŸ ู‡ุฐุง
818
01:13:23,220 --> 01:13:29,160
ุนุจุงุฑุฉ ุนู† F ุชุฑุจูŠุน ุฒุงุฏ G ุชุฑุจูŠุน ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุด ุฒุงุฏ
819
01:13:29,160 --> 01:13:35,760
2FG ุจูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† 2F main G ุตุงุฑุช 2FG integrable
820
01:13:35,760 --> 01:13:40,840
ุทุจ ู„ูˆ ุฌูŠู†ุง ู‚ูˆู„ู†ุง ุฎู„ ู†ุต ู‡ู†ุง ูŠุนู†ูŠ ุถุฑุจู†ุง ุซุงุจุช ููŠ
821
01:13:40,840 --> 01:13:43,960
integrable ุฅุฐุง ู‡ูŠุทู„ุน ุงู„ู„ูŠ ู‡ูˆ ูƒู„ู‡ integrable ุฅุฐุง FG
822
01:13:43,960 --> 01:13:48,520
ุฅูŠุด ู…ุง ู„ู‡ุงis integrable ุตุงุฑ ุนู†ุฏูŠ ุงู„ุงู† fg
823
01:13:48,520 --> 01:13:54,040
integrable ุชุงุจุนุง ู„ุฃู† f ุชุฑุจูŠุน ูˆ g ุชุฑุจูŠุน ูˆ f ุฒุงุฆุฏ g
824
01:13:54,040 --> 01:13:59,860
ูƒู„ ุชุฑุจูŠุน ุญุงุตู„ ุฌู…ุญูŠู† ูˆ ุถุฑุจ ุงู„ู†ุตููŠ ู‡ู†ุง ุซุงุจุช ูˆ ุจูŠุทู„ุน
825
01:13:59,860 --> 01:14:04,720
ุนุจุงุฑุฉ ุนู† integrable function ู†ูŠุฌูŠ ู„ุขุฎุฑ ุงู„ู„ูŠ ู‡ูˆ
826
01:14:04,720 --> 01:14:11,850
ู†ู‚ุทุฉ ููŠ ุงู„ููŠ ุงู„ .. ููŠ ุงู„ .. ููŠ ุงู„ section 7-2 ุงู„ู„ูŠ
827
01:14:11,850 --> 01:14:14,790
ู‡ูˆ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุณุฃู„ู†ุงู‡ ููŠ ุงู„ุฃูˆู„ ู‚ูˆู„ู†ุง ู„ูˆ ูƒุงู†ุช F is
828
01:14:14,790 --> 01:14:19,570
integrable function ูˆ Phi is integrable ู‡ู„ Phi
829
01:14:19,570 --> 01:14:24,310
composite F is integrable ู‚ูˆู„ู†ุง ุฃูƒูŠุฏ ู‡ูˆ ู„ูˆ .. ููŠ
830
01:14:24,310 --> 01:14:28,430
ุงู„ุจุฏุงูŠุฉ ู‚ูˆู„ู†ุง ุฃู† Phi composite F need not to be
831
01:14:28,430 --> 01:14:32,280
integrableุฅุฐุง the composition of two integrable
832
01:14:32,280 --> 01:14:35,720
functions need not to be integrable ูŠุนู†ูŠ ู‡ุฐุง ุฅุนู„ุงู†
833
01:14:35,720 --> 01:14:38,340
the composition of two integrable functions need
834
01:14:38,340 --> 01:14:42,420
not to be integrable but if phi the first one is
835
01:14:42,420 --> 01:14:46,340
continuous then phi composite of f is integrable
836
01:14:46,340 --> 01:14:50,620
ูƒู…ุง ุดูู†ุง ููŠ ุงู„ุนู‚ู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุทูŠุจ ู†ูŠุฌูŠ
837
01:14:50,620 --> 01:14:53,000
ุงู„ุขู† ุงู„ู…ุซุงู„ ุงู„ุฃุฎูŠุฑ ุจูŠู‚ูˆู„ู†ุง ูŠุง ุฌู…ุงุนุฉ the
838
01:14:53,000 --> 01:14:55,760
composition of integrable functions need not to be
839
01:14:55,760 --> 01:14:59,540
integrableููŠ ุนู†ุฏู‰ ุณุคุงู„ูŠู† ุงุตู„ุง ู…ุนุงูƒู… homework
840
01:14:59,540 --> 01:15:03,860
ุงู„ุณุคุงู„ ุงู„ุงูˆู„ ุจูŠู‚ูˆู„ู„ู†ุง ู„ูˆ ูƒุงู†ุช f of x ุจุชุณุงูˆูŠ ูˆุงุญุฏ
841
01:15:03,860 --> 01:15:07,540
ุฏู‡ ูƒุงู†ุช x ุจุชุณุงูˆูŠ ุณูุฑ ูˆ zero ุฏู‡ ูƒุงู†ุช x is
842
01:15:07,540 --> 01:15:11,760
irrational ูˆ ูƒุงู†ุช f of x ุจุชุณุงูˆูŠ ูˆุงุญุฏ ู„ู…ุง x ุจูŠุณุงูˆูŠ
843
01:15:11,760 --> 01:15:16,160
m ุนู„ู‰ n ุญูŠุซ ุงู„ m ูˆ ุงู„ n ุนุจุงุฑุฉ ุนู† integers ูˆ ุงู„ุนุงู…ู„
844
01:15:16,160 --> 01:15:19,740
ุงู„ู…ุดุชุฑูƒ ุงู„ุงุนู„ู‰ ุจูŠู†ู‡ู… ุงูŠู‡ ุงุดู…ู„ู‡ ุจุงุฏุฑ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
845
01:15:19,740 --> 01:15:23,540
ูŠุนู†ูŠ ุดูˆู„ู†ุง ูƒู„ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ู„ู‰ ุจูŠู†ู‡ู… ูˆ ูƒุชุจู†ุง x
846
01:15:23,540 --> 01:15:28,900
ุจุชุณุงูˆูŠ m ุนู„ู‰ nุทูŠุจุŒ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุฏุงู„ุฉ ู…ุนุฑูุฉ ู…ู† ุงู„ู€0
847
01:15:28,900 --> 01:15:32,460
ูˆุงู„ู€1 ู„ุนู†ุฏ ุงู„ู€R ูŠุนู†ูŠ ู‡ุฐูŠ X is rational well ููŠ
848
01:15:32,460 --> 01:15:36,320
ุงู„ูุชุฑุฉ 0 ูˆ1 ูˆ X ุจูŠุจู‚ู‰ ุจูŠุณุงูˆูŠ M ุนู„ู‰ N ูŠุนู†ูŠ rational
849
01:15:36,320 --> 01:15:41,260
ููŠ ุงู„ูุชุฑุฉ 0 ูˆ1 ูˆูุฑุถู†ุง ู„ู„ X ุจุชุณุงูˆูŠ ุตูุฑ ู‚ูŠู…ุชู‡ ุฅูŠุด
850
01:15:41,260 --> 01:15:48,070
ุจุชุณุงูˆูŠุŸ ุจุชุณุงูˆูŠ 1 ู‡ุฐูŠ ุงู„ุขู† by exercise 7.1.11ู…ุทู„ูˆุจ
851
01:15:48,070 --> 01:15:51,790
ู…ู†ูƒ ุฃู†ูƒ ุชุซุจุช ุฃู† F is ูŠุดู…ู„ู‡ุง is integrable on I
852
01:15:51,790 --> 01:15:55,070
ูˆูŠูˆู… ู…ุง ุชุนุฑููˆุด ุชุญู„ูˆู‡ ุงู† ุดุงุก ุงู„ู„ู‡ ุจู†ุญู„ูˆู‡ ูˆ ุจู†ุตูˆุฑู‡
853
01:15:55,070 --> 01:16:00,030
ุจุฅุฐู† ุงู„ู„ู‡ ุงู„ุขู† ุงู„ุณุคุงู„ ุงู„ุชุงู†ูŠ ุงู„ู„ูŠ ู‡ุนุชู…ุฏ ุนู„ูŠู‡ ุจุฑุถู‡
854
01:16:00,030 --> 01:16:03,170
ุฃู†ู‡ ุงู„ function ุงู„ุชุงู†ูŠ ุงู„ู„ูŠ ู‡ูŠ G ู…ู† I ู„ุนู†ุฏ R ู‡ุฐู‡
855
01:16:03,170 --> 01:16:07,790
ุณู‡ู„ุฉ ุฃุตู„ุง ู„ุฅุซุจุงุชู‡ุง be defined by G of X step
856
01:16:07,790 --> 01:16:12,090
function ุจุณูŠุทุฉ ูŠุนู†ูŠุฃูˆ ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„ ููŠู‡ุง jump ูˆ ุจุณ
857
01:16:12,090 --> 01:16:17,030
jump ุนู„ู‰ ู†ู‚ุทุฉ ุจุณ ุฌูŠูˆุจ x ุจูŠุณุงูˆูŠ 0 ุฅุฐุง ูƒุงู†ุช x ุจูŠุณุงูˆูŠ
858
01:16:17,030 --> 01:16:21,410
0 ูˆ ุจูŠุณุงูˆูŠ 1 ุฅุฐุง ูƒุงู†ุช x ููŠ ุงู„ูุชุฑุฉ ู…ู† 0 ู„ุนู†ุฏ 1 ุงู„ู„ูŠ
859
01:16:21,410 --> 01:16:25,410
ู‡ูˆ a closed ุนู†ุฏ ุงู„ูˆุงุญุฏ ูŠุนู†ูŠ ุงู„ุขู† ู‡ุฐุง ุงู„ function
860
01:16:25,410 --> 01:16:29,110
ุจูŠู‚ูˆู„ู„ูŠ ุจุฑุถู‡ ููŠ ุงู„ exercise ู…ุทู„ูˆุจ ุจุฑุถู‡ ููŠ exercise
861
01:16:29,110 --> 01:16:33,090
717 ุจุฑุถู‡ ุงู„ู„ูŠ ู‡ูˆ homework ู…ุนูƒู… ููŠ ุงู„ exercise
862
01:16:33,090 --> 01:16:36,270
ุจูŠู‚ูˆู„ูƒ ุงุซุจุช ุงู† g ุงูŠุด ู…ุนู†ุงู‡ุง is integrable function
863
01:16:36,920 --> 01:16:40,960
ุฅุฐุง ุงู„ู€ F ูˆุงู„ู€ G ุนุจุงุฑุฉ ุนู† two integrable functions
864
01:16:40,960 --> 01:16:46,780
two integrable functions ู‡ุงูŠ ุงู„ F ู…ู† I ู„ุนู†ุฏ R ูˆุงู„ู€
865
01:16:46,780 --> 01:16:55,200
G ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุนู†ุฏ I ู„ุนู†ุฏ R ู„ุงุญุธ ุงู† ุงู„ู€ G ููŠู‡ ู„ุบุฉ
866
01:16:55,200 --> 01:17:00,600
ุชุงู†ูŠุฉ zero ู„ู…ูŠู† ูŠุง ูˆุงุญุฏุนู†ุฏูŠ ู‡ุฐู‡ ูุฆู„ู‡ุง ุงู„ู€ 1 ูˆ 0 ูˆ
867
01:17:00,600 --> 01:17:06,800
ููŠ ุนู†ุฏู†ุง ู‚ูŠู… ุฃุฎุฑู‰ ุงู„ู„ูŠ ู‡ูˆ ูƒุซูŠุฑุฉ ุทูŠุจุŒ ุงู„ุขู† ุนู†ุฏูŠ ..
868
01:17:06,800 --> 01:17:09,660
ู„ูˆ ุฌูŠุช ุญุณุจ ุงู„ู€ G composed of F ู…ุด ุบุฑูŠุจุฉ ุนู„ูŠูƒู…
869
01:17:09,660 --> 01:17:14,480
ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ G composed of F of X ุฎู„ูŠู†ุง ู†ุญุณุจู‡ุง ู…ุน
870
01:17:14,480 --> 01:17:20,860
ุจุนุถ ูˆ ุจู†ู‚ูˆู„ ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูˆ S section ุฃูˆ ู‚ูˆู„ู†ุง ุงู†
871
01:17:20,860 --> 01:17:24,320
ุงู„ู€ G composed of F ู‡ุฐู‡ ุงู„ู„ูŠ ุงู†ุชูˆุง ุจุชุนุฑููˆู‡ุง ุงู†ู‡ุง
872
01:17:24,320 --> 01:17:36,430
is not integrableุฌูŠ ูƒูˆู…ุจูˆุฒูŠุช F of ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ
873
01:17:36,430 --> 01:17:46,900
ุงู„ุฌูŠ ุงู„ู€ F of X ู‡ูŠู‡ุง ู„ุงุฎุฏ ุฌูŠ of ุงู„ู„ูŠ ู‡ูˆ ZeroุจุณุงูˆูŠ
874
01:17:46,900 --> 01:17:55,920
g of f of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ
875
01:17:55,920 --> 01:17:57,880
g of f of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g of f of 0
876
01:17:57,880 --> 01:18:06,220
ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g of f
877
01:18:06,220 --> 01:18:07,060
of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g
878
01:18:07,060 --> 01:18:07,140
of f of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g of f of 0
879
01:18:07,140 --> 01:18:08,100
ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g of f
880
01:18:08,100 --> 01:18:09,880
of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g
881
01:18:09,880 --> 01:18:14,160
of f of 0 ุจุณุงูˆูŠ g of f of 0 ุจุณุงูˆูŠ g of f of 0
882
01:18:14,160 --> 01:18:17,110
of 0 ุจุณุงูˆูŠ g of f ofX ุงู„ู„ูŠ ู‡ูˆ irrational ูŠุนู†ูŠ
883
01:18:17,110 --> 01:18:22,230
irrational G of irrational ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ูˆุฌูˆุฏ
884
01:18:22,230 --> 01:18:25,910
ููŠ ุงู„ูุชุฑุฉ Zero ูˆ ูˆุงุญุฏ G of irrational ุฅูŠุด ู‡ูŠุณุงูˆูŠ
885
01:18:25,910 --> 01:18:31,290
ุญุณุจ ุงู„ุชุนุฑูŠู .. ุงู„ุชุนุฑูŠู ู‡ู†ุง ุจูŠุณุงูˆูŠ G of F of
886
01:18:31,290 --> 01:18:38,750
irrational irrational ู‡ุงูŠ ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ G of F of
887
01:18:38,750 --> 01:18:44,240
irrational ุฅูŠุด ุจูŠุณุงูˆูŠ ุณูุฑูˆ G of 0 ุงูŠุด ุจูŠุณูˆูŠ ู‡ู†ุง G
888
01:18:44,240 --> 01:18:52,420
of 0 ุจูŠุณูˆูŠ Zero ู…ุนุฑูู„ูŠู‡ุง ุจูŠุณูˆูŠ ุงูŠุด ุตูุฑ ุง ุงู„ุซุงู„ุซุฉ
889
01:18:54,350 --> 01:18:58,630
Composite F of ู…ูŠู† ุถุงู„ุŸ Of ุงู„ู„ูŠ ู‡ูŠ irrational
890
01:18:58,630 --> 01:19:02,530
ุงู„ุจุฌูŠุงุช ุบูŠุฑ ุงู„ู€ Zero ู‡ุฐุง ุฃุตู„ุง ู‡ูˆ ุฌุณู…ู‡ุง irrational
891
01:19:02,530 --> 01:19:08,410
ูˆ rational ุฌู‡ุชูŠู† ูˆุงุญุฏุฉ ูˆุงุญุฏุฉ ูˆุงุญุฏุฉ Zero ู„ุญุงู„ู‡ุง ูˆ
892
01:19:08,410 --> 01:19:11,650
ูˆุงุญุฏุฉ ูƒู„ ุงู„ rational ุงู„ู„ูŠ ุจูŠู† Zero ูˆ ูˆุงุญุฏ ู…ุง ุนุฏุง
893
01:19:11,650 --> 01:19:18,870
ุงู„ Zero ุงู„ู„ูŠ ู‡ูˆ G of X ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† M ุนู„ู‰ N
894
01:19:19,590 --> 01:19:23,630
ุงู„ู„ูŠ ู‡ูŠ rational ููŠ ุงู„ูˆุงู‚ุน ุฑูŠุงุดูˆู†ุงู„ ูƒู„ู‡ู… ู…ุนุฏู† ุงู„ู„ูŠ
895
01:19:23,630 --> 01:19:28,790
ููˆู‚ ุงู„ู„ูŠ ููˆู‚ ุญุณุจู†ุงู‡ุง ุทู„ุนุช ูˆุงุญุฏ ูˆูŠุณุงูˆูŠ G of F of M
896
01:19:28,790 --> 01:19:34,350
ุนู„ู‰ N ูˆูŠุณุงูˆูŠ G of F of M ุนู„ู‰ N ุฃูŠุด ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰
897
01:19:34,350 --> 01:19:38,910
N ูˆูŠุณุงูˆูŠ G of ูˆุงุญุฏ ุนู„ู‰ N ุฃูŠุด ุจุชุญุณุจู‡ุง ู‡ุฐู‡ ู‡ุฐุง ุงุตู„ุง
898
01:19:38,910 --> 01:19:42,070
ุงู„ุฏุงู„ุฉ ุฏุงูŠู…ุง ุจุชุณุงูˆูŠ ูˆุงุญุฏ ู…ุนุฏู† ุนู†ุฏ ุณูุฑ ุญุชู‰ ุณูุฑ ุนุดุงู†
899
01:19:42,070 --> 01:19:46,750
ุชุนู…ู„ู†ุง ุงู„ู…ุดูƒู„ุฉ G of ูˆุงุญุฏ ุนู„ู‰ N ุฃูŠุด ุจุชุณุงูˆูŠ ูˆุงุญุฏ ู‡ูˆ
900
01:19:46,750 --> 01:19:53,580
ูŠุณุงูˆูŠ ูˆุงุญุฏู…ู† ู‡ุฐุง ูƒู„ู‡ ุตุงุฑ ุนู†ุฏูŠ g composite f of x
901
01:19:53,580 --> 01:20:06,710
ุจุชุณุงูˆูŠ 0 if x ุฃุดู…ุงู„ู‡ุง is irrational ูˆูŠุณุงูˆูŠ 1 1ุฅุฐุง
902
01:20:06,710 --> 01:20:11,790
ูƒุงู†ุช X is ู‡ุงูŠ ุงู„ rational ูƒู„ู‡ ู…ุง ุนุฏุง ุงู„ุณูุฑ ูˆู‡ูŠ
903
01:20:11,790 --> 01:20:16,670
ุงู„ุณูุฑ ุจุฑุถู‡ ุทู„ุน ูˆุงุญุฏ if X is rational ูˆู‡ุฏุฏ ุฏุงู„ุฉ
904
01:20:16,670 --> 01:20:20,610
ุชุจุนุชู†ุง ุงู„ู„ูŠ ุงุนุชุจุชู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู†ู‡ุง is not
905
01:20:20,610 --> 01:20:24,590
integrable function ู„ุญุธูˆุง ุงู†ุชูˆุง ุจุณ ุฎู„ูŠู†ูŠ ู†ู‚ูˆู„ ุดูˆู
906
01:20:24,590 --> 01:20:32,660
ู‡ุงู„ุบุฑุงุจุฉ ู…ุด ุบุฑุงุจุฉ ู„ุฃ ู‡ูˆ ู…ู‡ู… ุจุงู„ูƒู„ุงู…ุฅู†ู‡ ุงู„ู„ูŠ ุฎู„ู
907
01:20:32,660 --> 01:20:37,380
ุงู„ู…ูˆุถูˆุน ู„ูˆ ูƒุงู†ุช G continuous ุนู„ู‰ ูƒู„ ุงู„ domain ุนู„ู‰
908
01:20:37,380 --> 01:20:40,820
ุทูˆู„ ุงู„ู€ G continuous ุฏู‡ ู‡ุชุทู„ุน ุงู† ุงู†ุชุฌุฑ ุจุงู„ุบุตุจ ุนู†ู‡ุง
909
01:20:40,820 --> 01:20:44,560
ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‚ุจู„ ุดูˆูŠุฉ ู„ูƒู† ุงู„ู„ูŠ ุฎู„ู ุงู„ู…ูˆุถูˆุน ุดุบู„ุฉ
910
01:20:44,560 --> 01:20:49,440
ูˆุงุญุฏุฉ ุดุงูŠููŠู† ู‡ุงู„ุฏุงู„ุฉ ู‡ุงุฏ ุงู„ G of X ุงู„ู€ G of X G of
911
01:20:49,440 --> 01:20:55,000
X ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุณูุฑ ุนู†ุฏ ุงู„ุณูุฑ ูˆู…ู† ุนู†ุฏ ุงู„ zero
912
01:20:55,000 --> 01:21:01,130
ู„ุนู†ุฏ ุงู„ูˆุงุญุฏ ู‡ู†ุงุงู„ุฏุงู„ุฉ ู‚ูŠู…ุชู‡ุง ุฅูŠุด ุจุชุณุงูˆูŠุŸ ูˆุงุญุฏุŒ ู‡ุงูŠ
913
01:21:01,130 --> 01:21:04,270
ู‚ูŠู…ุชู‡ุง ูˆุงุญุฏุŒ ุจูŠู† Zero ูˆุงู„ูˆุงุญุฏ ู‚ูŠู…ุชู‡ุง ูˆุงุญุฏุŒ ู‡ุฐุง
914
01:21:04,270 --> 01:21:09,540
ุงู„ู€G of X ุงู„ู„ูŠ ุนู†ุฏูŠูŠุนู†ูŠ ู‡ุฐุง ูƒู„ ุญุงู„ ุนุงู„ูŠ ุงู„ุนุงู„ูŠ ู…ุง
915
01:21:09,540 --> 01:21:14,120
ุนุฏุง ุนู†ุฏ ู…ู† ุนู†ุฏ ุงู„ุณูุฑ ููŠู‡ jump point ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ
916
01:21:14,120 --> 01:21:20,200
ุงู„ูˆุญูŠุฏุฉ ุงู„ู„ูŠ ููŠู‡ุง discontinuity ู‡ูŠ ุงู„ู„ูŠ .. ุงู„ู„ูŠ
917
01:21:20,200 --> 01:21:25,340
ุงู†ุง ุจู†ุดุฑุชู„ูŠ ุงู†ู‡ุง ุชุตูŠุฑ decomposed F is continuous ูˆ
918
01:21:25,340 --> 01:21:29,200
ู‡ุฐุง ุนุดุงู† ู†ุนุฑู ุฌุฏุงุด ุงู„ุฑูŠุงุถูŠุงุช ุงูˆ ุฌุฏุงุด ุงู„ุชุญู„ูŠู„ ุฏู‚ูŠู‚
919
01:21:29,780 --> 01:21:35,960
ุฏู‚ูŠู‚ ุงู† ุงู† ุงุญู†ุง ู†ู‚ุทุฉ ูˆุงุญุฏุฉ .. ู†ู‚ุทุฉ ูˆุงุญุฏุฉ ุงู„ู„ูŠ ูƒุงู†ุช
920
01:21:35,960 --> 01:21:40,360
ุนู†ุฏู‡ุง point of discontinuity ุฌุงู„ุชู„ูŠ ุงู† ุงู„ู€
921
01:21:40,360 --> 01:21:44,680
decomposite F need not to be integrable ูˆู‡ูŠ ุงู„ู…ุซุงู„
922
01:21:44,680 --> 01:21:50,720
ุฃู…ุงู…ูƒู… ูˆ .. ูˆ ู‡ูŠูƒ ุจูŠูƒูˆู† ุงุญู†ุง ุฎู„ุตู†ุง ุงู„ section
923
01:21:50,720 --> 01:21:56,730
ุงู„ุชุงู†ูŠ ู…ู† ุงู„ู„ูŠ ู‡ูˆ chapter 7ูˆ ู‡ุงูŠ ุงู„ homework ุนู†ุฏูƒู…
924
01:21:56,730 --> 01:22:02,630
ู…ุทู„ูˆุจุฉ 1,2,4,7,10,17,18,19 ูˆ ุงู† ุดุงุก ุงู„ู„ู‡ ุงู„ู…ุฑุฉ
925
01:22:02,630 --> 01:22:08,950
ุงู„ู‚ุงุฏู…ุฉ ุจู†ูƒู…ู„ ูˆ ุจู†ุดุฑุญ 7.3 ุงู„ู„ูŠ ู‡ูˆ ุงู„ fundamental
926
01:22:08,950 --> 01:22:10,550
theorem of calculus