|
1 |
|
00:00:04,910 --> 00:00:09,510 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุฐู ุงูู
ุญุงุถุฑุฉ ุงูุฎุงู
ุณุฉ ูู |
|
|
|
2 |
|
00:00:09,510 --> 00:00:15,630 |
|
ู
ุณุงู ุชุญููู ุญูููู ุงุชููู ูุทูุจุฉ ูููุฉ ุงูุนููู
ุชุฎุตุต |
|
|
|
3 |
|
00:00:15,630 --> 00:00:22,110 |
|
ุฑูุงุถูุงุช ูู ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉ ุจุบุฒุง ุงูู
ุญุงุถุฑุฉ |
|
|
|
4 |
|
00:00:22,110 --> 00:00:26,550 |
|
ุงูููู
ูู ุฌุฒุฆูู ุงูุฌุฒุก ุงูุงูู ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
5 |
|
00:00:26,550 --> 00:00:31,350 |
|
discussion ูุณุช ูุงุญุฏ ุงููู ูู ู
ูุงูุดุฉ ูู
ูุถูุน ุงููู ูู |
|
|
|
6 |
|
00:00:31,350 --> 00:00:37,410 |
|
derivative ุงู ุงูุงุดุชูุงุกุงูุฌุฒุก ุงูุซุงูู ูููู
ู ุงููู ูู |
|
|
|
7 |
|
00:00:37,410 --> 00:00:43,210 |
|
ุงูุญุฏูุซ ุนู 6.2 ุงููู ูู ุงูู Mean Value Theorem ุฃู |
|
|
|
8 |
|
00:00:43,210 --> 00:00:47,730 |
|
ูุธุฑูุฉ ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ ููุงุฎุฐ ุจุนุถ ุงูุชุทุจููุงุช ููุจุฏุฃ |
|
|
|
9 |
|
00:00:47,730 --> 00:00:51,750 |
|
ุงูุขู ุงููู ูู ุจุงูุฃุณุฆูุฉ ุงููู ุงุญูุง ุทูุจูุงูุง ู
ููู
|
|
|
|
10 |
|
00:00:51,750 --> 00:00:57,230 |
|
ุชุญูููุง ููุงุฌุจ ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุฃู ุงูุชู ูุจููุง ููุงูุช |
|
|
|
11 |
|
00:00:57,230 --> 00:01:01,210 |
|
ุงูุฃุณุฆูุฉ ูู ุนุจุงุฑุฉ ุนู ุงูุณุคุงู ุงูุฑุงุจุน ูุงูุณุคุงู ุงูุณุงุจุน |
|
|
|
12 |
|
00:01:02,000 --> 00:01:07,420 |
|
ูุงูุณุคุงู ุงูุชุงุณุน ู ุงูุณุคุงู ุชูุชุงุดุฑ ุจุงููุณุจุฉ ููุณุคุงู |
|
|
|
13 |
|
00:01:07,420 --> 00:01:13,600 |
|
ุงูุซุงูุซ ุงููู ูู ุนุจุงุฑุฉ ุนู ุงููู ูู ุจุฑูุงู ูุธุฑูุฉ 613A |
|
|
|
14 |
|
00:01:13,600 --> 00:01:19,200 |
|
ูB ููุฐู ุงูุจุฑููู ุจุฑุงููู ุณููุฉ ุงููู ูุงูุช ุงู F |
|
|
|
15 |
|
00:01:19,200 --> 00:01:22,960 |
|
differentiableุงูู F differentiable ูุงูู Alpha |
|
|
|
16 |
|
00:01:22,960 --> 00:01:26,560 |
|
ุนุจุงุฑุฉ ุนู constant ุจูุนุทููุง ุงูู Alpha F ุจุฑุถู is |
|
|
|
17 |
|
00:01:26,560 --> 00:01:30,200 |
|
differentiable ู ูู ูุงูุช ุงูู F ูุงูู G |
|
|
|
18 |
|
00:01:30,200 --> 00:01:32,700 |
|
differentiable ุจูุนุทููุง ุงูู F ุฒุงุฆุฏ G is |
|
|
|
19 |
|
00:01:32,700 --> 00:01:35,660 |
|
differentiable ู ุงุญูุง ุจุฑูููุง ุญุงูุฉ ุงูุถุฑุจ ู ุญุงูุฉ |
|
|
|
20 |
|
00:01:35,660 --> 00:01:41,500 |
|
ุงููุณู
ุฉ ู ูุฏูู ุญุงูุงุช ุชุนุชุจุฑ ุณููุฉ ู
ุจุงุดุฑุฉ ุนูู ุงูุชุนุฑูู |
|
|
|
21 |
|
00:01:41,500 --> 00:01:45,900 |
|
ูุฐูู ููุจุฏุฃ ุงู ุดุงุก ุงููู ูู ุงูุญุฏูุซ ุงู ูู ุญู ุงูุฃุณุฆูุฉ |
|
|
|
22 |
|
00:01:45,900 --> 00:01:52,540 |
|
ุนูู ุงูุณุคุงู ุงูุฑุงุจุน ุงููู ูู ุจุจูู ู
ุงููุนูุฏู ู
ุนุทููู F |
|
|
|
23 |
|
00:01:52,540 --> 00:02:01,760 |
|
ู
ู R ูู R ุจู defined by F of X ุจุณุงูู ุงููู ูู X |
|
|
|
24 |
|
00:02:01,760 --> 00:02:06,420 |
|
ุชุฑุจูุน ุฅุฐุง ูุงูุช X rational ูุจุณุงูู ุณูุฑ ุฅุฐุง ูุงูุช X |
|
|
|
25 |
|
00:02:06,420 --> 00:02:09,700 |
|
irrational ุงุซุจุช ุฅู ุงูู F ุงูู differential ุจุงููุฏุฑ X |
|
|
|
26 |
|
00:02:09,700 --> 00:02:15,550 |
|
ุจุชุณุงูู ุณูุฑ ุฃู ุฌุฏ ุงููู ูู F prime of 0ูุงุญุธ ุฃู ุงูู |
|
|
|
27 |
|
00:02:15,550 --> 00:02:16,610 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
28 |
|
00:02:16,610 --> 00:02:17,090 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
29 |
|
00:02:17,090 --> 00:02:17,910 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
30 |
|
00:02:17,910 --> 00:02:20,450 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
31 |
|
00:02:20,450 --> 00:02:27,990 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
32 |
|
00:02:27,990 --> 00:02:28,350 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
33 |
|
00:02:28,350 --> 00:02:29,630 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
34 |
|
00:02:29,630 --> 00:02:29,690 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
35 |
|
00:02:29,690 --> 00:02:41,470 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
36 |
|
00:02:41,470 --> 00:02:52,150 |
|
ุงูู ุงูู ุงููFind this value a proof ุงูุขู ุนุดุงู ููุฌุฏ |
|
|
|
37 |
|
00:02:52,150 --> 00:02:56,730 |
|
ุงููู ูู ูุซุจุช ุฃู F prime of 0 ู
ูุฌูุฏุฉ ุฎููููู ุฃูุงุญุธ |
|
|
|
38 |
|
00:02:56,730 --> 00:03:00,950 |
|
ู
ุงูู ุนูุฏ ุงู function ุงููู ูู X ุชุฑุจูุน ูู
ุง X |
|
|
|
39 |
|
00:03:00,950 --> 00:03:07,150 |
|
rational ู Zero ูู
ุง Xุงุด is irrationalุงูุงู ุจุฏูุง |
|
|
|
40 |
|
00:03:07,150 --> 00:03:11,770 |
|
ูุชููุน ุงูู ุงุดู ุงููู ูู ูุงูู ูุชูุฒู
ูู ุฌุงู ุงููู ุจุนุฏูู |
|
|
|
41 |
|
00:03:11,770 --> 00:03:15,890 |
|
find this value ุจุฏูุง ูุชููุน ุงูุด ููู
ุฉ ุงููู ูู ุงู |
|
|
|
42 |
|
00:03:15,890 --> 00:03:20,950 |
|
derivative ุนูุฏ ุงูุตูุฑ ูุงุญุธ ุงูู ุงููู ูู .. ุงููู .. |
|
|
|
43 |
|
00:03:20,950 --> 00:03:25,630 |
|
ุงููู ูู ุจุฏูุง ูููู ุงูู ุงู derivative ู
ู
ูู ุชููู zero |
|
|
|
44 |
|
00:03:25,630 --> 00:03:30,510 |
|
ููู ุงู off of x ุตูุฑ ุงู ูู ุจุฏูุง ุชููู ู ุงู |
|
|
|
45 |
|
00:03:30,510 --> 00:03:36,560 |
|
derivative ููุง ูู ููููุง ุฑูู 2xุจุฏู ูููู ุงููู ูู ูู |
|
|
|
46 |
|
00:03:36,560 --> 00:03:40,820 |
|
ุจุฏู ูููู ุงููู ุนูุฏ ุงูู zero ุงููู ูู F prime ุจุฏู ูู |
|
|
|
47 |
|
00:03:40,820 --> 00:03:47,220 |
|
ุงูููุงูุฉ ุชุฑูุญ ู ุงููู ููููู ุจุฑุถู ูุฑูุจุฉ ู
ู ุงูู ูููู |
|
|
|
48 |
|
00:03:47,220 --> 00:03:52,580 |
|
ุงู ูุฃูุฏ ุงููุง ุตูุฑ ุนุดุงู ูู ูุงูุธู ุงูุบุงูุจ ุงู F prime |
|
|
|
49 |
|
00:03:52,580 --> 00:03:58,660 |
|
ูุชููู ุงูุด ุตูุฑ ูุฐู ู
ุฌุฑุฏ ุชูููุฑุงุช ุงูุงูุจุฏู ุฃุซุจุช ูู ุฅูู |
|
|
|
50 |
|
00:03:58,660 --> 00:04:03,080 |
|
ูุนููุง ูู ุงูู derivative ุจุชุณุงูู 0 ููู ุจุฏู ุฃุซุจุชูุงุ |
|
|
|
51 |
|
00:04:03,080 --> 00:04:11,280 |
|
ุจุฏู ุฃุซุจุช ูู ุฅูู ุงูู limit ูู F of X ููุต F of 0 ุนูู |
|
|
|
52 |
|
00:04:11,280 --> 00:04:17,600 |
|
X minus 0 ูู
ุง X ุชุฑูุญ ูู 0 ุจุชุณุงูู 0 ุจุฏู ุฃุซุจุช ูู |
|
|
|
53 |
|
00:04:17,600 --> 00:04:24,240 |
|
ูููุงุงูุงู ูุงุถุญ ุงู X ุชููู ุงูู ุงูุตูุฑ X ุชููู ุงูู ุงูุตูุฑ |
|
|
|
54 |
|
00:04:24,240 --> 00:04:29,200 |
|
ูุชู
ุฑ ุจุงู rational ูุงู rational ุนุดุงู ููู ุตุนุจ ุงู ุงูุง |
|
|
|
55 |
|
00:04:29,200 --> 00:04:32,600 |
|
ุงุชุญุฏุซ ุนู ุงููู ูู ุงูุฌุงุฏ ุงู derivative ู
ุจุงุดุฑุฉ ู
ู |
|
|
|
56 |
|
00:04:32,600 --> 00:04:36,130 |
|
ุงูุงู ุงู ู
ู ุงู two branches ุงููู ุนูุฏููุง ุจูุฏุฑ ุฃุฎุฏ ู
ู |
|
|
|
57 |
|
00:04:36,130 --> 00:04:40,030 |
|
ุงููู
ูู ููุง ุฃุฎุฏ ู
ู ุงููุณุงุฑ ูุฅูู ุนูุฏู ู
ู ุงููู
ูู ุฃู ู
ู |
|
|
|
58 |
|
00:04:40,030 --> 00:04:44,130 |
|
ุงููุณุงุฑ ููููู ุนูุฏู ุงููู ูู ูุงุจูุช ุงููู ูู ุงูุฃุนุฏุงุฏ ุงู |
|
|
|
59 |
|
00:04:44,130 --> 00:04:48,110 |
|
rational ูู rational ูุนุดุงูู ุฃุณูู
ุฅุดู ุฅูู ูุณุชุฎุฏู
|
|
|
|
60 |
|
00:04:48,110 --> 00:04:52,650 |
|
ุงูุชุนุฑูู ูู ุฅุซุจุงุช ูุฐุง ูุนูู ุงูุขู ุจุฏู ุฃุซุจุช ูุฐุง ุงูููุงู
|
|
|
|
61 |
|
00:04:53,270 --> 00:04:58,090 |
|
ููู ุจุฏู ุฃุซุจุชูุ ุจุฏู ุฃุซุจุช ู
ุง ูุนูู ุจุฏู ุฃุตู ููู ุฅุจุณููู |
|
|
|
62 |
|
00:04:58,090 --> 00:05:03,190 |
|
ุฃูุจุฑ ู
ู 0 ุจุฏูุงุฌ ุฏูุชุง ุฃูุจุฑ ู
ู 0 ุจุฏูุงุฌูุฉ ุญุงุฌููู ุฏูุชุง |
|
|
|
63 |
|
00:05:03,190 --> 00:05:08,350 |
|
ุจุญูุซ ุฃูู ูู
ุง ูููู ุงู absolute value ู F of X ูุงูุต |
|
|
|
64 |
|
00:05:08,350 --> 00:05:14,630 |
|
F of Zero ุนูู X minus Zero ูููู ูุงูุต Zero ุทุจุนุง |
|
|
|
65 |
|
00:05:14,630 --> 00:05:19,790 |
|
Zero ูุฐู ุฃุตุบุฑ ู
ู ุฅุจุณููู ูุฐุง ู
ุชูุ whenever |
|
|
|
66 |
|
00:05:22,670 --> 00:05:28,470 |
|
x-0 ุฃูุจุฑ ู
ู 0 ูุฃุตุบุฑ ู
ู ู
ูู ู
ู ุฏูุชุง ูุฐุง ุงููู ุจุฏู |
|
|
|
67 |
|
00:05:28,470 --> 00:05:33,150 |
|
ุฃุตูู ุฃู ูุฐุง ุงููู ุจุฏู ุฃุซุจุชู ุฎููููุง ูุดูู ุฅุฐุง ุฎููููุง |
|
|
|
68 |
|
00:05:33,150 --> 00:05:36,530 |
|
ูุดูู ููู ุจุฏูุง ููุฌุฏู ุนุดุงู ุฃุซุจุช ุฅู ุงู limit ูุฐุง |
|
|
|
69 |
|
00:05:36,530 --> 00:05:43,110 |
|
ุจุณุงูู 0 ูุงุญุธ ุงูููู
ุฉ ุงููู ุนูุฏู ุฃูู ุฅุดู ุงู absolute |
|
|
|
70 |
|
00:05:43,110 --> 00:05:50,530 |
|
value of f of x ูุงูุต f of 0 ุนูู x-0 ุฅูุด ูุชุณุงููุ |
|
|
|
71 |
|
00:05:51,590 --> 00:05:57,390 |
|
ูุชุณุงูู ุงููู ูู ุงู absolute value of of X ุนูุฏู ูุง X |
|
|
|
72 |
|
00:05:57,390 --> 00:06:01,070 |
|
ุชุฑุจูุน ูู
ูู ูุง ุณูุฑ ุฎูููููุง ุฒู ู
ุง ูู ุฃูู ุฅุดู of of X |
|
|
|
73 |
|
00:06:01,070 --> 00:06:06,010 |
|
ูุงูุต of of Zero ุงููู ูู ุฌุฏุงุด ุจูุณุงูู Zero ูุฅูู of |
|
|
|
74 |
|
00:06:06,010 --> 00:06:10,130 |
|
of Zero ุจูุณุงูู Zero ูุฅูู Zero rational ุนูู ุฅุฐู ูุฐุง |
|
|
|
75 |
|
00:06:10,130 --> 00:06:16,230 |
|
ุณูุฑ ุนูู X ูุงูุต ุณูุฑ ุงููู ูู X absolute value ูุฐุง |
|
|
|
76 |
|
00:06:16,230 --> 00:06:22,790 |
|
ุงูููู
ุฉ ุงูุขู ูุงุญุธ ุจุชุณุงูููุง ุฅู
ุง ุงููู ูู x ุชุฑุจูุน ุนูู |
|
|
|
77 |
|
00:06:22,790 --> 00:06:30,750 |
|
x absolute value ูู ุญุงูุฉ x is rational ุฃู ุจุชุณุงูู |
|
|
|
78 |
|
00:06:30,750 --> 00:06:37,450 |
|
ุงููู ูู ุณูุฑ ูู ุญุงูุฉ x ุฃุดู
ุงููุง is irrational ูุฃู |
|
|
|
79 |
|
00:06:37,450 --> 00:06:42,030 |
|
ู
ููู
ุฉ f of x ูุง x ุชุฑุจูุน ูุง ุณูุฑ ุญุณุจ ุงููู ูู ูุชุจูุงู |
|
|
|
80 |
|
00:06:42,030 --> 00:06:46,790 |
|
ุญุงูููุงุงูุขู ูุฐุง ุจุงูุธุจุท ูู ุนุจุงุฑุฉ ุนู ุงูู absolute |
|
|
|
81 |
|
00:06:46,790 --> 00:06:57,590 |
|
value ูู X if X is rational Zero if X is |
|
|
|
82 |
|
00:06:57,590 --> 00:07:03,950 |
|
irrational ุงูุขู ุงูุตูุฑุฉ ูุถุญุช ุฎููููุง ูุณู
ู ูุฐุง ุงููู |
|
|
|
83 |
|
00:07:03,950 --> 00:07:09,900 |
|
ูู ูุงุญุฏุงูุงู ุญุถุฑุช ุนุดุงู ุงุตู ููููุงูุฉ ุงููู ูุงูู ูุงุชุจูุง |
|
|
|
84 |
|
00:07:09,900 --> 00:07:13,800 |
|
ููุง ูุงุดูู ุงูุด ุงู delta ุงููู ุจุชุทูุน ุนูุฏู ุงูุงู ุจุชุฏุนู |
|
|
|
85 |
|
00:07:13,800 --> 00:07:17,380 |
|
ู
ุงูู for every epsilon ุฃูุจุฑ ู
ู ุณูุฑ ุงูุง ุจููู there |
|
|
|
86 |
|
00:07:17,380 --> 00:07:21,800 |
|
exists delta ูุชุณุงูู ู
ู ุงู epsilon ูุชุฌุฏ ุชุดูููุง ููุด |
|
|
|
87 |
|
00:07:21,800 --> 00:07:26,980 |
|
there exists delta ุจุณุงูู epsilon such that if x |
|
|
|
88 |
|
00:07:26,980 --> 00:07:35,210 |
|
minus 0 ุฃูุจุฑ ู
ู ุณูุฑู ุฃุตุบุฑ ู
ู delta thenูุฐุง ู
ุนูุงุชู |
|
|
|
89 |
|
00:07:35,210 --> 00:07:37,870 |
|
ุฅูุด ุฃู ุฃุจุณู ููุช ูููุง ุงู X ุฃูุจุฑ ู
ู ุตูุฑ ูุฃุตุบุฑ ู
ู |
|
|
|
90 |
|
00:07:37,870 --> 00:07:41,870 |
|
ู
ููุ ู
ู ุฏูุชุง ุฅุฐุง ุงุฎุชุฑุช ุฏูุชุง ุฅูุด ุจุชุณุงูู ู ูู ุงููู |
|
|
|
91 |
|
00:07:41,870 --> 00:07:47,850 |
|
ูุชุฎูุต ู
ู ุงูู
ูุถูุน then ุงููู ูู F of X ููุต F of Zero |
|
|
|
92 |
|
00:07:47,850 --> 00:07:50,970 |
|
ุนูู |
|
|
|
93 |
|
00:07:50,970 --> 00:07:57,790 |
|
X minus Zero ูู ุทุจุนุง ููุต ุงูุตูุฑ ุงููู ูููุง ุนููุง ุงู |
|
|
|
94 |
|
00:07:57,790 --> 00:08:01,520 |
|
derivative ุงูู
ุชููุน ุนููุง ูุฐู ุจุงูุธุจุทุงููู ููู ูุฐุง ูู |
|
|
|
95 |
|
00:08:01,520 --> 00:08:05,920 |
|
ุงููู ููู ุทูุน ุฅูุด ุนูุฏู ูุฐุง ุจุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ุฅุฐุง |
|
|
|
96 |
|
00:08:05,920 --> 00:08:09,760 |
|
ูุงูุช X rational ู 0 ุฅุฐุง ูุงูุช X irrational ูุนูู |
|
|
|
97 |
|
00:08:09,760 --> 00:08:15,400 |
|
ุจู
ุนูู ุฃุฎุฑ ุจุณุงูู absolute value ู X if X is |
|
|
|
98 |
|
00:08:15,400 --> 00:08:23,530 |
|
rational ู 0 if X is irrational in both casesุงููู |
|
|
|
99 |
|
00:08:23,530 --> 00:08:27,590 |
|
ูู ุฅุฐุง ูุงู ุจุณุงูู absolute value ููู X ููููู ุฃุตุบุฑ |
|
|
|
100 |
|
00:08:27,590 --> 00:08:31,250 |
|
ู
ู Delta ุงููู ุงูุง ุงุฎุชุฑุชูุง ุฃุดู
ููุง Epsilon ููููู |
|
|
|
101 |
|
00:08:31,250 --> 00:08:34,570 |
|
ุฃุตุบุฑ ู
ู Epsilon ู ุฃูุถุง ูุฐู ู
ุชุญููุฉ ูุฅู ุงูู Epsilon |
|
|
|
102 |
|
00:08:34,570 --> 00:08:38,850 |
|
ุฏุงุฆู
ุง ุฃุดู
ููุง ุฃูุจุฑ ู
ู 0 ุฅุฐุง ุงููู ุญุตูุชู ุฃูู ููู |
|
|
|
103 |
|
00:08:38,850 --> 00:08:42,490 |
|
Epsilon ุฃูุจุฑ ู
ู 0 ุงููู ุฌูุช Delta ูู
ุง ูููู ูุฐุง ุฃุตุบุฑ |
|
|
|
104 |
|
00:08:42,490 --> 00:08:47,130 |
|
ู
ู Delta ุจูุนุทููู ูุฐุง ุฃุตุบุฑ ู
ู Epsilon ููุฐุง ูุนูู |
|
|
|
105 |
|
00:08:47,130 --> 00:08:54,370 |
|
hence limitูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู f of x ูุงูุต f of 0 |
|
|
|
106 |
|
00:08:54,370 --> 00:09:01,690 |
|
ุนูู x minus 0 ูู
ุง x ุชุฑูุญ ููุตูุฑ ุจุณุงููุฉ ุงููู ูู |
|
|
|
107 |
|
00:09:01,690 --> 00:09:12,870 |
|
ุงูุตูุฑ ููุฐุง ูู ุชุนุฑูู ู
ู ุงู f prime ุนูุฏ 0 that is f |
|
|
|
108 |
|
00:09:12,870 --> 00:09:18,740 |
|
prime at 0 ุจุณุงููุฉ 0 ููู ููุณ ุงููุงุฌุจ ุทุจุนุง ุฃุซุจุชูุงุงูู |
|
|
|
109 |
|
00:09:18,740 --> 00:09:25,960 |
|
existence ููู F prime ุนูุฏ ุงูู zero ุฃู ุณุคุงู ุทูุจ |
|
|
|
110 |
|
00:09:25,960 --> 00:09:30,840 |
|
ููุฌู ุงูุขู ูุดูู ุงูุณุคุงู ุงูุซุงูู ุฎููุงู ุงูุณุคุงู ุงูุฃุฑุจุนุฉ |
|
|
|
111 |
|
00:09:30,840 --> 00:09:44,220 |
|
ููุฌู ูุณุคุงู ุณุจุนุฉ ุงูุงู |
|
|
|
112 |
|
00:09:44,220 --> 00:09:48,100 |
|
ุณุคุงู ุณุจุนุฉ ุงุด ุงููู ุจูููู ุณุคุงู ุณุจุนุฉุงููู ุจููููู ุณุคุงู |
|
|
|
113 |
|
00:09:48,100 --> 00:09:52,420 |
|
ุณุจุนุฉ ู
ุงูู ุนูุฏู |
|
|
|
114 |
|
00:09:52,420 --> 00:09:55,740 |
|
suppose |
|
|
|
115 |
|
00:09:55,740 --> 00:09:59,320 |
|
that F ู
ู R ูR is differentiable at C ูุนูู ููุชุฑุถ |
|
|
|
116 |
|
00:09:59,320 --> 00:10:04,520 |
|
ุฃูู F ูุจู ุงูุงุดุชูุงู ุนูุฏ Cูููุชุฑุถ ุงู f of c ููู
ุฉ ุงูู |
|
|
|
117 |
|
00:10:04,520 --> 00:10:07,920 |
|
function ุนูุฏ c ุจุณุงูุฉ 0 ูุงู ุจููู ูุดูุฏุงุช ุงู absolute |
|
|
|
118 |
|
00:10:07,920 --> 00:10:10,960 |
|
value ูู f of x ุงููู ูู ูุณู
ููุง d of x is |
|
|
|
119 |
|
00:10:10,960 --> 00:10:14,080 |
|
differentiable at c if and only if a ุดู
ุงููุง f |
|
|
|
120 |
|
00:10:14,080 --> 00:10:21,740 |
|
prime of c ุจุชุณุงูุฉ 0 ุฅุฐุง ูุงุฎุฏ ูู f ู
ู R ูุนูุฏ R ู |
|
|
|
121 |
|
00:10:21,740 --> 00:10:30,810 |
|
ุฌุงููู ุฃู f prime ุนูุฏ c exist ู
ุนุทููู ุฅูุงูุงุฃู ูู
ุนุทูู |
|
|
|
122 |
|
00:10:30,810 --> 00:10:37,390 |
|
ุงููู ูู f of c ุจุชุณุงูู ุณูุฑ ูุจููู ูู prove that ุฃูู |
|
|
|
123 |
|
00:10:37,390 --> 00:10:42,370 |
|
g of x ุจุณุงูู ุงู absolute value ูู f of x is |
|
|
|
124 |
|
00:10:42,370 --> 00:10:49,810 |
|
differentiable at c if and only if f prime ุนูุฏ ุงู |
|
|
|
125 |
|
00:10:49,810 --> 00:10:57,880 |
|
c ุงูุด ุจุชุณุงูู ุจุณุงูู ุณูุฑุ ู
ุธุจูุทุ ุทูุจ ุดููุงูุงู ุฎูููุง |
|
|
|
126 |
|
00:10:57,880 --> 00:11:03,380 |
|
ุงูุชุฑุถ ุงูู ุงุดู ุงู f prime ุนูุฏ c ุงูุด ุจุชุณุงูู ุณูุฑ ูููู |
|
|
|
127 |
|
00:11:03,380 --> 00:11:09,320 |
|
suppose proof suppose |
|
|
|
128 |
|
00:11:09,320 --> 00:11:15,580 |
|
suppose |
|
|
|
129 |
|
00:11:15,580 --> 00:11:23,120 |
|
that f prime at c ุจุชุณุงูู ุณูุฑ ุงูุด ูุฐุง ุจูุนูู ุงู then |
|
|
|
130 |
|
00:11:23,120 --> 00:11:25,940 |
|
limit |
|
|
|
131 |
|
00:11:27,220 --> 00:11:36,680 |
|
F of X ูุงูุต F of C ุนูู X minus C ูู
ุง X ุชุฑูุญ ููู C |
|
|
|
132 |
|
00:11:36,680 --> 00:11:40,240 |
|
ุงููู ูู ุจูุณุงูู ุณูุฑ ูุฃู ูุฐุง ุชุนุฑูู ู
ูู F ุจุฑุงูู |
|
|
|
133 |
|
00:11:40,240 --> 00:11:46,000 |
|
ุจูุณุงูู ุณูุฑ ู F of C ุฅูุด ู
ุนุทููุฉ ูู ุจูุณุงูู ุณูุฑ ูุฃู |
|
|
|
134 |
|
00:11:46,000 --> 00:11:53,260 |
|
ุจูุณุงูู limit F of X ุนูู X minus C ูู
ุง X ุชุฑูุญ ูู
ูู |
|
|
|
135 |
|
00:11:53,260 --> 00:11:58,730 |
|
ููู C ู
ุฏุงู
ุฉ ุงู limit ูุฐู ู
ูุฌูุฏุฉุฅุฐุง ุงู limit ู
ู |
|
|
|
136 |
|
00:11:58,730 --> 00:12:02,270 |
|
ุงููู
ูู ูุงู limit ู
ู ุงููุณุงุฑ ุฃูุด ุจุฑุถู ู
ุงููุง ู
ูุฌูุฏุฉ |
|
|
|
137 |
|
00:12:02,270 --> 00:12:06,710 |
|
ู
ุงุดู ุงูุญุงู ุงูุง ุงูุขู ุบุฑุถู ุงู ุงู ุงุซุจุช ุงู g of x ุจุณุจุจ |
|
|
|
138 |
|
00:12:06,710 --> 00:12:09,190 |
|
absolute value of f of x ุฃูุด ู
ุงููุง is |
|
|
|
139 |
|
00:12:09,190 --> 00:12:14,110 |
|
differentiable at c ู
ุงุดู ุงูุงู ุงูุด ุงููู ุจุฏู ุงุซุจุชู |
|
|
|
140 |
|
00:12:14,110 --> 00:12:22,370 |
|
ุจู
ุนูู ุงุฎุฑ ุจุฏู ุงุซุจุชูู ุงูู limitุงูู G of X ูุงูุต G of |
|
|
|
141 |
|
00:12:22,370 --> 00:12:29,430 |
|
C ุนูู X minus C ูู
ุง X ุชุฑูุญ ููู C exist ุจุงุดู ุฅุฐุง |
|
|
|
142 |
|
00:12:29,430 --> 00:12:31,930 |
|
ุฃุซุจุชูุง ู
ุนูุงุชู ุฃุซุจุชุชูุง ุฅู ุงูู G is differentiable |
|
|
|
143 |
|
00:12:31,930 --> 00:12:36,970 |
|
at C ุฃู ุจู
ุนูู ุขุฎุฑ ุจุงูุฏุซุจุช limit ูู absolute value |
|
|
|
144 |
|
00:12:36,970 --> 00:12:42,660 |
|
ูู F of Xู
ุฏูุฉ g of x ูุงูุต ุงู absolute value of f |
|
|
|
145 |
|
00:12:42,660 --> 00:12:48,960 |
|
of c ุนูู x minus c ูู
ุง x ุจุชุฑูุญ ูู c exist ุจุฏู ุฃุดูู |
|
|
|
146 |
|
00:12:48,960 --> 00:12:53,240 |
|
ูุฏุง ูุณู exist ููุง ูุฃ ูุนูู ุจุฏู ุฃุซุจุช ุงููู ูู limit |
|
|
|
147 |
|
00:12:53,240 --> 00:12:58,900 |
|
absolute value of f of x ุนูู x minus c as x ุจุชุฑูุญ |
|
|
|
148 |
|
00:12:58,900 --> 00:13:07,520 |
|
ูู c ุฃุดู
ุงูู exist ู
ุงุดู ุงูุญุงู ุทูุจ ุงูุขู ูุงุถุญ |
|
|
|
149 |
|
00:13:08,360 --> 00:13:13,000 |
|
ุนูุฏู ู
ู ุงููู ููู ุงู limit ูู f of x ุนูู x minus c |
|
|
|
150 |
|
00:13:13,000 --> 00:13:19,160 |
|
as x ุจุชุฑูุญ ูู c ุงูู ุงูุด ุจูุณุงูู ุจูุณุงูู ุตูุฑุ ู
ุธุจูุทุ |
|
|
|
151 |
|
00:13:19,160 --> 00:13:27,160 |
|
ุงุฐุง ููููู ุนูุฏู limit ุงููู ูู limit absolute value |
|
|
|
152 |
|
00:13:27,160 --> 00:13:33,400 |
|
ูู limit ุฎูููู ุงูุชุจูุง ุจุณ ูู ุทุฑููุฉ ุฃุฎุฑู ุงูุตูุฑ ูุฐุง |
|
|
|
153 |
|
00:13:33,400 --> 00:13:43,200 |
|
ุงููู ุจุฏุฃุชุจุชู ุงู ุงูู existุนูุฏู ุงู absolute value ู |
|
|
|
154 |
|
00:13:43,200 --> 00:13:52,020 |
|
limit f of x ุนูู x minus c ูู
ุง x ุชุฑูุญ ูู c ุงููู ูู |
|
|
|
155 |
|
00:13:52,020 --> 00:13:58,020 |
|
ู
ู ุงููู
ูู ู ู
ู ุงููุณุงุฑ existุ ู
ุธุจูุทุ ูุงุถุญุฉ ู ูุณุงูู |
|
|
|
156 |
|
00:13:58,020 --> 00:14:05,160 |
|
ุงููู ูู limit absolute value ูู f of x ุนูู x minus |
|
|
|
157 |
|
00:14:05,160 --> 00:14:12,420 |
|
c as absolute valueas X ุจุชุฑูุญ ูู
ููุ ููู C ุจุงุดู |
|
|
|
158 |
|
00:14:12,420 --> 00:14:16,820 |
|
ุงูุญุงู ุงูุขู ู
ู ุงููู
ูู ูู
ู ุงููุณุงุฑ ููู ููููู ู
ูุฌูุฏ |
|
|
|
159 |
|
00:14:16,820 --> 00:14:20,480 |
|
ุจูุงุก ุนูู ูุฐุง ุฃูู ู
ูุฌูุฏ ุฎููููู ุฃุฎุฏ ู
ู ุงููู
ูู ูููุง |
|
|
|
160 |
|
00:14:20,480 --> 00:14:25,860 |
|
ู
ู ุงููู
ูู ูุจุตูุฑ ูุฐุง ุนุจุงุฑุฉ ุนู limit absolute value |
|
|
|
161 |
|
00:14:25,860 --> 00:14:32,140 |
|
ู F of X ุนูู X minus C ูู
ุง X ุจุชุฑูุญ ู C ู
ู ูููุ ู
ู |
|
|
|
162 |
|
00:14:32,140 --> 00:14:38,330 |
|
ุงููู
ูู ูุนูู ูุฐุง ุงูู
ูุฏุงุฑุตุงุฑ ู
ูุฌูุฏ ูุฅูุด ุจุณุงูู ุจุณุงูู |
|
|
|
163 |
|
00:14:38,330 --> 00:14:42,350 |
|
ุณูุฑ ูุฐุง ุฎูููู ูุฅูู ูุฐุง ุงููู ุจุฏูุง ูุตููู ูุฃู limit |
|
|
|
164 |
|
00:14:42,350 --> 00:14:47,310 |
|
ุตุงุฑ ุนูุฏู ู
ุนูู ุขุฎุฑ limit absolute value of f of x |
|
|
|
165 |
|
00:14:47,310 --> 00:14:53,850 |
|
ุนูู x minus c ูู
ุง x ุชุฑูุญ ูู c ู
ู ุงููู
ูู ุจุณุงูู ุณูุฑ |
|
|
|
166 |
|
00:14:53,850 --> 00:14:58,360 |
|
existูุงุญุธุง ูุงุนุฏ ุฑุงูุญ ูุฃุซุจุช ุฃู ูุฐุง exist ุฏู ุฎุฏ ุงูุขู |
|
|
|
167 |
|
00:14:58,360 --> 00:15:03,520 |
|
ู
ู ูููุ ู
ู ุงููุณุงุฑ ุฎุฏ ูุฃู ุงุญุณุจ similarly ุนูุฏู ุณูุฑ |
|
|
|
168 |
|
00:15:03,520 --> 00:15:08,840 |
|
ุจุณุงูู absolute value of limit f of x ุนูู x minus c |
|
|
|
169 |
|
00:15:08,840 --> 00:15:15,100 |
|
ูู
ุง x ุชุฑูุญ ู c ู
ู ูููุ ู
ู ุงููุณุงุฑ ููุณุงูู ุนุจุงุฑุฉ ุนู |
|
|
|
170 |
|
00:15:15,100 --> 00:15:19,960 |
|
limit absolute value of f of x ุนูู absolute value |
|
|
|
171 |
|
00:15:19,960 --> 00:15:25,900 |
|
of x minus c ูู
ุง x ุชุฑูุญ ู c ู
ู ูููุ ู
ู ุงููุณุงุฑูุฐู |
|
|
|
172 |
|
00:15:25,900 --> 00:15:34,580 |
|
ููุณูุง ุจุณุงูู limit ุฃู ุจุณุงูู ุณุงูุจ limit f of x |
|
|
|
173 |
|
00:15:34,580 --> 00:15:42,270 |
|
absolute value ุนูู x minus c ูู
ุง x ุชุฑูุญููู C ู
ู |
|
|
|
174 |
|
00:15:42,270 --> 00:15:47,030 |
|
ุงููุณุงุฑุ ููุดุ ูุฃู X ุฃุตุบุฑ ู
ู Cุ ุฅุฐุง X minus C ุณุงูุจุฉ |
|
|
|
175 |
|
00:15:47,030 --> 00:15:50,230 |
|
ุฅุฐุง ุงูู absolute value ุณุงูุจ ุฅูููุง ูุงุฎุฏุช ุงูุณุงูุจ ุจุฑุง |
|
|
|
176 |
|
00:15:50,230 --> 00:15:54,990 |
|
ูุฐุง ุงูุขู ุงูู
ุฎุถุฑ ุจูุณุงูู ุณูุฑุ ุฅุฐุง ูุฐุง ูุญุงูู ุจุฑุถู ุฅูุด |
|
|
|
177 |
|
00:15:54,990 --> 00:16:01,270 |
|
ู
ุงููุ ุณูุฑุ ุฅุฐุง limit absolute value ููู F of X ุนูู |
|
|
|
178 |
|
00:16:01,270 --> 00:16:04,870 |
|
X minus Cุ ูู
ุง X ุชุฑูุญ ููู C ู
ู ุงููุณุงุฑุ ุจุฑุถู ุฅูุด |
|
|
|
179 |
|
00:16:04,870 --> 00:16:10,450 |
|
ุจูุณุงููุ ุจูุณุงูู ุณูุฑุ ูุงุญุธ ุฅู ุงู limit ู
ู ุงููู
ูููุงูู |
|
|
|
180 |
|
00:16:10,450 --> 00:16:15,890 |
|
limit ู
ู ุงููุณุงุฑ ู
ูุฌูุฏ ูุจุณุงูู 0 ู
ุชุณุงูููู ูุนูู ุงูุขู |
|
|
|
181 |
|
00:16:15,890 --> 00:16:23,130 |
|
ุงู limit ูุฐุง ุตุงุฑ ุงูุด ุจุณุงูู ุจุณุงูู 0 ุฅุฐุง ุงูุงู ูุฐุง |
|
|
|
182 |
|
00:16:23,130 --> 00:16:29,870 |
|
ุงูุขู ุจููููู ููู ุชุญุช ูุฐุง ูุจููู hence ุงููู ูู g |
|
|
|
183 |
|
00:16:29,870 --> 00:16:38,310 |
|
prime of c ุจุณุงูู limit of g of x ููุต g of c ุนูู x |
|
|
|
184 |
|
00:16:38,310 --> 00:16:46,870 |
|
minus cas x โ c ุจุณุงูู ุญุณุจ ุงููู ุนูุฏู ู
ู ููุง ู ู
ู |
|
|
|
185 |
|
00:16:46,870 --> 00:16:55,310 |
|
ููุง ู ู
ู ููุง ููุณุงูู ุณูุฑ ุงูุงู conversely ุจุชุฃูุชุฑุถ |
|
|
|
186 |
|
00:16:55,310 --> 00:16:58,090 |
|
ุทุจุนุง ุงู ุงู conversely ููููู ุงูุฎุทูุงุช ูุซูุฑ ู
ุดุงุจูู |
|
|
|
187 |
|
00:16:58,090 --> 00:17:03,350 |
|
ูููู ููุง ูุนูู ูุซูุฑ ุงููู ุงุณุชุฎุฏู
ุชู ููุง ูุณุชุฎุฏู
ู ูู |
|
|
|
188 |
|
00:17:03,350 --> 00:17:03,930 |
|
ุงููู ุจุนุฏูุง |
|
|
|
189 |
|
00:17:12,670 --> 00:17:17,790 |
|
Conversely suppose that |
|
|
|
190 |
|
00:17:17,790 --> 00:17:25,890 |
|
g of x ุณูุงุก absolute value ุงู f of x ุงููู |
|
|
|
191 |
|
00:17:25,890 --> 00:17:33,550 |
|
ูู is differentiable at c ุจุฏุง ูุฌุฏูู ุงูุงู ุงุซุจุชูู ุงู |
|
|
|
192 |
|
00:17:33,550 --> 00:17:39,650 |
|
f prime of c ุงูุด ู
ุง ููุง ุจุชุณุงูู ุณูุฑ ูุนูู ุจุฏุง ุงุซุจุช |
|
|
|
193 |
|
00:17:39,650 --> 00:17:46,880 |
|
limitf of x ูุงูุต f of c ุงููู ูู ุณูุฑ ุนูู x minus c |
|
|
|
194 |
|
00:17:46,880 --> 00:17:51,160 |
|
ูู
ุง x ุชุฑูุญ ูู c ุงูุด ุจูุณุงูู ุจุณุงูู ุณูุฑ ุจููู ุฎูุตุช |
|
|
|
195 |
|
00:17:51,160 --> 00:17:58,500 |
|
ุงูุงู issue ู
ุดุงุจู ุนูุฏ ุงูุงู limit |
|
|
|
196 |
|
00:17:58,500 --> 00:18:05,180 |
|
ูุฐุง exist ุนูุฏ ุงู c ุงุฐุง ุนูุฏู ุตุงุฑ g prime of c exist |
|
|
|
197 |
|
00:18:05,180 --> 00:18:10,430 |
|
ููุณุงูู ุญุณุจ ุงูุญุฏูุซ ุงููู ููุง limitabsolute value of |
|
|
|
198 |
|
00:18:10,430 --> 00:18:18,570 |
|
f of x ูุงูุต ุงู absolute value of f of c ุตูุฑ ุนูู x |
|
|
|
199 |
|
00:18:18,570 --> 00:18:26,310 |
|
minus c ูู
ุง x ุชุฑูุญ ู c ุงุดู
ุงูู exist ู
ุนุงูุงุ ุทูุจ ุดูู |
|
|
|
200 |
|
00:18:26,310 --> 00:18:34,960 |
|
ุงูุขู ุนูุฏู ุงุฐุง ุงุญุณุจูู limitf of x ุงููู ุญุณุจูุงูุง ูุจู |
|
|
|
201 |
|
00:18:34,960 --> 00:18:39,660 |
|
ุจุดููุฉ ุจููุณ ุงูุฃุณููุจ ุนูู x minus c ูู
ุง x ุชุฑูุญ ู c ู
ู |
|
|
|
202 |
|
00:18:39,660 --> 00:18:47,020 |
|
ูููุ ู
ู ุงููู
ูู ุจุณุงูู limit ูู absolute value ู f |
|
|
|
203 |
|
00:18:47,020 --> 00:18:53,780 |
|
of x ุนูู x minus c ูู
ุง x ุชุฑูุญ ู c ู
ู ุงููู
ูู ูุฃู ุงู |
|
|
|
204 |
|
00:18:53,780 --> 00:19:01,840 |
|
x ุฃูุจุฑ ู
ู ุงู c ูุงุถุญุงูุขู ู
ู ุฌูุฉ ุฃุฎุฑู ุงุญุณุจูู ุงูู |
|
|
|
205 |
|
00:19:01,840 --> 00:19:08,060 |
|
absolute value ูู limit ูู F of X ุทุจุนุง ูุฐุง ุงูุด |
|
|
|
206 |
|
00:19:08,060 --> 00:19:15,620 |
|
ููุณุงูู ุจุณูู G prime of Cุ ู
ุธุจูุทุ ุจุณูู G prime of |
|
|
|
207 |
|
00:19:15,620 --> 00:19:23,290 |
|
Cุ ู
ูุฌูุฏุ limit F of Xุนูู x minus c ูู
ุง x ุชุฑูุญ ู c |
|
|
|
208 |
|
00:19:23,290 --> 00:19:28,570 |
|
ู
ู ูููุ ู
ู ุงููุณุงุฑ ุจุณุงูู ุฒู ู
ุง ุนู
ููุง ูุจู ุดููุฉ ุณุงูุจ |
|
|
|
209 |
|
00:19:28,570 --> 00:19:33,530 |
|
limit absolute value of f of x ุนูู x minus c ูู
ุง x |
|
|
|
210 |
|
00:19:33,530 --> 00:19:41,050 |
|
ุชุฑูุญ ู c ู
ู ูููุ ู
ู ุงููุณุงุฑ ุงูุขู ูุงุถุญ ุจู
ุง ุฃู ูุฐู |
|
|
|
211 |
|
00:19:41,050 --> 00:19:51,470 |
|
exist ุฅุฐุง ูุฐุง ุงูู
ูุฏุงุฑ ู ูุฐุง ุงูู
ูุฏุงุฑ ุฒู ุจุนุถุงูุงู ูุฐุง |
|
|
|
212 |
|
00:19:51,470 --> 00:19:56,590 |
|
ุจูุณุงูู ูุงูุต ูุฐุง ุงู ุจู
ุนูู ุงุฎุฑ ูุดูู ุงููุงูุต ู
ู ููุง ู |
|
|
|
213 |
|
00:19:56,590 --> 00:20:03,390 |
|
ูุถุฑุจู ููุง ุตุงุฑ ุนูุฏู ุงูู
ูุฏุฑูู ูุฏููุฉ ุจู
ุง ุงูู ู
ุชุณุงูููู |
|
|
|
214 |
|
00:20:03,390 --> 00:20:10,310 |
|
ูุฅู ุงูุงุชููู ุงูุด ุจูุณุงููู ุงู G prime of C ู
ุธุจูุท ุงุฐุง |
|
|
|
215 |
|
00:20:10,310 --> 00:20:13,390 |
|
ุตุงุฑ ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ุจูุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ุงุฐุง ุตุงุฑ |
|
|
|
216 |
|
00:20:13,390 --> 00:20:20,940 |
|
ุนูุฏู ุงู limitF of X ุนูู X minus C ูู
ุง X ุชุฑูุญ ููู C |
|
|
|
217 |
|
00:20:20,940 --> 00:20:29,560 |
|
ู
ู ุงููู
ูู absolute value ุจุณุงูู ูุงูุต limit F of X |
|
|
|
218 |
|
00:20:29,560 --> 00:20:34,600 |
|
ุนูู X minus C ูู
ุง X ุชุฑูุญ ููู C ู
ู ูููุ ู
ู ุงููุณุงุฑ |
|
|
|
219 |
|
00:20:34,600 --> 00:20:41,500 |
|
ูุงุถุญุฉุ ููู ุฃุตูุง ุนูุฏู ูุฐุง |
|
|
|
220 |
|
00:20:43,370 --> 00:20:49,010 |
|
ุจุณุงูู ุงููู ูู ุงูุชููู ุจุณุงูู ููุณ ุงูููู
ุฉ ู
ุงุดู ุงูุญุงู |
|
|
|
221 |
|
00:20:49,010 --> 00:20:55,850 |
|
ุฅุฐุง ูุงุฒู
ุนูุฏู ู
ู ููุง ุฌู ุจุฑุงูู
ู ุฌู ุจุฑุงูู
ุงููู ูู |
|
|
|
222 |
|
00:20:55,850 --> 00:21:00,210 |
|
ุตุงุฑ ุจูุณุงูู ููุณ ุงูููู
ุฉ ุฅุฐุง ููุทูุน ุงูุฌู ุจุฑุงูู
ุฅูุด |
|
|
|
223 |
|
00:21:00,210 --> 00:21:05,530 |
|
ู
ุงูู ุจุณุงูู ุณูุฑุฅุฐุง ุตุงุฑ ุงูู
ูุฏุงุฑ ูุฐุง ููู ุฅุด ุจุฏู ูุณุงูู |
|
|
|
224 |
|
00:21:05,530 --> 00:21:08,650 |
|
ุตูุฑ ููุฐุง ุจูุณุงูู ุตูุฑ ูุนูู ุงู limit ู
ู ุงููู
ูู ู |
|
|
|
225 |
|
00:21:08,650 --> 00:21:12,070 |
|
limit ู
ู ุงููุณุงุฑ ู
ุชุณุงูููู ุฅุฐุง ุตุงุฑุช limit F of X ุนูู |
|
|
|
226 |
|
00:21:12,070 --> 00:21:23,310 |
|
X minus C ูู
ุง X ุชุฑูุญ ูููC ุจุฏูุง ุชุณุงูู ุตูุฑ ุฃู ุณุคุงูุ |
|
|
|
227 |
|
00:21:23,310 --> 00:21:31,130 |
|
ุฒู ู
ุง ุญูููุงุ ุงูุขู ุฅุญูุง ูููุง ุฅูู ูู ูุงูุช D ุจุฏููุง D |
|
|
|
228 |
|
00:21:31,130 --> 00:21:34,600 |
|
ุจูุณุงูู F of X ุงู differential ุจุงูุฃุฏ Cุฌูุจูุง g prime |
|
|
|
229 |
|
00:21:34,600 --> 00:21:37,500 |
|
ู ูุชุจูุงูุง ุจุงูุตูุฑุฉ ุงููู ุฃู
ุงู
ูุง ุจุนุฏูู ุฃุฎุฏูุง ุงู |
|
|
|
230 |
|
00:21:37,500 --> 00:21:40,120 |
|
absolute value ูlimit f of x ุนูู x minus c ูู
x |
|
|
|
231 |
|
00:21:40,120 --> 00:21:45,200 |
|
ุชุฑูุญ ู c positive ุทูุนุช ุนูุฏู ุจุณุงูู g prime of c ู |
|
|
|
232 |
|
00:21:45,200 --> 00:21:48,680 |
|
ุฃุฎุฏูุง ุงููู ูู ูุงูุต ูุฐู ุทูุนุช ุนูุฏู ุจุฑุถู g prime |
|
|
|
233 |
|
00:21:48,680 --> 00:21:53,920 |
|
ุงูุงุชููู ุงู c ุฅุฐุง ุตุงุฑ ูุฐุง ุจุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ู ุงุญูุง |
|
|
|
234 |
|
00:21:53,920 --> 00:21:57,640 |
|
ุจูุนุฑู ูู ุงูุฃุตู ุงู f prime of c exist ูุนูู |
|
|
|
235 |
|
00:21:57,640 --> 00:22:01,900 |
|
differentiable ูุนูู ุงู limit ูุฐุง ุงููู ูู ู
ูุฌูุฏู ู
ู |
|
|
|
236 |
|
00:22:01,900 --> 00:22:05,100 |
|
ุงููู
ูู ู ู
ู ุงููุณุงุฑ ุฒู ุจุนุถ ูุนูู ูุนูู ูุฐุง ุจุฏู ูุณุงูู |
|
|
|
237 |
|
00:22:05,100 --> 00:22:07,500 |
|
ูุฐุง ู
ู ุงููู
ูู ู ูุฐุง ู
ู ุงููุณุงุฑ ูุนูู ูู ุงููุงูุน ูุฐุง |
|
|
|
238 |
|
00:22:07,500 --> 00:22:10,960 |
|
ุงููู ุฌูุง ูู ููุณู ุงููู ุฌูุง ุจุณุงูู limit of of X ูุนูู |
|
|
|
239 |
|
00:22:10,960 --> 00:22:15,780 |
|
ุจู
ุนูู ุฃุฎุฑ absolute value ู limit of of X ุนูู X |
|
|
|
240 |
|
00:22:15,780 --> 00:22:22,100 |
|
minus C ูู
ุง X ุชุฑูุญ ูู C ูู ููุณู ุณุงูุจ limit ูู of |
|
|
|
241 |
|
00:22:22,100 --> 00:22:27,400 |
|
of X ุนูู X minus C ูู
ุง X ุชุฑูุญ ูู C ู
ู ููู ู
ู |
|
|
|
242 |
|
00:22:27,400 --> 00:22:31,540 |
|
ุงููุณุงุฑ ูู ููุณู ูู C ู
ู ููู ุชุจุช ูุฐุงูุฃูู ุงุญูุง ุจูููู |
|
|
|
243 |
|
00:22:31,540 --> 00:22:34,560 |
|
f prime of c exist ูุนูู ุงู limit ูุฐุง ู
ูุฌูุฏ ู ู
ู |
|
|
|
244 |
|
00:22:34,560 --> 00:22:37,360 |
|
ุงููู
ูู ู ู
ู ุงููุณุงุฑ ุฒู ุจุนุฑ ุฅุฐุง ุตุงุฑ ูุฐุง ุงูู
ูุฏุฑ ููุณ |
|
|
|
245 |
|
00:22:37,360 --> 00:22:41,200 |
|
ูุฐุง ุงูู
ูุฏุฑ ุฒู ู
ุง ูููุง ุฅุฐุง ุตุงุฑ ุนูุฏ ูุฐุง ุงูู
ูุฏุฑ ุจุณุงูุฉ |
|
|
|
246 |
|
00:22:41,200 --> 00:22:46,800 |
|
ุณูุฑ ูุฅู ุงูุชููู ุจุณููุง ุจุณุงูุฉ ุณูุฑ ุฅุฐุง ุตุงุฑ ุนูุฏู limitF |
|
|
|
247 |
|
00:22:46,800 --> 00:22:50,880 |
|
of X ุนูู X minus C ุงููู ูู ุงูู absolute value as X |
|
|
|
248 |
|
00:22:50,880 --> 00:22:56,100 |
|
ุจุชุฑูุญ ููู C ุจุณุงูุฉ ุตูุฑ ูู
ู ุซู
ุงููู ุฌูุง ุจุณุงูุฉ ุตูุฑ ูู |
|
|
|
249 |
|
00:22:56,100 --> 00:22:58,740 |
|
ู
ูู ูู ุงููู ุฌูุง ูุฐุง ุงููู ููุง ุจุฏูุง ูุตูู ู
ู ุงูุฃูู |
|
|
|
250 |
|
00:22:58,740 --> 00:23:04,260 |
|
ุงููู ูู F prime of C ุจุชุณุงูุฉ ุตูุฑ ููู ุงูู
ุทููุจ ูุฐุง |
|
|
|
251 |
|
00:23:04,260 --> 00:23:10,300 |
|
ุชูุถูุญ ุจุดูู ูุงู
ู ู ุงููู ุตุงุฑ ูู ุงููู ูู ุงูุงุชุฌุงู |
|
|
|
252 |
|
00:23:10,300 --> 00:23:16,200 |
|
ุงูุซุงูู ููุฌููุง ุณุคุงู ุจุนุฏ ู
ุง ุฎูุตูุง ุงูุณุคุงู ุณุจุนุฉูุฌู |
|
|
|
253 |
|
00:23:16,200 --> 00:23:23,420 |
|
ูุณุคุงู ุชุณุนุฉ ุชุณุนุฉ ุงูุด ุงููู ุจูููู ุชุณุนุฉ ูุดูู ุงูุด ุณุคุงู |
|
|
|
254 |
|
00:23:23,420 --> 00:23:31,360 |
|
ุชุณุนุฉ ุจููู ููุญู ุณุคุงู ุชุณุนุฉ ุณุคุงู ุชุณุนุฉ ุจููู ููู |
|
|
|
255 |
|
00:23:31,360 --> 00:23:39,110 |
|
ุจุงุฎุชุตุงุฑ ุงูู ูู ูุงู ุนูุฏู ุงู function ofุนุจุงุฑุฉ ุนู ู
ู |
|
|
|
256 |
|
00:23:39,110 --> 00:23:43,130 |
|
R ูู R even function ุทุจุนุง ุนุงุฑููู ุงูุด ุงู even ุงููู |
|
|
|
257 |
|
00:23:43,130 --> 00:23:49,130 |
|
ูู F ูุงูุต X ุจูุณุงูู F X ููู X ู
ูุฌูุฏุฉ ูู ุงูู R and |
|
|
|
258 |
|
00:23:49,130 --> 00:23:54,310 |
|
has a derivative at every point then F prime is an |
|
|
|
259 |
|
00:23:54,310 --> 00:23:58,190 |
|
odd function ูุนูู ุจูููู ูู ูู ูุงูุช ุจุงุฎุชุตุงุฑ ูุนูู ูู |
|
|
|
260 |
|
00:23:58,190 --> 00:24:01,730 |
|
ูุงูุช ุงู F even ู ุงู derivative ู
ูุฌูุฏุฉ ุจุชููู ุงู |
|
|
|
261 |
|
00:24:01,730 --> 00:24:07,010 |
|
derivative odd ู ูู ูุงูุช ุงู derivative oddุจุชููู |
|
|
|
262 |
|
00:24:07,010 --> 00:24:11,350 |
|
ุงูู function ุงูู G prime ุฅูู ุดู
ุงููุง is even ุงูุญู |
|
|
|
263 |
|
00:24:11,350 --> 00:24:16,970 |
|
ูุงุญุฏุฉ ู
ู ููุง ูุงูุชุงููุฉ similarly ุฒููุง ุงูุขู ูููุชุฑุถ F |
|
|
|
264 |
|
00:24:16,970 --> 00:24:29,890 |
|
ู
ู ุนูุฏ R ูุนูุฏ R be an odd differentiable function |
|
|
|
265 |
|
00:24:29,890 --> 00:24:34,970 |
|
ู
ุงุดู ุงูุญุงู show that |
|
|
|
266 |
|
00:24:36,040 --> 00:24:44,360 |
|
F' is even a proof ุจุฏูุง ูุซุจุช ุฃูู ูู ูุงูุช ุงูู F |
|
|
|
267 |
|
00:24:44,360 --> 00:24:49,940 |
|
ุงููู ูู odd function ุจุฏู ูููู ุนูุฏู ู |
|
|
|
268 |
|
00:24:49,940 --> 00:24:52,320 |
|
differentiable ุจุฏู ูููู ุนูุฏู derivative ุฅููุง ุฅูู |
|
|
|
269 |
|
00:24:52,320 --> 00:25:03,000 |
|
ุฅูุด even ูุฃู let C element in R be arbitrary and |
|
|
|
270 |
|
00:25:03,000 --> 00:25:04,180 |
|
fixed |
|
|
|
271 |
|
00:25:06,310 --> 00:25:15,930 |
|
NR ูุงุฎุฏ ุงูู R ูุงุฎุฏ ุงูู C ุฃู ุงููู ูู real number in |
|
|
|
272 |
|
00:25:15,930 --> 00:25:23,360 |
|
R ููู ูุญูู ุนู ุงู ุดู ู
ุญุฏุฏ ุงูุงู F prime of Cุจุฏุฃ |
|
|
|
273 |
|
00:25:23,360 --> 00:25:29,060 |
|
ุฃุซุจุชูู ุฃูู ูู ุจุณูุก F prime of ูุงูุต C ูุนูู F prime |
|
|
|
274 |
|
00:25:29,060 --> 00:25:34,920 |
|
is even ุฅุฐุง ุฎุฏ F prime ูุงูุต C ูุงุจุฏุฃ ุญุณุจ ููุงุตูู ูู |
|
|
|
275 |
|
00:25:34,920 --> 00:25:39,140 |
|
ุงูููุงูุฉ ุจุณูุก F prime of C ุฅุฐุง F prime is even ุจุณูุก |
|
|
|
276 |
|
00:25:39,140 --> 00:25:49,380 |
|
limit ุงููู ูู F of X ูุงูุต F of minus C ุนูู X minus |
|
|
|
277 |
|
00:25:50,570 --> 00:25:57,070 |
|
ุงููู ูู minus C ูู
ุง X ุชุฑูุญ ูู
ูู ูู minus C ู
ุธุจูุท |
|
|
|
278 |
|
00:25:57,070 --> 00:26:05,550 |
|
ุทูุจ ู ูุณุงูู limit ุงู F ุฅูุด ู
ุนุชูููุง ุนุจุงุฑุฉ ุนู odd |
|
|
|
279 |
|
00:26:05,550 --> 00:26:12,250 |
|
ุฅูุด ูุนูู odd ูุนูู F of ูุงูุต X ุจูุณุงูู ูุงูุต F of X |
|
|
|
280 |
|
00:26:12,250 --> 00:26:16,590 |
|
ู
ุธุจูุท ูุฐู ุงููู ูู ุฅูุด ู
ุง ููุง odd function ุงููู ูู |
|
|
|
281 |
|
00:26:16,590 --> 00:26:28,550 |
|
ุจูุณุงูู limit F ofุงูุงู ุงููู ูู ูุงูุต f of ูุงูุต x |
|
|
|
282 |
|
00:26:28,550 --> 00:26:34,150 |
|
ูุงุถุญ ุฃูุ |
|
|
|
283 |
|
00:26:34,150 --> 00:26:37,150 |
|
f of ูุงูุต x ุจูุณุงูู ูุงูุต f of x ูุนูู f of x ุจูุณุงูู |
|
|
|
284 |
|
00:26:37,150 --> 00:26:41,230 |
|
ูุงูุต f of ูุงูุต x ูุงูุฌุฏ ุชุนุฑููุง ููุด ุจุนู
ูุช ููู ูุฃู |
|
|
|
285 |
|
00:26:41,230 --> 00:26:48,570 |
|
ูุงูุต f of ูุงูุต c ุงูุงู f is odd ู
ุธุจูุท ุจูุตูุฑ ุฒุงุฆุฏ f |
|
|
|
286 |
|
00:26:48,570 --> 00:26:49,330 |
|
of c |
|
|
|
287 |
|
00:26:52,220 --> 00:26:58,060 |
|
ุนูู ุฎุฏ ุงูุงู ูุงูุต ู
ู ููุง ุนุงู
ู ู
ุดุชุฑู ุจูุตูุฑ ุนุจุงุฑุฉ ุนู |
|
|
|
288 |
|
00:26:58,060 --> 00:27:08,220 |
|
ูุงูุต X ุงูุงู ูุงูุต ุงู C ูู
ุง X ุชุฑูุญ ูู
ูู ูุณุงูุจ ุงู C |
|
|
|
289 |
|
00:27:08,220 --> 00:27:14,040 |
|
ุงู X ุจุชุฑูุญ ูุณุงูุจ ุงู C ุฅุฐุง ู ููุท ุฅุฐุง ุณุงูุจ ุงู X |
|
|
|
290 |
|
00:27:14,040 --> 00:27:22,160 |
|
ุจุชุฑูุญ ูู
ูู ุฅูู ุงู C ุงูุงู ุฎุฏ ูู Yุจุณุงูู ุณุงูุจ ุงู X |
|
|
|
291 |
|
00:27:22,160 --> 00:27:29,240 |
|
ูุงุณุชุจุฏู ุนุดุงู ูุถุญ ูู ุฅูุงู ุจุณุงูู limit ุงูุงู ุฎุฏ ุงูุงู |
|
|
|
292 |
|
00:27:29,240 --> 00:27:38,320 |
|
ุนูุฏู F ุญูู
ุง ูุงู ููุต ุงูุณู
ูุง ุงู Y limit ูุงูุต F of Y |
|
|
|
293 |
|
00:27:38,320 --> 00:27:49,390 |
|
ุฒุงุฆุฏ F of C ุนูู ุงููู ูู Y ุจุชุฑูุญ ุฅูู ุงู Cูููุง y |
|
|
|
294 |
|
00:27:49,390 --> 00:27:57,430 |
|
ูุงูุต ุงู c ูููุง ูู ุนูุฏู ุงูุด ุจุฑุถู ูุงูุต ุจุฑุง ูุงู ุฎุฏ ู
ู |
|
|
|
295 |
|
00:27:57,430 --> 00:28:01,670 |
|
ููุง ูุงูุต ุนุงู
ุงูู
ุดุชุฑู ุงู ุถูุนู ู
ุน ุงููุงูุต ุงููู ููุง |
|
|
|
296 |
|
00:28:01,670 --> 00:28:11,160 |
|
ู
ุงุถุญ ุงู ุจูุตูุฑ ุนูุฏู y ุณุงูู limit f of yููุต f of c |
|
|
|
297 |
|
00:28:11,160 --> 00:28:16,800 |
|
ุนูู y minus c ูู
ุง y ุชุฑูุญ ูู c ููุฐุง ุนุจุงุฑุฉ ุนู f |
|
|
|
298 |
|
00:28:16,800 --> 00:28:22,440 |
|
prime ูู
ูู ูู c ุจุฏุฃูุง ุจ f prime ููุต c ูุงูุชูููุง ุจ f |
|
|
|
299 |
|
00:28:22,440 --> 00:28:31,520 |
|
prime ูู c ูุฐุง therefore f prime is even whenever |
|
|
|
300 |
|
00:28:31,520 --> 00:28:37,160 |
|
f is odd and f is differentiable |
|
|
|
301 |
|
00:28:40,710 --> 00:28:56,810 |
|
ุงูุณุคุงู ุงูุฃุฎูุฑ ุงูุณุคุงู 13 ุงูุณุคุงู |
|
|
|
302 |
|
00:28:56,810 --> 00:29:03,990 |
|
13 ูู ูู
ุง ููู ุงุด |
|
|
|
303 |
|
00:29:03,990 --> 00:29:09,200 |
|
ุงููู ุจููู ุงูุณุคุงู 13ุณุคุงู 13 ุจูููู ุฅุฐุง ูุงูุช F ู
ู R |
|
|
|
304 |
|
00:29:09,200 --> 00:29:12,380 |
|
ูู R is differentiable at C element in R show that |
|
|
|
305 |
|
00:29:12,380 --> 00:29:16,840 |
|
F prime of C ุณูู limit N ูู F of C ุฒุงุฆุฏ 1 ูุฃู ูุงูุต |
|
|
|
306 |
|
00:29:16,840 --> 00:29:20,620 |
|
F of C as N goes to infinity ูุนูู ูู ูุงูุช F |
|
|
|
307 |
|
00:29:20,620 --> 00:29:24,900 |
|
differentiable ุนูุฏ ุงูู C element in R ุจููุฏุฑ ููุชุจ |
|
|
|
308 |
|
00:29:24,900 --> 00:29:27,920 |
|
ุงู derivative ุงููู ูู F prime of C ุนูู ุณูุฑุฉ limit |
|
|
|
309 |
|
00:29:27,920 --> 00:29:32,320 |
|
N F of C ุฒุงุฆุฏ 1 ูุฃู ูุงูุต F of C as N goes to |
|
|
|
310 |
|
00:29:32,320 --> 00:29:38,120 |
|
infinityููู ุจูููู ูู by example show that the |
|
|
|
311 |
|
00:29:38,120 --> 00:29:44,000 |
|
existence of this limit this limit need not ุงููู |
|
|
|
312 |
|
00:29:44,000 --> 00:29:52,300 |
|
ูู imply the existence of the derivative ููุฌู |
|
|
|
313 |
|
00:29:52,300 --> 00:30:03,960 |
|
ุงูุขู ููุฌุฒุก ุงูุฃูู ุนูุฏู F ู
ู R ูRู F prime of C |
|
|
|
314 |
|
00:30:03,960 --> 00:30:12,120 |
|
exist ูุงูู ูููู ูู prove that F prime of C can be |
|
|
|
315 |
|
00:30:12,120 --> 00:30:20,760 |
|
written as limit on F of C ุฒุงุฆุฏ ูุงุญุฏุฉ ูุงู ูุงูุต F |
|
|
|
316 |
|
00:30:20,760 --> 00:30:26,180 |
|
of C as N goes to infinity ูุฐุง ุงูุฌุฒุก ุงูุฃูู ุงูุฌุฒุก |
|
|
|
317 |
|
00:30:26,180 --> 00:30:32,400 |
|
ุงูุซุงูู ุญูุฌู ุงูุงู ูููู prove ููุฌุฒุก ุงูุฃูููุจู ู
ุง ูููู |
|
|
|
318 |
|
00:30:32,400 --> 00:30:37,700 |
|
ุงูู proof ูุฐูุฑูู
ุจุณ ุจูุธุฑูุฉ ุณุงุจูุฉ ูู ุงูู real ูุงุญุฏ |
|
|
|
319 |
|
00:30:37,700 --> 00:30:43,840 |
|
ุฅูู ูู ุนูุฏู limit f of x ูู
ุง x ุชุฑูุญ ูู c ูู ูุงูุช |
|
|
|
320 |
|
00:30:43,840 --> 00:30:52,780 |
|
ุจุชุณุงูู Lุจููู ุนูุฏู ุฃู sequence xโ ุจุชุฑูุญ ููู C ูุงุฒู
|
|
|
|
321 |
|
00:30:52,780 --> 00:30:59,020 |
|
ูุชุญูู ููุง limit f of xโ as n goes to infinity |
|
|
|
322 |
|
00:30:59,020 --> 00:31:05,530 |
|
ุจุณุงูู ุจุฑุถู ุงููููุง ูุชุญุฏุซ ุจุงูุญุฏูุซุ ุจุงุณุชุจุฏุงุก ุงูุญุฏูุซ |
|
|
|
323 |
|
00:31:05,530 --> 00:31:08,670 |
|
ุนู ุงูู limit ุงูุนุงุฏูุฉ ููู function S X ุจุชุฑูุญ ููู C |
|
|
|
324 |
|
00:31:08,670 --> 00:31:13,470 |
|
ุฅูู limit ูู
ูู ููู sequence ุฃู limit ููู sequences |
|
|
|
325 |
|
00:31:13,470 --> 00:31:17,290 |
|
ุงูุขู ุจูุณุชุฎู ูุฐู ุงููู ูู ุงูู
ุนููู
ุฉ ูู ุฅุซุจุงุช ุงููู |
|
|
|
326 |
|
00:31:17,290 --> 00:31:22,630 |
|
ุจุฏูุงูุง ุนูุฏ ุงูุขู since F prime of C exist ุจู
ุง ุฃูู |
|
|
|
327 |
|
00:31:22,630 --> 00:31:29,250 |
|
ุงู derivative ุนูุฏ C ู
ูุฌูุฏุฉุฅุฐุง ุฃููุฏ ุนูุฏู ุตุงุฑ f |
|
|
|
328 |
|
00:31:29,250 --> 00:31:37,010 |
|
prime of c ุจุณูููู
ุฉ f of x ุฃู ุงููู ูู ุงูู x ุนูุฏ c |
|
|
|
329 |
|
00:31:38,080 --> 00:31:46,140 |
|
ุฒุงุฆุฏ h ูุงูุต f of c ุนูู h as h goes to mean to zero |
|
|
|
330 |
|
00:31:46,140 --> 00:31:49,860 |
|
ุงููู ูู ุงูุชุนุฑูู ุงูุชุนุฑูู ุงู derivative ุฃู ุงูุดูู |
|
|
|
331 |
|
00:31:49,860 --> 00:31:52,980 |
|
ุงูุขุฎุฑ ููุชุนุฑูู ุงู derivative f of c ุฒุงุฆุฏ ุงู |
|
|
|
332 |
|
00:31:52,980 --> 00:31:55,560 |
|
increment ูุงูุต f of c ุนูู ุงู increment as ุงู |
|
|
|
333 |
|
00:31:55,560 --> 00:32:01,600 |
|
increment goes to mean to zero ู
ุงุดู ุงูุญู ุงู L ุจู
ุง |
|
|
|
334 |
|
00:32:01,600 --> 00:32:07,480 |
|
ุฃูู ุงููู ูู ุงู 1 ุนูู N sequence ุจุชุฑูุญ ููุณูุฑููุฐุง |
|
|
|
335 |
|
00:32:07,480 --> 00:32:11,440 |
|
ุงูู limit exist ูุฃู ุญุณุจ ุงููุธุฑูุฉ ุงููู ุญููุชูุง ูุจู |
|
|
|
336 |
|
00:32:11,440 --> 00:32:21,100 |
|
ุจุดููุฉ ุจููู ุนูุฏู ูุฃู but ูุฐุง then F prime of C can |
|
|
|
337 |
|
00:32:21,100 --> 00:32:26,580 |
|
be ุงููู ูู ุฅุนุงุฏุฉ ุงููู ูู rewritten as a limit of a |
|
|
|
338 |
|
00:32:26,580 --> 00:32:36,800 |
|
sequence F of ุงููู ูู limit limitF of C ุฒุงุฆุฏ but |
|
|
|
339 |
|
00:32:36,800 --> 00:32:40,000 |
|
ุงูู H ุงููู ูู ุชุฑูุญ ููุตูุฑ ุตุงุฑุช mean ุงู sequence |
|
|
|
340 |
|
00:32:40,000 --> 00:32:46,380 |
|
ูุงุญุฏุฉ ู N ุชุฑูุญ ููุตูุฑ ูุงุญุฏุฉ ู N ูุงูุต F of C ุนูู |
|
|
|
341 |
|
00:32:46,380 --> 00:32:52,640 |
|
ูุงุญุฏุฉ ู N as N goes to infinity ู
ุฏุงู
ุช ุงู sequence |
|
|
|
342 |
|
00:32:52,640 --> 00:32:57,100 |
|
ูุงุญุฏุฉ ู N ุจุชุฑูุญ ููุตูุฑ ุตุงุฑุช ุงู F of ูุงุญุฏุฉ ู N ุงููู |
|
|
|
343 |
|
00:32:57,100 --> 00:33:00,900 |
|
ูู ุนุจุงุฑุฉ ุนู F of C ุฒุงุฆุฏ ูุงุญุฏุฉ ู N ูุฅู ุงูู C ุนุจุงุฑุฉ |
|
|
|
344 |
|
00:33:00,900 --> 00:33:07,740 |
|
ุนู ุฅูุงุด ูุงูุชุฉูุงุถุญ ุฃูุ ุงูุงู ูุฐุง ุจูุณุงูู ุงููู ูู |
|
|
|
345 |
|
00:33:07,740 --> 00:33:14,600 |
|
limit ุงูุงู as n goes to infinity ุงููู ูู ุฃููุฏ ุงููู |
|
|
|
346 |
|
00:33:14,600 --> 00:33:21,920 |
|
ูู ุจูุตูุฑ ุนูุฏู f n ูู ุงูุฌูุณ f of c ุฒุงุฆุฏ ูุงุญุฏุฉ ู n |
|
|
|
347 |
|
00:33:21,920 --> 00:33:28,260 |
|
ูุงูุต f of c ุงููู ูู as n goes to infinity ูู ูุฐุง |
|
|
|
348 |
|
00:33:28,260 --> 00:33:35,150 |
|
ุตุงุฑ f prime of c ููู ุงูู
ุทููุจุงูุงู conversely the |
|
|
|
349 |
|
00:33:35,150 --> 00:33:37,890 |
|
converse need not to be true in general ููู ุจูููู |
|
|
|
350 |
|
00:33:37,890 --> 00:33:45,390 |
|
ููู ูุนูู ุจูููููู if if ุจูููููู ุงู ุงููู ุจูููู if f |
|
|
|
351 |
|
00:33:45,390 --> 00:33:53,670 |
|
ุจุฑุง ุงููู ูู limit f of c ุฒุงุฏ ูุงุญุฏุฉ ู n ูุงูุต f of c |
|
|
|
352 |
|
00:33:53,670 --> 00:34:01,610 |
|
ุงููู ู
ุถุฑูู ูู n as n goes to infinity exist if ูุฏู |
|
|
|
353 |
|
00:34:02,500 --> 00:34:12,640 |
|
then f prime at c need not be exist ุงุตูุง ู
ุด ุงูู |
|
|
|
354 |
|
00:34:12,640 --> 00:34:16,180 |
|
ูููู ุจูุณูู ูุฐุง ุงู ูุง need not to be ุงุดู
ูู exist |
|
|
|
355 |
|
00:34:16,180 --> 00:34:19,640 |
|
ูุงู ูู ูุงู exist ุนูู ุทูู ุจูุณูู ุงู
ุง need not to be |
|
|
|
356 |
|
00:34:19,640 --> 00:34:28,200 |
|
exist ูู
ุงุงุฎุฏ ู
ุซุงู ุฌุงูู consider consider consider |
|
|
|
357 |
|
00:34:28,200 --> 00:34:37,000 |
|
f of xุจุณุงูู ุงู absolute value ูู X ูุฎุฏ ุนูุฏ ุงู C ุฃุด |
|
|
|
358 |
|
00:34:37,000 --> 00:34:46,440 |
|
ุจุชุณุงูู ุณูุฑ ูุงุถุญ F prime of 0 does not exist ูุฃููุง |
|
|
|
359 |
|
00:34:46,440 --> 00:34:48,780 |
|
ุนุจุงุฑุฉ ุนู corner pointุ ุงูุชูุง ุนุงุฑููู ุงุญูุง ุงููู ูู |
|
|
|
360 |
|
00:34:48,780 --> 00:34:52,480 |
|
ุงู F prime ุนูุฏ ุงู zero ูู absolute value does not |
|
|
|
361 |
|
00:34:52,480 --> 00:34:59,740 |
|
exist ููู ูุฐู ู
ุชุญููุฉุ ููุดุ but limit |
|
|
|
362 |
|
00:35:01,280 --> 00:35:10,900 |
|
N ูู F of 0 ุฒุงุฆุฏ 1 ุนูู N ููุต F of 0 as N goes to |
|
|
|
363 |
|
00:35:10,900 --> 00:35:18,840 |
|
infinity ุจุณุงูู limit N F of 0 ุฒุงุฆุฏ 1 ุนูู N ูุนูู F |
|
|
|
364 |
|
00:35:18,840 --> 00:35:23,560 |
|
of 1 ุนูู N F of X ุจุณุงูู absolute value X ู1 ุนูู N |
|
|
|
365 |
|
00:35:23,560 --> 00:35:28,960 |
|
ู
ุธุจูุท ุฃู as N goes to infinity ุทุจุนุง ุงูู N ุจุชุฑูุญ |
|
|
|
366 |
|
00:35:29,220 --> 00:35:35,100 |
|
ูุตูุฑ ุนุจุงุฑุฉ ุนู ash ูุงุญุฏ ุฅุฐุง ูุนูุง ุฌุจูุง ู
ุซุงู ุฃู ุงู |
|
|
|
367 |
|
00:35:35,100 --> 00:35:39,720 |
|
limit ูุฐู ุชููู exist ู ุณูู ูุงุญุฏ but ุงู F prime ุนูุฏ |
|
|
|
368 |
|
00:35:39,720 --> 00:35:42,640 |
|
ูุฐุง ุงูููุทุฉ C ุงููู ูู 00 ูู ูุฐู ุงูุญุงูุฉ does not |
|
|
|
369 |
|
00:35:42,640 --> 00:35:47,320 |
|
exist ุจูููู ููู ุงุญูุง ุงูุชูููุง ู
ู ุงูุฌุฒุก ุงูุฃูู ู
ู |
|
|
|
370 |
|
00:35:47,320 --> 00:35:54,870 |
|
ุงูู
ุญุงุถุฑุฉ ุงูุฎุงู
ุณุฉุงููู ูู discussion ูุฃู ู
ูุงูุดุฉ ู |
|
|
|
371 |
|
00:35:54,870 --> 00:35:59,910 |
|
section 6-1 ุงููู ูู the derivative ูุงูุขู ุณููู
ู |
|
|
|
372 |
|
00:35:59,910 --> 00:36:05,690 |
|
ุงูุญุฏูุซ ูู ุงูุฌุฒุก ุงูุซุงูู ู
ู ุงูู
ุญุงุถุฑุฉ ุงููู ูู ุนู ุงููู |
|
|
|
373 |
|
00:36:05,690 --> 00:36:09,250 |
|
ูู the mean value theorem ุฃู ุงููู ูู ููู
ู |
|
|
|
374 |
|
00:36:09,250 --> 00:36:11,910 |
|
applications ุนูู mean value theorem ููุงุฎุฏ ุงููู ูู |
|
|
|
375 |
|
00:36:11,910 --> 00:36:12,030 |
|
ุงู |
|
|
|
|