abdullah's picture
Add files using upload-large-folder tool
9b50984 verified
raw
history blame
54.3 kB
1
00:00:05,740 --> 00:00:08,920
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู…ุญุงุถุฑุฉ
2
00:00:08,920 --> 00:00:14,780
ุงู„ุชุงุณุนุฉ ู‡ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† discussionุฃูˆ ู…ู†ุงู‚ุดุฉ
3
00:00:14,780 --> 00:00:22,060
ู„ู€ Section 6.2 ูˆ6.3 ุงู„ู„ูŠ ู‡ูˆ ู…ู†ุงู‚ุดุฉ ู„ู€ Main Value
4
00:00:22,060 --> 00:00:25,220
Theorem and its Applications ูˆู…ู†ุงู‚ุดุฉ ุฃูŠุถู‹ุง ู„ู€
5
00:00:25,220 --> 00:00:30,560
Lobitals Rules ู†ูŠุฌูŠ ุงู„ุขู† ู„ู€ 6.2 ุงู„ุฃุณุฆู„ุฉ ุงู„ู…ุทู„ูˆุจุฉ
6
00:00:30,560 --> 00:00:35,720
ู‡ูŠ ูƒู…ุง ูŠู„ูŠ ู†ุจุฏุฃ ููŠ ุณุคุงู„ 6.2 ุงุฏุฎู„ู†ุง ุนู„ู‰ ุงู„ูƒุชุงุจ
7
00:00:35,720 --> 00:00:39,160
ุฎู„ูŠู†ุง ู†ุดูˆู ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ู…ุซุงู„ .. ุงู„ุณุคุงู„ ู…ู†
8
00:00:39,160 --> 00:00:45,790
ุงู„ูƒุชุงุจ ู†ุจุฏุฃ ุงู„ุขู† ุจุณุคุงู„ 5ุงู„ุณุคุงู„ ุงู„ุฎุงู…ุณุฉ ู‡ูˆ ูƒู…ุง ูŠู„ูŠ
9
00:00:45,790 --> 00:00:49,550
let a ุฃูƒุจุฑ ู…ู† ุณูุฑ ูˆ b ุฃูƒุจุฑ ู…ู† ุณูุฑ ูˆ a strictly
10
00:00:49,550 --> 00:00:55,570
ุฃูƒุจุฑ ู…ู† b ุทุจุนุง ูƒู„ ุงู„ุนู„ุงู‚ุฉ strictly ูˆุจู†ูุชุฑุถ ุฃู† n
11
00:00:55,570 --> 00:01:00,290
ุฃูƒุจุฑ ุฃุณุงูˆูŠ ุงุชู†ูŠู† prove that a ุฃุณ ูˆุงุญุฏุฉ ู„ุฃ ู†ุงู‚ุต b
12
00:01:00,290 --> 00:01:05,290
ุฃุณ ูˆุงุญุฏุฉ ู„ุฃ ู† ุฃุตุบุฑ ู…ู† a minus b ุฃุณ ูˆุงุญุฏ ุนู„ูŠุง ุงู„ุงู†
13
00:01:05,290 --> 00:01:10,490
ู„ูˆ ุฌูŠู†ุง ู„ุงุญุธู†ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุนู†ุฏ ุฎู…ุณุฉุจู‚ูˆู„ูŠ
14
00:01:10,490 --> 00:01:16,710
ุฃู† a ุฃูƒุจุฑ ู…ู† b ุฃูƒุจุฑ ู…ู† 0 ุฃูˆ n ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 2
15
00:01:16,710 --> 00:01:23,070
ุจู‚ูˆู„ูŠ prove that ุฃู† a ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ู†ุงู‚ุต b ุฃุณ ูˆุงุญุฏ
16
00:01:23,070 --> 00:01:30,710
ุนู„ู‰ n ุฃุตุบุฑ ู…ู† a ู†ุงู‚ุต b ุงู„ูƒู„ ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ู†ูŠุฌูŠ
17
00:01:30,710 --> 00:01:36,890
ู„ู„ุจุฑู‡ุงู† ู„ูˆ ุฌูŠู†ุง ู„ุงุญุธู†ุงุฅู†ู‡ ุนู†ุฏูŠ ุงู„ .. ู†ูŠุฌูŠ ู„ู„ุณุคุงู„
18
00:01:36,890 --> 00:01:40,770
ุจุณ ูƒูŠู ู†ููƒุฑ ููŠ ุงู„ุณุคุงู„ ู‡ูˆ ู…ุงุนุทูŠู†ูŠ hint ููŠ ุงู„ูƒุชุงุจ
19
00:01:40,770 --> 00:01:45,190
ู„ูƒู† ุฎู„ูŠู†ุง ู†ุดูˆู ูƒูŠู .. ูƒูŠู ุญุตู„ ุนู„ู‰ ุงู„ hint ู„ูˆ ุงุฏูŠู†ุง
20
00:01:45,190 --> 00:01:50,490
ุฌุณู…ู†ุง ุงู„ุฌู‡ุชูŠู† ู‡ุฐุง ู…ุด ู…ู† ุถู…ู† ุงู„ุญู„ ุทุจุนุง ุนู†ุฏูŠ a ุนู„ู‰ b
21
00:01:51,290 --> 00:01:55,270
ุงู„ูƒู„ ุฃุณ ูˆุงุญุฏุฉ ู„ุฃู† ู†ุงู‚ุต ุฌุณู…ุฉ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุจูŠ ุฃุณ
22
00:01:55,270 --> 00:01:59,510
ูˆุงุญุฏุฉ ู„ุฃู† ุงู„ุฌู‡ุชูŠู† ุทุจุนุง ูˆุงู„ุจูŠ ุทุจุนุง ู…ูˆุฌุจุฉ ูููŠุด ุฅุดูŠ
23
00:01:59,510 --> 00:02:05,290
ุจุชุบูŠุฑ ุจูŠุตูŠุฑ a ุนู„ู‰ ุจูŠ ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ูƒู„ ุฃุณ ูˆุงุญุฏุฉ ู„ุฃู†
24
00:02:05,290 --> 00:02:10,710
ู„ูˆ ู†ุฌู„ู†ุง ู‡ุฐู‡ a ุนู„ู‰ ุจูŠ ุฃุณ ูˆุงุญุฏุฉ ู„ุฃู† ู†ุงู‚ุต ุงู„ a ุนู„ู‰
25
00:02:10,710 --> 00:02:16,150
ุจูŠ ู†ุงู‚ุต ูˆุงุญุฏ ุฃุณ ูˆุงุญุฏุฉ ู„ุฃู† ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ูˆุงุญุฏ ุงู„ุงู†
26
00:02:16,700 --> 00:02:21,940
ุนู†ุฏูŠ ู‡ุฐุง ุงู„ุฃู† ูƒู„ู‡ ุนู„ู‰ ุจุนุถ ู‡ูˆ ู†ูุณู‡ ุงู„ู„ู‡ุงู† ูู…ู…ูƒู†
27
00:02:21,940 --> 00:02:27,680
ู†ุณุชู‚ู„ ุงู„ุฏุงู„ุฉ ู…ู† ุฎู„ุงู„ู‡ ุฃู†ู‡ ู†ุงุฎุฏ ุงู„ F of X ู„ุช F of X
28
00:02:27,680 --> 00:02:35,690
ูˆ ู‡ุชูˆุตู„ู†ุง ุจุณุงูˆูŠ X ุฃุณูˆุงุญุฉ ุฏู‡ ุงู„ุฃู† ู†ุงู‚ุตx ู†ุงู‚ุต ูˆุงุญุฏ
29
00:02:35,690 --> 00:02:42,810
ูˆุงุณ ูˆุงุญุฏ ุนู„ุงู† ูˆุทุจุนุง ู‡ูˆ ุงู„ุงู† ู…ุนุทูŠู†ูŠ ููŠ ุงู„ุณุคุงู„ a
30
00:02:42,810 --> 00:02:47,790
ุฃูƒุจุฑ ู…ู† b ุฃูƒุจุฑ ู…ู† 0 ู„ูˆ ุทู„ุนู†ุง ู†ู„ุงู‚ูŠ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡
31
00:02:47,790 --> 00:02:56,610
ูˆู„ุงุญุธู†ุง ุฃูˆุฌุฏู†ุง ุงู„ f prime ู„ู‡ุง f prime of xุฎู„ู‘ูŠู†ุง
32
00:02:56,610 --> 00:03:02,130
ู†ุงุฎุฏ ุงู„ X ุนู†ุฏู‡ ุงู„ X ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆ ู‡ู†ุดูˆู
33
00:03:02,130 --> 00:03:05,730
ุงู„ู„ูŠ ู‡ูˆ ู„ูŠุด ุนู†ุฏู‡ ุงู„ X ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุจุฑุถู‡
34
00:03:05,730 --> 00:03:09,070
ุจุชุธุจุท ููŠ ุญุงู„ุชู†ุง ู„ุฅู† ุงู„ู„ูŠ ุจู†ูŠู†ุง ุนู„ู‰ ุฃุณุงุณู‡ุง ุงู„ู„ูŠ ู‡ูŠ
35
00:03:09,070 --> 00:03:13,290
ุงู„ A ุนู„ู‰ B ู†ูุณู‡ุง ุฃูƒุจุฑ strictly ู…ู† ู…ูŠู† ู…ู† ูˆุงุญุฏ
36
00:03:13,290 --> 00:03:17,150
ูุงู„ุฃู…ูˆุฑ ู…ุชู†ุงุณู‚ุฉ ู…ุน ุจุนุถ ูˆ ู„ูˆ ุจุฏู†ุง ู†ุทุจู‚ ุญู„ู„ู‡ุง ุฌูŠ ุฌูŠ
37
00:03:17,150 --> 00:03:20,670
ุงู„ู„ูŠ ู‡ูˆ ุชุทุจูŠู‚ ู…ุนู‚ูˆู„ ุงู„ู„ูŠ ู‡ู†ู‚ู ุงู„ prime of X ุจุณุงูˆูŠ
38
00:03:20,670 --> 00:03:26,200
ูˆุงุญุฏ ุนู„ู‰ N ููŠ X ุฃุณูˆุง ูˆุงุญุฏ ุนู„ู‰ N ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุตุงู„ู„ูŠ
39
00:03:26,200 --> 00:03:30,720
ู‡ูˆ ูˆุงุญุฏุฉ ู„ุงู† ููŠ x ู†ุงู‚ุต ูˆุงุญุฏ ูˆุงุณ ูˆุงุญุฏุฉ ู„ุงู† ู†ุงู‚ุต
40
00:03:30,720 --> 00:03:36,520
ูˆุงุญุฏ ูˆูŠุณูˆู‰ ูˆุงุญุฏุฉ ู„ุงู† ููŠ x ุงุณ ูˆุงุญุฏุฉ ู„ุงู† ู†ุงู‚ุต ูˆุงุญุฏ
41
00:03:36,520 --> 00:03:44,840
ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ x ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ ูˆุงุญุฏุฉ ู„ุงู†
42
00:03:44,840 --> 00:03:50,460
ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ุขู† ู„ูˆ ุทู„ุนู†ุง ู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุง
43
00:03:53,450 --> 00:03:56,930
ู„ูˆ ุทู„ุนู†ุง ู„ู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ X ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฅูŠุด
44
00:03:56,930 --> 00:04:02,450
ูˆุงุญุฏ ูŠุนู†ูŠ ุงู„ุขู† ุงู„ X ุฃูƒุจุฑ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู„ุฐุง ู„ู…ุง ุนู†ุฏูŠ
45
00:04:02,450 --> 00:04:06,950
ุงู„ุฃุณ ุงู„ู„ูŠ ู‡ุงู† ุฃุณ ุฅูŠุด ู…ุงู„ู‡ ุจุงู„ุณุงู„ุจ ุฃูˆ ุตูุฑ ุนู„ู‰ ุณูˆุก
46
00:04:06,950 --> 00:04:10,130
ุงู„ุธุฑูˆู ุงู„ู„ูŠ ู‡ูˆ ุจุงู„ุณุงู„ุจ ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ูŠุตูŠุฑ
47
00:04:10,130 --> 00:04:16,070
ูˆุงุญุฏ ุนู„ู‰ X ุงู„ูˆุงุญุฏ ุนู„ู‰ X ุนุจุงุฑุฉ ุนู† ูƒุณุฑุŒ ู…ุธุจูˆุทุŸ ุงู„ุขู†
48
00:04:16,070 --> 00:04:20,430
ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ู‡ุฐุง ูˆ ู‡ุฐุง
49
00:04:20,940 --> 00:04:26,360
x ุฃูƒูŠุฏ ุฃูƒุจุฑ ู…ู† x ู†ู‚ุต ูˆุงุญุฏ ุตุญ ูˆู„ุง ู„ุฃ ู„ูƒู† ู„ุฃู†
50
00:04:26,360 --> 00:04:31,240
ู…ู‚ู„ูˆุจู‡ุง ู‡ูŠุตูŠุฑ ุงูŠุด ู…ุงู„ู‡ ู‡ูŠุตูŠุฑ ุฃุตุบุฑ ูู‡ูŠุตูŠุฑ ุงู„ู…ู‚ุฏุงุฑ
51
00:04:31,240 --> 00:04:35,440
ู‡ุฐุง ุฃุตุบุฑ ู…ู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู…ุงุดูŠ ูุจุตูŠุฑ ุนู†ุฏูŠ ุงู„ู…ู‚ุฏุงุฑ
52
00:04:35,440 --> 00:04:40,180
ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุจุนุถ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุณูุฑ ูุงู„ุขู† ุตุงุฑุช ุนู†ุฏูŠ
53
00:04:40,180 --> 00:04:45,720
f' ุฃุตุบุฑ strictly ู…ู† ู…ูŠู† ู…ู† ุณูุฑ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุฅุฐุง f
54
00:04:45,720 --> 00:04:47,160
is strictly
55
00:04:50,230 --> 00:04:54,310
Decreasing ุจุฏู‰ ุงุณุชุฎุฏู… ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ู…ุฏุงู… Strictly
56
00:04:54,310 --> 00:04:59,390
Decreasing ูˆุงู†ุง ุนู†ุฏู‰ a ุฃูƒุจุฑ ู…ู† b ู‡ุณูŠู†ุง ุนู†ุฏู‰ a ุนู„ู‰
57
00:04:59,390 --> 00:05:06,110
b ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ูˆ ุงู„ b ุทุจุนุง ู„ุง ุชุณูˆู‰ ุณูุฑ ุงุฐุง ุจู…ุง ุงู†
58
00:05:06,110 --> 00:05:11,930
F is strictly decreasing ุงุฐุง F of a ุนู„ู‰ b ุฃูƒุจุฑ ู…ู†
59
00:05:11,930 --> 00:05:18,440
F of ูˆุงุญุฏุฃู of a ุนู„ู‰ b ุฏู„ุชู†ุง ุจูŠุฌูŠุจ ุงู„ุนูˆุถ ููˆู‚ ุจูŠุตูŠุฑ
60
00:05:18,440 --> 00:05:26,380
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ .. ุขุณู ุฃุตุบุฑ ุนู†ุฏูŠ ุฃู of a ุนู„ู‰ b ุฅูŠุด
61
00:05:26,380 --> 00:05:30,920
ู‡ุชุณุงูˆูŠูƒุŸ ู‚ูˆู„ูˆุง ู…ุนุงูŠุง ุงู„ู„ูŠ ู‡ูˆ a ุนู„ู‰ b ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n
62
00:05:30,920 --> 00:05:40,360
ู†ุงู‚ุต a ุนู„ู‰ b ู†ุงู‚ุต ูˆุงุญุฏ ูˆูƒู„ ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n ู‡ุฐุง ุฅูŠุด
63
00:05:40,360 --> 00:05:45,310
ู…ุงู„ู‡ุŸ ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸู…ู† F of ูˆุงุญุฏ F of ูˆุงุญุฏ ุญุณุจ ู„ูŠ F
64
00:05:45,310 --> 00:05:50,290
of ูˆุงุญุฏ ู‡ุฐู‡ ูˆุงุญุฏ ูˆู‡ุฐู‡ ุณูุฑ ูุจุตูŠุฑ ุนุจุงุฑุฉ ุนู† ุงุตุบุฑ ู…ู†
65
00:05:50,290 --> 00:05:53,350
ูˆุงุญุฏ ุทุจุนุง ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ุจู†ุนู…ู„ ุนู…ู„ูŠุฉ ุนูƒุณูŠุฉ ู„ู„ูŠ
66
00:05:53,350 --> 00:05:57,530
ุนู…ู„ู†ุงู‡ุง ููˆู‚ ูุจุตูŠุฑ ุนู†ุฏู‰ ุงุถุฑุจ ุงู„ุฌู‡ุชูŠู† ููŠ B ุฃุณ ูˆุงุญุฏุฉ
67
00:05:57,530 --> 00:06:04,260
ู„ุงู† ูุจุตูŠุฑ A ุฃุณ ูˆุงุญุฏุฉ ู„ุงู† ู†ุงู‚ุตA ู†ุงู‚ุต B ุฃุณ ูˆุงุญุฏ ุนู„ู‰
68
00:06:04,260 --> 00:06:10,940
N ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† B ุฃุณ ูˆุงุญุฏ ุนู„ู‰ N ุถุฑุจุช ูƒู„ู‡ ููŠ ู…ูŠู†ุŸ
69
00:06:10,940 --> 00:06:14,980
ููŠ B ุฃุณ ูˆุงุญุฏ ุนู„ู‰ N ุฅู† ุฌู„ู‘ูŠ ุงู„ุฃู† ุจุตูŠุฑ ุนู†ุฏูŠ A ุฃุณ
70
00:06:14,980 --> 00:06:20,320
ูˆุงุญุฏ ุนู„ู‰ N ู†ุงู‚ุต B ุฃุณ ูˆุงุญุฏ ุนู„ู‰ N ุฃุตุบุฑ ู…ู† A minus B
71
00:06:20,320 --> 00:06:26,530
ุงู„ูƒู„ ุฃุณ ูˆุงุญุฏ ุนู„ู‰ Nูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ูŠุง
72
00:06:26,530 --> 00:06:32,150
ูŠู„ุง ุฅูŠู‡ ุจุนุฏู‡ุŸ ุฎู„ูŠู†ุง ู†ูŠุฌูŠ ู„ู„ุณุคุงู„ ุงู„ู„ูŠ ุงู„ู…ุทู„ูˆุจ ุงู„ุขุฎุฑ
73
00:06:32,150 --> 00:06:38,570
ุงู„ู„ูŠ ู‡ูˆ use the mean value theorem ุณุคุงู„ 6 use the
74
00:06:38,570 --> 00:06:42,830
mean value theorem to prove that sin x minus sin y
75
00:06:42,830 --> 00:06:47,070
ุฃุตุบุฑ ุฃูˆ ูŠุณูˆู‰ x minus y for all x, y in R ู‡ุฐุง
76
00:06:47,070 --> 00:06:50,610
ุงู„ุณุคุงู„ ุญู„ู†ุง ุฒูŠู‡ ุจุงู„ุธุจุท ุงู„ู„ูŠ ู‡ูˆ mean ุงู„ู„ูŠ ู‡ูˆ ุงู„
77
00:06:50,610 --> 00:06:52,070
cosineุŒ ู…ุธุจูˆุทุŸ
78
00:06:57,300 --> 00:07:03,320
ุงู„ุงู† ู…ุงุนุฑูุด ููŠู‡ ุฏุงุนูŠ ู†ุญู„ู‡ ูˆู„ุง ุงู† ู‡ูˆ ู†ูุณูŠ ุงูˆ ู…ุตูˆุฑ
79
00:07:03,320 --> 00:07:06,740
ุนู…ู„ู†ุงู‡
80
00:07:06,740 --> 00:07:12,000
ูˆู„ุง ู„ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ cosine ุนู…ู„ู†ุงู‡ุง ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ูˆู…ุด
81
00:07:12,000 --> 00:07:14,340
ู‡ูŠุฎุชู„ู ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญู„
82
00:07:22,460 --> 00:07:27,840
ุฃุญู„ูˆ ูˆู„ุง ุฎู„ุตุชุŸ ุงู„ุงู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุณุจุนุฉ use the mean
83
00:07:27,840 --> 00:07:32,580
value theorem to prove that X-1 ุนู„ู‰ X ุฃุตุบุฑ ู…ู† X
84
00:07:32,580 --> 00:07:39,160
ุฃุตุบุฑ ู…ู† X ูˆุงุญุฏ for X ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏ ..
85
00:07:39,160 --> 00:07:45,440
ุงุญู†ุง ุญู„ูŠู†ุง ูˆุงุญุฏ ุฒุงุฏ X ู‡ุฐู‡ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
86
00:07:45,440 --> 00:07:51,040
ู…ูŠู†ุŸุนู† ุงู„ู„ูŠ ู‡ูˆ ln LX ุงู„ุฏู„ุฉ ุงู„ู„ูŠ ู‡ูŠ F of X ุจุณุงูˆูŠ ln
87
00:07:51,040 --> 00:07:56,440
LX ูˆุจู†ุณุชุฎุฏู… ุงู„ mean value theorem ูˆุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ููŠ
88
00:07:56,440 --> 00:08:00,540
ุฏุงุนูŠ ู†ุญู„ู‡ุŸ ุฎู„ู‘ูŠู†ุง ู†ุญู„ู‡ุŒ ุฎู„ู‘ูŠู†ุง ู†ุญู„ู‡ ุนุดุงู† ุจู†ุตูˆุฑ
89
00:08:00,540 --> 00:08:12,360
ุงู„ุขู† ุณุคุงู„ ุณุจุนุฉ ุงู„ุขู† ุนู†ุฏูŠ ุจุฏุฃ ุฃุซุจุช ุฃู† ln LX ุฃุตุบุฑ ู…ู†
90
00:08:12,360 --> 00:08:20,000
X ู†ุงู‚ุต ูˆุงุญุฏูˆ ุฃูƒุจุฑ ู…ู† x minus ูˆุงุญุฏ ุนุงู„ู…ูŠุง ุนู„ู‰ x
91
00:08:20,000 --> 00:08:26,400
solution ุงู„ุนุงู„ู…ูŠู† value theorem ุนุงู„ู…ูŠู† value
92
00:08:26,400 --> 00:08:29,960
theorem ู†ุญู„ู‡ ุนุงู„ู…ูŠู† value theorem ู„ุฃู†ู‡ ู„ุณู‡ ู…ุง
93
00:08:29,960 --> 00:08:35,980
ุฎุฏู†ุงุด ุงู„ู„ูŠ ู‡ูˆ Taylor's theorem ู…ุด
94
00:08:35,980 --> 00:08:39,340
ูุงู‡ู…
95
00:08:39,340 --> 00:08:42,110
ุนู„ูŠูƒุจูŠู†ูุน ุงู„ุญู„ู‚ุฉ ุจุงุณุชุฎุฏุงู… Taylor and X not
96
00:08:42,110 --> 00:08:44,690
ุจูŠุณุงูˆู…ู‡ุง ูŠุนู†ูŠ ุงู„ mainly ุทูŠุจ ุงู‡ ุงุญู†ุง .. ุงุญู†ุง ุนุดุงู†
97
00:08:44,690 --> 00:08:48,850
ู„ุณู‡ ู…ุงุฎุฏู†ุงุด Taylor's theorem ุจุฏู†ุง ู†ุญู„ู‡ุง ุนู„ู‰ ู…ูŠู†ุŸ
98
00:08:48,850 --> 00:08:51,970
ุนู„ู‰ ุงู„ mean value theorem ู„ูŠุดุŸ ู„ุฃู†ู‡ ุงุญู†ุง ู„ุณู‡
99
00:08:51,970 --> 00:09:00,070
ู…ุงุฎุฏู†ุงุด Taylor's theorem ุทูŠุจ ุงู„ุงู† let F of X
100
00:09:00,070 --> 00:09:07,330
ุจุชุณุงูˆูŠ ู„ูŠู† ุงู„ XุŸ ูˆุนู†ุฏูŠ ุงู„ X ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ุฃูƒุจุฑ ุฃูˆ
101
00:09:07,330 --> 00:09:11,800
ุชุณุงูˆูŠ ุงู„ูˆุงุญุฏุŒ ูˆู„ุง ู„ุฃุŸุนู†ุฏูŠ ุงู„ู€ x ุฃูƒุจุฑ ู…ู† 100 ู…ู† 0
102
00:09:11,800 --> 00:09:14,940
for
103
00:09:14,940 --> 00:09:23,100
x ุฃูƒุจุฑ ู…ู† 0 ู…ุด ุนุงูŠุฒ ุฃู†ูŠ ู…ุงุดูŠ ุงู„ุญูŠู† ู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ุฃู†
104
00:09:23,100 --> 00:09:26,540
ู†ุณุชุฎุฏู… ุงู„ main value theorem continuous ูˆ claw ูˆ
105
00:09:26,540 --> 00:09:31,300
differentiable ูˆูƒู„ ุงู„ุฃู…ูˆุฑ ู‡ุฐู‡ ุฃุดู…ู„ู‡ุง ู…ุชุญู‚ู‚ุฉ ุฅุฐุง
106
00:09:31,300 --> 00:09:38,150
there exist c element in a ูˆ bC ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
107
00:09:38,150 --> 00:09:42,290
element ู…ุนุงูŠุงุŸ
108
00:09:42,290 --> 00:09:52,610
ุทูŠุจ ู„ุฃู† let F of X ุจูŠุณุงูˆูŠ ู„ู† X ูˆ X ุฃูƒุจุฑ ู…ู† 0 ูˆุนู†ุฏูŠ
109
00:09:52,610 --> 00:09:57,430
ุงู„ู…ุทู„ูˆุจ ููŠ ุงู„ inequality ุงู„ู„ูŠ ู‡ูŠ X ุฃูƒุจุฑ ู…ู† 1 ูŠุนู†ูŠ
110
00:09:57,430 --> 00:10:02,870
X ุณู†ุชู…ูŠ ุฅู„ู‰ ุงู„ูˆุงุญุฏ ูˆู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู…ุนุงูŠุงุŸ ุฅุฐุง there
111
00:10:02,870 --> 00:10:11,590
exists Cู„ุฐู† ุจุฏู‰ ุงุทุจู‚ ุงู„ุงู† we apply mean value
112
00:10:11,590 --> 00:10:18,570
theorem on ูˆูŠู† ู‚ูˆู„ ู…ุนุงูŠุง on ูˆุงุญุฏ ูˆ X there exists
113
00:10:18,570 --> 00:10:25,090
C element ูˆุงุญุฏ ูˆ X such that ู…ุนุงูŠุง such that ุงู„ู„ูŠ
114
00:10:25,090 --> 00:10:36,890
ู‡ูˆ F prime of C ุณูˆู‰ F of X ู†ู‚ุต F ูˆุงุญุฏุนู„ู‰ x ู†ุงู‚ุต
115
00:10:36,890 --> 00:10:48,110
ุงูŠุงุด ู†ุงู‚ุต ูˆุงุญุฏ ุงู‡ ูุงู„ุงู† ุนู†ุฏูŠ f of x ุฌุฏูŠุด ูˆูŠุณุงูˆูŠ ู„ู†
116
00:10:48,110 --> 00:10:56,450
ุงู„ x ู†ุงู‚ุต ู„ู† ุงู„ูˆุงุญุฏ ุฌุฏูŠุด ุณูุฑ ุนู„ู‰ x ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ุฐุง
117
00:10:56,450 --> 00:11:02,050
ู…ูŠู† ู‡ูˆ f prime of c ุนุจุงุฑุฉ ุนู† ู„ู† ุงู„ูˆุงุญุฏ ุนู„ู‰ c ู…ุธุจูˆุท
118
00:11:02,870 --> 00:11:06,570
ุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ุจุฏุฃ ุฃุฌูŠุจ ู„ุฅู† ุงู„ X ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
119
00:11:06,570 --> 00:11:12,270
X ู…ุงูŠู†ุณ ูˆุงุญุฏ ุตุงุฑ ุนู†ุฏู‰ ุฅุฐุง ู„ุฅู† ุงู„ X ุจุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰
120
00:11:12,270 --> 00:11:18,390
C ููŠ X ู…ุงูŠู†ุณ ูˆุงุญุฏ ูˆุงู„ู„ูŠ ุนู†ุฏ C ุฃุดู…ุงู„ุฉ ุจุงุฎุฏู‡ุง ุฃู†ุง
121
00:11:18,390 --> 00:11:23,050
ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ู…ุฏุงู… ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุฅุฐุง ูˆุงุญุฏ ุนู„ู‰ C ุงู„ู„ูŠ
122
00:11:23,050 --> 00:11:28,390
ู‡ูˆ ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ู…ุธุจูˆุท ุฅุฐุง ู‡ุฐุง ุฃูƒูŠุฏ ู‡ุฐุง ุฃุตุบุฑ ู…ู† X
123
00:11:28,390 --> 00:11:35,440
ู…ุงูŠู†ุณ ูˆุงุญุฏู…ุธุจูˆุทุŸ ู„ุฃู† ุงู„ูˆุงุญุฏ ุนู„ู‰ ุงู„ู€C ุฃุดู…ุงู„ู‡ุง ุนุจุงุฑุฉ
124
00:11:35,440 --> 00:11:43,990
ุนู† ูƒุณุฑ ุงู„ุขู† ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู„ู† ุงู„ XุจุณุงูˆูŠ
125
00:11:43,990 --> 00:11:49,410
ูˆุงุญุฏ ุนู„ู‰ C ููŠ X ู†ุงู‚ุต ูˆุงุญุฏ ู„ูƒู† ุงู„ู€ X ุฃู†ุง C ุฅูŠุด
126
00:11:49,410 --> 00:11:54,190
ู…ุนู†ุงู‡ุง ุจูŠู† ุงู„ูˆุงุญุฏ ูˆุงู„ุฅูƒุณ ูŠุนู†ูŠ C ุฃุตุบุฑ ู…ู† ู…ูŠู† C ุฃุตุบุฑ
127
00:11:54,190 --> 00:11:59,430
ู…ู† X ูŠุนู†ูŠ ุงู„ูˆุงุญุฏ ุนู„ู‰ X ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† ู…ูŠู† ุงู„ุขู† C
128
00:11:59,430 --> 00:12:05,890
ุฃุตุบุฑ ู…ู† X ุฅุฐุง ูˆุงุญุฏ ุนู„ู‰ C ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุนู„ู‰ X ูุจุตูŠุฑ
129
00:12:05,890 --> 00:12:13,190
ุนู†ุฏ ู‡ุฐุง ุฃูƒุจุฑู…ู† 1 ุนู„ู‰ x ููŠ x minus 1 ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ
130
00:12:13,190 --> 00:12:18,230
ุตุงุฑ ุนู†ุฏ ู„ู† ุงู„ x ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ ู…ู† x minus 1 ุนู„ู‰ ุงู„ x
131
00:12:18,230 --> 00:12:21,550
ู‡ูŠ ุนู†ุฏ ุงู„ inequality ุงู„ุชุงู†ูŠุฉ ูˆ ู‡ูŠ ุนู†ุฏ ุงู„
132
00:12:21,550 --> 00:12:26,690
inequality ุงู„ุฃูˆู„ู‰ ู…ู† ุงู„ุชู†ุชูŠู† ุฅุฐุง ู„ู† ุงู„ x ุฃุดู…ู„ู‡
133
00:12:26,690 --> 00:12:32,790
ุฃุตุบุฑ ู…ู† x minus 1 ู…ุธุจูˆุท ุงู„ู„ูŠ ุจุนู…ู„ู‡ ูˆ ุฃูƒุจุฑ ู…ู† x
134
00:12:32,790 --> 00:12:41,190
minus 1 ุนุงู„ู…ูŠุง ุนู„ู‰ xูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุฅูŠุด ุงู„ุณุคุงู„ ุงู„ู„ูŠ
135
00:12:41,190 --> 00:12:49,550
ุจุนุฏู‡ุŸ ุงู„ุขู† ุณุคุงู„ ุชู…ุงู†ูŠุฉ Let F ู…ู† A ู„ุนู†ุฏ B
136
00:13:11,390 --> 00:13:17,630
ุณุคุงู„ ุชู…ุงู†ูŠุฉ let
137
00:13:17,630 --> 00:13:30,470
f ู…ู† a ูˆ b ู„ุนู†ุฏ r ุงุดู…ู„ ุจูŠ continuous ุงูˆ
138
00:13:30,470 --> 00:13:37,190
differentiable on
139
00:13:37,190 --> 00:13:45,370
meanon open interval a ูˆ b show
140
00:13:45,370 --> 00:13:51,730
that if limit f prime of x ุนู†ุฏูŠ limit f prime of x
141
00:13:51,730 --> 00:14:01,630
ู„ู…ุง x ุชุฑูˆุญ ู„ู„ a ุจุณุงูˆูŠ a capital then ุงู„ู„ูŠ ู‡ูŠ f
142
00:14:01,630 --> 00:14:11,990
prime of aF prime of A exists and equals A
143
00:14:11,990 --> 00:14:21,750
solution ุฃูˆ proof ู…ุงุนุทูŠู†ูŠ
144
00:14:21,750 --> 00:14:28,650
F is differentiable ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ู…ู† A ูˆB ุฃูˆ
145
00:14:28,650 --> 00:14:33,350
continuous ุทุจุนุงู‹ open ุฃูˆ continuous ุนู„ู‰ close ู…ู† A
146
00:14:34,120 --> 00:14:39,860
ูˆุจ ุนู†ุฏูŠ limit f prime of x ู…ุนุทูŠู†ูŠู‡ุง ู„ู…ุง x ุชุฑูˆุญ ุฅู„ู‰
147
00:14:39,860 --> 00:14:50,180
ุงู„ a ุงูŠุด ุจุณุงูˆูŠ ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ a capital ุงุทู„ุน
148
00:14:50,180 --> 00:14:58,560
ู„ููˆู‚ ุงู„ุงู† ุนู†ุฏูŠ ุงู„ุงู† ุงู„ f prime of a ุชุนุฑูŠูู‡ุงุงู„ู„ูŠ ู‡ูŠ
149
00:14:58,560 --> 00:15:04,600
limit F of X ู†ุงู‚ุต F of A ุนู„ู‰ X minus A ู„ู…ุง X ุชุฑูˆุญ
150
00:15:04,600 --> 00:15:09,940
ู„ู„ู€A ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฅุฐุง ูƒุงู† ุงู„ limit had
151
00:15:09,940 --> 00:15:13,500
exist ุฅุฐุง ุฃุซุจุชู†ุง ุฅู† ุงู„ limit had exist ุจุชูƒูˆู† ุงู„ F
152
00:15:13,500 --> 00:15:18,440
prime of A ุฃุดู…ุงู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ exist ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุขู†
153
00:15:18,440 --> 00:15:21,200
ู‡ูˆ ู…ุงุนุทูŠู†ูŠ limit F prime of X ู„ู…ุง X ุชุฑูˆุญ ู„ู€A
154
00:15:21,200 --> 00:15:28,290
ุฃุดู…ุงู„ู‡ุง ู‡ูŠ ุงู„ existูˆุงุถุญ ุงู‡ุŸ ู„ุงู† ุจุฏูŠ ุงุทุจู‚ ุงู„ู€ Mean
155
00:15:28,290 --> 00:15:33,290
Value Theorem ู„ุงู† ููŠ ุงู„ุจุฏุงูŠุฉ ุนู„ู‰ ุฃูŠ X ูˆูŠู† ููŠ
156
00:15:33,290 --> 00:15:39,170
ุงู„ูุชุฑุฉ A ูˆB ููŠ ุงู„ูุชุฑุฉ A ูˆB ู„ูˆ ุฃุฎุฏู†ุง X ููŠ ุงู„ A ูˆB
157
00:15:39,170 --> 00:15:44,380
ุจุงู„ู€ Mean Value TheoremุจูŠู† ุนู„ู‰ ุงู„ู€ A ูˆ ุงู„ู€ X ุนู„ู‰
158
00:15:44,380 --> 00:15:47,920
ุงู„ูุชุฑุฉ ุงู„ู€ A ูˆ ุงู„ู€ X there exists CX ู…ุง ู„ู‡ุง
159
00:15:47,920 --> 00:15:52,340
between X and A such that F of X ู†ุงู‚ุต F of A ุจุณุงูˆูŠ
160
00:15:52,340 --> 00:15:57,240
F prime C of X ููŠ X minus A ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุชุทุจูŠู‚ ุงู„ู€
161
00:15:57,240 --> 00:16:02,860
Mean Value Theorem ุนู„ู‰ ุงู„ูุชุฑุฉ A ูˆ B and so ูˆ ู…ู†ู‡
162
00:16:02,860 --> 00:16:07,700
ุงู„ู„ูŠ ู‡ูŠ ุจู†ู‚ูˆู„ F prime C of X ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ F of X
163
00:16:07,700 --> 00:16:15,920
ู†ุงู‚ุต F of A ุนู„ู‰ X minus Aุงู„ุงู† ุนู†ุฏู‰
164
00:16:15,920 --> 00:16:22,520
.. ุฎู„ู‘ูŠู†ุง ู†ูŠุฌู‰ ู†ุงุฎุฏ ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ุงู‡ ุนุดุงู† ู„ุณู‡ ุจุฏุงุช
165
00:16:22,520 --> 00:16:26,600
ุจูŠู† F prime of A ุฃุดู…ุงู„ู‡ุง ู…ูˆุฌูˆุฏุฉ ุจุณุงูˆูŠ limit ุงู„ F
166
00:16:26,600 --> 00:16:31,180
prime CX ู„ู…ุง X ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ AุŒ ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ู‡ุฐู‡
167
00:16:31,180 --> 00:16:36,610
ุงู„ุขู† ู„ูˆ exist ุจุชูƒูˆู† F prime of A ุฃุดู…ุงู„ู‡ุง existุงู„ุงู†
168
00:16:36,610 --> 00:16:40,510
ู„ุงุญุธ ุงุญู†ุง ุทุจู‚ู†ุง ุงู„ู„ู‰ ู‡ู‰ ุงู„ mean value theorem ุนู„ู‰
169
00:16:40,510 --> 00:16:46,910
ู…ูŠู† ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† a ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ x ู„ุฌูŠู†ุง ุงู„ cx
170
00:16:46,910 --> 00:16:53,290
ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ุจูŠู† ุงู„ a ูˆ ุงู„ x ุงู„ุงู† ู„ู…ุง cx ุชุฑูˆุญ ู„ู„ a
171
00:16:53,290 --> 00:17:00,050
ุงูƒูŠุฏ ุงู„ x ู‡ุชุฑูˆุญ ู„ู…ูŠู† ู„ู„ a ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ ุงู„ุงู†
172
00:17:00,050 --> 00:17:05,700
ุจูŠุตูŠุฑ ุนู†ุฏู‰ู‡ูˆ ู…ุงุนุทูŠู†ูŠ ุฃุตู„ุง limit f prime of x ู„ู…ุง x
173
00:17:05,700 --> 00:17:10,600
ุชุฑูˆุญ ู„ู„ุฅูŠู‡ exist ู…ุงุดูŠ ูุจุตูŠุฑ ุนู†ุฏูŠ ู„ุฃู† limit f prime
174
00:17:11,520 --> 00:17:17,760
of CX ู„ู…ุง ุงู„ X ุชุฑูˆุญ ู„ู„ A ู‡ูŠ ู†ูุณู‡ุง as X goes to A
175
00:17:17,760 --> 00:17:21,700
CX ูˆูŠู† ู‡ุชุฑูˆุญ ู„ู…ุง X ุชุฑูˆุญ ู„ู„ A ุงุชูˆู…ุงุชูŠูƒ CX ู‡ุชุฑูˆุญ ู„ู„
176
00:17:21,700 --> 00:17:26,480
A ูุจุตูŠุฑ ุนู†ุฏู‰ ู„ู‚ู‰ limit F prime of CX ู„ู…ุง X ุชุฑูˆุญ ู„ู„
177
00:17:26,480 --> 00:17:29,880
A ู‡ูˆ ู†ูุณ limit F prime of CX ู„ู…ุง A CX ุชุฑูˆุญ ู„ู„ A
178
00:17:29,880 --> 00:17:34,580
ูˆู‡ุฐุง ู‡ูˆ ู…ุงุนุทูŠู†ู‰ ุงูŠุด ุงุณู…ู‡ ุงู† existence ู‡ูˆ ุงูŠู‡ุŒ ุงุฐุง
179
00:17:34,580 --> 00:17:39,500
ุตุงุฑ ู‡ุฐุง ุงู„ limitexist ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู…ุณุงูˆูŠ
180
00:17:39,500 --> 00:17:42,620
ู„ู„ limit ู‡ุฐุง ุงู„ู„ูŠ ุจู†ูŠู† ุนู„ูŠู‡ ุฅุฐุง ุญูŠูƒูˆู† ุงู„ F prime
181
00:17:42,620 --> 00:17:46,920
of A exist ูˆ ุจุฑุถู‡ ุญูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุญูŠุณุงูˆูŠ ุฅูŠู‡ุŸ ุงุทู„ุน ุนู„ู‰
182
00:17:46,920 --> 00:17:53,100
ู„ุฏูƒ ุงู„ู„ูŠ ุจุงู„ูƒ ู†ุฎู„ุต ู†ุนู… ู„ุง ุงุทู„ุน ุนู„ู‰ ุงู„ู„ูŠ ุจุนุฏู‡ ุฃูŠูˆุฉ
183
00:17:53,100 --> 00:17:55,420
ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุนุฏู‡
184
00:18:06,430 --> 00:18:13,030
ูƒุจุฑ ู‡ุฐุง ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุณุฃู„ุชู†ูŠ ุนู†ู‡ ูŠุง ู…ุญู…ุฏ
185
00:18:13,030 --> 00:18:18,450
ู‚ุจู„ ู‡ูŠูƒ ุงุทู„ุนู„ูŠ .. ุฎู„ูŠู‡ ุจุณ ุงุทู„ุนู„ูŠ ุนู„ู‰ ุงู„ูƒุชุงุจ ุนู„ู‰
186
00:18:18,450 --> 00:18:28,770
628 ุงู„ู†ุธุฑูŠุฉ 628 ุงู†ุฒู„ ุงู†ุฒู„ 628 ุงุทู„ุนู„ูŠ ุนู„ูŠู‡ุง ุงู„ู†ุธุฑูŠุฉ
187
00:18:28,770 --> 00:18:36,630
ุนุดุงู† ู†ู‚ูˆู„ูƒ ุงูŠุด ู‡ูˆ ุงู„ุณุคุงู„ ุนู„ู‰ู„ุฃู†ู‡ ู…ู‡ู… ู†ุนุฑู ุนู† ุฅูŠุดุŒ
188
00:18:36,630 --> 00:18:40,410
ุงู„ุขู† ุฅุฐุง ุจุชุชุฐูƒุฑูˆุง ุฃุฎุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ first
189
00:18:40,410 --> 00:18:45,390
derivative test for extrema ุจุชู‚ูˆู„ ุฅุฐุง ูƒุงู† ู„ุฌูŠู†ุง
190
00:18:45,390 --> 00:18:47,870
neighborhood Hannah subset ู…ู† I such that F double
191
00:18:47,870 --> 00:18:51,950
prime ุฃูƒุจุฑ ุณุงุนุฉ ูˆ ุณูุฑ ูˆ X ุงู„ .. ุงู„ .. ุงู„ .. ู„ูˆ F
192
00:18:51,950 --> 00:18:54,350
double prime ุฃูƒุจุฑ ุณุงุนุฉ ูˆ ุณูุฑ ู…ุฑุฉ ุน ุงู„ูŠู…ูŠู† ูˆ ู…ุฑุฉ ุน
193
00:18:54,350 --> 00:18:59,350
ุงู„ูŠุณุงุฑ ุฅุฐุง F has ุฅูŠุด ู…ุงู„ู‡ุง relative ุฅูŠุด ู…ุงู„ู‡ุง
194
00:18:59,350 --> 00:19:05,280
maximum ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจุชุบูŠุฑ ุดุฑุทู‡ุงู…ู† ู…ูˆุฌุจ ุฅู„ู‰ ุณุงู„ุจ
195
00:19:05,280 --> 00:19:09,260
ูุจุชูƒูˆู† ุนู†ุฏูŠ relative maximumุŒ ุงู„ุขู† ู‡ู„ ุงู„ุนูƒุณ ุตุญูŠุญุŸ
196
00:19:09,260 --> 00:19:12,440
ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ููŠ ุนู†ุฏู†ุง relative maximumุŒ ู‡ู„ ุดุฑุท ุฅู†ู‡ุง
197
00:19:12,440 --> 00:19:17,950
ุชุบูŠุฑ ุฅุดุงุฑุชู‡ุง ููŠ ุงู„ู„ูŠ ุฏุงุŸุฃุทู„ุน ู„ููˆู‚ ุดูˆูŠุฉ ุนุดุงู† ุฃูˆุฑุฌูŠูƒ
198
00:19:17,950 --> 00:19:21,170
ุงู„ุณุคุงู„ ูˆูŠู† ูƒุงู† ู…ูˆุฌูˆุฏ ู‡ุงู† remark the converse of
199
00:19:21,170 --> 00:19:25,410
the first derivative test is not true ู…ู‡ู… ุงู„ูƒู„ุงู…
200
00:19:25,410 --> 00:19:28,610
ู‡ุฐุง for example there exists a differentiable
201
00:19:28,610 --> 00:19:31,610
function f ู…ู† R ู„R with absolute minimum at x
202
00:19:31,610 --> 00:19:35,210
ุจุงู„ุณุงูˆูŠุฉ ุณูุฑ but such that f prime takes on both
203
00:19:35,210 --> 00:19:39,110
positive and negative values on both sides of ุงู„ู„ูŠ
204
00:19:39,110 --> 00:19:45,000
ู‡ูŠ x ุจุชุณุงูˆูŠ ุนูŠุงุด ุจุณุงูˆูŠุฉ ุณูุฑู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ู‡ุฐุง ุงู„ุขู†
205
00:19:45,000 --> 00:19:49,920
ู‡ุฐุง ุงู„ุญุฏูŠุซ ู‡ูˆ ุณุคุงู„ู†ุง ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ุจุฏู†ุง ู†ุญูƒูŠ ููŠู‡
206
00:19:49,920 --> 00:19:52,880
ุงู„ู„ูŠ ู‡ูˆ exercise ู‚ุฏุงุด ุชุณุนุฉ ุงุฑุฌุนู„ูŠ ุนู„ู‰ exercise
207
00:19:52,880 --> 00:19:56,560
ุชุณุนุฉ ุฅุฐุง ุงู„ exercise ุชุณุนุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฅูŠุด ูŠู‚ูˆู„ ู„ูŠู‡
208
00:19:56,560 --> 00:20:00,280
ุงู† ุงู„ converts of this theorem need not to be true
209
00:20:00,280 --> 00:20:04,930
in generalุจุงู„ุธุจุท ุงูŠุด ุจูŠู‚ูˆู„ุŸ ุจูŠู‚ูˆู„ ู„ุช F ู…ู† R ู„ R ุจูŠ
210
00:20:04,930 --> 00:20:08,910
define by F of X ุจูŠุณุงูˆุฉ 2 X plus 4 ุฒุงุฏ X plus 4
211
00:20:08,910 --> 00:20:12,770
Sine 1 ุนู„ูŠ X For X ู„ุง ุชุณุงูˆูŠ ุณูุฑ ุนู†ุฏ F of 0 ุงูŠุด
212
00:20:12,770 --> 00:20:16,450
ุจูŠุณุงูˆูŠ Zero ุฅุฐุง ุฃู†ุง ู…ุนุฑูุช ุฏุงู„ุฉ ุงู„ F ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ
213
00:20:16,450 --> 00:20:20,450
ุจู‡ุฐู‡ ู„ู…ุง X ู„ุง ุชุณุงูˆูŠ ุณูุฑ ูˆุนู†ุฏ X ุจูŠุณุงูˆูŠ ุณูุฑ ุนุฑูู‡ุง F
214
00:20:20,450 --> 00:20:25,120
of 0 ุจูŠุณุงูˆูŠ ุฃูŠุดุŸ Zeroุจู‚ูˆู„ ู„ุดู‡ุฏุงุช ุฃูˆู„ ุฅุดูŠ F has an
215
00:20:25,120 --> 00:20:30,440
absolute minimum when ุนู†ุฏ ุงู„ู€ 0 but that its
216
00:20:30,440 --> 00:20:34,820
derivative has both positive and negative values
217
00:20:34,820 --> 00:20:40,280
everywhere ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุด ููŠ neighborhood ุญูˆุงู„ูŠู† ู…ูŠู†ุŸ
218
00:20:40,280 --> 00:20:49,380
ุญูˆุงู„ูŠู† ุงู„ุตูุฑ ูˆุงุถุญุทูŠุจุŒ ู†ุดูˆู ุงู„ุขู†ุŒ ุนู…ู„ูŠุฉ ููŠู‡
219
00:20:49,380 --> 00:20:54,280
absolute minimum ู…ุด ุตุนุจุฉุŒ ุงู„ู„ูŠ ู‡ูŠ ุจุณ ุฎู„ูŠู†ุง ู†ุชุทู„ุน
220
00:20:54,280 --> 00:20:58,140
ุนู„ู‰ ุงู„ุญุณุงุจุงุชุŒ ู„ุฅู† ุงู„ุญุณุงุจุงุช ุจุชุงุฎุฏ ูˆุฌู‡ุŒ ูุฎู„ูŠู†ุง ู†ุชุทู„ุน
221
00:20:58,140 --> 00:21:02,900
ุนู„ู‰ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู…ุญุณูˆุจุฉ ูˆุฎุงู„ุตู„ุฃู† ู„ุฃูŠ x ุงู„ูŠู†ุชู† ุงุฑ
222
00:21:02,900 --> 00:21:07,360
ุงูƒูŠุฏ ุงู„ x ุงู„ุงุฑุจุนุฉ ุงูŠู‡ ุดู…ุงู„ู‡ ุงูƒุจุฑ ูˆูŠุณุงูˆูŠ ุณูุฑ ูˆุงู„
223
00:21:07,360 --> 00:21:11,900
sign ุงู„ูˆุงุญุฏ ุนู„ู‰ x ุงูƒุจูŠุฑ ุงูƒูŠุฏ ุงูƒุจุฑ ูˆูŠุณุงูˆูŠ ู…ูŠู† ู†ุงู‚ุต
224
00:21:11,900 --> 00:21:16,300
ูˆุงุญุฏ ุงุถุฑุจ ุงู„ุฌู‡ุชูŠู† ููŠ x ุงู„ุงุฑุจุนุฉ ูุจุตูŠุฑ x ุงู„ุงุฑุจุนุฉ ููŠ
225
00:21:16,300 --> 00:21:20,680
ู‡ุฐุง ุงูƒุจุฑ ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต ุงูŠุด x ุงู„ุงุฑุจุนุฉ ุงุถูŠู ู„ู„ุฌู‡ุชูŠู†
226
00:21:20,680 --> 00:21:26,110
ุงุชู†ูŠู† x ุงู„ุงุฑุจุนุฉูุจุตูŠุฑ 2x ุฃุณ 4 ุฒุงุฆุฏ ู‡ุฐุง ุฃูƒุจุฑ ุฃูˆ
227
00:21:26,110 --> 00:21:30,470
ูŠุณุงูˆูŠ ุงู„ู„ูŠ ุถูุช 2x ุฃุณ 4 ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ ูŠุงุด ู†ุงู‚ุต ุงู„ู„ูŠ
228
00:21:30,470 --> 00:21:34,930
ู‡ูŠ x ุฃุณ 4 ุงู„ู„ูŠ ู‡ูˆ ุจูŠุทู„ุน ุฌุฏุงุด x ุฃุณ 4 ุงู„ู„ูŠ ู‡ูˆ ุฃูƒูŠุฏ
229
00:21:34,930 --> 00:21:39,270
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 0 ุตุงุฑุช ุนู†ุฏ ู‚ูŠู…ุฉ ุงู„ function f of x
230
00:21:39,270 --> 00:21:44,770
ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุญูƒูŠ ุนู†ู‡ุง ุฏุงูŠู…ุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 0 ุงู„ู„ูŠ ู‡ูˆ
231
00:21:44,770 --> 00:21:49,650
ู…ูŠู† ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ F0 ุฅุฐุง ุตุงุฑ ููŠ ุนู†ุฏูŠ F has
232
00:21:49,650 --> 00:21:58,450
absoluteminimum at mean at zero ู„ูƒู† ุนู†ุฏูŠ ู„ุทุจูŠุนุฉ
233
00:21:58,450 --> 00:22:02,590
ุงู„ู€ sine ูˆ ุทุจูŠุนุฉ ุงู„ cosine ู„ูˆ ุฌูŠุช ุงู„ุขู† ุฃุฎุฏุช ุฃูŠ
234
00:22:02,590 --> 00:22:06,990
neighborhood ุญูˆุงู„ูŠู† ู†ุงู‚ุต delta ูˆ delta ุจุฏูŠ ุฃุซุจุชู„ูƒ
235
00:22:06,990 --> 00:22:12,410
ุฃู† F prime ู…ุฑุฉ ู…ู…ูƒู† ุชุณูˆูŠู„ูŠ ุฃุตุบุฑ ู…ู† ุณูุฑ ูˆ ู…ุฑุฉ ุชูƒูˆู†
236
00:22:12,410 --> 00:22:21,190
ุฃุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ุณูุฑ ูˆุงุถุญุŸ ุฅุฐุง ุชุนุงู„ู‰ ุดูˆูุนู†ุฏูŠ ุฎุฏ ู„ุฃูŠ
237
00:22:21,190 --> 00:22:25,370
neighborhood ุญูˆุงู„ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Zero ุฎุฏู‡ ู…ู† ู†ุงู‚ุต
238
00:22:25,370 --> 00:22:29,850
Delta ูˆDelta ู„ุฃูŠ Delta ููŠ ุงู„ุฏู†ูŠุง ุฃูˆ ู„ุฃูŠ ุฃู…ุซู„ูˆู† ููŠ
239
00:22:29,850 --> 00:22:34,450
ุงู„ุฏู†ูŠุง ุนู†ุฏูŠ ู‡ูŠ ุงู„ neighborhood ุงู„ู„ูŠ ุจุญูƒูŠ ููŠู‡
240
00:22:40,490 --> 00:22:45,390
ุงู„ู†ู‚ุทุฉ ุงู„ุฏุงุฎู„ูŠุฉ ุงู„ู„ูŠ ุงุญู†ุง ู…ุณุชู‡ุฏ ููŠู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุตูุฑ
241
00:22:45,390 --> 00:22:51,500
ุฎุฏ ุฃูŠ neighbor ุญูˆุงู„ูŠู‡ ู†ุงู‚ุต ุฏู„ุชุง ุงูˆ ุฏูŠู„ุชุงุจู‚ุฏุฑ ุฃู„ุงุฏูŠ
242
00:22:51,500 --> 00:22:58,220
n ุงูƒุจุฑ ุงูˆ ูŠุณุงูˆูŠ ุงุชู†ูŠู† very large ุงู„ู„ูŠ
243
00:22:58,220 --> 00:23:04,540
ุจูŠูƒูˆู† ุงู† ุงุดู…ุงู„ู‡ู† very close to zero ู…ุงุดูŠ ูŠุนู†ูŠ ู…ู‡ู…ุง
244
00:23:04,540 --> 00:23:09,300
ุฒุบุฑุชู„ูŠ ุงู„ delta ุจุฑุงุฌูŠู„ูƒ n ูƒุจูŠุฑุฉ ูƒูุงูŠุฉ ุงู†ู‡ุง ุชุถู„ู‡ุง
245
00:23:09,300 --> 00:23:18,320
ููŠ ู‡ุฐุง ุงู„ุฌูˆุงุฑ ูˆุชุญู‚ู‚ ู…ุง ูŠู„ูŠู‡ ุงูŠุด ุฃุฎุฏุชู‡ุง ุงุฎุฏุช ุงู„ู†ู‚ุทุฉ
246
00:23:18,320 --> 00:23:22,460
ูˆุงุญุฏ ุนู„ู‰ ุงุชู†ูŠู† and byุทุจุนุง ุงู„ุงู† ู‡ุฐุง ุจุฒุบุฑู‡ุง ุฌุฏ ู…ุง
247
00:23:22,460 --> 00:23:28,120
ุจุฏู‡ ุจุชูƒุจูŠุฑ ุงู„ุงู† ูˆ ู†ูุณ ุงู„ุงุดูŠ 2 ุนู„ู‰ 4 ุงู† ุฒุงุฏ ูˆุงุญุฏ ููŠ
248
00:23:28,120 --> 00:23:30,780
ุจุงู‚ูŠ ุทุจุนุง ู„ูŠุด ุฃุฎุฏุช ู‡ูŠูƒ ุนุดุงู† ูˆุงุญุฏุฉ ุชุฎู„ูŠู„ูŠ ุงู„ sign
249
00:23:30,780 --> 00:23:34,620
ุตูุฑ ูˆ ูˆุงุญุฏุฉ ุชุฎู„ูŠู„ูŠ ุงู„ cosine ุฅูŠู‡ ุนุดุงู† ุตูุฑ ูˆุงุถุญ ูˆ
250
00:23:34,620 --> 00:23:37,580
ููŠ ู†ูุณ ุงู„ูˆุฌู‡ ุจุชุฎู„ูŠู„ูŠ ุงู„ sign ูˆุงุญุฏ ูˆ ุงู„ cosine ูˆุงุญุฏ
251
00:23:37,580 --> 00:23:44,380
ุจุดูƒู„ ู…ุนุงูƒุณ ุฏู‡ ูู†ุดูˆู ุฃุดูŠ ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ุงู„ุงู† ู‡ุฐู‡ ุงู„ุงู† ูˆ
252
00:23:44,380 --> 00:23:47,380
ู‡ุฐู‡ ุงู„ุงู† ุงุฎุชุฑุช ุงู„ุงู† ุงู„ู„ูŠ ุชุฎู„ูŠู†ูŠ ุฅูŠุงู‡ุง ู…ูˆุฌูˆุฏุฉ ููŠ
253
00:23:47,380 --> 00:23:51,060
ู†ู‚ุต delta ูˆ delta ู‡ุฐูˆู„ุง ุงู„ู†ู‚ุทูŠู† ููŠ ูˆูŠู† ููŠ ุงู„ุฌูˆุงุฑ
254
00:23:51,060 --> 00:23:56,880
ุงู„ู„ูŠ ุงุนุทูŠุชู†ูŠ ุฅูŠุงู‡ ุฃูŠ ุฌูˆุงุฑ ุจุชุนุทูŠู†ูŠ ูŠุง ุจุฏุฃ ุฌูŠู„ูƒ ุงู„ุงู†
255
00:23:56,880 --> 00:24:01,300
ุงู„ู…ู†ุงุณุจุฉ ุฅู„ูŠู‡ ุงุญุณุจู„ูŠ ุงู„ุงู† F prime F prime of X
256
00:24:01,300 --> 00:24:04,040
ุจุชุนุฑู .. ู†ุนุฑู ู†ุญุณุจู‡ุง ุฎู„ูŠู†ุง ู†ุญุณุจ F prime of X ุนู„ู‰
257
00:24:04,040 --> 00:24:08,580
ุฌู‡ู‡ุง ู„ุฅู†ู‡ ู…ุด ู‡ุญุณุจู‡ุง ุนุดุงู† ุชูƒูˆู† ู‚ุฏุงู…ูƒู… F prime of X
258
00:24:10,740 --> 00:24:18,560
ุฃู ุจุฑุงูŠู… of x ุงูŠุด ุจุชุณุงูˆูŠ ุชู…ุงู†ูŠุฉ x ุชูƒุนูŠุจ ุฒุงุฆุฏ ุฃุฑุจุนุฉ
259
00:24:18,560 --> 00:24:28,300
x ุชูƒุนูŠุจ sign ูˆุงุญุฏ ุนู„ู‰ x ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ ู„ูŠุด
260
00:24:28,300 --> 00:24:34,800
ุฒุงุฆุฏ ู†ุงู‚ุต x ุฃุตุจุญ ุฃุฑุจุนุฉ ุจูŠุตูŠุฑ x ุชุฑุจูŠุน sign ูˆุงุญุฏ ุนู„ู‰
261
00:24:34,800 --> 00:24:41,650
x ุตุญูŠุญุŸู‡ุฐู‡ ุงู„ูŠูˆู…ูŠู† f prime of x ุจุฏู‘ูŠ ุงู„ุขู† ู†ุนูˆุถ ุนู„ู‰
262
00:24:41,650 --> 00:24:47,310
f ุนู†ุฏ ุงู„ู†ู‚ุทุฉ ุฃูˆู„ ุฅุดูŠ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ
263
00:24:47,310 --> 00:24:52,450
ุนู„ู‰ ุงุชู†ูŠู† and by ุนูˆุถู†ุง ุนู†ู‡ุง ููŠ ุชู…ุงู†ูŠุฉ x ุณูƒุนูŠุจ ู‡ูŠ
264
00:24:52,450 --> 00:24:57,210
ุชู…ุงู†ูŠุฉ ููŠ x ุณูƒุนูŠุจ ุฒุงุฏ ุฃุฑุจุนุฉ ู‡ูŠ x ุณูƒุนูŠุจ ูˆู‡ูŠ sin
265
00:24:57,210 --> 00:25:01,820
ูˆุงุญุฏ ุนู„ู‰ x ุจูŠุตูŠุฑ sin ุงุชู†ูŠู† and byุนุดุงู† ู‡ูŠูƒ ุงู„ุงุฎุชูŠุงุฑ
266
00:25:01,820 --> 00:25:05,020
ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงุชู†ูŠู† and by ุฃูุณ ุฃุฑุจุน ุงู„ู„ูŠ ู‡ูŠ ..
267
00:25:05,020 --> 00:25:11,580
ุงู„ู„ูŠ ู‡ูŠ .. ุจุญู‡ุง ุฏูŠ ุจูŠุตูŠุฑ ุฃูุณ ุงุชู†ูŠู† ุฃู‡ ูˆ ู‡ุงูŠ ุงู„ู†ุงู‚ุต
268
00:25:11,580 --> 00:25:16,900
ูุงู‡ู…ูŠู†ุŸ X ุชุฑุจูŠุน ู‡ุง ุฏูŠ ู…ุญุงุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ X ุชุฑุจูŠุน
269
00:25:16,900 --> 00:25:23,800
ุจุงู„ุณุงู„ุจูˆุงุถุญ ู‡ู‡ ููŠ cosine ู…ู† ุงู„ู„ูŠ ู‡ูˆ 2 unbi ุงู„ุงู†
270
00:25:23,800 --> 00:25:27,580
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ููŠ ุงู„ู†ุต ูƒู„ู‡ ุงูŠุด ุญุจุงู„ู‡ ู‡ูŠุตูŠุฑ ุณูุฑ
271
00:25:27,580 --> 00:25:32,160
ู„ุฃู†ู‡ sin 2 unbi ุณูุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ
272
00:25:32,160 --> 00:25:34,860
ุชู…ุงู†ูŠุฉ ุจุชุฑูˆุญ ู…ุน ุชู…ุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ู… ูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ unbi
273
00:25:34,860 --> 00:25:39,880
ูƒู„ ุชูƒุนูŠุจ ู‡ุฐุง ุงู„ cosine ุงูŠุด ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุงุฐุง ุจูŠุธู„ ู…ู†
274
00:25:39,880 --> 00:25:47,480
ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุณุงู„ุจ ุชุฑุจูŠุน ุงูŠู‡ ุงู„ุงู†ูˆุงุฎุฏ 1 ุนู„ู‰
275
00:25:47,480 --> 00:25:52,120
unbi ุนุงู… ุงู„ู…ุดุชุฑูƒ ุชุฑุจูŠุน ุจูŠุธู„ ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ู†ุง ุนุจุงุฑุฉ ุนู†
276
00:25:52,120 --> 00:25:59,560
ุงู„ู„ู‰ ู‡ู‰ 4 unbi ู„ุฃู†ู‡ ู…ุงุฎุฏ ู‡ู†ุง ุงู„ู„ู‰ ู‡ู‰ 1 ุนู„ู‰ 2 unbi
277
00:25:59,560 --> 00:26:03,720
ู„ูƒู„ ุชุฑุจูŠุน ุงู„ู„ู‰ ู‡ูˆ ุนุงู… ุงู„ู…ุดุชุฑูƒ ุจูŠุธู„ 4 ุนู„ู‰ unbi ู†ุงู‚ุต
278
00:26:03,720 --> 00:26:08,840
ุงูŠู‡ ุงุด ูˆุงุญุฏูˆุงุถุญ ุงู„ุงุฑุจุน ุนู„ู‰ n by ู„ู„ n ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆู‰
279
00:26:08,840 --> 00:26:14,660
2 ุฃู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุตูŠุฑ ูŠุตุบุฑ ู„ุฏุฑุฌุฉ ุฃู†ู‡ ุฃุตุบุฑ ู…ู†
280
00:26:14,660 --> 00:26:18,320
ุงู„ูˆุงุญุฏ ู„ู„ n ุฃูƒุจุฑ ูŠุณุงูˆู‰ 2 ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนุจุงุฑุฉ
281
00:26:18,320 --> 00:26:22,460
ุนู† ุณุงู„ุจ ููŠ ู…ูˆุฌุฉ ุจูŠุทู„ุน ุฃุตุบุฑ ู…ู† 0 ุฅุฐุง F ุจุฑุงูŠู† ุทู„ุนุช
282
00:26:22,460 --> 00:26:29,390
ุฃุตุบุฑ ู…ู† 0ููŠ ู†ูุณ ุงู„ูˆู‚ุช ุฃู ุจุฑุงูŠู… ู„ 2 ุนู„ู‰ ูƒุฐุง ุนู„ู‰ 4n
283
00:26:29,390 --> 00:26:34,130
ุฒุงุฆุฏ 1 ููŠ ฯ€ุงูŠ ุฃุถุฑุจู‡ุง ุฃุญุณุจู‡ุง ุจูŠุตูŠุฑ ุชู…ุงู†ูŠุฉ ูˆุนูˆุถ ูˆุนูˆุถ
284
00:26:34,130 --> 00:26:38,150
ูˆุนูˆุถ ุงู„ุงู† ู…ุด ุงู„ sign ุงู„ู„ูŠ ู‡ุชุช cancel ู‡ุชุช cancel
285
00:26:38,150 --> 00:26:43,110
ู…ูŠู† ุงู„ cosine ูู‡ูŠุทู„ุน ุนู†ุฏู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ูŠู‡ ูˆู‡ูŠู‡ ู‡ุฐุง
286
00:26:43,110 --> 00:26:48,390
ุงู„ู…ู‚ุฏุงุฑุงู„ุชู†ูŠู† ุงู„ู…ู‚ุฏุงุฑูŠู† ู…ูˆุฌุจุงุชุŒ ุฅุฐุง ู‡ูŠูƒูˆู† ุฃูƒุจุฑ ู…ู†
287
00:26:48,390 --> 00:26:53,510
ู…ูŠู†ุŸ ู…ู† ุณูุฑุŒ ุฅุฐุง ููŠ ูƒู„ ุงู„ู…ู†ุทู‚ุฉุŒ ููŠ ูƒู„ ุงู„ู…ู†ุทู‚ุฉุŒ
288
00:26:53,510 --> 00:26:58,050
ู‡ุชู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุฌุงู†ุจ ุจุนุถุŒ ุฌุงู†ุจ ุจุนุถุŒ ู…ุฑุฉ ุฃูƒุจุฑ ู…ู†
289
00:26:58,050 --> 00:27:00,530
ุณูุฑุŒ ู…ุฑุฉ ุฃุตุบุฑ ู…ู† ุณูุฑุŒ ู…ุฑุฉ ุฃูƒุจุฑ ู…ู† ุณูุฑุŒ ู…ุฑุฉ ุฃุตุบุฑ ู…ู†
290
00:27:00,530 --> 00:27:05,070
ุณูุฑุŒ ูููŠุด ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุชุบูŠุฑ ุฅุดุงุฑุชู‡ุง ู…ู† ู…ูˆุฌุจ ุฅู„ู‰
291
00:27:05,070 --> 00:27:09,750
ุณุงู„ุจุŒ ู„ุฃุŒ ู‡ู… ุฌุงู†ุจ ุจุนุถุŒ ู‡ุฐูˆู„ุฉ ุชู†ูุฌ ูŠุง ูˆุงุญุฏุฉ ุชู†ุณุงุดููŠ
292
00:27:09,750 --> 00:27:14,570
ุฌู‡ุฉ ูˆุงุญุฏุฉ ู…ู† ุงู„ู€ neighborhood ู…ุด ุนู„ู‰ ุงู„ุฌู‡ุชูŠู† ู‡ูˆ ุงู„
293
00:27:14,570 --> 00:27:18,270
test ุงู„ู„ูŠ ุจู†ุนุฑูู‡ ุฃุดู…ู„ ุจูŠู‚ูˆู„ูƒ ู„ูˆ ุงุชุบูŠุฑ ู…ู† ู‚ุจู„ ุงู„ ..
294
00:27:18,270 --> 00:27:21,690
ู‚ุจู„ .. ููŠ ุงู„ neighborhood ู‚ุจู„ ุงู„ู†ู‚ุทุฉ ุงู„ X note ู…ู†
295
00:27:21,690 --> 00:27:26,990
ู…ูˆุฌุจ ุฅู„ู‰ ุณุงู„ุจ ุจูŠุตูŠุฑ maximum ู…ู† ุณุงู„ุจ ุฅู„ู‰ ู…ูˆุฌุจ ุจูŠุตูŠุฑ
296
00:27:26,990 --> 00:27:34,400
ู…ูˆุฌุจ ุจูŠุตูŠุฑ minimum ุงู„ุขู†ุฃุญู†ุง ู„ุฌูŠู†ุง relative minimum
297
00:27:34,400 --> 00:27:38,800
ุฃูˆ absolute minimum ู„ูƒู† ููŠ ุงู„ู†ู‚ุงุท ู…ู† ู†ุงู‚ุต ุฐู„ุช
298
00:27:38,800 --> 00:27:44,180
ุงู„ุนูŠู† ุฏู„ุช ู‡ุงูŠู† ุงุฎุชุงุฑุชู„ูƒ ู‡ู†ุง ูˆู‡ู†ุง ุฌุงู† ุจุนุถ ูˆ ุฌุฑุจ
299
00:27:44,180 --> 00:27:48,650
ูƒู…ุงู† ุจู„ุง ุฌูŠู„ูƒ ูƒู…ุงู† ุงู„ู„ูŠ ู‡ูˆ ุจุญูŠุซ ุงู†ู‡ุง ุชูƒูˆู† ู…ูˆุฌุจุฉูˆ
300
00:27:48,650 --> 00:27:53,050
ุณุงู„ุจุฉ ูˆ ู…ูˆุฌุจุฉ ูˆ ุณุงู„ุจุฉ ูŠุนู†ูŠ ูุด derivative ู‡ู†ุง ุชูƒูˆู†
301
00:27:53,050 --> 00:27:57,690
ู…ูˆุฌุจุฉ ูƒู„ู‡ุง ูˆ ู‡ู†ุง ุณุงู„ุจุฉ ูƒู„ู‡ุง ุนุดุงู† ุชุญูƒู… max .. ุชู‚ูˆู„
302
00:27:57,690 --> 00:28:01,190
ุงู„ู„ูŠ ู‡ูˆ .. ุงู„ู„ูŠ ู‡ูŠ ุงู„ .. ูˆ .. ูˆ .. ูˆ ูู‚ุท ุงู„ู„ูŠ ู‡ูŠ
303
00:28:01,190 --> 00:28:04,750
ุงู„ converse in and the converse need not to be
304
00:28:04,750 --> 00:28:09,990
true in general ูˆุงุถุญุŸ ููŠ ุงู„ุฌูˆุงุฑูŠู†
305
00:28:09,990 --> 00:28:14,830
.. ู‡ุฐุง .. ู‡ุฐุง ู…ู† ู‡ู†ุง .. ู…ู† ู‡ู†ุง ู„ุนูŠู† ุฏู„ู‡ุง ูุด ุฅุดุงุฑุฉ
306
00:28:14,830 --> 00:28:19,040
ูˆุงุญุฏุฉ ูˆ ู…ู† ู‡ู†ุง ู„ุนูŠู† ุฏู„ู‡ุง ูุด ุฅุดุงุฑุฉ ูˆุงุญุฏุฉุฅุฐุง the
307
00:28:19,040 --> 00:28:22,320
converse need not to be true in general ูˆุงุถุญ ูˆ
308
00:28:22,320 --> 00:28:30,400
ุงู„ู„ู‡ ูˆุงุถุญ ูˆ ุฃุนูŠุฏ ูˆุงุถุญ ูŠุง ู…ุญู…ุฏ ุงู‡ ุทูŠุจ ุงู„ู„ูŠ ุจุนุฏู‡
309
00:28:30,400 --> 00:28:34,120
ุจุฑุถู‡ ููŠ ุงู„ .. ููŠ ุงู„ .. ููŠ ุงู„ .. ููŠ ุงู„ู…ุซุงู„ ุงุฑุฌุนู„ูŠ
310
00:28:34,120 --> 00:28:38,700
ู„ู„ูƒุชุงุจ ุนุดุงู† ุฃู‚ูˆู„ูƒ ู‡ุฐุง ุจุฑุถู‡ ุจุฎุฏู…ูŠู† ุงู„ุณุคุงู„ ู‚ุจู„ู‡ุง
311
00:28:38,700 --> 00:28:42,160
ุงู†ุฒู„ ุงุทู„ุน ู‚ุจู„ ุงู„ู†ุธุฑูŠุฉ ู‚ุจู„ ุงู„ู†ุธุฑูŠุฉ ู‚ุจู„ ุงู„ู†ุธุฑูŠุฉ ููŠ
312
00:28:42,160 --> 00:28:45,520
ุนู†ุฏูŠ ู…ุซุงู„ ู‡ูŠูˆ ุงูˆ ู„ุง .. ุงูŠูˆ ุงู„ remark ุงู„ remark
313
00:28:45,520 --> 00:28:52,760
ุฃูŠูˆุฉ ุงุทู„ุน ุงู„ remark ู‡ุฐู‡ุงู„ุงู† ุงุฐุง ุจุชุชุฐูƒุฑูˆุง ุณุคุงู„ ุนุดุฑ
314
00:28:52,760 --> 00:28:55,260
ุงู„ู„ูŠ ุจู†ุงุญูƒูŠู‡ุง ุงู„ุฌุฏ ุญูƒูŠู‡ุง ุงู† ุงุญู†ุง ู‚ูˆู„ู†ุง it is
315
00:28:55,260 --> 00:28:59,420
reasonable to define a function to be increasing
316
00:28:59,420 --> 00:29:04,170
at a pointุฅุฐุง ูƒุงู†ุช ู‡ู†ุงูƒ ู…ู‚ุงุฑู†ุฉ ู„ู„ู…ู‚ุงุฑู†ุฉ ููŠ
317
00:29:04,170 --> 00:29:13,750
ุงู„ู…ู‚ุงุฑู†ุฉ ุงู„ู„ูŠ ุญูˆุงู„ู‡ุงุŒ ุฅุฐุง
318
00:29:13,750 --> 00:29:18,810
ูƒุงู†ุช ู‡ู†ุงูƒ ู…ู‚ุงุฑู†ุฉ ููŠ ุงู„ู…ู‚ุงุฑู†ุฉ ุงู„ู„ูŠ ุญูˆุงู„ู‡ุงุŒ ุฅุฐุง ูƒุงู†ุช
319
00:29:18,810 --> 00:29:19,510
ู‡ู†ุงูƒ ู…ู‚ุงุฑู†ุฉ ููŠ ุงู„ู…ู‚ุงุฑู†ุฉ ุงู„ู„ูŠ ุญูˆุงู„ู‡ุงุŒ
320
00:29:22,640 --> 00:29:27,460
ู…ู† ุงู„ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ุงู„ู€ derivative ุตุญูŠุญ ุจุดูƒู„ ุตุญูŠุญ ููŠ
321
00:29:27,460 --> 00:29:35,840
ู†ู‚ุทุฉ ูุงู„ุนู…ู„ ูŠุฒูŠุฏ ููŠ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ูˆู„ูƒู† ู‡ุฐุง ุงู„ูˆุถุน ุบูŠุฑ
322
00:29:35,840 --> 00:29:40,960
ุตุญูŠุญ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅูŠุด ู…ุงู„ู‡ ู„ูŠุณ ุดุฑุท ุงู†ู‡ ุตุญูŠุญ ุงู†ู‡
323
00:29:40,960 --> 00:29:44,500
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ู†ู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ derivative ุตุญูŠุญ ุจุดูƒู„
324
00:29:44,500 --> 00:29:49,220
ุตุญูŠุญ ู„ูƒู† ู…ุงููŠุด .. ู…ุงู‚ุฏุฑุด ู†ู‚ูˆู„ ุนู†ู‡ุง ุฅูŠุด ู…ุงู„ู‡ุง is
325
00:29:49,220 --> 00:29:53,460
increasing at this pointู‡ุฐุง ููŠ ุงู„ู€ Interval ุตุญูŠุญ
326
00:29:53,460 --> 00:29:57,020
ู„ูƒู† ููŠ ุงู„ู€ Point ุฅูŠุด ู…ุงู„ู‡ need not to be true in
327
00:29:57,020 --> 00:30:01,860
general ูˆู‡ูŠ ู…ุซุงู„ G of X ู‡ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ุจุญูŠุซ ุงู†ู‡ G'
328
00:30:02,240 --> 00:30:07,940
ู„ู„ู€ 0 ุจุณุงูˆูŠ 1 ู„ูƒู† ุงู„ู€ G is not increasing in any
329
00:30:07,940 --> 00:30:14,260
neighbourhood ุญูˆุงู„ูŠู† ู…ูŠู† ุงู„ุตูุฑุŒ ู‡ุฐุง ู…ุซุงู„ ุนู„ู‰ G' of
330
00:30:14,260 --> 00:30:20,200
0 ุจุณุงูˆูŠ 1 ุงู„ู„ูŠ ู‡ูˆ strictly ุฃูƒุจุฑ ู…ู† 0 butุงู„ู„ูŠ ู‡ูˆ ููŠ
331
00:30:20,200 --> 00:30:24,940
ู‡ุฐุง ุงู„ .. ุนู†ุฏ ู‡ุฐุง ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ุฌูˆุงุฑ ุชุจุนู‡ุง
332
00:30:24,940 --> 00:30:30,260
ู„ุง ูŠู…ูƒู† ุงู†ู‡ุง ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ increasing ููŠ ุฃูŠ ุฌูˆุงุฑ
333
00:30:30,260 --> 00:30:35,610
ุญูˆุงู„ูŠู‡ุงู‡ุฐุง ู…ุซู„ู†ุง ูŠู„ู‘ุง ุฎู„ู‘ูŠู†ูŠ ู†ุญู„ ุงู„ุณุคุงู„ ุงู„ุงู† ู‡ุงูŠ
334
00:30:35,610 --> 00:30:40,090
ุณุคุงู„ู†ุง let g ู…ู† R ู„R be defined by g of X ุจูŠุณุงูˆูŠ X
335
00:30:40,090 --> 00:30:44,410
ุฒูŠ 2 X ุซุงู†ูˆูŠุฉ ุตูŠู† ูˆุงุญุฏุฉ ู„ X for X ุชุชุณุงูˆูŠ ุณูุฑ and g
336
00:30:44,410 --> 00:30:47,550
of 0 ุจูŠุณุงูˆูŠ 0 show that g prime of 0 ุงูŠุด ุจูŠุณุงูˆูŠ
337
00:30:47,550 --> 00:30:53,030
ูˆุงุญุฏ but in every neighborhoodof zero, the
338
00:30:53,030 --> 00:30:57,430
derivative g prime takes on both positive and
339
00:30:57,430 --> 00:31:01,710
negative values. Thus, g is not monotonic in any
340
00:31:01,710 --> 00:31:05,830
neighborhood. ู‡ู†ู„ุงู‚ูŠ ููŠ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ุŒ ูˆูŠู† ู…ุง ูƒุงู†ุŒ
341
00:31:05,830 --> 00:31:13,210
ู‡ู†ู„ุงู‚ูŠ ุงู„ู€ g prime ุงู„ู„ูŠ ู‡ูŠุฃูƒุจุฑ ู…ู† ุณูุฑ ูˆุฃุตุบุฑ ู…ู† ุณูุฑ
342
00:31:13,210 --> 00:31:18,410
ูŠุนู†ูŠ ู…ุด ู‡ู†ู„ุงู‚ูŠ ููŠ ุฃูŠ neighborhood ุฃู† ุงู„ู€ G' ุฃูƒุจุฑ
343
00:31:18,410 --> 00:31:25,410
ู…ู† ุณูุฑ ู„ุญุงู„ู‡ุง ุฃูˆ ุงู„ู€ G' ู„ู„ู€ X ู‡ูŠ ุฃูƒุจุฑ ู…ู† ุญุงู„ู‡ุง ุฃูˆ
344
00:31:25,410 --> 00:31:33,910
ุฃุตุบุฑ ู…ู† ุญุงู„ู‡ุง ููŠ ูƒู„ .. ู…ู† ุณูุฑ ููŠ ูƒู„ ุงู„ุฌูˆุงุฑG' ู…ุด
345
00:31:33,910 --> 00:31:38,930
ู‡ุชูƒูˆู† ุฃุตุบุฑ ู…ู† ุณูุฑ ููŠ ูƒู„ ุงู„ุฌูˆุงุฑ ูˆู„ุง ุฃูƒุจุฑ ู…ู† ุณูุฑ ููŠ
346
00:31:38,930 --> 00:31:46,630
ูƒู„ ุงู„ุฌูˆุงุฑ ู‡ู†ู„ุงู‚ูŠ ุฅู„ู‡ุง ู…ุชุฐุจุฐุจุฉ ููŠ ุงู„ุฅุดุงุฑุฉ ูƒูŠูุŸ
347
00:31:48,510 --> 00:31:54,930
ุงู„ุญู„ ุดุจู‡ู‡ ุตุญูŠุญ ุงู„ุญู„ ุดุจู‡ู‡ ุจุณ ู‡ุฐุง ุงู„ุงู† ู…ูˆุธู ู„ู…ูŠู† ู„ุง
348
00:31:54,930 --> 00:31:58,990
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู‡ูˆ counter example ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„
349
00:31:58,990 --> 00:32:02,630
remark ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆุฏู‡ counter example ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ
350
00:32:02,630 --> 00:32:08,010
ุงู„ู†ุธุฑูŠุฉ ู‡ุฐูƒ ุจูˆุถุญ ุงู† ุงู„ theorem need not to be true
351
00:32:08,010 --> 00:32:12,170
in general ูˆู‡ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุจูˆุถุญ ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„
352
00:32:12,170 --> 00:32:18,000
strictly increasing ุนู†ุฏ ู†ู‚ุทุฉู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ
353
00:32:18,000 --> 00:32:18,380
.. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ ..
354
00:32:18,380 --> 00:32:18,540
ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ
355
00:32:18,540 --> 00:32:19,120
.. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ ..
356
00:32:19,120 --> 00:32:19,800
ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ
357
00:32:19,800 --> 00:32:26,540
.. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ
358
00:32:26,540 --> 00:32:29,660
..
359
00:32:29,660 --> 00:32:31,300
ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ
360
00:32:31,300 --> 00:32:31,300
.. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ ..
361
00:32:31,300 --> 00:32:32,100
ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ .. ู„ุฃ
362
00:32:32,100 --> 00:32:39,020
.. ู„ุฃ .. ู„ุฃ
363
00:32:39,020 --> 00:32:46,020
.. ู„ุฃุฃูŠุด ุจุนู…ู„ ู‚ุงุนุฏ ุจุฏูŠ ุฃุญุงูˆู„ ุฃุซุจุช ุงู†ู‡ g prime of 0
364
00:32:46,020 --> 00:32:51,600
ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ู‡ุงูŠ ุงู„ุชุนุฑูŠู ู‡ุงูŠ ุนู†ุฏู‡ y ุณุงูˆูŠ
365
00:32:51,600 --> 00:32:55,180
ุฌุณู…ู†ุง ุนู„ูŠู‡ ุจูŠุตูŠุฑ ูˆุงุญุฏ ุฒุงุฏ ุงุชู†ูŠู† limit x sin ูˆุงุญุฏ
366
00:32:55,180 --> 00:33:00,380
ุนู„ู‰ x ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงูŠู‡ ุดู…ุงู„ู‡ุŸุจุณุงูˆุฉ ุตูุฑ ู„ุฃู† ุงู„ู€
367
00:33:00,380 --> 00:33:03,720
absolute value ู„ู„ู€ X ุตูŠู† ูˆุงุญุฏ ุนู„ู‰ X ุฃูƒุจุฑ ุจุณุงูˆุฉ ุตูุฑ
368
00:33:03,720 --> 00:33:07,740
ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ absolute value ู„ู„ู€ X ุงู„ู„ูŠ ู‡ูˆ
369
00:33:07,740 --> 00:33:11,020
by Sandwich theorem ุงู„ู„ูŠ ู‡ูˆ ุงู„ limit ู‡ุฐุง ุฅูŠุด ุจุณุงูˆุฉ
370
00:33:11,020 --> 00:33:15,040
ุตูุฑ ุฅุฐุง ุงู„ limit ุนู„ู‰ ุจุนุถ ูˆ ูƒู„ู‡ ุฅูŠุด ุจุณุงูˆุฉ ูˆุงุญุฏ ุฅุฐุง
371
00:33:15,040 --> 00:33:17,740
D prime of zero ุจุณุงูˆุฉ ูˆุงุญุฏ ุงุทู„ุน ู„ููˆู‚
372
00:33:20,460 --> 00:33:26,260
ุนู†ุฏูŠ for x ุชุชุณุงูˆู‰ 0 ุงู„ู€ g prime ุณู‡ู„ ุฃู† ุงู†ุง ุงุฌุฏู‡ุง
373
00:33:26,260 --> 00:33:30,300
ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุฒุงุฆุฏ ุชูุงุถู„ ู‚ุงุนุฏ ุงุฑุจุน x sin ูˆุงุญุฏ ุนู„ู‰
374
00:33:30,300 --> 00:33:34,080
x ู†ุงู‚ุต ุงุชู†ูŠู† cosine ูˆุงุญุฏ ุนู„ู‰ x ู„ุงู† ุจุงู„ุธุจุท as above
375
00:33:34,080 --> 00:33:37,520
for any neighborhood ุฒูŠ ุงู„ู„ูŠ ุญูƒูŠู†ุง ู‚ุจู„ ุดูˆูŠุฉ for
376
00:33:37,520 --> 00:33:43,340
any neighborhood ู†ุงู‚ุต ุฏู„ุชุง ูˆุฏู„ุชุง ุญูˆู„ ุงู„ุตูุฑ ุจู‚ุฏุฑ
377
00:33:43,340 --> 00:33:49,200
ุงู„ุงู‚ูŠ ุงุฏ ุงูƒุจุฑ ุณูˆุงุก ูˆุงุญุฏ ุจุญูŠุซ ุงู†ู‡ู‡ุฐุง ูˆู‡ุฐุง ูŠูƒูˆู† ููŠ
378
00:33:49,200 --> 00:33:54,160
ุงู„ุฌูˆุงุฑ ู„ูƒู† ุฌูŠ ุจุฑุงูŠู… ุนู†ุฏ ุงู„ุฃูˆู„ู‰ ุฃุตุบุฑ ู…ู† ุณูุฑ ูˆุฌูŠ
379
00:33:54,160 --> 00:33:58,480
ุจุฑุงูŠู… ุนู†ุฏ ุงู„ุซุงู†ูŠุฉ ุฃุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ุณูุฑ ุจุญุณุงุจุงุช
380
00:33:58,480 --> 00:34:01,580
ู…ุดุงุจู‡ุฉ ุฃูŠ ุณุคุงู„ุŸ
381
00:34:05,050 --> 00:34:09,570
ุทูŠุจ ู†ูŠุฌูŠ ู„ุณุคุงู„ 12 ุณุคุงู„ 12 ุจูŠู‚ูˆู„ ุฅุฐุง ูƒุงู†ุช h of x
382
00:34:09,570 --> 00:34:13,590
ุจูŠุณุงูˆูŠ 0 ุฅุฐุง ูƒุงู†ุช x ุฃุตุบุฑ ู…ู† 0 ูˆ 1 ุฅุฐุง ูƒุงู†ุช x ุฃูƒุจุฑ
383
00:34:13,590 --> 00:34:16,650
ุจูŠุณุงูˆูŠ 0 prove that there does not exist a
384
00:34:16,650 --> 00:34:21,310
function f ู…ู† R ู„R such that f prime of x ุฃุดู…ุงู„ู‡ุง
385
00:34:21,310 --> 00:34:26,190
ุจูŠุณุงูˆูŠ h of x ู‡ุฐุง ุญู„ู†ุง ุฒูŠู‡ ุจุฑุถู‡ ุงู„ู„ูŠ ู‡ูˆ ุฏุฑุงุจูˆูƒุณ
386
00:34:26,190 --> 00:34:29,270
theorem using ุงูŠุด ุฏุฑุงุจูˆูƒุณ theorem ุงูŠุด ุจู†ู‚ูˆู„
387
00:34:29,270 --> 00:34:37,360
suppose notู…ุธุจูˆุท ุตุจู‘ู‚ ุงู„ุงู† ู‡ูŠ ุนู†ุฏ H of X ู‡ูŠู‡ุงุจู‚ูˆู„
388
00:34:37,360 --> 00:34:42,920
ู„ุฃุซุจุช ุฃู†ู‡ ููŠุด ูˆู„ุง function F ู„ูˆ ูุถู„ู†ุงู‡ุง ุจุชุทู„ุน ู…ูŠู†ุŸ
389
00:34:42,920 --> 00:34:46,540
H of X ุจุฏู†ุง ู†ูุชุฑุถ ุงู„ุนูƒุณุŒ ู†ูุชุฑุถ ุฃู†ู‡ ููŠ function
390
00:34:46,540 --> 00:34:51,260
ุงุณู…ู‡ุง F ุจุญูŠุซ ุฃู† F' ุฅูŠุด ุจุชุณุงูˆูŠ H ุตุงุฑุช H ู†ูุณู‡ุง
391
00:34:51,260 --> 00:34:54,400
differentiableุŒ ู…ุงุดูŠ ุขุณูุŒ F ุฅูŠุด ู…ุง ู„ุงุŸ
392
00:34:54,400 --> 00:34:57,880
differentiableุŒ ู…ุธุจูˆุทุŸ ู…ุฏุงู… F differentiableุŒ ุฅุฐุง
393
00:34:57,880 --> 00:35:03,120
by ู…ูŠู†ุŸ By Daraboux's theorem ุงู„ู„ูŠ ู‡ูˆ there existูˆ
394
00:35:03,120 --> 00:35:07,640
ุทุจุนุง ูˆ ุงุญู†ุง ุนุงุฑููŠู† ุงู„ู†ุต ุจูŠู† ู…ูŠู†ุŸ ุจูŠู† ุงู„ู€ 0 ูˆ ุงู„ู€ 1
395
00:35:07,640 --> 00:35:12,880
ุงุฐุง by Daraboux's theorem there exist ุงู„ู„ูŠ ู‡ูˆ ..
396
00:35:12,880 --> 00:35:19,840
ุงู„ู„ูŠ ู‡ูŠ C ุจูŠู† ุงู„ู€ X1 ูˆ X2 ุจุญูŠุซ ุงู†ู‡ G of C ุจุณูˆุก ุฃูู‡
397
00:35:19,840 --> 00:35:24,940
prime of C ูˆ ูŠุณูˆู‰ ู†ุต which is impossible ุฃุณุฑุนุช
398
00:35:24,940 --> 00:35:32,940
ุนู„ูŠูƒู…ุŒ ู…ุธุจูˆุทุŸ ุงู„ุขู† ูŠุง ุฌู…ุงุนุฉุจุฏูŠ ุงูุชุฑุถ ุงู† ุงู„ุนูƒุณ ุตุญูŠุญ
399
00:35:32,940 --> 00:35:37,880
ูŠุนู†ูŠ ุจุฏูŠ ุงูุชุฑุถ ุงู† F ู…ู† R ู„ R ุจุญูŠุซ ุงู† F prime of X
400
00:35:37,880 --> 00:35:42,740
ุงูŠุด ุจุชุณุงูˆูŠุŸ X ู„ูƒู„ X element in R ู…ุงุดูŠ ุงู„ุญุงู„ ุงุชูุฌู†
401
00:35:42,740 --> 00:35:47,840
ุงู„ู‡ู† ุงุฐุง F ู†ูุณู‡ุง ุจู†ุงุก ุนู„ู‰ ู‡ุฐุง ุงู„ุญุฏูŠุซ F is
402
00:35:47,840 --> 00:35:52,340
differentiable ุนู„ู‰ Rู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ุฃุฎุฑู‰ ู„ุงุญุธ ุฅู† ุงู„ู†ุต
403
00:35:52,340 --> 00:35:55,160
ุจูŠู† ุงู„ู€ 0 ูˆุงู„ู€ 1ุŒ ู…ูŠู† ู‡ูˆ ุงู„ู€ 0 ูˆุงู„ู€ 1ุŸ ุงู„ู€ 0 ูˆุงู„ู€
404
00:35:55,160 --> 00:35:58,060
1 ู‡ูŠ ู‚ูŠู… ุงู„ู€ function ู‡ุฐู‡ ุงู„ู„ูŠ ุจุญูƒูŠ ุนู†ู‡ุงุŒ ูŠุนู†ูŠ ุงู„ู€
405
00:35:58,060 --> 00:36:03,840
0 ูˆุงู„ู€ 1 ู‡ุชูƒูˆู† ุงู„ู€ 0 ุนุจุงุฑุฉ ุนู† ุฃุดูˆู X1 ูˆ ุงู„ู€ A1
406
00:36:03,840 --> 00:36:09,390
ุฃุดูˆู X2ุŒ ู…ูŠู† X1 ูˆ X2ุŸ ุงุฎุชุฑุช ุงู„ู€ X1 ุฃุตุบุฑ ู…ู† 0ุŸูˆ X2
407
00:36:09,390 --> 00:36:13,690
ุฃูƒุจุฑ ู…ู† 0 ุตุงุฑ ุนู†ุฏ ู†ู‚ุทูŠู† X1 ูˆ X2 ูˆุงุญุฏ ุฃุตุบุฑ ู…ู† 0
408
00:36:13,690 --> 00:36:18,030
ูˆุงุญุฏ ุฃูƒุจุฑ ู…ู† 0 ูŠุนู†ูŠ ุงู„ุชู…ุชูŠู† ุนู…ู„ูŠู† ู„ูุชุฑุฉ ุฅุฐุง ุตุงุฑ
409
00:36:18,030 --> 00:36:24,870
ุนู†ุฏ ู†ุต ููŠ ุงู„ูุชุฑุฉ ุจูŠู† 0 ูˆ 1 ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุจูŠู† H
410
00:36:24,870 --> 00:36:31,520
of X1 ูˆ H of X2 ู„ูƒู† H of X1 ูˆ H of X2 ู…ู† ู‡ู…ุŸF' of
411
00:36:31,520 --> 00:36:36,900
X1 ูˆ F' of X2 ุฅุฐุง ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุฏุฑุงุจูˆูƒุณ theorem
412
00:36:36,900 --> 00:36:41,260
ู…ุญู‚ู‚ุฉ F is differentiable ูˆ ู†ุต ุชู†ุชู…ูŠ ู„ู„ูุชุฑุฉ ุจูŠู‡
413
00:36:41,260 --> 00:36:47,340
ุงู„ู„ูŠ ู‡ูŠ F' of X1 ูˆ F' of X2 of X2 ุฅุฐุง ุญุณุจ ุงู„ู„ูŠ ู‡ูŠ
414
00:36:47,340 --> 00:36:51,340
ุฏุฑุงุจูˆูƒุณ theorem ุฃูŠ ุญุงุฌุฉ ุจูŠู†ู‡ู… ู„ุงุฒู… ูŠูƒูˆู† ู„ู‡ุง ุฃุตู„
415
00:36:51,340 --> 00:36:57,190
ุฅุฐุง there exists CุจูŠู† ุงู„ู€ x1 ูˆ ุงู„ู€ x2 ุจุญูŠุซ ุฃู†ู‡
416
00:36:57,190 --> 00:37:02,450
ุงู„ู„ูŠ ู‡ูˆ f prime ู„ู„ู€ c ู‡ุฐู‡ ุงู„ู„ูŠ ุงู„ู„ูŠ ุฌุงุชู‡ุง ุจูŠู† x1 ูˆ
417
00:37:02,450 --> 00:37:08,770
x2 ู‡ูŠ ู…ูŠู† ุงู„ู†ุต ูŠุนู†ูŠ ุฒูŠ ุจู…ุณุญ ูƒู„ ุงู„ู‚ูŠู… ุงู„ู„ูŠ ุจูŠู† f of
418
00:37:08,770 --> 00:37:13,080
x1 ูˆ f of x2 ู…ุด ู‡ูŠูƒ ุชุฏุฑุจุช ููŠ ุชุณุชูŠุฑูˆู† ุจุชู‚ูˆู„ุฅุฐุง ุตุงุฑุช
419
00:37:13,080 --> 00:37:17,460
ุนูŠุฏูŠ ููŠ c ุจูŠู† ู‡ุฐู‡ ูˆ ู‡ุฐู‡ ุจุญูŠุซ ุฃู† f prime of c ุจุณุงูˆุฉ
420
00:37:17,460 --> 00:37:21,480
ู†ุต ูŠุนู†ูŠ g of c ุจุณุงูˆุฉ ู†ุต ุทุจ ู‡ุฐุง ู…ุณุชุญูŠู„ ู„ุฃู† ุงุตู„ุง g
421
00:37:21,480 --> 00:37:25,100
.. h ุทุจุนุง ู‡ุฐุง ู…ุด g .. h of c .. ู‡ุฐุง ู…ุณุชุญูŠู„ ู„ูŠุด
422
00:37:25,100 --> 00:37:28,760
ู…ุณุชุญูŠู„ุŸ ู„ุฃู† h ุฃุตู„ุง ู…ุงุชุงุฎุฏุด ุฑู‚ู… ุชุงู†ูŠุŒ ูŠุง ุณูุฑ ูŠุง
423
00:37:28,760 --> 00:37:32,020
ูˆุงุญุฏ ุฅุฐุง contradictionุŒ ู…ุฏุงู… contradiction ุฅุฐุง
424
00:37:32,020 --> 00:37:37,940
there is no function f ู…ู† R ู„R ุจุญูŠุซ ุฃู† f prime of
425
00:37:37,940 --> 00:37:41,080
x ุจุณุงูˆุฉ f of x for every x
426
00:37:45,230 --> 00:38:01,830
ููŠ ุถุงูŠู‚ ุณุคุงู„ูŠู† ุฎู„ู†ุง ู†ู…ุฑ ุนู„ูŠู‡ู… ู‡ุฐุง
427
00:38:01,830 --> 00:38:06,130
ุญู„ู†ุง ุฒูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ let I be an interval and let F
428
00:38:06,130 --> 00:38:11,110
ู…ู† I ู„R be differentiable on I ู…ูุชุฑุถูŠู† ุฃู† F ุนุจุงุฑุฉ
429
00:38:11,110 --> 00:38:16,000
ุนู† ุงู„ู„ูŠ ู‡ูˆ differentiable function ุนู„ู‰an interval
430
00:38:16,000 --> 00:38:19,820
I ูˆู‚ูˆู„ ู„ูŠ show that ุฅุฐุง ูƒุงู†ุช F prime is positive
431
00:38:19,820 --> 00:38:25,000
on I ู„ูˆ F prime ุฃูƒุจุฑ ู…ู† 0 ุนู„ู‰ I ู‡ุชูƒูˆู† ุงู„ F ุฃุดู…ุงู„ู‡ุง
432
00:38:25,000 --> 00:38:29,800
strictly increasing on I ุทุจุนุง ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ ุงู„ุณุฑูŠุน
433
00:38:29,800 --> 00:38:34,940
ู„ู†ูุชุฑุถ F prime ุฃูƒุจุฑ ู…ู† 0 ู„ูƒู„ X element on I ู…ุงุดูŠ
434
00:38:34,940 --> 00:38:41,240
ู‡ูˆ ู†ูุณู‡ุŸ ุฎู„ุงุต ุงู„ู„ูŠ ุจุฏู‡ ุงู„ุณุคุงู„ ู…ูˆุฌูˆุฏ ููŠ ุงู„ุดุฑูŠุญ ุงู„ู„ูŠ
435
00:38:41,240 --> 00:38:44,300
ู‡ูˆ ุงู„ main value theorem ุงุชุจูƒู‘ู„ ุงู„ู„ู‡ ุฎู„ูŠู†ูŠ ุฃู‚ูˆู„ู‡
436
00:38:44,300 --> 00:38:50,490
ุนู†ู‡ุงู„ุฃู† let I be an interval and let F ู…ู† I ู„ุนู†ุฏ R
437
00:38:50,490 --> 00:38:55,050
ุณูˆุงุก ุงู„ู€14 ุจูŠู‡ differentiable on I show that if
438
00:38:55,050 --> 00:38:59,210
the derivative F' is never zero on I ูŠุนู†ูŠ ุฅุฐุง ูƒุงู†ุช
439
00:38:59,210 --> 00:39:04,230
F' ุฃูƒุจุฑ ู…ู† ุณูุฑ ุงู„ู„ูŠ ู‡ูŠ ุชุณูˆู‰ ุณูุฑ on I then either
440
00:39:04,230 --> 00:39:08,430
F' ุฃูƒุจุฑ ู…ู† ุณูุฑ for all X limited on I ุฃูˆ F' ุฃุตุบุฑ
441
00:39:08,430 --> 00:39:13,480
ู…ู† ุณูุฑ ู„ูƒู„ XA ุฌู…ุงู„ู‡ุงูŠุนู†ูŠ ุจูŠู‚ูˆู„ู‘ูŠ ุฅุฐุง ูƒุงู†ุช ุงู„ F
442
00:39:13,480 --> 00:39:17,760
differentiable ุนู„ู‰ ุงู„ interval I ูˆูƒุงู†ุช ุงู„ F'
443
00:39:18,160 --> 00:39:23,240
ุจุชุณูˆูŠุด 0 ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุงู„ F' ูŠุง ู‡ุชูƒูˆู† ูƒู„ู‡ุง ู…ูˆุฌุฉ
444
00:39:23,240 --> 00:39:28,940
ุนู„ู‰ ุงู„ I ูŠุง ูƒู„ู‡ุง ุณุงู„ุจ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ I ู…ุฏุงู…ุช ู…ุบูŠุฑุชุด
445
00:39:28,940 --> 00:39:32,760
ุดุฑุทู‡ุง ุจุงู„ู…ุฑุฉ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ูŠุนู†ูŠ ู…ุด ู‡ุชุบูŠุฑ ุดุฑุทู‡ุง
446
00:39:32,760 --> 00:39:38,260
ุจุงู„ู…ุฑุฉ ู…ุฏุงู…ุช ุงู„ F' ู…ุด 0 ุนู„ู‰ ุงู„ูุชุฑุฉ ุฅุฐุง ุฅุดุงุฑุชู‡ุง
447
00:39:38,260 --> 00:39:43,650
ูˆุงุญุฏุฉูŠุง F ุฃูƒุจุฑ ู…ู† 0ุŒ ูŠุง F ุฃูƒุจุฑ ู…ู† .. ุฃุตุบุฑ ู…ู† 0ุŒ
448
00:39:43,650 --> 00:39:47,070
ู‡ุฏุง ููŠ ุถูˆุก ุฃู† F is differentiableุŒ ุจุฏู†ุง ู†ูุชุฑุถ
449
00:39:47,070 --> 00:39:51,170
ุงู„ุนูƒุณ ูˆู†ุตู„ ู„contradictionุŒ suppose on the contrary
450
00:39:51,170 --> 00:39:56,290
ู†ูุชุฑุถ ุฃู† F prime of X ุฃูƒุจุฑ ู…ู† 0 ู„ู†ู‚ุงุช .. ู„ุจุนุถ
451
00:39:56,290 --> 00:40:00,390
ุงู„ู†ู‚ุงุช ููŠ IุŒ ูˆ F prime of X ุฃูƒุจุฑ ู…ู† .. ุฃุตุบุฑ ู…ู† 0
452
00:40:00,390 --> 00:40:04,660
ู„ุจุนุถ ุงู„ู†ู‚ุงุช ููŠ IุŒ ูŠุนู†ูŠ ู…ุฎู„ูˆุทุฉูˆุจุฏู‘ุง ู†ุตู„ู‘ู…ูŠู† ู„
453
00:40:04,660 --> 00:40:08,640
contradiction ุทูŠุจ then there exist a ูˆ b element
454
00:40:08,640 --> 00:40:12,220
in I such that ุฃู ุจุฑุงูŠู… of a ุฃุดู…ุงู„ู‡ ุฃูƒุจุฑ ู…ู† ุณูุฑ ูˆ
455
00:40:12,220 --> 00:40:15,520
ุฃู ุจุฑุงูŠู… ุจูŠ ุฃุตุบุฑ ู…ู† ุณูุฑ ู„ุฅู† ุฃู†ุง ู…ูุชุฑุถ ุงู„ุขู† ุงูุชุฑุถุช
456
00:40:15,520 --> 00:40:18,200
ุฃู†ู‡ ููŠ ู†ู‚ุงุท ุงู„ู„ูŠ ู‡ูŠ ุฃูƒุจุฑ ู…ู† ุณูุฑ ุนู†ุฏู‡ุง ุงู„
457
00:40:18,200 --> 00:40:20,940
derivative ูˆููŠ ู†ู‚ุงุท ุฃุตุบุฑ ู…ู† ุณูุฑ ุนู†ุฏู‡ุง ุงู„
458
00:40:20,940 --> 00:40:25,040
derivative ู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ุจู†ู„ุงู‚ูŠ a ูˆ b ุจุงู„ุญู‚ู‚ ู‡ุฐู‡
459
00:40:25,490 --> 00:40:28,710
ุงู„ุงู† ุงูƒูŠุฏ ู…ุฏุงู… ู‡ุฐุง ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆู‡ุฐุง ุฃุตุบุฑ ู…ู† ุตูุฑุŒ
460
00:40:28,710 --> 00:40:32,910
ุฅุฐุง ุงู„ุตูุฑ ุจูŠู† ุงู„ู€F'A ูˆุงู„ู€F'B ู„ุฃู†ู‡ุง ูˆุงุญุฏุฉ ู…ูˆุฌุฉ
461
00:40:32,910 --> 00:40:36,850
ุจูˆุงุญุฏุฉ ู…ูŠู†ุŒ ู…ุฏุงู… ุงู„ุตูุฑ ุจูŠู†ู‡ู…ุŒ ุฅุฐุง ุญุณุจ Darabowski's
462
00:40:36,850 --> 00:40:40,990
theoremุŒ ู‡ูŠ ุจุชู…ุณุญ ูƒู„ ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ุจูŠู† ุงู„ุตูˆุฑุŒ ู„ุงุฒู…
463
00:40:40,990 --> 00:40:45,570
ูƒู„ู‡ุง ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ ุฃุตูˆู„ุฅุฐู† by Daraboux's theorem
464
00:40:45,570 --> 00:40:49,430
there exists c element in I such that f prime of c
465
00:40:49,430 --> 00:40:52,970
ุจูŠุณุงูˆูŠ ุณูุฑ ูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจู†ุงู‚ุถ ุงู„ูุฑุถูŠุฉ ุงู„ู„ูŠ ุงุญู†ุง
466
00:40:52,970 --> 00:40:57,570
ูุฑุถู†ุงู‡ุง ุฃู† f prime ู„ุง ุชุณุงูˆูŠ ุณูุฑ ุนู„ู‰ ูƒู„ ุงู„ I ุฅุฐู† f
467
00:40:57,570 --> 00:41:01,730
prime ู„ุง ุชุณุงูˆูŠ ุณูุฑ ุนู„ู‰ ูƒู„ ุงู„ I ู…ุนู†ุงุชู‡ ูˆ
468
00:41:01,730 --> 00:41:05,670
differentiable ุทุจุนุง ู…ุนู†ุงุชู‡ ูŠุง ุฅู…ุง ูƒู„ู‡ู† ุงู„ f prime
469
00:41:05,670 --> 00:41:11,950
ูˆุฌุจุงุช ูŠุง ุฅู…ุง ูƒู„ู‡ู† ุฅูŠู‡ ุดู…ุงู„ู‡ู† ุณุงู„ุจุงุชูŠุนู†ูŠ ูŠุง
470
00:41:11,950 --> 00:41:15,710
increasing strictly increasing ูŠุง strictly ูŠุง
471
00:41:15,710 --> 00:41:23,230
ุดู…ุงู„ู‡ุง decreasing ู…ุงููŠุด ุฃูŠ ุชุบูŠูŠุฑ ู„ู„ุฑุณู… ูˆุงู„ุดุนุฑ ุทูŠุจ
472
00:41:23,230 --> 00:41:28,820
ู†ูŠุฌูŠ ู„ุขุฎุฑ ุงู„ุณุคุงู„ู„ุช I Be An Interval Prove That If
473
00:41:28,820 --> 00:41:32,980
F Is Differentiable On I And The Derivative Of F'
474
00:41:33,300 --> 00:41:37,820
Is Bounded On IุŒ Then F Satisfies Lipschitz
475
00:41:37,820 --> 00:41:43,920
Condition On IุŒ ู…ุงุดูŠ ุงู„ุญู„ุŒ ุจุชู‚ูˆู„ ู„ูŠุŒ ุจุชู‚ูˆู„ู„ูŠ
476
00:41:43,920 --> 00:41:48,460
ุงู„ุณุคุงู„ ู…ุง ูŠุนู†ูŠุŒ Lipschitz Condition
477
00:41:53,580 --> 00:41:58,020
ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ ุจู†ู‚ูˆู„ู‡ ุฅุฐุง ูƒุงู†ุช F
478
00:41:58,020 --> 00:42:10,320
differentiable on I ูˆ F' bounded on I ุงุซุจุช ุฅู† F
479
00:42:10,320 --> 00:42:15,680
satisfies Lipschitz conditions ู…ุงุดูŠุŸ ุฅูŠุด Lipschitz
480
00:42:15,680 --> 00:42:23,450
conditionุŸ ุฅู†ู‡ there exists K ุฃูƒุจุฑ ู…ู† 0 such thatF
481
00:42:23,450 --> 00:42:30,130
of X ู†ุงู‚ุต F of Y ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ู„ุจุณ ุงู„ูŠูˆุฏ ููŠู‡ุง ู„ X
482
00:42:30,130 --> 00:42:34,330
minus Y ููŠ ู…ูŠู†ุŸ ููŠ K ุงู„ู„ูŠ ูƒู†ุง ู†ู‚ูˆู„ ุนู†ู‡ุง ุนู„ู‰ ุทูˆู„
483
00:42:34,330 --> 00:42:40,630
ู‡ุฐูŠ ุจุชุนุทูŠ ุฅูŠุด ู…ุง ู„ู‡ุง uniformly continuous ู„ูƒู„ X ูˆ
484
00:42:40,630 --> 00:42:44,190
Y ู„ูƒู„ X ูˆ Y ููŠ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†ู‡ุง ุงู„ู„ูŠ ุจุดุช
485
00:42:44,190 --> 00:42:48,790
condition ุฅูŠุด ู…ุง ู„ู‡ุง ู…ุชุญู‚ู‚ุฉุฅุฐุง ุงู„ู€ Absolute ู‡ุฐุง
486
00:42:48,790 --> 00:42:54,670
ู…ุนู†ุงู‡ ุงู„ู„ูŠ ุจุด ุชุณูƒู†ุฏุดู‡ ู†ูŠุฌูŠ ู†ุญู‚ู‚ู‡ุง ู‡ุฐู‡ ู†ูŠุฌูŠ ู†ุญู‚ู‚
487
00:42:54,670 --> 00:42:55,710
ุงู„ู„ูŠ ู‡ูˆ
488
00:42:58,230 --> 00:43:02,930
ุงู„ู€ Lipschitz condition ู„ุช x ูˆ y element in I ุจูŠู‡
489
00:43:02,930 --> 00:43:06,130
such that x strictly ุฃุตุบุฑ ู…ู† 100 ู…ู† y
490
00:43:27,180 --> 00:43:30,960
ุฅุฐุง ู…ู†ู‡ุง ู†ุงุฎุฏ ุงู„ absolute value ู„ู„ุฌู‡ุชูŠู† ุจุชุทู„ุน ุนู†ุฏูŠ
491
00:43:30,960 --> 00:43:36,260
ุงู„ู„ูŠ ุฃู…ุงู†ูŠ ูˆุงุถุญ ู„ูƒู† F' is bounded ู…ุฏุงู† bounded F'
492
00:43:36,740 --> 00:43:41,940
ุฅุฐุง there exist K ุจุญูŠุซ ุฃู† F' of C ุฃุตุบุฑ ุณูˆู‰ K ู„ูƒู„ C
493
00:43:41,940 --> 00:43:47,550
ุฅูŠู‡ ุดู…ุงู„ู‡ุง ู…ู† ุถู…ู† ุงู„ C ุงู„ู„ูŠ ููˆู‚ุฃู‡ ู„ุฃู† ุฃู ุจุฑุงูŠู… is
494
00:43:47,550 --> 00:43:51,870
bounded ุนู„ู‰ ูƒู„ ุงู„ I ูˆ ู‡ุฐู‡ ุงู„ K ุจุชู†ูุน ู„ูƒู„ ู…ูŠู† ู„ูƒู„
495
00:43:51,870 --> 00:43:54,570
ุงู„ C's ุงู„ู„ูŠ ููŠ ุงู„ I ุฅุฐุง ุตุงุฑุช ุฃู ุจุฑุงูŠู… ููŠ C ุฃุตุบุฑ ุฃูˆ
496
00:43:54,570 --> 00:43:58,270
ุดูˆูŠู‡ K ุจู†ุนูˆุฏ ููˆู‚ ุจูŠุตูŠุฑ ุฃู of X ู†ุงู‚ุต ุฃู of Y ุฃุตุบุฑ
497
00:43:58,270 --> 00:44:02,150
ุฃูˆ ุดูˆูŠู‡ K ููŠ X minus Y ูˆ ุงู„ X ูˆ ุงู„ Y ูƒุงู†ุช ู†ู‚ุด
498
00:44:02,150 --> 00:44:06,870
ู…ุงู„ู‡ูŠู† arbitrary ุฅุฐุง ุตุงุฑ ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ ุดูˆูŠู‡ K ููŠ X
499
00:44:06,870 --> 00:44:11,790
minus Y ูˆุฏุฎู„ุช ุงู„ู…ุชุณุงูˆูŠุฉ ู„ุฃู† ููŠ ุญุงู„ุฉ ุงู„ X ุจุชุณุงูˆูŠ Y
500
00:44:11,790 --> 00:44:21,600
ุงู„ู„ูŠ ู‡ูˆ it is trivialtherefore I satisfy ุงู„ู„ูŠ ู‡ูˆ
501
00:44:21,600 --> 00:44:25,820
Lipschitz condition ูˆ ุงู„ู„ู‡ ูŠุนุทูŠูƒูˆุง ุงู„ุนุงููŠุฉ