|
1 |
|
00:00:05,090 --> 00:00:08,030 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุญู
ุฏ ููู ุฑุจ ุงูุนุงูู
ูู |
|
|
|
2 |
|
00:00:08,030 --> 00:00:11,070 |
|
ูุงูุตูุงุฉ ูุงูุณูุงู
ุนูู ุณูุฏูุง ู
ุญู
ุฏ ูุนูู ุขูู ูุตุญุจู |
|
|
|
3 |
|
00:00:11,070 --> 00:00:18,250 |
|
ุฃุฌู
ุนูู ูุฐู ุงูู
ุญุงุถุฑุฉ ุฑูู
24 ู
ุณุงู ุชุญููู ุญูููุฉ 2 ุทูุงุจ |
|
|
|
4 |
|
00:00:18,250 --> 00:00:22,650 |
|
ูุทุงูุจุงุช ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉ ูุณู
ุฑูุงุถูุงุช ูููุฉ ุงูุนููู
|
|
|
|
5 |
|
00:00:23,470 --> 00:00:26,630 |
|
ุงูููู
ูููู
ู ุงู ุดุงุก ุงููู ุงู section ุงูุฃุฎูุฑ ูู |
|
|
|
6 |
|
00:00:26,630 --> 00:00:29,870 |
|
chapter 8 ุงููู ูู 8 ุฃุฑุจุนุฉ ุชุญุช ุนููุงู the |
|
|
|
7 |
|
00:00:29,870 --> 00:00:35,170 |
|
trigonometric functions ููู ุฃูุถุง ุงููู ูู section |
|
|
|
8 |
|
00:00:35,170 --> 00:00:42,210 |
|
ุฃู ู
ูุถูุน ุชุทุจูู ุนูู ุงููู ููุงูู pointwise and |
|
|
|
9 |
|
00:00:42,210 --> 00:00:46,030 |
|
uniform convergence ููู sequence of functions ูููู |
|
|
|
10 |
|
00:00:46,030 --> 00:00:50,510 |
|
ุจุฏูุง ูุนุฑู ุจุทุฑููุฉ ู
ุดุงุจูุฉ ุฌุฏุง ูู
ุนุฑููุงูุง ุงูู
ุฑุฉ |
|
|
|
11 |
|
00:00:50,510 --> 00:00:53,330 |
|
ุงูู
ุงุถูุฉ ุฃู ุงููู ูุจููุง ุจุฎุตูุต ุงูู exponential |
|
|
|
12 |
|
00:00:53,330 --> 00:00:58,710 |
|
function ููุนุฑู ุงูููู
ุงููู ูู ุจููุณ ุงูุทุฑููุฉ ููู ูุนุฑู |
|
|
|
13 |
|
00:00:58,710 --> 00:01:03,510 |
|
ุงููู ูู ุงูู sine ู ุงูู cosine as a limit ุงููู ูู |
|
|
|
14 |
|
00:01:03,510 --> 00:01:07,390 |
|
of a uniformly convergent sequence of functions |
|
|
|
15 |
|
00:01:07,950 --> 00:01:11,230 |
|
ุงูุนููุงู is in the trigonometric functions ุงููู ูู |
|
|
|
16 |
|
00:01:11,230 --> 00:01:15,450 |
|
section 8 ุฃุฑุจุนุฉ ุงููุธุฑูุฉ |
|
|
|
17 |
|
00:01:15,450 --> 00:01:21,950 |
|
ุงูุฃููู ุงููู ุนูุฏูุง ุงููู ู
ุดุงุจูุฉ ููุธุฑูุฉ ุณุงุจูุฉ ุงููู ูู |
|
|
|
18 |
|
00:01:21,950 --> 00:01:25,870 |
|
ุงู exponential ุงููู ู
ู ุฎูุงููุง ุจุฏูุง ูุตู ูุงููู ูู |
|
|
|
19 |
|
00:01:25,870 --> 00:01:31,370 |
|
ุชุนุฑูู ุงููู ูู ุงู cosine ู ุงู sineุงููุธุฑูุฉ ุจุชููู |
|
|
|
20 |
|
00:01:31,370 --> 00:01:35,190 |
|
ู
ุงูู there exist functions ููุฌุฏ ุฏูุงู ุงูุฃู
ูุงู ูู |
|
|
|
21 |
|
00:01:35,190 --> 00:01:40,570 |
|
ุจุชูุฌูุฏ ุฏูุงู C ู
ู R ู R and S ู
ู R ู R such that |
|
|
|
22 |
|
00:01:40,570 --> 00:01:44,690 |
|
ุงููู ูู ุทุจุนุง ู
ุณุชูุจูุง ููุชุณู
ู ุงู C ุงููู ูู ุงู cosine |
|
|
|
23 |
|
00:01:44,690 --> 00:01:48,910 |
|
ูู
ุณุชูุจูุง ููุชุณู
ู ุงู S ุงููู ูู ุงู sine ุงููู ุงุญูุง |
|
|
|
24 |
|
00:01:48,910 --> 00:01:54,090 |
|
ุจูุนุฑููุงุงูุงู ุจูููู ูู ุฏู ุงููู ุชุงูู ูุงุญุฏุฉ ุงุณู
ูุง c |
|
|
|
25 |
|
00:01:54,090 --> 00:01:59,950 |
|
ูุงุญุฏุฉ s ุชุญูู ู
ุง ููู ุงููู ูู cw prime of x ุจูุณุงูู |
|
|
|
26 |
|
00:01:59,950 --> 00:02:04,870 |
|
ูุงูุต c of x s w prime of x ุจูุณุงูู ูุงูุต s of x ููู |
|
|
|
27 |
|
00:02:04,870 --> 00:02:08,730 |
|
ุงุณุชุฐูุฑุช ุงูุช ุงู sine ู ุงู cosine ุฏู ู
ุง ุณูุญุฏุซ ูุงุญูุง |
|
|
|
28 |
|
00:02:08,730 --> 00:02:12,270 |
|
ุทุจุนุง ูู ุงุณุชุฐูุฑุช ุงู cosine ูู
ุง ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
29 |
|
00:02:12,270 --> 00:02:16,130 |
|
ูุงุถููุง ู
ุฑุชูู ูุชุตูุฑ ุงููู ูู ูุงูุต ุงููู ูู ููุณูุง ู ูู |
|
|
|
30 |
|
00:02:16,130 --> 00:02:19,570 |
|
ูุงุถูุช ุงู sine ุจุฑุถู ูุงุถููุง ู
ุฑุชูู ูุชูุงูููุง ุงูุด ูู |
|
|
|
31 |
|
00:02:19,960 --> 00:02:23,840 |
|
ุจุชุทูุน ุณุงูุจ S ุงูุฎุงุตูุฉ ุงูุชุงููุฉ ุงููู ูู C of Zero |
|
|
|
32 |
|
00:02:23,840 --> 00:02:27,780 |
|
ุจุณุงูุฉ ูุงุญุฏ ููู ุงุณุชุฐูุฑุช ุงูููุณูู ููุณูู ุงู Zero ุจุณุงูุฉ |
|
|
|
33 |
|
00:02:27,780 --> 00:02:31,240 |
|
ูุงุญุฏ ููู ุงุณุชุฐูุฑุช ุงูููุณูู ูู
ุง ุชุงุฎุฏูุง ุงู derivative |
|
|
|
34 |
|
00:02:31,240 --> 00:02:35,160 |
|
ูุชุตูุฑ ุนุจุงุฑุฉ ุนู ุณุงูุจ Sin ุนูุฏ Zero ูุชุทูุน H ุจุณุงูุฉ |
|
|
|
35 |
|
00:02:35,160 --> 00:02:38,960 |
|
Zero and S of Zero ุจุณุงูุฉ Zero ูS prime of Zero |
|
|
|
36 |
|
00:02:38,960 --> 00:02:45,330 |
|
ุจุณุงูุฉ ูุงุญุฏ ูุนูู ุจู
ุนูู ุฃุฎุฑ ููุฌุฏ ุฏุงูุชูู ุงูุขูุฏุงูุชูู |
|
|
|
37 |
|
00:02:45,330 --> 00:02:49,770 |
|
ูุงุญุฏุฉ ู
ู C ูู A ุงุณู
ูุง S ูุงุญุฏุฉ ุงุณู
ูุง C ู
ู R ู R |
|
|
|
38 |
|
00:02:49,770 --> 00:02:56,690 |
|
ุชุญูู ุงูุดุฑุทูู ุงูุชุงูููู CW' ุจุณูุก ูุงูุต C ูSW' ุจุณูุก |
|
|
|
39 |
|
00:02:56,690 --> 00:03:01,330 |
|
ูุงูุต S ุนูู ูู R ูC ุนูุฏ ุงูู 0 ูู 1 ูC' ุนูุฏ ุงูู 0 |
|
|
|
40 |
|
00:03:01,330 --> 00:03:05,650 |
|
ุจุณูุก 0 ูS ุนูุฏ ุงูู 0 ุจุณูุก 0 ูS' ุนูุฏ ุงูู 0 ุจุณูุก 1 |
|
|
|
41 |
|
00:03:05,650 --> 00:03:11,250 |
|
ูุจุนุฏ ุดููุฉ ููููู ูุง ููุฌุฏ ูู ุงูุฏููุง ุฏุงูุชูู ุจุญูู ุงู |
|
|
|
42 |
|
00:03:11,250 --> 00:03:17,300 |
|
ุงูุดุฑูุท ูุฐููุฉุฅูุง ูู ูุงุญุฏุฉ ุงุณู
ูุง C ูุงุญุฏุฉ ุงุณู
ูุง S |
|
|
|
43 |
|
00:03:17,300 --> 00:03:22,640 |
|
ูุนูู ุงูุชูุชูู ูุงุญุฏุงุช ููุฐุง ูุฌุนููุง ูุณู
ููู
ุงูุชุณู
ูุฉ ุจุนุฏ |
|
|
|
44 |
|
00:03:22,640 --> 00:03:26,380 |
|
ุฐูู ูุงุญุฏุฉ ุงุณู
ูุง cosine ูุงุญุฏุฉ ุงุณู
ูุง sine ูู
ู ุซู
|
|
|
|
45 |
|
00:03:26,380 --> 00:03:29,320 |
|
ุจูุฌูุจ ูู ุงูุฎูุงุต ุงููู ุงุญูุง ุจูุนุฑูู ุนู ุงู sine ู ุงู |
|
|
|
46 |
|
00:03:29,320 --> 00:03:34,020 |
|
cosine ู
ู ูุฐุง ุงูุจูุงุก ุฅุฐู ุงูุขู ุฃูุง ุจุจูู ุจุจูู ุจุจูู |
|
|
|
47 |
|
00:03:34,020 --> 00:03:36,980 |
|
ูุฌูุฏ ุงู sine ู ุงู cosine ู ุจุนุฏ ุดููุฉ ุจุจูู ุงููู ูู |
|
|
|
48 |
|
00:03:36,980 --> 00:03:40,960 |
|
ุงู uniqueness ุทุจูุง ููุฐู ุงูุดุฑูุท ุงููู ู
ูุฌูุฏุฉ ุนูุฏู |
|
|
|
49 |
|
00:03:42,380 --> 00:03:45,860 |
|
ุงูุงู ุจููู ุจุฏูุง ูุนู
ู ุฒู ู
ุง ุนู
ููุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ูู |
|
|
|
50 |
|
00:03:45,860 --> 00:03:48,340 |
|
ุงู .. ูู ุงู .. ุงููู ูู ุงูู Exponential ุนุดุงูู |
|
|
|
51 |
|
00:03:48,340 --> 00:03:52,060 |
|
ูุชูุงูููู ุดููุฉ ู
ุณุฑุน ูุฅู ุงููู ุจูุญุถุฑ ุงููู ูู ู
ุญุงุถุฑุฉ |
|
|
|
52 |
|
00:03:52,060 --> 00:03:56,620 |
|
ุงูู Exponential ูููุงูู ุฅู ูุฐุง ูู ูุชูุฑ ู
ู ุงูุญุฏูุซ ูู |
|
|
|
53 |
|
00:03:56,620 --> 00:04:00,640 |
|
ุฅุนุงุฏุฉ We define the sequence cn as n of continuous |
|
|
|
54 |
|
00:04:00,640 --> 00:04:05,240 |
|
functions inductively as ุจุฏูุง ูุนุฑู ุงููู ูู .. ุงููู |
|
|
|
55 |
|
00:04:05,240 --> 00:04:09,640 |
|
ูู two sequences ูุงุญุฏุฉ ูุณู
ููุง cn ููุงุญุฏุฉ ูุณู
ููุง sn |
|
|
|
56 |
|
00:04:10,270 --> 00:04:13,890 |
|
ููู ุจุฏูุง ูุนุฑููุงุ ุฒู ู
ุง ุนุฑููุง ุงูู exponential ุจูุนุฑู |
|
|
|
57 |
|
00:04:13,890 --> 00:04:19,250 |
|
C1 of X ุฅูุด ุจุชุณุงูู ูุงุญุฏ ูS1 of X ุฅูุด ุจุฏูุง ูุณู
ููุง |
|
|
|
58 |
|
00:04:19,250 --> 00:04:26,490 |
|
ุจุณุงูู X ุงูุขู S2 of X S2 of X ููุณุงูู ุงู integration |
|
|
|
59 |
|
00:04:26,490 --> 00:04:31,990 |
|
ู
ู ุตูุฑ ูุนูุฏ X C2 of T DT ุทุจ C2 ู
ู ููู ุฃุฌูุจูุงุ C2 |
|
|
|
60 |
|
00:04:31,990 --> 00:04:36,050 |
|
ุจุชุฌูุจูุง ู
ู ููุง C ุงููู ูู ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ูุนูู C2 |
|
|
|
61 |
|
00:04:36,050 --> 00:04:41,470 |
|
ุจุณุงูู ูุงุญุฏ ูุงูุต ุงู integration ู
ู ุตูุฑ ู Xูู S1 of |
|
|
|
62 |
|
00:04:41,470 --> 00:04:48,870 |
|
T ุงููู ูุฐุง DT ูุจููู ุฌูุจุช ุงู C2 ู ุจุชุฌูุจุช ุงู S2 ู
ู |
|
|
|
63 |
|
00:04:48,870 --> 00:04:55,530 |
|
ุงู C2 ูุฃู S3 ู C3 ุจููุณ ุงูุทุฑููุฉ in general ุงููู ุฃูุง |
|
|
|
64 |
|
00:04:55,530 --> 00:04:59,170 |
|
ุนู
ูุช sequence of functions ุงููู ูู ุจุฏุฃุช ุงููู ูู ุงู |
|
|
|
65 |
|
00:04:59,170 --> 00:05:05,120 |
|
C1 ุจ1 S1 ุจ Xูู
ู ุซู
S N ุจุชุณุงูู ู
ู ุตูุฑ ู X |
|
|
|
66 |
|
00:05:05,120 --> 00:05:10,760 |
|
integration C N of T DT ูุนูู ูู
ุงูุฉ C N of T DT ูC |
|
|
|
67 |
|
00:05:10,760 --> 00:05:13,460 |
|
N ุฒุงุฆุฏ ูุงุญุฏ of X ุจุชุณุงูู ูุงุญุฏ ููุต integration ู
ู |
|
|
|
68 |
|
00:05:13,460 --> 00:05:18,700 |
|
ุตูุฑ ู X S N of T DT ุงูุขู ูู ุจูููู ุงููู ูู ูุฐู |
|
|
|
69 |
|
00:05:18,700 --> 00:05:21,820 |
|
sequence of continuous functions ุทุจ sequence of |
|
|
|
70 |
|
00:05:21,820 --> 00:05:25,840 |
|
continuous functions ูุฐุง ุงูููุงู
ุจุฏู ุฅุซุจุงุชุทูุจุ ุงูุงู |
|
|
|
71 |
|
00:05:25,840 --> 00:05:29,500 |
|
ุนูุฏู ุงููู ูู by induction ุฒู ู
ุง ุงูุชูุง ุนุงุฑููู ุงูุงู |
|
|
|
72 |
|
00:05:29,500 --> 00:05:33,600 |
|
ุนูุฏู ุงููC1 continuous ูุงู ุงูุซุงุจุชุฉ S1 continuous |
|
|
|
73 |
|
00:05:33,600 --> 00:05:38,880 |
|
ูุงู ูู ุดู
ุงููุง ุจุชุณุงูู X ุจูุงุก ุนููู ูุชุทูุน ุนูุฏู ุงููู |
|
|
|
74 |
|
00:05:38,880 --> 00:05:44,920 |
|
ูู C2 continuous ูู
ู ุซู
C3 ูC4 ุงูุงุฎุฑูู ุงูุงู ูู |
|
|
|
75 |
|
00:05:44,920 --> 00:05:49,000 |
|
ุจุฏูุง ูุซุจุชูุง by induction ุจุฏูุง ููุชุฑุถ ุงูู ูุฐููุฉ |
|
|
|
76 |
|
00:05:49,000 --> 00:05:52,560 |
|
ุงููSn ูุงููCn |
|
|
|
77 |
|
00:05:53,920 --> 00:06:00,700 |
|
continuous ุณูุซุจุช ููุง continuous ูุฃู S1 ุงูุด ุจุชุณุงูู |
|
|
|
78 |
|
00:06:00,700 --> 00:06:06,860 |
|
Xุ C1 ุงูุด ุจุชุณุงูู 1ุ continuous ุฅุฐุง ุตุงุฑุช ูุฐู ุงููู |
|
|
|
79 |
|
00:06:06,860 --> 00:06:12,340 |
|
ูู ุงูุฌู
ูุฉ is true for N ุจุชุณุงูู 1 ููุชุฑุถ ุงูุขู |
|
|
|
80 |
|
00:06:12,340 --> 00:06:19,900 |
|
supposeby induction ุจุชูุฏู suppose that ุงููู star |
|
|
|
81 |
|
00:06:19,900 --> 00:06:25,960 |
|
ูุฐู is true for n ุงูุด ุจุชุณุงูู n ุจุชุณุงูู k ู
ุนูุงุชู |
|
|
|
82 |
|
00:06:25,960 --> 00:06:33,820 |
|
ุตุงุฑุช ุงู S Kูุงูู CK are continuous ุจุชุซุจุช ุงูุขู ู
ู |
|
|
|
83 |
|
00:06:33,820 --> 00:06:38,520 |
|
ุงูุตุญูุญุฉ ูู K ุฒุงุฆุฏ ูุงุญุฏ ูุนูู ุจุชุซุจุช ุงููู ูู CK ุฒุงุฆุฏ |
|
|
|
84 |
|
00:06:38,520 --> 00:06:42,700 |
|
ูุงุญุฏ ู SK ุฒุงุฆุฏ ูุงุญุฏ ุงู ููุง ุดู
ุงู ููุง continuous ุทูุจ |
|
|
|
85 |
|
00:06:42,700 --> 00:06:48,000 |
|
ุงูุขู ุดูู CK ุฒุงุฆุฏ ูุงุญุฏ ุจุชุณุงูู ุญุณุจ ุงููู ูู ุนูุฏู ูุงู |
|
|
|
86 |
|
00:06:48,000 --> 00:06:51,740 |
|
ุงูุด ุจุชุณุงูู ุงููู ูู ุนุจุงุฑุฉ ุนู CK ูุงุญุฏ of X ุจุชุณุงูู ุงู |
|
|
|
87 |
|
00:06:51,740 --> 00:06:58,020 |
|
integration ูุงุญุฏ ููุต ุงู integration ู
ู ุตูุฑ X Sู .. |
|
|
|
88 |
|
00:06:58,020 --> 00:07:03,020 |
|
ูุฐุง ูุฒ ูุงุญุฏ .. ูุฐุง ู .. of DT ุทูุจ ุฃูุง ู
ูุชุฑุถ ุฃู S K |
|
|
|
89 |
|
00:07:03,020 --> 00:07:06,600 |
|
ู
ู ุงู hypothesis induction ุฅููุง continuous ุฅุฐุง |
|
|
|
90 |
|
00:07:06,600 --> 00:07:11,040 |
|
ุตุงุฑุช ูุฐู ูููุง ุฅูุด ู
ุงููุงุ ุงููู ูู S K integrable |
|
|
|
91 |
|
00:07:11,040 --> 00:07:15,600 |
|
ูุตุงุฑุช ูุฐู ูููุง ุนูู ุจุนุถ by fundamental theorem of |
|
|
|
92 |
|
00:07:15,600 --> 00:07:20,980 |
|
calculus ุงููู ูู ุงู derivative ุฅููุง ู
ูุฌูุฏุฉ ุฅุฐุง |
|
|
|
93 |
|
00:07:20,980 --> 00:07:23,440 |
|
ุตุงุฑุช ูุฐู ูููุง ุงู derivative ุฅููุง ูู
ูุฌูุฏุฉ ุจุงููุณุจุฉ |
|
|
|
94 |
|
00:07:23,440 --> 00:07:27,680 |
|
ูู Xุฅุฐุง ุตุงุฑุช ู
ุฏุงู
ููู ูุงุฐ is differentiable ุฅุฐุง |
|
|
|
95 |
|
00:07:27,680 --> 00:07:30,940 |
|
continuous ุฅุฐุง ุตุงุฑุช ุงููู ูู ck ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
96 |
|
00:07:30,940 --> 00:07:35,200 |
|
continuous ุงููู ุซุจุช ุงูุขู is sk ุฒุงุฆุฏ ูุงุญุฏ sk ุฒุงุฆุฏ |
|
|
|
97 |
|
00:07:35,200 --> 00:07:39,280 |
|
ูุงุญุฏ of x ุฃูุด ุจุชุณุงูู ุญุณุจ ุงููู ุงูุชุนุฑูู ุจุชุณุงูู ุงู |
|
|
|
98 |
|
00:07:39,280 --> 00:07:47,660 |
|
integration ู
ู ุตูุฑ ุงูุนูุฏ x ck of tุฒุงูุฏ ูุงุญุฏ ูุฐุง N |
|
|
|
99 |
|
00:07:47,660 --> 00:07:52,620 |
|
ูุฐุง N K ุฒุงูุฏ ูุงุญุฏ K ุฒุงูุฏ ูุงุญุฏ DT ูุงูุง ู
ุซุจุช ููู ุงูู |
|
|
|
100 |
|
00:07:52,620 --> 00:07:56,160 |
|
CK ุฒุงูุฏ ูุงุญุฏ is continuous ุฅุฐุง ุตุงุฑุช ูุฐู ูููุง ุนูู |
|
|
|
101 |
|
00:07:56,160 --> 00:07:59,500 |
|
ุจุนุถ integrable ุงููู ูู CK ุฒุงูุฏ ูุงุญุฏ ุตุงุฑ ูุฐุง ุงู |
|
|
|
102 |
|
00:07:59,500 --> 00:08:02,000 |
|
integration exist ูู
ุด ููู by fundamental theorem |
|
|
|
103 |
|
00:08:02,000 --> 00:08:04,720 |
|
of calculus ุจุฑุถู ุงู derivative ูู ุฅูู ุดู
ุงููุง |
|
|
|
104 |
|
00:08:04,720 --> 00:08:07,700 |
|
ู
ูุฌูุฏุฉ ุฅุฐุง ุตุงุฑุช ูุฐู ุงู differentiable ุฅุฐุง |
|
|
|
105 |
|
00:08:07,700 --> 00:08:11,060 |
|
continuous ุฅุฐุง ุตุงุฑุช CK ุฒุงูุฏ ูุงุญุฏ ูSK ุฒุงูุฏ ูุงุญุฏ are |
|
|
|
106 |
|
00:08:11,060 --> 00:08:16,160 |
|
continuous ุฅุฐุง ุตุงุฑุช ุงูุฌู
ูุฉ ูุฐู ุตุญูุญุฉูุฃ K ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
107 |
|
00:08:16,160 --> 00:08:21,000 |
|
ุฅุฐุง ุตุงุฑุช ุตุญูุญุฉ ุฏุงุฆู
ุง ุฅุฐุง ุตุงุฑุช ุนูุฏู ุงูุงู ู
ูุฑุบ ู
ูู |
|
|
|
108 |
|
00:08:21,000 --> 00:08:26,360 |
|
ุงู CN ูุงูSN are continuous functions ูุจูุงุก ุนููู |
|
|
|
109 |
|
00:08:26,360 --> 00:08:29,860 |
|
ู
ุฏุงู
continuous functions by fundamental theorem |
|
|
|
110 |
|
00:08:29,860 --> 00:08:35,460 |
|
of calculus ูุชููู ูุฐู ุงู SN differentiable ู ุงู CN |
|
|
|
111 |
|
00:08:35,460 --> 00:08:39,800 |
|
ุฒุงุฆุฏ ูุงุญุฏ differentiable ูู
ุด ููู ูู
ุงู ู ููุนุทููู ุงู |
|
|
|
112 |
|
00:08:39,800 --> 00:08:43,440 |
|
SN prime of X ุญุณุจ ุงู fundamental theorem of |
|
|
|
113 |
|
00:08:43,440 --> 00:08:46,820 |
|
calculusุงูู differentiation ุจุชุถุงูู ุงู integration |
|
|
|
114 |
|
00:08:46,820 --> 00:08:54,580 |
|
ุจุชุถุงู ุจุณุงูู cn of x ุงูุงู ู ุงู derivative ููุฐู ุจุฑุถู |
|
|
|
115 |
|
00:08:54,580 --> 00:08:59,900 |
|
exist cn ุฒุงุฆุฏ ูุงุญุฏ prime of x ุงููู ูู ูู ุณุงูู ุงููู |
|
|
|
116 |
|
00:08:59,900 --> 00:09:10,170 |
|
ูู ู
ูู ูุชุทูุน ูุงูุต snof X ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ุงููู ูู |
|
|
|
117 |
|
00:09:10,170 --> 00:09:15,610 |
|
ุงู sequence ุงููู ุนูุฏู ุตุงุฑุช well defined ูููุง ู |
|
|
|
118 |
|
00:09:15,610 --> 00:09:20,270 |
|
continuous ูููุง ู ูุฃ ู differentiable ูู
ุงู ุงู SN |
|
|
|
119 |
|
00:09:20,270 --> 00:09:25,150 |
|
prime of X ุจูุณุงูู CN of X ู CN ุฒุงุฆุฏ ูุงุญุฏ prime of |
|
|
|
120 |
|
00:09:25,150 --> 00:09:31,730 |
|
X ุจูุณุงูู ูุงูุต SN of X ุฒู ู
ุง ุฃูุง ุฃุซุจุชูุง ู ุฃูุถุญุช ููู
|
|
|
|
121 |
|
00:09:31,730 --> 00:09:38,710 |
|
ุฅูุงูุง ููุงุงูุขู induction arguments ุจุฑุถู induction |
|
|
|
122 |
|
00:09:38,710 --> 00:09:42,970 |
|
arguments ุจููู ูู we leave this argument for you |
|
|
|
123 |
|
00:09:42,970 --> 00:09:46,890 |
|
ุฎูููุง ูุดูููุง ู
ุน ุจุนุถ ู
ุงูู ุงููู ุจููุตุฏู ุฒู ู
ุง ุนู
ูุช |
|
|
|
124 |
|
00:09:46,890 --> 00:09:49,870 |
|
ุจุงูุธุจุท ูู ุทูุนุช ุนูู ุงูุฎุทูุงุช ูุชูุงูููุง ู
ุดุงุจู ูุฎุทูุงุช |
|
|
|
125 |
|
00:09:49,870 --> 00:09:54,970 |
|
ุชุจุนุงุช ุงู exponential ุนูุฏ ุงู Sn of X ุฒู ู
ุง ูููุง |
|
|
|
126 |
|
00:09:54,970 --> 00:10:02,060 |
|
ุจุณูุก ุงู integration ู
ู 0 ู X Cn of T dtC N ุฒุงุฆุฏ |
|
|
|
127 |
|
00:10:02,060 --> 00:10:06,140 |
|
ูุงุญุฏ of X ุจุณุงูุฉ ูุงุญุฏ ู
ูุต ุงู integration ู
ู C ู X S |
|
|
|
128 |
|
00:10:06,140 --> 00:10:15,360 |
|
N of T DT ูู
ุนุทููุง ุทุจุนุง ุงุญูุง ุงุฎุฏูุง ุงู C ูุงุญุฏ of X |
|
|
|
129 |
|
00:10:15,360 --> 00:10:22,530 |
|
ุจุณุงูุฉ ูุงุญุฏู ุงูู c ู s1 of x ุจุณูุฉ x ูุฐู ุงููู ูู ุงู |
|
|
|
130 |
|
00:10:22,530 --> 00:10:25,370 |
|
sequence of functions ุงููู ุฃุซุจุชูุงูุง ูุฐู ุงู |
|
|
|
131 |
|
00:10:25,370 --> 00:10:27,990 |
|
sequence of functions ุงู sn ู ุงู cn ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
132 |
|
00:10:27,990 --> 00:10:32,230 |
|
ุงูุชูุชูู are continuous for every n ู ูู
ุด ูู |
|
|
|
133 |
|
00:10:32,230 --> 00:10:34,850 |
|
codifferentiable ู ุงู derivative ุฅููุง ุฒู ู
ุง ูููุง |
|
|
|
134 |
|
00:10:34,850 --> 00:10:39,430 |
|
sn prime of x ุจุณูุฉ cn of x ู ุงู cn ุฒุงุฆุฏ ูุงุญุฏ prime |
|
|
|
135 |
|
00:10:39,430 --> 00:10:44,190 |
|
of x ุจุณูุฉ ูุงูุต sn of x ู ุฎููููุง ูุณุฌููุง ูุฐู ูุฅูู |
|
|
|
136 |
|
00:10:44,190 --> 00:10:52,370 |
|
ููุญุชุงุฌูุง ุจุนุฏ ุดููุฉุงููู ูู S N prime of X ุจุณุงูู |
|
|
|
137 |
|
00:10:52,370 --> 00:11:00,310 |
|
C N of X and C N ุฒุงุฆุฏ ูุงุญุฏ prime of X ุจุณุงูู ูุงูุต S |
|
|
|
138 |
|
00:11:00,310 --> 00:11:09,070 |
|
N of X ุทูุจ ุงูุขู ุจุฏูุง ุงููู ูู by induction ูุซุจุช |
|
|
|
139 |
|
00:11:09,070 --> 00:11:12,570 |
|
ุงููู ูู C N ุฒุงุฆุฏ ูุงุญุฏ of X ุจุณุงูู ุงููู ูู ุงููู |
|
|
|
140 |
|
00:11:12,570 --> 00:11:18,460 |
|
ุฃู
ุงู
ู ูุฐุง ุทุจุนุง ุฃููุฏ ุงููู ููุจุนุถูู
ูุงู ู
ุง ูู by |
|
|
|
141 |
|
00:11:18,460 --> 00:11:24,960 |
|
induction ูุชุทูุน ุนูู C2 of X C1 ูู ุงููุฑุขู ุจุชุณุงูู |
|
|
|
142 |
|
00:11:24,960 --> 00:11:31,720 |
|
ูุงุญุฏ ูุซุจุชูุง ูุนูู ุงูุงู C2of X ุงูุด ุจุชุณุงูู ุญุณุจ |
|
|
|
143 |
|
00:11:31,720 --> 00:11:35,960 |
|
ุงููุงููู ุจุณุงูู ูุงุญุฏ ู
ุงูุต ุงู integration ู
ู ุตูุฑ ู X |
|
|
|
144 |
|
00:11:35,960 --> 00:11:41,020 |
|
ุฃุณ ูุงุญุฏ ูุฃูู ุจูุงุญุฏ ููุง ุฃุณ ูุงุญุฏ ุงููู ูู ุฌุฏุด ุฃุณ ูุงุญุฏ |
|
|
|
145 |
|
00:11:41,020 --> 00:11:46,060 |
|
ุงู X integration ุงููู ูู TDT ููุณุงูู ุงูุชูุงุถู ุงููู |
|
|
|
146 |
|
00:11:46,060 --> 00:11:49,820 |
|
ูุฐู ุจูุตูุฑ ูุงุญุฏ ู
ุงูุต X ุชุฑุจูุน ุนูู ู
ูู ุนูู ุงุชููู ุฅุฐุง |
|
|
|
147 |
|
00:11:49,820 --> 00:11:54,410 |
|
ูุนูุง ุงููู ูู Cุงููู ูู ูุฐู ุงุชููู is true for any |
|
|
|
148 |
|
00:11:54,410 --> 00:11:58,870 |
|
ุงูุด ุจุชุณุงูู ุงู ุจุชุณุงูู ูุงุญุฏ ุจุฏูุง ูุซุจุช ุงูุชุงููุฉ ู
ุนูุง |
|
|
|
149 |
|
00:11:58,870 --> 00:12:01,730 |
|
ุงููู ูู true for any ุจุชุณุงูู ูุงุญุฏ ูุฅููุง ุฏู ุฌู
ูุฉ |
|
|
|
150 |
|
00:12:01,730 --> 00:12:05,690 |
|
ูุงุญุฏุฉ ุจุฏุฃ ุฃุซุจุชูุง ุงููุง true for every any ุงูุงู for |
|
|
|
151 |
|
00:12:05,690 --> 00:12:10,590 |
|
any ุจุชุณุงูู ูุงุญุฏ ุจูุตูุฑ ุนูุฏู ุฃุณ ุงุชููู of x ุจุฏุฃ ุฃุชุฃูุฏ |
|
|
|
152 |
|
00:12:10,590 --> 00:12:15,990 |
|
ุงูู ุงููู ูู ุจุชุญูู ุงููู ูู ุงู .. ุงููู .. ุงูู ูุฐู ุงู |
|
|
|
153 |
|
00:12:15,990 --> 00:12:19,960 |
|
equationS2 of X ุจูุณุงูู ู
ู ููู ุจุฏู ุงุฌูุจูุง ู
ู |
|
|
|
154 |
|
00:12:19,960 --> 00:12:23,480 |
|
ุงูุชุนุฑูู ุงููู ููู ุจูุณุงูู ุงู integration ู
ู ุณูู ู X |
|
|
|
155 |
|
00:12:23,480 --> 00:12:29,180 |
|
C2 of X ุงูุด C2 of X ูุงูู ุงููู ูู ูุงุญุฏ ููุต T ุชุฑุจูุน |
|
|
|
156 |
|
00:12:29,180 --> 00:12:34,800 |
|
ุนูู ุงุชููู ููู ู
ุง ูู DT ููุณุงูู ุงููู
ูุฉ ูุฐุง ุจูุตูุฑ |
|
|
|
157 |
|
00:12:34,800 --> 00:12:40,200 |
|
ุนุจุงุฑุฉ ุนู Xูุงูุต X ุชูุนูุจ ุนูู ุชูุงุชุฉ ูููู ุงุชููู ุจูุตูุฑ |
|
|
|
158 |
|
00:12:40,200 --> 00:12:44,980 |
|
X ุชูุนูุจ ุนูู ู
ูู ุนูู ุชูุงุชุฉ factorial ุงููู ูู ุฌุฏุงุด |
|
|
|
159 |
|
00:12:44,980 --> 00:12:50,380 |
|
ุงููู ูู ุณุชุฉ ุฅุฐุง ูุนูุง ูุนูุง ุทูุน ุนูุฏู ุงููู ูู C ุฃุณ |
|
|
|
160 |
|
00:12:50,380 --> 00:12:55,400 |
|
ุงุชููู ูู ุนุจุงุฑุฉ ุนู ุงูุง ุจูุงุญุฏ ูุนูู ุฃุณ ุงุชููู ุจูุณุงูู X |
|
|
|
161 |
|
00:12:55,400 --> 00:12:59,380 |
|
ูุงูุต X ุชูุนูุจ ุนูู ุชูุงุชุฉ factorial ูุนูู ุตุงุฑุช ุงูุฌู
ูุฉ |
|
|
|
162 |
|
00:12:59,380 --> 00:13:02,900 |
|
ูุฐู ุจุฑุถู ุตุญูุญุฉ ููุฑ ุฃู ุจูุณุงูู ูุงุญุฏ ุฅุฐุง ูููุง ุนูู ุจุนุถ |
|
|
|
163 |
|
00:13:02,900 --> 00:13:09,650 |
|
ูุฐู ุตุงุฑุช ุตุญูุญุฉ ููุฑ ุฃู ุจุชุณุงูู ุฌุฏุงุดุงูุงู ุจุฏูุง ููุชุฑุถ |
|
|
|
164 |
|
00:13:09,650 --> 00:13:13,430 |
|
ุงููุง |
|
|
|
165 |
|
00:13:13,430 --> 00:13:19,490 |
|
true for n ุจุชุณุงูู k ููุฌูุจ ู
ููุง ู
ูู ุงููู ูู k ุฒุงุฆุฏ |
|
|
|
166 |
|
00:13:19,490 --> 00:13:25,950 |
|
ูุงุญุฏ ููุชุฑุถ suppose that this is true for n ุจุชุณุงูู |
|
|
|
167 |
|
00:13:25,950 --> 00:13:30,690 |
|
k ูุนูู ุจู
ุนูู ุงุฎุฑ ุตุงุฑ ุนูุฏู ck ุฒุงุฆุฏ ูุงุญุฏ ุจุณุงูู ูุฐุง |
|
|
|
168 |
|
00:13:30,690 --> 00:13:37,260 |
|
ูููุง ุงุชููู k ูููุง kูููุง ุงุชููู K ูููุง ููุณ ุงูุงุดู |
|
|
|
169 |
|
00:13:37,260 --> 00:13:41,640 |
|
ุงููู ูู ููุชุฑุถ ุงููุง ุตุญูุญุฉ for N ุจุชุณุงูู K ุตุงุฑุช ุนุจุงุฑุฉ |
|
|
|
170 |
|
00:13:41,640 --> 00:13:48,460 |
|
ุนู ุงุชููู K ู ุงุชููู K ุฃู ุงุณ K ู
ุงุดู ุงูุญุงู ูุซุจุช ุงู |
|
|
|
171 |
|
00:13:48,460 --> 00:13:53,480 |
|
ูุฐู ุตุญูุญุฉ for ู
ูุ for K ุจุชุณุงูู .. for N ุจุชุณุงูู |
|
|
|
172 |
|
00:13:53,480 --> 00:14:02,020 |
|
ูุฏูุดุ K ุฒุงุฆุฏ ูุงุญุฏ ูุนูู ุจุฏู ุงุฏูุจ Cู ุฒุงุฆุฏ ุฌุฏุงุด ุงุชููู |
|
|
|
173 |
|
00:14:02,020 --> 00:14:07,480 |
|
ูุฃู ูู ุงูุงุตู ูู ู ุฒุงุฆุฏ ูุงุญุฏ ูู ุงูุงุตู ุณู ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
174 |
|
00:14:07,480 --> 00:14:11,620 |
|
ูุฑุถุชูุง ุตุญูุญุฉ ูู ุงููุฑุขู ุจุชุณุงูู ู ูุฃู ุจุชุซุจุชูุง ุตุญูุญุฉ |
|
|
|
175 |
|
00:14:11,620 --> 00:14:15,520 |
|
ูุฃู ุจุชุณุงูู ู ุฒุงุฆุฏ ูุงุญุฏ ูุนูู ู ุฒุงุฆุฏ ูุงุญุฏ ูุงุญุฏ ุจูุตูุฑ |
|
|
|
176 |
|
00:14:15,520 --> 00:14:22,820 |
|
ู ุฒุงุฆุฏ ุงุชููู of Xู
ุงุฐุง ูุนูู ุญุณุงุจ ุชุนุฑูููุงุ ุชุนุฑูููุง 1 |
|
|
|
177 |
|
00:14:22,820 --> 00:14:29,300 |
|
ูุงูุต ุงูุงูุชุฌุฑูุดู ู
ู 0 ุฅูู X ูุฐุง K ุฒุงุฆุฏ 2 ุฅุฐุง ูุฐุง K |
|
|
|
178 |
|
00:14:29,300 --> 00:14:34,420 |
|
N ุฒุงุฆุฏ 1 ููุฐุง N K ุฒุงุฆุฏ 2 ู
ุงุฐุงุ ูุฐุง ุณูุตุจุญ SK ุฒุงุฆุฏ 1 |
|
|
|
179 |
|
00:14:34,420 --> 00:14:36,340 |
|
of DT |
|
|
|
180 |
|
00:14:38,530 --> 00:14:42,870 |
|
ู ูุณุงูู ูุงุญุฏ ูุงูุต ุงูููุฑุฉ ุงูุช ูุงูู
ุช ู
ู ุตูุฑ ูู
ูู |
|
|
|
181 |
|
00:14:42,870 --> 00:14:47,910 |
|
ูุฅูุณ ู
ูู ููุงู
ู ููุงู
ู S K ุฒุงุฆุฏ ูุงุญุฏ ุงูุง ูุฑุถุช ุงู ุงูุง |
|
|
|
182 |
|
00:14:47,910 --> 00:14:52,750 |
|
ุงุชุฑูู ูู ุงููุฑุขู ุจุงูุณุงููุฉ K ุงููู ูู ุนุจุงุฑุฉ ุนู T ูุงูุต |
|
|
|
183 |
|
00:14:52,750 --> 00:15:00,450 |
|
T ุชูุนูุจ ุน ุชูุงุชุฉ factorial ูู
ุง ุงุตู ูุขุฎุฑ ูุงุญุฏ ุฒุงุฆุฏ |
|
|
|
184 |
|
00:15:00,450 --> 00:15:12,390 |
|
ูุงูุต ูุงุญุฏ ุฃุณ K ูููT 2K 1 2 T 1 ูู ุงูู ุงุด ู
ุงููุง |
|
|
|
185 |
|
00:15:12,390 --> 00:15:16,110 |
|
factorial ุงููู ุฏู ุชู ุญุณุงุจุงุช ูุงููู ูุง ุฌู
ุงุนุฉ ุงููู |
|
|
|
186 |
|
00:15:16,110 --> 00:15:22,660 |
|
ุญุงููู
ุจุชุนู
ูููุง ุฏู ุชู ู ูุณุงูููุงุญุฏ ูุงูุต ููุชุญ ุฌูุณ ูุฐู |
|
|
|
187 |
|
00:15:22,660 --> 00:15:26,700 |
|
T ุจูุตูุฑ T ุชุฑุจูุน ุนูู ุงุชููู factorial ูุฐู ุงูุด ุจูุตูุฑ |
|
|
|
188 |
|
00:15:26,700 --> 00:15:32,820 |
|
ูุงูุต T ุฃูุณ ุฃุฑุจุนุฉ ุนูู ุฃุฑุจุนุฉ ูู ุชูุงุชุฉ factorial ุนู |
|
|
|
189 |
|
00:15:32,820 --> 00:15:36,980 |
|
ุฃุฑุจุนุฉ factorial ุฒุงุฆุฏ ูู
ุง ุฃุตู ุงูุฃุฎุฑ ูุงุญุฏ ูุงูุต ูุงุญุฏ |
|
|
|
190 |
|
00:15:36,980 --> 00:15:43,580 |
|
ุฃูุณ K ุฒู ู
ุง ูู ูุฃู ุฅุดุงุฑุฉ ูุฐู T ุจูุตูุฑ ุงุชููู K ุฒุงุฆุฏ |
|
|
|
191 |
|
00:15:43,580 --> 00:15:49,130 |
|
ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ูุนูู ุฒุงุฆุฏ ุงุชููู ุนููุงููู ูู ุงุชููู K |
|
|
|
192 |
|
00:15:49,130 --> 00:15:54,490 |
|
ุฒุงุฆุฏ ุงุชููู ูู ูุฐุง ุจุชุทูุน ุงุชููู K ุฒุงุฆุฏ ุงุชููู ุงููู |
|
|
|
193 |
|
00:15:54,490 --> 00:15:59,550 |
|
ุงูู ุดู
ุงููุ factorial ู
ุงุดู ุงูุญุงู ูุฐุง ุทุจุนุง ููู ู
ู |
|
|
|
194 |
|
00:15:59,550 --> 00:16:04,630 |
|
ุตูุฑ ู X ุฅุฐุง ุจุชุตูุฑ ูุฐุง ุนุจุงุฑุฉ ุนู X ููุฐุง X ููุฐุง |
|
|
|
195 |
|
00:16:04,630 --> 00:16:09,010 |
|
ุงูุฃุฎูุฑ ุจุฑุถู ุงููุ X ุงููู ูู ูุฐุง ุนุจุงุฑุฉ ุนู ุงููุ ูู |
|
|
|
196 |
|
00:16:09,010 --> 00:16:16,350 |
|
ูุณุงูู1 ูุงูุต x ุชุฑุจูุน ุนูู 2 factorial ุฒุงุฆุฏ x ุฃูุณ 4 |
|
|
|
197 |
|
00:16:16,350 --> 00:16:20,310 |
|
ุนูู 4 factorial ุถุฑุจุช ุงููุงูุต ุฌูุง ูุฅู ุฃูุง ูู
ุง ุฃุตู |
|
|
|
198 |
|
00:16:20,310 --> 00:16:24,910 |
|
ูุงูุต ูู
ุง ุฃุตู ุงูุฃุฎุฑ ูุงุญุฏ ุฒุงุฆุฏ ูุงูุต ูุงุญุฏ K ููุงูุต ุฃูุง |
|
|
|
199 |
|
00:16:24,910 --> 00:16:31,050 |
|
ุจุตูุฑ K ุฒุงุฆุฏ 1 ูู X ุฃูุณ 2K |
|
|
|
200 |
|
00:16:31,910 --> 00:16:37,130 |
|
ุฒุงุฆุฏ ุงุชููู ุนูู ุงุชููู K ุฒุงุฆุฏ ุงุชููู ููู vector ูุนูู |
|
|
|
201 |
|
00:16:37,130 --> 00:16:41,890 |
|
ุตุงุฑุช ูุฐู CK ุฒุงุฆุฏ ูุงุญุฏ ุฒุงุฆุฏ ุงุชููู of X ุจุชุณุงูู ูุฐุง |
|
|
|
202 |
|
00:16:41,890 --> 00:16:49,290 |
|
ุงูู
ูุฏุงุฑ ูุฐุง ุงูู
ูุฏุงุฑ ุตุญูุญ ุตุงุฑ ุจุงูุธุจุท ูู ูุฐุง ุงููู ูู |
|
|
|
203 |
|
00:16:49,290 --> 00:16:53,830 |
|
ุงูู
ูุฏุงุฑ ุงููู ุนูุฏู ุฃุซุจุชุช ู ูุฅูู
ู ูุนูู ุงูุขู ุงู ูุฐุง |
|
|
|
204 |
|
00:16:54,470 --> 00:16:59,490 |
|
ุงููู ุนูุฏู is true for mean for k ุฒุงุฆุฏ ูุฃ ูุงุญุฏ ูุฅูู |
|
|
|
205 |
|
00:16:59,490 --> 00:17:03,950 |
|
ูู
ุง ุงุญุท ู
ูุงู n ุจูุณุงูู k ุฒุงุฆุฏ ูุงุญุฏ ุจูุตูุฑ ูุฐู k ุฒุงุฆุฏ |
|
|
|
206 |
|
00:17:03,950 --> 00:17:09,030 |
|
ุงุชููู ุงุดูู ุงููู ุทูุนุชู ุตุญ ููุง ูุฃ ุจูุณุงูู ุชุจุญุงูุฉ ูุงุญุฏ |
|
|
|
207 |
|
00:17:09,030 --> 00:17:12,990 |
|
ูุงูุต x ุชุฑุจูุน ุนูู ุงุชููู ูููุชูุฑูุง ูู
ุง ุงุซุฑ ุงูุงุฎุฑ ูุงุญุฏ |
|
|
|
208 |
|
00:17:12,990 --> 00:17:17,790 |
|
ุงููู ูู ูุงูุต ูุงุญุฏ ูุต ู
ูู k ุฒุงุฆุฏ ูุงุญุฏ ููุณ ูุต ุงุชููู |
|
|
|
209 |
|
00:17:17,790 --> 00:17:20,970 |
|
ูู k ุฒุงุฆุฏ ูุงุญุฏ ูุนูู ุงุชููู k ุฒุงุฆุฏ ุงุชููู ููุง ุงุชููู k |
|
|
|
210 |
|
00:17:20,970 --> 00:17:25,760 |
|
ุฒุงุฆุฏ ุงุชููู ูู ูููุชูุฑูุงุงูุงู ุตุงุฑุช ูุฐู ุตุญูุญุฉ for n |
|
|
|
211 |
|
00:17:25,760 --> 00:17:30,600 |
|
ุงูุด ุจุชุณุงูู k ุฒุงุฆุฏ ูุงุญุฏ ุงูุชุงูู ุจููุณ ุงูุฃุณููุจ ุจุซุจุชูุง |
|
|
|
212 |
|
00:17:30,600 --> 00:17:35,260 |
|
ุตุญูุญุฉ for ุงูุด for k ุฒุงุฆุฏ ูุงุญุฏ ูุนูู ุจุฏู ุงุญุณุจ ู
ูู ูุง |
|
|
|
213 |
|
00:17:35,260 --> 00:17:42,300 |
|
ุฌู
ุงุนุฉ ุจุฏู ุงุญุณุจ Sูุฒุงูุฏ ุงุชููู ุงูุด ุญุณุจ ุงููู ููู |
|
|
|
214 |
|
00:17:42,300 --> 00:17:47,180 |
|
ุจุชุณุงูู ุจุณุงูู ุงู integration ู
ู ุณูุฑ ู X ู CK ุฒุงูุฏ |
|
|
|
215 |
|
00:17:47,180 --> 00:17:54,020 |
|
ุงุชููู of T DT ู ุจุงุฌู ุจุนูุถูุง ููุง ู ุจูู
ููุง ู ุจุชุทูุน |
|
|
|
216 |
|
00:17:54,020 --> 00:17:57,800 |
|
ุนูุฏู ุจุงูุธุจุท ุงู formula ูุฐู ูุนูู ุตุญ ุจูุตูุฑ ุนูุฏู |
|
|
|
217 |
|
00:17:57,800 --> 00:18:01,620 |
|
ุจุชุนู
ููุง ูุญุงูู ูุงู ุญุณุงุจุงุช ููุณ ุงูุฃุณููุจ ุจุชุทูุน ุนูุฏู |
|
|
|
218 |
|
00:18:01,620 --> 00:18:06,310 |
|
ุงููู ูู ูุฐู ุตุญูุญุฉ for mean ุจุฑุถูfor an ุจุชุณุงูู k |
|
|
|
219 |
|
00:18:06,310 --> 00:18:11,050 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุฅุฐุง ูุฐุง ุตุงุฑ ุงูู
ูุฏุงุฑ ุตุญูุญ ุฏุงุฆู
ุง for mean |
|
|
|
220 |
|
00:18:11,050 --> 00:18:20,430 |
|
for any k for any n element in n ุงูุงู ูุงุถุญ ุงู |
|
|
|
221 |
|
00:18:20,430 --> 00:18:26,310 |
|
ุงูุฎุทูุงุช ู
ุดุงุจูุฉ ูุฎุทูุงุช ุงู exponential ููุฌู ุงูุขู |
|
|
|
222 |
|
00:18:26,310 --> 00:18:28,970 |
|
ูุตูู n prime |
|
|
|
223 |
|
00:18:38,770 --> 00:18:45,020 |
|
ูุฌู ุงูุขูููู ุฑุงูุญุ ุฒู ุงููู ุจูููุช ุฑุงูุญู ุงูุฃูุงู
ุงูู |
|
|
|
224 |
|
00:18:45,020 --> 00:18:49,060 |
|
exponential ูุซุจุชูู ุฃู ุงูู sequence ูุฐู converged |
|
|
|
225 |
|
00:18:49,060 --> 00:18:52,220 |
|
uniformly ููุฐู ุทุจุนุง ูุชุตุจุญ converged uniformly |
|
|
|
226 |
|
00:18:52,220 --> 00:18:55,000 |
|
automatic ููุชุตุจุญ ุงููู ูู differentiable ูุฃูู ุจูุตูุฑ |
|
|
|
227 |
|
00:18:55,000 --> 00:18:57,860 |
|
ุทุจูุฉ ุงููุธุฑูุฉ ุงููู ูู ุชุจุนูุง ุงูู differentiability |
|
|
|
228 |
|
00:18:57,860 --> 00:19:01,200 |
|
ุจูุตูุฑ ุนูุฏ ู
ุงุฏุงู
differentiable ุงููู ูู ุงู |
|
|
|
229 |
|
00:19:01,200 --> 00:19:04,580 |
|
derivative ุงููู ููุง exist ู ูุชููู ุงู derivative |
|
|
|
230 |
|
00:19:04,580 --> 00:19:07,960 |
|
ู
ุชุญูู ุงูุดุฑูุท ู ุจูููู ุฎูุงุต ูุนู
ูุดูู ุฃุด ุจููู ุทูุจ |
|
|
|
231 |
|
00:19:07,960 --> 00:19:12,530 |
|
ุงูุขูุจุนุฏ ู
ุง ุทูุนูุง ูุฏููุฉ let a ุฃูุจุฑ ู
ู ุตูุฑ b given |
|
|
|
232 |
|
00:19:12,530 --> 00:19:15,790 |
|
ููุณ ุงูุฎุทูุงุช ุชุจุนุช ุงู exponential then if ุงูabsolute |
|
|
|
233 |
|
00:19:15,790 --> 00:19:19,970 |
|
value of x ุฃุตุบุฑ ุจุณูุก a and m ุฃูุจุฑ ู
ู n ุฃูุจุฑ ู
ู 2a |
|
|
|
234 |
|
00:19:19,970 --> 00:19:25,510 |
|
ูุนูู ุจุชุฏุงุฎุฏ ุงููู ูู ุงูุงู
ุงุช ูุฃูุจุฑ ู
ู n ู ุฃูุจุฑ ู
ู 2a |
|
|
|
235 |
|
00:19:25,510 --> 00:19:29,650 |
|
ูุนูู ุงูุขู ุฃูุง ุจุดุชุบู ุนุงููู ูุง ุฌู
ุงุนุฉ ุงููุชุฑุฉ ู
ู ูุงูุต |
|
|
|
236 |
|
00:19:29,650 --> 00:19:34,570 |
|
a ูุนูุฏ a ูุฃุฎุฏุช ุงู a arbitrarily ุฃูุจุฑ ู
ู ุตูุฑ ููู |
|
|
|
237 |
|
00:19:34,570 --> 00:19:41,850 |
|
fixed ุงูุงู we haveุนูุฏู ุงููู ูู ..ุนูุฏู ุงููู ูู ุงูู |
|
|
|
238 |
|
00:19:41,850 --> 00:19:50,630 |
|
A ุงูู A ุนูู ุงููู ูู 2N ุจู
ุง ุฃูู N ุฃูุจุฑ ู
ู 2A ุงุฌุณู
|
|
|
|
239 |
|
00:19:50,630 --> 00:19:56,790 |
|
ุงูุฌูุชูู ุนูู 2N ูู ุนูู 2N ู ูู ุนูู 2N ุจูุตูุฑ ุนูุฏ ุงูู |
|
|
|
240 |
|
00:19:56,790 --> 00:20:07,710 |
|
A ุนูู N .. A ุนูู N ุฃุตุบุฑ ู
ู ุงููุตุ ุตุญุูู a ุชุฑูุญ |
|
|
|
241 |
|
00:20:07,710 --> 00:20:11,090 |
|
ุงูุชููู ู
ุน ุงูุชููู ููุฐู n ู
ุน ุงู n ุจุตูุฑ a ุฃุนูููุง ุฃุตุบุฑ |
|
|
|
242 |
|
00:20:11,090 --> 00:20:16,050 |
|
ู
ู ูุต ูุนูู a ุนูู 2n ุฃุตุบุฑ ู
ู 1 ุนูู 4 ุฌุณู
ุช ุงูุชููู |
|
|
|
243 |
|
00:20:16,050 --> 00:20:22,400 |
|
ุนุงูู
ูุง ุนูู 2 ุฅุฐุง ูู
ุง ุชููู ุงู n ุฃูุจุฑ ู
ู 2aูุชุทูุน |
|
|
|
244 |
|
00:20:22,400 --> 00:20:24,640 |
|
ุนูุฏูุง get ุจุชุนุฑู ููุด ูุฐู ูุฅู ุจุชูุฒู
ูุง ูู ุงูุญุณุงุจุงุช |
|
|
|
245 |
|
00:20:24,640 --> 00:20:28,580 |
|
ุจุนุฏ ุดููุฉ ูุชููู ุงููู ูู ูู
ุง ุงูุงุชููู a ุฃุตุบุฑ ู
ู n |
|
|
|
246 |
|
00:20:28,580 --> 00:20:31,960 |
|
ุจุชููู ุนูุฏ a ุนูู ุงุชููู n ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุฑุจุน ุงูู
ุฑุฉ |
|
|
|
247 |
|
00:20:31,960 --> 00:20:35,460 |
|
ุงููู ูุงุชุช ูุงู ูุงุฒู
ูุง a ุนูู n ุฃุตุบุฑ ู
ู ูุต ููู
ููุง ุงู |
|
|
|
248 |
|
00:20:35,460 --> 00:20:40,650 |
|
series ุงููู ู
ุชุฐูุฑ ุงููู ุนู
ููุง ูู ุงููู ููุงูู |
|
|
|
249 |
|
00:20:40,650 --> 00:20:43,330 |
|
Exponential ุฃูุง ุจุญููุด ุชูุงุตููู ู ู
ูุชุฑุถ ุงู ุงูุชูุง |
|
|
|
250 |
|
00:20:43,330 --> 00:20:47,570 |
|
ูุงูู
ูู ุญุณุจ ุญูููุง ุงููู ูู ูู ุงูู Exponential ุงูุงู |
|
|
|
251 |
|
00:20:47,570 --> 00:20:52,290 |
|
ููุฃู
ุงุช ุงููู ุฃูุจุฑ ู
ู M ุฃูุจุฑ ู
ู 2A ุจุฏู ุงุญุณุจ ุงููCM |
|
|
|
252 |
|
00:20:52,290 --> 00:20:59,870 |
|
ูุงูุต 2 ุงููSN ุนุดุงู ุชุธููุง ุฌุฏุงู
ูู
ุงููู ููู ูุฐู ุนูุฏู |
|
|
|
253 |
|
00:20:59,870 --> 00:21:06,960 |
|
ุงูุงู ุงููCMุงูู C M ุงูู C M ุดุงูููููุงุ ุจุชุธููุง ู
ุงุดูุฉ |
|
|
|
254 |
|
00:21:06,960 --> 00:21:10,940 |
|
ูุงุญุฏ ูู ู .. ุงูุขู ูุฐู M ุจุฏุฃ ุงูู N ุฒุงุฏ ูุงุญุฏ ุงูุด |
|
|
|
255 |
|
00:21:10,940 --> 00:21:14,880 |
|
ุงุณู
ูุงุ M ุจุชุธููุง ู
ุงุดูุฉ ูุงุญุฏ ูุงูุต X ุฃุฑุจุน ุนูู ุงุชููู |
|
|
|
256 |
|
00:21:14,880 --> 00:21:18,820 |
|
ูููุชูุฑูุงู X ุฃุฑุจุน ุนูู ุฃุฑุจุน ูููุชูุฑูุงู ูุงูู M ุฃูุจุฑ ู
ู |
|
|
|
257 |
|
00:21:18,820 --> 00:21:23,160 |
|
ุงูู N ูุชุฌูู ููุจู ูู ุทุฑูููุง ู
ู ุงูู N ุงูู N ุจูุตูุฑ |
|
|
|
258 |
|
00:21:23,160 --> 00:21:27,540 |
|
ุงูู N ุทุจุนุง ุฅูู ุดู
ุงููุงุ ุงูู N ุนุจุงุฑุฉ ุนู ูู ุฌุจู ุงู |
|
|
|
259 |
|
00:21:27,540 --> 00:21:33,590 |
|
term ูุฐุง ุงููู ูู ุงูู N ูุงูุต ูุงุญุฏุฃู ูุจุตูุฑ ุฒุงุฆุฏ ุงููู |
|
|
|
260 |
|
00:21:33,590 --> 00:21:39,350 |
|
ูู ูุงูุต ูุงุญุฏ ุฃุณ ุงู ูุงูุต ูุงุญุฏ ูู X ุฃุณ ุงุชููู ุงู
ูุงูุต |
|
|
|
261 |
|
00:21:39,350 --> 00:21:44,050 |
|
ุงุชููู ุนูู ุงุชููู ุงู
ูุงูุต ุงุชููู ุงููู factorial ู |
|
|
|
262 |
|
00:21:44,050 --> 00:21:48,390 |
|
ุจุชูู
ู ูุฐุง ู ุจุชุจูู ู
ูู
ู ุงูู ุงูุช ูู
ุง ุงุชุตู ูุนูุฏ X ุฃุณ |
|
|
|
263 |
|
00:21:48,390 --> 00:21:54,670 |
|
ุงุชููู ุงู
ูุงูุต ุงุชููู ูุฃู ูุฐุง ูู ุงู
ู
ุด ูู ุงู ุฒุงุฆุฏ |
|
|
|
264 |
|
00:21:54,670 --> 00:21:59,730 |
|
ูุงุญุฏ ุนูู ุงุชููู ุงู
ูุงูุต ุงุชููู ุงููู ุงุดู
ุงูู factorial |
|
|
|
265 |
|
00:22:00,420 --> 00:22:08,320 |
|
ูู
ุง ุชุทุฑุญ ุงู CM ููุต ุงู CN ุงููู ูู ููุง ุจูุตูุฑ ุงูู
ุชุจูู |
|
|
|
266 |
|
00:22:08,320 --> 00:22:12,600 |
|
ููู ุฒู ู
ุง ุนู
ููุง ุจุงูุธุจุท ูุจู ููู ูุจูุตูุฑ ุงู CM ููุต ุงู |
|
|
|
267 |
|
00:22:12,600 --> 00:22:18,080 |
|
CN ุจุณุงูู ุงูููุต ูุงุญุฏ ุทุจุนุง ูู absolute value ุนูุฏ X2N |
|
|
|
268 |
|
00:22:18,080 --> 00:22:21,200 |
|
ุนุดุงู ููู ุทูุฑูุง ู
ุด ูุงุฑูุฉ ูุชูุฑ ููุต ู ุณุงูุจ ุฃุฎุฏูุง ูู |
|
|
|
269 |
|
00:22:21,200 --> 00:22:25,900 |
|
absolute value ู
ุด ูุชูุฑุฌ ู
ุนูุง ุงู X2N ุนูู 2N |
|
|
|
270 |
|
00:22:25,900 --> 00:22:32,490 |
|
vectorialูุงูุต X ุฃุณ 2 M ุฒุงุฆุฏ 2 ุงููู ุจุนูุฏูุง ุนูู 2 M |
|
|
|
271 |
|
00:22:32,490 --> 00:22:35,990 |
|
ุฒุงุฆุฏ 2 ููู factorial ูู
ุง ุฃุตู ูุขุฎุฑ term ุงููู ูู X |
|
|
|
272 |
|
00:22:35,990 --> 00:22:41,170 |
|
ุฃุณ 2 M ูุงูุต 2 ุนูู 2 M ูุงูุต 2 ููู factorial ูุฐุง |
|
|
|
273 |
|
00:22:41,170 --> 00:22:46,670 |
|
ุงูุฃู ูุฐุง ููุณู ุฃุฎุฏูุง ุงุญูุง ุงู absolute value ูู X |
|
|
|
274 |
|
00:22:46,670 --> 00:22:50,350 |
|
ุฃุตุบุฑ ู
ู A ูู ูุฐู ุงููุชุฑุฉ ุงุญูุง ุดุบุงููู ูู ุงููุชุฑุฉ ุงู |
|
|
|
275 |
|
00:22:50,350 --> 00:22:54,430 |
|
absolute value X ุฃุตุบุฑ ู
ู A ุงูุขู ุจูุตูุฑ ุนูุฏ ุงู X |
|
|
|
276 |
|
00:22:54,430 --> 00:23:05,180 |
|
ููุณูุงุฃูุณ 2n ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐู ุงููู ูู a ุฃูุณ 2n ุนูู |
|
|
|
277 |
|
00:23:05,180 --> 00:23:09,240 |
|
2n ุงููู factorial ุงูุฃููู ุฒุงุฆุฏ ุงุณุชุฎุฏู
ุช triangle |
|
|
|
278 |
|
00:23:09,240 --> 00:23:13,440 |
|
inequality ูุฐู ุฒุงุฆุฏ ูุฐู ุฒุงุฆุฏ ูุฐู ุฒุงุฆุฏ ูุฐู ุงูุขู |
|
|
|
279 |
|
00:23:13,440 --> 00:23:18,240 |
|
ุฒุงุฆุฏ ุงููู ุจุนูุฏูุง ูู
ุง ุฃุตู ูุขุฎุฑ ูุงุญุฏุฉ x ุฃู ุงููู ุฌุงุจ |
|
|
|
280 |
|
00:23:18,240 --> 00:23:23,420 |
|
ุงููู ุฎูููู ุงูุชุจูุง ุนุดุงู x ุงููู ูู ุจุตูุฑ aุฃุณ ุงุชููู ุงู |
|
|
|
281 |
|
00:23:23,420 --> 00:23:28,060 |
|
ุฒุงุฆุฏ ุงุชููู ุนูู ุงุชููู ุงู ุฒุงุฆุฏ ุงุชููู ููู factorial |
|
|
|
282 |
|
00:23:28,060 --> 00:23:37,020 |
|
ุฒุงุฆุฏ ูู
ุง ุฃุตู ูุขุฎุฑ term ุนูุฏู ููุง ูู
ุง ุฃุตู ูุขุฎุฑ term |
|
|
|
283 |
|
00:23:37,020 --> 00:23:43,160 |
|
ุงููู ูู ุฒุงุฆุฏ |
|
|
|
284 |
|
00:23:43,160 --> 00:23:57,230 |
|
ูุฐุง ุงู term ุงููู ูู ุฒุงุฆุฏA 2M-2 2M-2 ูู A ุดู
ุงูู |
|
|
|
285 |
|
00:23:57,230 --> 00:24:03,930 |
|
ููุชูุฑูุง ุฎููููู ุฃุฎุฏ ูุฐุง A 2N 2N ูู ููุชูุฑูุง ุงูุนุงู
|
|
|
|
286 |
|
00:24:03,930 --> 00:24:11,460 |
|
ุงูู
ุดุชุฑูุจุธู ุนูุฏู 1 ุฒุงุฆุฏ a ุชุฑุจูุน ูุฃูู ุจูุตูุฑ a ูุณูู 2 |
|
|
|
287 |
|
00:24:11,460 --> 00:24:17,960 |
|
a ุชุฑุจูุน ุนูู ู
ูู ุนูู 2n ุฒุงุฆุฏ 2 ุฃููุฏ ุงู 1 ุนูู 2n |
|
|
|
288 |
|
00:24:17,960 --> 00:24:23,280 |
|
ุฒุงุฆุฏ 2 ุฃุตุบุฑ ู
ู 1 ุนูู 2n ูุฃูู 2n ุฃุตุบุฑ ู
ู ูุฐู |
|
|
|
289 |
|
00:24:23,280 --> 00:24:27,240 |
|
ูู
ูููุจูุง ุจูุตูุฑ ุฃูุจุฑู
ุงุดู ู ุจุถู ุฒู ู
ุง ุนู
ูุชู ุงูู
ุฑุฉ |
|
|
|
290 |
|
00:24:27,240 --> 00:24:32,700 |
|
ุงููุงุชุฉ ุฃุณุญุจ ู
ูู A ุฃุณ 2 ุนูู N ู ูู ุงูุขุฎุฑ ุฃุณุชุจุฏู |
|
|
|
291 |
|
00:24:32,700 --> 00:24:37,680 |
|
ุงููู ูู 2N ูุฐู ุนู ุงูุฑูู
ุงููู ุฃูุจุฑ ู
ูู N ูุจุตูุฑ ูู |
|
|
|
292 |
|
00:24:37,680 --> 00:24:41,400 |
|
ู
ูููุจูุง ุฃูุจุฑ ูุจุชุถููุง ุงููู ูู ุงู inequality ุฒู ููู |
|
|
|
293 |
|
00:24:41,400 --> 00:24:45,840 |
|
ู ุจููู ุณุญุจุชู 2 ู
ู ูุฐู ุจูุตูุฑ 2 ุงู
ููุต 2 ุงู
ููุต ุงูุด |
|
|
|
294 |
|
00:24:45,840 --> 00:24:53,350 |
|
ููุต 2 ูุตููุง ูุนูุฏ ุงู inequality ูุฐู ุงูุขูุฃุญูุง ูููุง a |
|
|
|
295 |
|
00:24:53,350 --> 00:24:58,950 |
|
ุนูู 2n ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุฑุจุนู ูุนูู ุจูุตูุฑ ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
296 |
|
00:24:58,950 --> 00:25:05,310 |
|
ููู ุฃุตุบุฑ ุฃู ูุณุงูู a ุฃุณ 2n ุนูู 2n ููู factorial |
|
|
|
297 |
|
00:25:05,310 --> 00:25:09,550 |
|
ู
ุถุฑูุจ ูู ู
ูู ุฃุตุบุฑ ุฃู ูุณุงูู ูุฃู ุงูุฑุจุน ุฃูุจุฑ ู
ููู
ุจุณ |
|
|
|
298 |
|
00:25:09,550 --> 00:25:14,930 |
|
ุชุจุฏุฃ ูู ูุงุญุฏ ููุช ู
ุง ูุงููุง ุฅููุงุด ุฑุจุน ูุงุญุฏ ุฒุงุฏ ูุงุญุฏ |
|
|
|
299 |
|
00:25:14,930 --> 00:25:23,510 |
|
ุนูู ุฃุฑุจุนุฉ ุชุฑุจูุนุฒุงุฆุฏ ูู
ุง ุฃุตู ูุขุฎุฑ ูุงุญุฏ a ุงููู ูู |
|
|
|
300 |
|
00:25:23,510 --> 00:25:31,370 |
|
ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุนูู ุฃุฑุจุนุฉ ุงููู ุฃุณ ุงุชููู ุงู
ูุงูุต |
|
|
|
301 |
|
00:25:31,370 --> 00:25:36,590 |
|
ุงุชููู ุงู
ูุงูุต ุงูุด ุงุชููู ูุฐู ุงูุงู ุงู ุงู ุงู ุงู |
|
|
|
302 |
|
00:25:36,590 --> 00:25:39,710 |
|
finite geometric series ุฃุตุบุฑ ุฃู ูุณุงูู ุงู infinite |
|
|
|
303 |
|
00:25:39,710 --> 00:25:45,770 |
|
ุงููู ูู a ุฃุณ ุงุชููู ุงู ุนูู ุงุชููู ุงู ููู factorial |
|
|
|
304 |
|
00:25:45,770 --> 00:25:53,570 |
|
ูู ุงููู ููุงูู summation ุฏู ูุงุญุฏ ุฒุงุฆุฏ ุฑุจุน ุชุฑุจูุน |
|
|
|
305 |
|
00:25:53,570 --> 00:26:00,310 |
|
ุฒุงุฆุฏ ุฑุจุน ุชูุนูุจ ุฒุงุฆุฏ ูู
ูุง ุฃุตู ุฑุจุน ุฃุณ ุฃุฑุจุนุฉ ุฒุงุฆุฏ ุฅูู |
|
|
|
306 |
|
00:26:00,310 --> 00:26:05,070 |
|
ู
ุง ูุง ููุงูุฉ ูุฐู ุงูุฃู ุฃุณุงุณูุง ุฌุฏุงุด ููุฃูู ุฃุณุงุณูุง ูู |
|
|
|
307 |
|
00:26:05,070 --> 00:26:11,750 |
|
ู
ุฑุฉ ุชู
ุฏ ูุงุญุฏ ุนูู ุณุช ุนุดุฑ ูุจุชุตูุฑ ูุฐู ุงูู
ุฌู
ูุญุฉ ุงููู |
|
|
|
308 |
|
00:26:11,750 --> 00:26:16,470 |
|
ูู ูุงุญุฏ ู
ุฌู
ูุญุฉ ุจุชุนุฑูููุง ูุงุญุฏ ูุงูุต ูุงุญุฏ ุนูู ุณุช ุนุดุฑ |
|
|
|
309 |
|
00:26:17,250 --> 00:26:21,750 |
|
Passive ูุงุญุฏ ุนูู ูุงุญุฏ ูุงูุต ูุงุญุฏ ุนูู ุณุช ุนุดุฑ ููุณุงูู |
|
|
|
310 |
|
00:26:21,750 --> 00:26:27,810 |
|
ุฌุฏุงุด ุฎู
ุณุช ุนุดุฑ ุงู ุณุช ุนุดุฑ ุนูู ุฎู
ุณุช ุนุดุฑ ูุฃู ูุฐู ูุงุญุฏ |
|
|
|
311 |
|
00:26:27,810 --> 00:26:29,870 |
|
ูุงูุต ูุงุญุฏ ุนูู ุณุช ุนุดุฑ ุชุทูุน ุฎู
ุณุช ุนุดุฑ ุนูู ุณุช ุนุดุฑ |
|
|
|
312 |
|
00:26:29,870 --> 00:26:34,830 |
|
ู
ุฌููุจุฉ ุจูุตูุฑ ุณุช ุนุดุฑ ุนูู ุฎู
ุณุช ุนุดุฑุงูู
ูููู
ุงูู
ูุตูุฏ ูู |
|
|
|
313 |
|
00:26:34,830 --> 00:26:38,670 |
|
ุจุณู
ุญูุง Geometric Series ุจุถู ุจููู ูุฐู ุฃุตุบุฑ ุฃู ุณุงูู |
|
|
|
314 |
|
00:26:38,670 --> 00:26:41,930 |
|
ุงูุตู
ุงุดู ุฅูู ู
ุงูู ููุงูุฉ ู ุจุฒุฏุจุฏู ูุฐุง ุจุงููู ุฃูุจุฑ |
|
|
|
315 |
|
00:26:41,930 --> 00:26:46,070 |
|
ู
ููุง ูุจุชุธู ูุฐู ุฃูุจุฑ ุงูุงู ู
ุฌู
ูุญูุง ุจูุตูุฑ ุนุจุงุฑุฉ ุนู 16 |
|
|
|
316 |
|
00:26:46,070 --> 00:26:51,010 |
|
ูู ุงูู
ูุฏุงุฑ ูุฐุง ุงููู ุฏูู ู
ูุฎูุฏ ุนุงู
ุงูู
ุดุชุฑู ูุจูุตูุฑ |
|
|
|
317 |
|
00:26:51,010 --> 00:26:58,940 |
|
ุนูุฏู ุงูุขู ูุง ุฌู
ุงุนุฉ ุงููู ูู ุงู CMููุต ุงููCN ุฒู ู
ุง |
|
|
|
318 |
|
00:26:58,940 --> 00:27:04,460 |
|
ุญูููุง ูุจู ุฐูู ุจุงูุธุจุท ุฃุตุบุฑ ู
ู ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูุฐุง |
|
|
|
319 |
|
00:27:04,460 --> 00:27:09,000 |
|
limit ู ุงูู ุจูุฑูุญ as N goes to infinity ุจูุฑูุญ ูู 0 |
|
|
|
320 |
|
00:27:09,000 --> 00:27:13,760 |
|
ุฅุฐุง ุจูุตูุฑ ูุฐุง ุงูู
ูุฏุงุฑ ุฒู ู
ุง ูููุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ CM |
|
|
|
321 |
|
00:27:13,760 --> 00:27:20,800 |
|
of X ููุต CN of X ุงููู ูู ุฃุตุบุฑ ุฃู ูุณูุก Y for very |
|
|
|
322 |
|
00:27:20,800 --> 00:27:28,700 |
|
large M and NM and N ูุฃูู ูู
ุง ุชูุจุฑ M ูุซูุฑ N ูุซูุฑ |
|
|
|
323 |
|
00:27:28,700 --> 00:27:33,100 |
|
ุชุฑูุญ ููุง ูููุงูุฉ ูุฃูู limit ุจุฑูุญ ููุง ุณูุฑ as N goes |
|
|
|
324 |
|
00:27:33,100 --> 00:27:37,080 |
|
to infinity ุงู M ุจุฑุถู ุจุชูุจุฑ ุฅุฐุง for very large M |
|
|
|
325 |
|
00:27:37,080 --> 00:27:40,800 |
|
ููููู ูุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู ุฅุจุณููู ูุฃู ุฅุจุณููู ูู |
|
|
|
326 |
|
00:27:40,800 --> 00:27:44,480 |
|
ุงูุฏููุง ูุฃูู ูุฐุง ุจููุฏู ููุณูุฑ ูุจูุตูุฑ ุตุบูุฑ ุตุบูุฑ ุตุบูุฑ |
|
|
|
327 |
|
00:27:44,480 --> 00:27:48,720 |
|
ุตุบูุฑ ูุฏุฑุฌุฉ ุฅูู ู
ุถุฑูุจ ูู ูุฐุง ูููู ุฃุตุบุฑ ู
ู ุฅุจุณููู |
|
|
|
328 |
|
00:27:48,720 --> 00:27:53,360 |
|
ููุฐู ุงููู ูููุง ุนููุงุงููู ูู ุงูู Cauchy criterion |
|
|
|
329 |
|
00:27:53,360 --> 00:28:00,040 |
|
for uniform continuity ูุฐุง ุงูููุงู
ููู ูู
ููุ ุตุญูุญ |
|
|
|
330 |
|
00:28:00,040 --> 00:28:06,880 |
|
ูุฃู X ููู ุนูู ุงููุชุฑุฉ ุงููู ูู absolute value X ุฃุตุบุฑ |
|
|
|
331 |
|
00:28:06,880 --> 00:28:11,220 |
|
ุฃู ูุณุงูู A ูุนูู ุนูู ุงููุชุฑุฉ ุงูู
ูููุฉ ู
ู ูุงูุต A ูุนูุฏ |
|
|
|
332 |
|
00:28:11,220 --> 00:28:19,110 |
|
A ููุฐุง ุจูุนุทููู ุฃู ุงููis uniformly continuous ุนูู |
|
|
|
333 |
|
00:28:19,110 --> 00:28:24,150 |
|
ุงููุชุฑุฉ ู
ู ููุณ A ูุนูุฏ A is as if is uniformly is |
|
|
|
334 |
|
00:28:24,150 --> 00:28:28,330 |
|
uniformly convergence ุนูู ุงููุชุฑุฉ ู
ู ููุณ A ู A ูุนูู |
|
|
|
335 |
|
00:28:28,330 --> 00:28:35,790 |
|
ุจู
ุนูู ุขุฎุฑ ุตุงุฑุช ุนูุฏู ุงู sequence ูุฐู ุงููู ูู CNN |
|
|
|
336 |
|
00:28:35,790 --> 00:28:43,150 |
|
converts uniformly to some function ุนุงูู
ูุง ุนูู |
|
|
|
337 |
|
00:28:43,150 --> 00:28:50,730 |
|
ุงููุชุฑุฉู
ู ูุงูุต a ูุนูุฏ ู
ูู ูุนูุฏ a ุงูุขู ุทุจ ู
ุง ูู ุงููู |
|
|
|
338 |
|
00:28:50,730 --> 00:28:53,930 |
|
ุนู
ููุงูุง ุฃูุง ุนูู ุงููุชุฑุฉ ูุฐู ููุฏุฑ ูุนู
ูู ุนูู ุฃู ุดูุก |
|
|
|
339 |
|
00:28:53,930 --> 00:28:58,310 |
|
ุซุงูู ูุนูู ุจู
ุนูู ุฃุฎุฑ ูู ุฌูุช ุฃุฎุฏุช x element in R |
|
|
|
340 |
|
00:28:58,310 --> 00:29:04,400 |
|
ููุงุฌู number aุจุญูุซ ุฃู ูุฐุง ุงู number a ูู ุงู x ูู |
|
|
|
341 |
|
00:29:04,400 --> 00:29:10,180 |
|
ุงู R ุจูุฏุฑ ุฃูุงูู a ุจุญูุซ ุฃู ูุงูุต a ู a ุชููู ุงู x ูู |
|
|
|
342 |
|
00:29:10,180 --> 00:29:15,340 |
|
ุงููุชุฑุฉ ุจูู ูุงูุต a ู a ูุนูู ุจู
ุนูู ุขุฎุฑ ูุนู
ู ููุณ ุงููู |
|
|
|
343 |
|
00:29:15,340 --> 00:29:18,100 |
|
ุนู
ูุชู ูู ุงูุฃูู ู ูุญุตุฑ ุนูู c ุฃู uniformly |
|
|
|
344 |
|
00:29:18,100 --> 00:29:23,030 |
|
convergence ุนูู ูุฐู ุงููุชุฑุฉูุนูู ุจู
ุนูู ุขุฎุฑ ุงูุขู ุตุงุฑ |
|
|
|
345 |
|
00:29:23,030 --> 00:29:29,450 |
|
ุนูุฏู limit cn of x for any x exist ุจุฏู ุฃุณู
ููุง ูุฐู |
|
|
|
346 |
|
00:29:29,450 --> 00:29:35,190 |
|
limit c of x ูุจูุงุก ุนููู ุจุฏู ุฃุนุฑู ุงูุขู in |
|
|
|
347 |
|
00:29:35,190 --> 00:29:38,710 |
|
particular this means that cn of x converge for |
|
|
|
348 |
|
00:29:38,710 --> 00:29:42,710 |
|
each x element in R we define c ู
ู R ูR by c of x |
|
|
|
349 |
|
00:29:42,710 --> 00:29:45,650 |
|
ุจุณูุงูุฉ limit cn of x for x element in R |
|
|
|
350 |
|
00:29:53,570 --> 00:29:59,630 |
|
ุงูุงู .. ุจู
ุง ุงูู ุงูุงู ุงููCn ู
ุฑุชุจุท ุจุดูู ู
ุฑุชุจุท ููC ุฒู |
|
|
|
351 |
|
00:29:59,630 --> 00:30:04,690 |
|
ู
ุง ูููุง ุฃู ุงููCn of X ูููู
ู
ุฑุชุจุท ุญุณุจ ุงููู ูู |
|
|
|
352 |
|
00:30:04,690 --> 00:30:08,030 |
|
ุงููุธุฑูุฉ ูู ุงููpointwise .. ุงููuniform convergence |
|
|
|
353 |
|
00:30:08,030 --> 00:30:12,360 |
|
ุงููู ูู the limit .. the uniform .. limitุฃู ุงูู |
|
|
|
354 |
|
00:30:12,360 --> 00:30:15,220 |
|
Form convergence of a sequence of continuous |
|
|
|
355 |
|
00:30:15,220 --> 00:30:18,480 |
|
functions ู
ุตู
ุฏ ูููุชูููุงุณ ุงูู limit ุชุจุนุชูุง ูุนูู |
|
|
|
356 |
|
00:30:18,480 --> 00:30:21,160 |
|
ูุชุทูุน ุนูุฏู C of X continuous ู
ุซูุงู C of X |
|
|
|
357 |
|
00:30:21,160 --> 00:30:25,000 |
|
continuous ุฅุฐุง ุนูุฏู .. ุงููู ูู ุตุงุฑ ุนูุฏู ุงูู |
|
|
|
358 |
|
00:30:25,000 --> 00:30:28,160 |
|
function ูุฐู continuous ุงููู ูู ุงูู C ุงููู ุฅุญูุง |
|
|
|
359 |
|
00:30:28,160 --> 00:30:33,730 |
|
ุจุฏูุง ุฅูุงูุง ูู
ุด ููู ู limitCn of 0 as n goes to |
|
|
|
360 |
|
00:30:33,730 --> 00:30:37,270 |
|
infinity ุจุณุงูุฉ limit ุงููู ูู Cn of 0 ุงูุด ุจุชุณุงูู |
|
|
|
361 |
|
00:30:37,270 --> 00:30:41,910 |
|
ูุงุญุฏ ููู ุณุงููุฉ ูุงุญุฏ ุงููู ูู ุนุจุงุฑุฉ ุนู ู
ูู ุงููC of |
|
|
|
362 |
|
00:30:41,910 --> 00:30:47,370 |
|
ุงูุด of 0 ูุฃู ุงุญูุง ู
ุชูุฌูู ุงููC of X ุจุณุงููุฉ limit Cn |
|
|
|
363 |
|
00:30:47,370 --> 00:30:51,310 |
|
of X ู in particular for X ุจุชุณุงููุฉ ุณูุฑ ุจุณูุฑุฉ limit |
|
|
|
364 |
|
00:30:51,310 --> 00:30:55,430 |
|
Cn of 0 ุจุณุงููุฉ C of 0 ูCn of 0 ูููุง ูุงุญุฏ ุงูุถุง |
|
|
|
365 |
|
00:30:55,430 --> 00:30:57,730 |
|
limit ุงููุงุญุฏ ุงููู ูู ุจุณุงููุฉ ูุงุญุฏ ูุนูู ุงููC of 0 |
|
|
|
366 |
|
00:30:57,730 --> 00:31:05,970 |
|
ุงูุด ูุชุณุงููุ ูุชุณุงูู ูุงุญุฏุฎุตููุช ูู
ุงู ุดุบูุฉ ุงูู ุญุตูุช |
|
|
|
367 |
|
00:31:05,970 --> 00:31:10,070 |
|
ุนูุฏู ุงู ุงูู c of zero ุจูุณุงูู ูุงุญุฏ |
|
|
|
368 |
|
00:31:13,750 --> 00:31:19,670 |
|
ูุฃ ุงููู ูู ุงููS ุงููCN ุจุนู
ู ุงุดู ู
ุดุงุจู ูู ูู
ูู ูููSN |
|
|
|
369 |
|
00:31:19,670 --> 00:31:25,250 |
|
ุนุดุงู ูุซุจุช ุงูุขู ุงููู ุฃุซุจุชูุงู ุงูู ุตุงุฑ ูู ุนูุฏู ุฏู |
|
|
|
370 |
|
00:31:25,250 --> 00:31:31,730 |
|
ุงููู ุนุฑููุงูุง ุงุณู
ูุง ุงููC of X ุงููู ุนุจุงุฑุฉ ุนู limit |
|
|
|
371 |
|
00:31:31,730 --> 00:31:38,970 |
|
CN of X ุญูุซ ุงููC ู
ู R ุฅูู R ุทูุจ |
|
|
|
372 |
|
00:31:41,560 --> 00:31:45,380 |
|
ุงูุงู ูุงุฎุฏ ุงูุถุง ุงู absolute value X ุฃุตุบุฑ ู
ู ู
ูู ู
ู |
|
|
|
373 |
|
00:31:45,380 --> 00:31:49,960 |
|
ุงูู ูุงู M ุฃูุจุฑ ุงู ูุณุงูู N ู ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุงุชููู |
|
|
|
374 |
|
00:31:49,960 --> 00:32:00,360 |
|
ุงูู ุงูุงู ูุญุณุจ ู SM ูุงูุต SN SM ุงูู ููู
ุชูุงDT ู
ู ุตูุฑ |
|
|
|
375 |
|
00:32:00,360 --> 00:32:05,400 |
|
ุงูุงูุฏูุณ SN ููู SM |
|
|
|
376 |
|
00:32:05,400 --> 00:32:11,240 |
|
ูุงูุต ูุฐู ูู ููู
ุชูุง ุฅุฐุง ุตุงุฑ ูุฐู ูุงูุต ูุฐู ูู ููู
ุชูุง |
|
|
|
377 |
|
00:32:11,240 --> 00:32:19,680 |
|
ุงูุงู ูุฐู ุณูู ุฅุซุจุงุชูุง ุฃููุง ุชุชุนุงู
ู ุงู absolute value |
|
|
|
378 |
|
00:32:19,680 --> 00:32:24,200 |
|
ููุฐูุฃุตุบุฑ ุฃู ูุณุงูู ุงูู absolute value ููุฐู ุฃุตุบุฑ ุฃู |
|
|
|
379 |
|
00:32:24,200 --> 00:32:27,700 |
|
ูุณุงูู ุงู integration ู
ู 0 ู X ู absolute value CM |
|
|
|
380 |
|
00:32:27,700 --> 00:32:35,600 |
|
of T ููุต CN of T ุงุดู
ุงูู DT ู
ุงุดู ุงูุญุงู ุฃู ุจููู
ู |
|
|
|
381 |
|
00:32:35,600 --> 00:32:39,580 |
|
ุงููู ูู ุจูุณุชุฎุฏู
ูุฐู ุงูุฎุงุตูุฉ ุงููู ูู ุจูููู ุฃุตุบุฑ ุฃู |
|
|
|
382 |
|
00:32:39,580 --> 00:32:42,820 |
|
ูุณุงูู ู
ู ุงูุญุณุงุจุงุช ุงููู ุญุณุจูุงูุง ูุจู ุดููุฉ ูุฐุง |
|
|
|
383 |
|
00:32:42,820 --> 00:32:45,380 |
|
ุญุณุจูุงูุง ุฃุตุบุฑ ู
ู ู
ูู ุงูุญุณุงุจุงุช ุงููู ูุจู ุดููุฉ ุฃุตุบุฑ ุฃู |
|
|
|
384 |
|
00:32:45,380 --> 00:32:52,510 |
|
ุณุงูู A ุฃุณ 2N ุนูู 2N ุงููู factorialู
ุถุฑูุจุฉ ูู ุงููู |
|
|
|
385 |
|
00:32:52,510 --> 00:32:58,130 |
|
ูู ุณุช ุนุดุฑ ุนูู ู
ูู ุนูู ุฎู
ุณุฉ ูู ุงู integration ู
ู |
|
|
|
386 |
|
00:32:58,130 --> 00:33:02,750 |
|
ุตูุฑ ูู X ู DT ูุฐุง ุงู integration ุงูุด ุจูุณุงูู ุจูุณุงูู |
|
|
|
387 |
|
00:33:02,750 --> 00:33:08,230 |
|
X ู
ุงุดู ู ุงู X ุนูุฏู ุงุญูุง ู
ุงุฎุฏูููุง ุงุตุบุฑ ุงู ูุณุงูู ู
ูู |
|
|
|
388 |
|
00:33:08,230 --> 00:33:13,010 |
|
ุงูู ุงุตุบุฑ ุงู ูุณุงูู ุงูู ูุจุตูุฑ ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ุจูููู |
|
|
|
389 |
|
00:33:13,680 --> 00:33:18,020 |
|
ูู
ุง ูุจุนุฏ ู
ูุงูู ุจูุทูุน X ููู
ุชู ุฃุตุบุฑ ุฃู ูุณุงูู A |
|
|
|
390 |
|
00:33:18,020 --> 00:33:22,040 |
|
ูุจูุตูุฑ ูุฐุง ู
ุถุฑูุจ ูู ู
ูู ูู ุงูู ุงููู ูู ูุงู ุงูู
ูุฏุงุฑ |
|
|
|
391 |
|
00:33:22,040 --> 00:33:26,680 |
|
ููู 16 ุนูู 5 ููู ุงูุด ุงู A ุตุงุฑ ูุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู |
|
|
|
392 |
|
00:33:26,680 --> 00:33:31,600 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ููุณ ู
ุง ุนู
ููุง ูุจู ุจุดููุฉ ุงูุงู as N goes |
|
|
|
393 |
|
00:33:31,600 --> 00:33:36,690 |
|
to infinityูุฐู ููู
ุชูุง ุจูุณุงูู 0 ุฅุฐุง ูุฐุง ุงูู
ูุฏุงุฑ for |
|
|
|
394 |
|
00:33:36,690 --> 00:33:41,470 |
|
very large M ู N ููููู ุฃุตุบุฑ ุฃูู ูุณุงูู Y ู ุจุงูููุดู |
|
|
|
395 |
|
00:33:41,470 --> 00:33:45,350 |
|
criterion ุจูุตูุฑ ุนูุฏู ุงููู ูู ุงู S N converts |
|
|
|
396 |
|
00:33:45,350 --> 00:33:49,470 |
|
uniformly ู ุงูุขู ุนูู ุงููุชุฑุฉ ููุต A ู A ู ุงู A ูุงูุช |
|
|
|
397 |
|
00:33:49,470 --> 00:33:53,730 |
|
arbitrary ุฅุฐุง S ู
ู R ู R ุจููุฏุฑ ูุนุฑููุง ุจุญูุซ ุฅูู |
|
|
|
398 |
|
00:33:53,730 --> 00:33:57,880 |
|
limit S N of X ุงููู ุตุงุฑุช ู
ูุฌูุฏุฉ ุนูู ูุฐููุจูุงุก ุนูู |
|
|
|
399 |
|
00:33:57,880 --> 00:34:00,460 |
|
ุงูู A-arbitrary ุตุงุฑุช ู
ูุฌูุฏุฉ ุนูู ูู ุงูู R ุฒู ู
ุง |
|
|
|
400 |
|
00:34:00,460 --> 00:34:04,340 |
|
ูููุง ููู ูุฐุง ุงูููุงู
ุจุณู
ู limit S N of X ุงููู
ูู S |
|
|
|
401 |
|
00:34:04,340 --> 00:34:08,980 |
|
of X ููุฐู ุงููู ูู ุงู function ุงูุซุงููุฉ ุจููุณ ุงูุฃุณููุจ |
|
|
|
402 |
|
00:34:08,980 --> 00:34:13,380 |
|
ูุจููุณ ุงููู ูู ุงูู
ูุทู ูุจููุณ ุงูุฃุณุจุงุจ ุจู
ุง ุฃู ุงู S N |
|
|
|
403 |
|
00:34:13,380 --> 00:34:16,860 |
|
conversion formally to S ูS N continuous ุฅุฐุง ุญุฏ |
|
|
|
404 |
|
00:34:16,860 --> 00:34:22,340 |
|
ุทูุน ุงู S ุจุฑุถู ููุณ ุฅุดู
ุงููุง continuousูุฃูุถูุง limit |
|
|
|
405 |
|
00:34:22,340 --> 00:34:28,540 |
|
of S of 0 ูู ุนุจุงุฑุฉ ุนู S of 0 ูุจู
ุง ุฃู S of 0 ุฏุงูู
ุงู |
|
|
|
406 |
|
00:34:28,540 --> 00:34:31,640 |
|
0 ุฅุฐูุง limitูุง ุณูููู as N goes to infinity 0 ูุนูู |
|
|
|
407 |
|
00:34:31,640 --> 00:34:35,300 |
|
ุณุชุธูุฑ ูุฏู S of 0 ุฅูุด ุจุงูุณุงูุฉ 0 ุฅุฐูุง ุงูุขู ุทูุนูุง |
|
|
|
408 |
|
00:34:35,300 --> 00:34:45,840 |
|
ูู
ุงู ุดุบูุฉ ุฃุซุจุชูุงูุง ุฃู S of 0ุจุณุงูุฉ 0 ู C of 0 ุจุณุงูุฉ |
|
|
|
409 |
|
00:34:45,840 --> 00:34:54,400 |
|
1 ูุนุฑููุง ูุฐููุฉ ุงูุฏุงูุชูู ุฃุณู ู ุฃุณ ู
ู ุงููู ูู R ูุนูุฏ |
|
|
|
410 |
|
00:34:54,400 --> 00:34:59,680 |
|
ู
ูู ูุนูุฏ R ุฅุฐู ุงูุขู ุงุญูุง ุงูุฏุงูุชูู ุงููู ุฃุซุจุชูุง ูุงู |
|
|
|
411 |
|
00:34:59,680 --> 00:35:05,430 |
|
ูุฌูุฏ ููุง ุงูุขู ุงููู ุจุญูู ุนููู
ูุฐููุฉ ุงูุฏุงูุชููุงููู ูู |
|
|
|
412 |
|
00:35:05,430 --> 00:35:10,190 |
|
ุงูุฏุงูุฉ ุงูุฃููู ุณู
ูุชูุง ุฃุณูุฉ ุชุงููุฉ C ููุงููุช ุงูู C of |
|
|
|
413 |
|
00:35:10,190 --> 00:35:15,790 |
|
0 ุจุณุงูุฉ ูุงุญุฏ ู S of 0 ุจุณุงูุฉ H0 ูุธู ุฃุซุจุช ูุฐู ู ุฃุซุจุช |
|
|
|
414 |
|
00:35:15,790 --> 00:35:22,910 |
|
ูุฐู ู ุฃุซุจุช ูุฐููุฉ ุงููู ุฃุณุชุจุนุชูุง ุจุชุญูููู
ูุฎูููุง ูุดูู |
|
|
|
415 |
|
00:35:22,910 --> 00:35:29,670 |
|
ููู ูุซุจุชูุง ุทูุจ ุงูุขู ุฃูุตููุง ูุนูุฏ ุงููู ูู ุงูู
ูุทูุฉ |
|
|
|
416 |
|
00:35:29,670 --> 00:35:39,670 |
|
ูุฐู ูุฃู ุงุญูุง ุงุชูุฌูุง ุนูู ู
ุง ููููุงุชูุฌูุง ุงู ุงูู S N |
|
|
|
417 |
|
00:35:39,670 --> 00:35:47,170 |
|
ุชุชุนุงู
ู ุจุดูู ุนุงู
ูุชุนู
ู S ู ุงูู C N ุชุชุนุงู
ู ุจุดูู ุนุงู
|
|
|
|
418 |
|
00:35:47,170 --> 00:35:54,280 |
|
ูุชุนู
ู Cููู ุงูุงู ุงุญูุง ุงุซุจุชูุง ูู ุงูุฃูู ูู ุงู ู
ุง |
|
|
|
419 |
|
00:35:54,280 --> 00:36:00,880 |
|
ู
ุญุชุงุด ุงู S N ุจุฑุงูู
ุจุณูุก ุงู C Nุ ู
ุธุจูุทุ ูุนูู ู ูุฃูู |
|
|
|
420 |
|
00:36:00,880 --> 00:36:04,860 |
|
ุจูุงุก ุนูู ูุฐุง ู
ุฒุงู
ุงู S N ุจุฑุงูู
ุจุณูุก ุงู C N ูุจุตูุฑ |
|
|
|
421 |
|
00:36:04,860 --> 00:36:09,520 |
|
ุงู S N ุจุฑุงูู
ุ ูุฐูุ ู
ูุงููุง ุฏู S N ุจุฑุงูู
ุจุตูุฑ ุงู S N |
|
|
|
422 |
|
00:36:09,520 --> 00:36:15,340 |
|
ุจุฑุงูู
converges uniformly to some function mean C |
|
|
|
423 |
|
00:36:15,340 --> 00:36:22,060 |
|
ุงูุงู ุจู
ุง ุงู S N ุจุฑุงูู
converges uniformly to Cุงูุงู |
|
|
|
424 |
|
00:36:22,060 --> 00:36:28,900 |
|
ู ุงูุงุณู converged to us uniformly ุจุฑุถูุญุณุจ ูุธุฑูุฉ |
|
|
|
425 |
|
00:36:28,900 --> 00:36:32,360 |
|
ุจุชุทูุน ุนูุฏู ุจู
ุง ุงู s n prime differentiable ูุชููู |
|
|
|
426 |
|
00:36:32,360 --> 00:36:37,140 |
|
ุงู limit ู differentiable ู ุงู c prime ุงููู ูู ุงู |
|
|
|
427 |
|
00:36:37,140 --> 00:36:42,340 |
|
s prime ูุฏู ูู ู
ูู ุงู c ุงููู ุทูุนุช ูู ูุนูู s n |
|
|
|
428 |
|
00:36:42,340 --> 00:36:45,960 |
|
prime differentiable ุงู s n differentiable ู |
|
|
|
429 |
|
00:36:45,960 --> 00:36:48,560 |
|
converts to some function ุงุฐุง ุจุชุชุฐูุฑ ููุง ูุณู
ููุง g |
|
|
|
430 |
|
00:36:48,560 --> 00:36:52,520 |
|
ู ูุฏ ููุง ูุณู
ููุง f ูููุง ูููู ุจู
ุง ุงู s n ุจุชุฑูุญ ูู f |
|
|
|
431 |
|
00:36:52,520 --> 00:36:56,740 |
|
ู ุงู s n prime ุจุชุฑูุญ ูู g ุฅุฐุง ูุชูุฌุฉ ุงููุธุฑูุฉ ูุชููู |
|
|
|
432 |
|
00:36:56,740 --> 00:37:00,000 |
|
ุงููู ููุงูู F ูู ุงูู Differentiable ูุงูู Derivative |
|
|
|
433 |
|
00:37:00,000 --> 00:37:04,940 |
|
ููุง ุฅูุด ุจุชุทูุน D ูุนูู ุงูู Derivative ููู S' ุฅูุด |
|
|
|
434 |
|
00:37:04,940 --> 00:37:12,260 |
|
ูุชุทูุน ุนุจุงุฑุฉ ุนู ู
ูู C' ุฃุณู C ูุชุทูุน ู
ูู ุงููู ูู ุงูู |
|
|
|
435 |
|
00:37:12,260 --> 00:37:21,000 |
|
C ุฅุฐุง ุฃุซุจุชุช ุฃูุง ุงูุขู S' of X ุจุชุณุงูู C of X ูุงู |
|
|
|
436 |
|
00:37:21,000 --> 00:37:28,190 |
|
ุงููู ุฃุซุจุชุชู ููุง ุงูุขู ู
ู ุฌูุฉ ุฃุฎุฑู ู
ู ุฌูุฉ ุฃุฎุฑูุฅุญูุง |
|
|
|
437 |
|
00:37:28,190 --> 00:37:35,850 |
|
ุฃุซุจุชูุง ุงููู ูู ูุจู ููู ุฃู ุงููCN ุจุฑุงูู
ุจุณูุก ูุงูุต SN |
|
|
|
438 |
|
00:37:35,850 --> 00:37:42,450 |
|
ูุงูุต ูุงุญุฏ ุงููCN ุจุฑุงูู
ุจุณูุก ูุงูุต SN of ูุงุญุฏ ูุนูู |
|
|
|
439 |
|
00:37:42,450 --> 00:37:47,790 |
|
ุจู
ุนูู ุขุฎุฑ ุงููCN ุจุฑุงูู
of X ุฃุซุจุชูุง ุจุณูุก ูุงูุต SN |
|
|
|
440 |
|
00:37:47,790 --> 00:37:54,640 |
|
ูุงูุต ูุงุญุฏ of Xุงูุงู ุจู
ุง ุงู ุงู S Unconverted ุฒู ุงู S |
|
|
|
441 |
|
00:37:54,640 --> 00:38:00,260 |
|
ุฎูุตูุง ูุฐู ุงู ุฎูุตูุง ูุฐู ุงูู
ูุทูุฉ ุฎูููู ุงุดุฑุญ ุจูุบุฉ |
|
|
|
442 |
|
00:38:00,260 --> 00:38:05,060 |
|
ุชุงููุฉ ุนุดุงู ุงู
ูุฒ ุจูู ุงูููุงู
ูู ุนูุฏู ุงูุงู ุงูุชุจููุง |
|
|
|
443 |
|
00:38:05,060 --> 00:38:08,860 |
|
ุจุชุนู
ู ููุณู ุงุดู ุจุณ ุจุงููุณุจุฉ ูู
ู ุงูุงู ุจุงููุณุจุฉ ุนุดุงู |
|
|
|
444 |
|
00:38:08,860 --> 00:38:13,780 |
|
ุงุฌูุจ ุงู derivative ูู S ูู C primeุนูุฏู ุงูุงู ุงููCN |
|
|
|
445 |
|
00:38:13,780 --> 00:38:19,740 |
|
prime of X ุจุณูุก ููุต SN ููุต ูุงุญุฏ of X ุจู
ุง ุฃู SN |
|
|
|
446 |
|
00:38:19,740 --> 00:38:23,500 |
|
ุฑุงุญุช ูููS ุฅุฐุง ุงููู ูู ุงู derivative ูู ุงููู |
|
|
|
447 |
|
00:38:23,500 --> 00:38:30,280 |
|
ุจุชุณูููุง ุงููู ูู CNN ุฒุงุฆุฏ ูุงุญุฏ prime of X ูุชุฑูุญ |
|
|
|
448 |
|
00:38:30,280 --> 00:38:36,770 |
|
ูู
ููุุงููู ูู ู
ุด ูู ูุงูุตูุง ูุฃู S N ูุงูุต ูุงุญุฏ ุงููู |
|
|
|
449 |
|
00:38:36,770 --> 00:38:40,730 |
|
ูู ุจุณุงูู ูุงูุต ูุฐู ุฃูุฌู ูุงูุตูุง ุจุนุฏ ุฃุฐููู
ูุนูู ุจุฏู |
|
|
|
450 |
|
00:38:40,730 --> 00:38:44,810 |
|
ุฃุณุชุจุฏู ุงูู S N ุจู
ูู ุจููู
ุชูุง ูุฐู ุตุงุฑุช ูุงูุต ุงูู C N |
|
|
|
451 |
|
00:38:44,810 --> 00:38:50,330 |
|
prime of X ุฃูุด ุจุชุณุงูู ุจุชุฑูุญ ููู S ุฃู ุจู
ุนูู ุขุฎุฑ ุตุงุฑ |
|
|
|
452 |
|
00:38:50,330 --> 00:38:56,620 |
|
ุนูุฏู ู
ู ููุง ู
ู ููุง ุงููู ุจุชุทูุน ุนูุฏู ููุงุตุงุฑ ุนูุฏู |
|
|
|
453 |
|
00:38:56,620 --> 00:39:03,640 |
|
ุงูุงู ู
ู ููุง ุงููู ูู cn ุฒุงุฆุฏ ูุงุญุฏ prime of x ุจุชุฑูุญ |
|
|
|
454 |
|
00:39:03,640 --> 00:39:08,080 |
|
ููุงูุต ุทุจุนุง uniformly ุจุชุฑูุญ ูู
ูู ูุงูุต s ูุฃูู ูุงูุตูุง |
|
|
|
455 |
|
00:39:08,080 --> 00:39:13,040 |
|
ุจุชุฑูุญ ูู s ุฅุฐุง ูู ุจุชุฑูุญ ููุงูุต ุงู sููู ููุณ ุงูููุช |
|
|
|
456 |
|
00:39:13,040 --> 00:39:19,840 |
|
ุฃูุง ุจููู ุงููCN ููุณูุง ุจุชุฑูุญ uniform ูู
ููุ ูููC ุจููุณ |
|
|
|
457 |
|
00:39:19,840 --> 00:39:24,740 |
|
ุงูุฅุณููุจ ุงููู ูุจู ุจุดููุฉ ุงููู ูู ุจู
ุง ุฃูู ูุฐู ุงููู ูู |
|
|
|
458 |
|
00:39:24,740 --> 00:39:27,580 |
|
differentiable sequence of functions ู converge |
|
|
|
459 |
|
00:39:27,580 --> 00:39:31,260 |
|
uniform to some function ุฅุฐุง ูุฐู ูุชููู ุงููู ูู |
|
|
|
460 |
|
00:39:31,260 --> 00:39:35,600 |
|
ุนุจุงุฑุฉ ุนู ุงููู ูู ุงููC ุงูุฃุตููุฉ differentiable ู ุงู |
|
|
|
461 |
|
00:39:35,600 --> 00:39:40,070 |
|
derivative ููู ููุง ู
ููุ ุงููุงูุต Sูุจุตูุฑ ุนูุฏู ุงูู C' |
|
|
|
462 |
|
00:39:40,530 --> 00:39:45,970 |
|
of X ุจุณูุก ูุงูุต S of X ุจููู ูุฐู ุงููู ูู ุงููุชูุฌุฉ |
|
|
|
463 |
|
00:39:45,970 --> 00:39:50,330 |
|
ุงูุซุงููุฉ ุงููู ุทุจููุง ุนูููุง ุทูุนุช ุนูุฏู ุงููู ูู ูุฐู |
|
|
|
464 |
|
00:39:50,330 --> 00:39:54,050 |
|
ุงูุฎุงุตูุฉ ู ูุฐู ุงูุฎุงุตูุฉ ู
ุชุญููุฉ ูุนูู ุงูุขู ุตุงุฑ ุนูุฏู |
|
|
|
465 |
|
00:39:54,050 --> 00:40:02,590 |
|
ุงููู ูู ุชุญูู ู
ุง ูููู ุฃูู ุชุจุนุชูุง ูุฐู ุงูู C'of X |
|
|
|
466 |
|
00:40:02,590 --> 00:40:08,530 |
|
ุจูุณุงูู ูุงูุต S of X ูุทูุน ุนูุฏู ุงููู ูู S prime of X |
|
|
|
467 |
|
00:40:08,530 --> 00:40:16,290 |
|
ุจูุณุงูู C of X ู
ุงุดู ุงูุญุงู ุจูููู ููู ุงุญูุง ุถุงู ุนูููุง |
|
|
|
468 |
|
00:40:16,290 --> 00:40:21,230 |
|
ุดุบู ุงุฎุฑู ูุญุงูู ูุซุจุชูุง ุจูููู ุงุซุจุชูุง ุงููู ูู ูู |
|
|
|
469 |
|
00:40:21,230 --> 00:40:27,630 |
|
ุงูุตูุงุช ุงูู
ุทููุจุฉ ุงููู ุชุชุญูู ูู ุงู S ูุญุฏุฏุช ูููุฉ ุงู S |
|
|
|
470 |
|
00:40:27,630 --> 00:40:28,050 |
|
ู ุงู C |
|
|
|
471 |
|
00:40:38,700 --> 00:40:48,060 |
|
ุงูุฌุฒุก ุงูุซุงูู ุณูู ูุถู ุงูู cw prime of x |
|
|
|
472 |
|
00:41:00,590 --> 00:41:05,470 |
|
ุจุชุตูุฑ c double prime ูููุง ู ูุฐู ูุถููุง ุจููุนููุง |
|
|
|
473 |
|
00:41:05,470 --> 00:41:09,550 |
|
ูุฃููุง ูุจู ุงูุชูุงุถู ุงููู ูุถููุงูุง ูุจุชุตูุฑ ูุงูุต ุงููู ูู |
|
|
|
474 |
|
00:41:09,550 --> 00:41:15,030 |
|
s prime of x ุงููู ูู s prime of x ููุด ุจุชุณุงูู c of |
|
|
|
475 |
|
00:41:15,030 --> 00:41:20,350 |
|
x ูุจุตูุฑ ูุงูุต ู
ููุ c of xูุงูุขู S W' of X ู
ู ุฃูู ุจุฏู |
|
|
|
476 |
|
00:41:20,350 --> 00:41:23,650 |
|
ุฃุฌูุจูุง ู
ู ููุง S W' ุจูุณุงูู ุงููู ูู ูุฐู ุงู |
|
|
|
477 |
|
00:41:23,650 --> 00:41:26,050 |
|
derivative ุงููู ูู ุงู derivative ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
478 |
|
00:41:26,050 --> 00:41:31,530 |
|
ูุงูุต S of X ูุจุตูุฑ ุนุจุงุฑุฉ ุนู ูุงูุต S of X ูุจุตูุฑ ุนูุฏู |
|
|
|
479 |
|
00:41:31,530 --> 00:41:38,910 |
|
ูุฐุง ุจุฑุถู ุงูุด ุชุญูู ุงุฎุฑ ุงุดู ุงููู ูู C' of Zero C' of |
|
|
|
480 |
|
00:41:38,910 --> 00:41:42,410 |
|
Zero ุจูุณุงูู ูุงูุต S of Zero ูS of Zero ุจูุณุงูู ุตูุฑ |
|
|
|
481 |
|
00:41:42,410 --> 00:41:47,030 |
|
ุงุฐุง C' of Zero ุจูุณุงูู Zero ุงู S' of Zero |
|
|
|
482 |
|
00:41:52,540 --> 00:41:56,800 |
|
ูููุฐุง ุงุซุจุชูุง ูุฌูุฏ ุฏุงูุฉ |
|
|
|
483 |
|
00:41:59,570 --> 00:42:04,970 |
|
ุงููู ูู ุญููุชูู ุงููู ูู ุงูุดุฑุท ุงูุฃูู ูุฐุง ูุงูุฏุงูุชูู |
|
|
|
484 |
|
00:42:04,970 --> 00:42:09,710 |
|
ุงุณู ูุงูุดุฑุท ุงูุซุงูู ุงู ุงููู ุจุนุฏู ูุฐู ุจุชููู ุฃุซุจุชูุง |
|
|
|
485 |
|
00:42:09,710 --> 00:42:15,290 |
|
ูุฌูุฏ ุงููC ูุงููS ูุฃู ุจุนุถ ุงููุชุงุฆุฌ ุงูุฃุฎุฑู ุนูู ุงููู ูู |
|
|
|
486 |
|
00:42:15,290 --> 00:42:18,830 |
|
ุงูุฏุงูุชูู |
|
|
|
487 |
|
00:42:18,830 --> 00:42:19,790 |
|
ุงููู ุฃูุฌุฏูุงูู
|
|
|
|
488 |
|
00:42:24,500 --> 00:42:28,960 |
|
ูุดูู ุงูุด ุงูู Corollary ุงูุฃููู ุจููู ูู if C and S |
|
|
|
489 |
|
00:42:28,960 --> 00:42:33,680 |
|
are the functions in 3x,8x,4x,1 then C' of X |
|
|
|
490 |
|
00:42:33,680 --> 00:42:39,560 |
|
ุจูุณุงูู ููุต S of X ุฃุซุจุชูุงูุง ูููุง and ุทุจุนุง ูู ุทุฑูููุง |
|
|
|
491 |
|
00:42:39,560 --> 00:42:44,020 |
|
ูู ุงูุจุฑูุงู S' of X ุจูุณุงูู C of X ูููุง ุงููู ูู ุฎูุงุต |
|
|
|
492 |
|
00:42:44,020 --> 00:42:50,340 |
|
ุงููู ูู ุฃุซุจุชูุงูุง ุทูุจ ุงูุขู ุจููู ูู moreover these |
|
|
|
493 |
|
00:42:50,340 --> 00:42:54,630 |
|
functions have derivatives of all orderูุนูู ุจุฃู |
|
|
|
494 |
|
00:42:54,630 --> 00:42:57,710 |
|
order ุงู derivative ู
ูุฌูุฏุฉ ุทุจุนุงู ูุฐุง by induction |
|
|
|
495 |
|
00:42:57,710 --> 00:43:01,550 |
|
by induction ุงููู ูู ุจุฏู ุชุซุจุช ุงูู ุงููู ูู ุงููู ูู |
|
|
|
496 |
|
00:43:01,550 --> 00:43:06,670 |
|
cn ูุชููู ู
ูุฌูุฏุฉ ู ุจูุณุงูู ูุงูุต a of x ุงู ุฒุงุฏ a of x |
|
|
|
497 |
|
00:43:06,670 --> 00:43:11,450 |
|
ุญุณุจ ุงููู ูู ุฌุฏุงุด ุฏุฑุฌุฉ ุงู n ูู
ู
ูู ุชุณุงูู c of x ุงู |
|
|
|
498 |
|
00:43:11,450 --> 00:43:16,930 |
|
ุงููู ูู ูุงูุต c of x ุญุณุจ ุฏุฑุฌุฉ ุงู n ุงููู ู
ูุฌูุฏุฉุงุฐุง |
|
|
|
499 |
|
00:43:16,930 --> 00:43:19,990 |
|
ุงูุงู ูุฐู by induction ุจููุฏุฑ ูุซุจุช ุงู ุงู derivative |
|
|
|
500 |
|
00:43:19,990 --> 00:43:26,390 |
|
ุงููู ูู ู
ูุฌูุฏุฉ for any or ุถุฑ ุจูุงุก ุนูู ุงููู ุญูููุงู |
|
|
|
501 |
|
00:43:26,390 --> 00:43:32,300 |
|
ููุฌู ุงูุงู ูู Corollary ุงููู ุจุนุฏูุงุจููู ุงูุขู ุงูู |
|
|
|
502 |
|
00:43:32,300 --> 00:43:38,280 |
|
function C and S ุจุญูู ุงููู ูู ุงูู Pythagorean |
|
|
|
503 |
|
00:43:38,280 --> 00:43:42,280 |
|
Identity ุงููู ููุง ูุนุฑููุง ูุตูู ุชุฑุจูุน ุฒุงุช ุตูู ุชุฑุจูุน |
|
|
|
504 |
|
00:43:42,280 --> 00:43:47,660 |
|
ุฅุด ุจุณุงูู ุจุณุงูู ูุงุญุฏ ููุฑุฉ ุงูุจุฑูุญุงู ุณููุฉ ุจุณู
ู ูุฐู |
|
|
|
505 |
|
00:43:47,660 --> 00:43:51,520 |
|
ูููุง ุจุณู
ููุง function ุงุณู
ูุง F of X ุจููู ุณู
ู ูุฐู |
|
|
|
506 |
|
00:43:51,520 --> 00:43:56,080 |
|
ุงููู ูู F of X ุจุณุงูู ูุฐู ูุถูููุง ุจููุง ุจุชูุถูููุง F |
|
|
|
507 |
|
00:43:56,080 --> 00:44:01,200 |
|
prime of X ุจุณุงูู ุงุชููููู C of X ูู ุชูุงุถู ุงููู ุฌูุง |
|
|
|
508 |
|
00:44:01,200 --> 00:44:06,300 |
|
ุงููู ูู ูุงูุต S of X ูุงูุชุงููุฉ ุฒุงุฆุฏ ุงุชููู ูS of X |
|
|
|
509 |
|
00:44:06,300 --> 00:44:11,880 |
|
ูุชูุงุถููุง ูู C of X ูุฐู ูู ูุฐู ุจุณ ุจุงูุณุงูุฏ ุงุฐุง ุญุตู |
|
|
|
510 |
|
00:44:11,880 --> 00:44:15,100 |
|
ุทุฑุญ ุญูู ุงุณู
ุณุงูู ุณูุฑ ุงุฐุง ุตุงุฑุช ุนูุฏ ุงู derivative ูู |
|
|
|
511 |
|
00:44:15,100 --> 00:44:18,320 |
|
function ูุฐู ุงุดู
ุงููุง ุจุณุงูู ุณูุฑ ูุนูู ุจู
ุนูู ุงุฎุฑ |
|
|
|
512 |
|
00:44:18,320 --> 00:44:22,490 |
|
ุงูุฏุงูุฉ ูู ุฏุงูุฉ ุซุงุจุชุฉูุนูู F is a constant function |
|
|
|
513 |
|
00:44:22,490 --> 00:44:27,210 |
|
ูุนูู ููู
ุฉ ุงูู F ุนูุฏ ุฃู ููู
ุฉ ุฅูุด ุจุชุณุงูู ู
ูุฏุงุฑ ุซุงุจุช |
|
|
|
514 |
|
00:44:27,210 --> 00:44:31,310 |
|
ุฅุฐุง ุงุชูุงุฌ ุฃููุง ุซุงุจุชุฉ ุฃุณูู ุฅุดู ุฃุณูู ุฅุดู ุฃูุฌุฏูู F of |
|
|
|
515 |
|
00:44:31,310 --> 00:44:34,670 |
|
Zero ุนุดุงู ุฃุชุนุฑู ุฅูุด ุฏู ุงููู ุจุงูุณุงููุฉ ุจุงูุธุจุท C of |
|
|
|
516 |
|
00:44:34,670 --> 00:44:38,730 |
|
Zero ูุงุญุฏ S of Zero ุณูุฑ ุฅุฐุง ุตุงุฑ ุนูุฏู F of Zero |
|
|
|
517 |
|
00:44:38,730 --> 00:44:42,170 |
|
ุจุณุงููุฉ ูุงุญุฏ ููู ุซุงุจุชุฉ ุฅุฐุง ุตุงุฑุช F of X ุฏุงูู
ุง |
|
|
|
518 |
|
00:44:42,170 --> 00:44:46,270 |
|
ุจุงูุณุงููุฉ ูุงุญุฏ ูุนูู ูุฐุง ุงูู
ูุฏุงุฑ ุจุณุงููุฉ ูุงุญุฏ ุฏุงุฆู
ุง |
|
|
|
519 |
|
00:44:46,270 --> 00:44:48,690 |
|
ุทูุจ ููุฌู ุงูุขู |
|
|
|
520 |
|
00:44:51,700 --> 00:44:57,820 |
|
ูุฃ ุงูู theorem ุงููู ุจุนุฏูุง ุงูู functions C and S |
|
|
|
521 |
|
00:44:57,820 --> 00:45:02,820 |
|
satisfy the properties I and II of theorem 8-4-1 |
|
|
|
522 |
|
00:45:02,820 --> 00:45:07,020 |
|
are unique ูู
ุง ุจููููู ุจุฑุถู ูุชูุงูู ุงู uniqueness |
|
|
|
523 |
|
00:45:07,020 --> 00:45:13,020 |
|
ุจุดุจู ุงู uniqueness ูู
ูุ ูุฃ ุงููู ูู ุงู .. ุงู .. |
|
|
|
524 |
|
00:45:13,020 --> 00:45:18,030 |
|
ููููุง ู
ุนุงูุง ุงู uniqueness ููู exponentialู ุณู
ูุงูุง |
|
|
|
525 |
|
00:45:18,030 --> 00:45:21,170 |
|
ุงููู ูู let E ูุงุญุฏ .. ููุชุฑุถ ุฃูู ูู E ูุงุญุฏ ู E |
|
|
|
526 |
|
00:45:21,170 --> 00:45:24,070 |
|
ุงุชููู ู ุณู
ูุง ูุฑู ุจูุณุงูู D ู ูู ุงูุขุฎุฑ ุฑูุญูุง ููุฑู |
|
|
|
527 |
|
00:45:24,070 --> 00:45:28,390 |
|
ุจูุณุงูู ุฅูุดุ ุจูุณุงูู ุณูุฑ ููุง ููุณ ุงูุงุดู ููุดุชุบู ู ุจุฑุถู |
|
|
|
528 |
|
00:45:28,390 --> 00:45:31,590 |
|
ููุณุชุฎุฏู
ุงููู ูู ุงู Taylor's theorem ุฒู ู
ุง ุงุณุชุฎุฏู
ูุง |
|
|
|
529 |
|
00:45:31,590 --> 00:45:34,470 |
|
ููุงู ุงู Taylor's theorem ูุนูู ูุชูุงููู ุงู sketch |
|
|
|
530 |
|
00:45:34,470 --> 00:45:37,470 |
|
ููุจุฑูุงู ูู ููุณ ุงู sketch ุงูุฃููุงูู ุนุดุงู ููู |
|
|
|
531 |
|
00:45:37,470 --> 00:45:43,110 |
|
ูุชูุงูููู ุณุฑูุน ููู ุจุฏูุง ูุซุจุช ุฃู ุงู C ู ุงู S are |
|
|
|
532 |
|
00:45:43,110 --> 00:45:47,930 |
|
unique functionsุทุจุนุง ุงูุทุฑููุฉ let c1 and c2 be two |
|
|
|
533 |
|
00:45:47,930 --> 00:45:52,290 |
|
functions on R that satisfy it satisfies ู
ูู ุงู |
|
|
|
534 |
|
00:45:52,290 --> 00:45:55,850 |
|
conditions ุงููู ุงุญูุง ุจูููู ุนููู
ุงููู ูู ุงู I ู I I |
|
|
|
535 |
|
00:45:55,850 --> 00:46:00,930 |
|
ุงููู ูู ุจุญูุซ ุงูู c1 double prime of x ุจุณุงูู c1 of |
|
|
|
536 |
|
00:46:00,930 --> 00:46:01,150 |
|
x |
|
|
|
537 |
|
00:46:16,750 --> 00:46:18,150 |
|
2๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ฟฝ |
|
|
|
538 |
|
00:46:18,550 --> 00:46:24,010 |
|
ูุฃู ููุชุฑุถ ุฃู ุฏู ุจุชุณุงูู C1-C2 ูุจุฏูุง ูุตู ูู ุงูููุงูุฉ |
|
|
|
539 |
|
00:46:24,010 --> 00:46:27,410 |
|
ุฃู ุฏู ูุฐู ูุงุฒู
ุชุทูุน ุฅูุด ุจุชุณุงููุ ุจุชุณุงูู 0 ู
ุฏุงู
ุฏู |
|
|
|
540 |
|
00:46:27,410 --> 00:46:32,710 |
|
ุจุชุณุงูู 0 ู
ุฏุงู
C1 ุจุชุณุงูู ุฅูุดุ C2 ูุงุญุธ ุงูุขู ุฏู W' of |
|
|
|
541 |
|
00:46:32,710 --> 00:46:38,190 |
|
X ูุงุถู ูุฐุง ู
ุฑุชูู ุชุตูุฑ C1W'-C2W' |
|
|
|
542 |
|
00:46:39,860 --> 00:46:47,500 |
|
ุงูุงู ุจุณุงูู ูุชุทูุน ุงูุด ุจุชุณุงูู ูุงูุต ุงููู ูู ู
ูู D of |
|
|
|
543 |
|
00:46:47,500 --> 00:46:59,700 |
|
X ูุนู
ููุง ุงููู ูู ุญุณุงุจุงุช D of X ุจุณุงูู D of X ุจุณุงูู |
|
|
|
544 |
|
00:46:59,700 --> 00:47:08,540 |
|
C1 ูุงูุต C2 D prime of X ุงูุด ููุณุงูู ุงููู ูู ุนุจุงุฑุฉ |
|
|
|
545 |
|
00:47:08,540 --> 00:47:16,670 |
|
ุนูุฃุณ ูุงุญุฏ ูุงูุต ุงุณ ูุงุญุฏ ูุงูุต ุจูุตูุฑ ุงููู ูู ู
ูู ุงูุงุณ |
|
|
|
546 |
|
00:47:16,670 --> 00:47:19,810 |
|
ูุงุญุฏ ุงููู ูู ุจุงููุณุจุฉ ููุฐู ุงููู ุฃูุฌุฏูุงูุง ูุงูุต ุงุณ |
|
|
|
547 |
|
00:47:19,810 --> 00:47:25,350 |
|
ุงุชููู ุจูุตูุฑ ุฒุงุฆุฏ ูุงู ุฏู double prime ุจุณุงูู ุจุชูุงุถู |
|
|
|
548 |
|
00:47:25,350 --> 00:47:30,030 |
|
ูุฐุง ูู
ุงู ู
ุฑุฉ ุงููู ูู ุจุชุฑุฌุน ู
ูู ููุณูุง C ูุงุญุฏููุฐู |
|
|
|
549 |
|
00:47:30,030 --> 00:47:38,390 |
|
ุชุฑุฌุน ููุณูุง C2 ุงูุชู ูู ูุงูุต D ุงูุชู ูู ูุงูุต D ุทูุจ |
|
|
|
550 |
|
00:47:38,390 --> 00:47:43,410 |
|
ุฅุฐุง ุงู D ูุฃูู ู
ูุชุฑุถูู ุงู C1 ูC2 ุฃุดู
ุงููุง ุจุชุญูู |
|
|
|
551 |
|
00:47:43,410 --> 00:47:52,470 |
|
ุงูุดุฑูุท ุงููู ููู ุงููู ูููุง ุนููุงDouble prime ุจุณุงูุฉ D |
|
|
|
552 |
|
00:47:52,470 --> 00:48:02,390 |
|
of X ุฃู D double prime ุจุณุงูุฉ D double prime ุจุณุงูุฉ |
|
|
|
553 |
|
00:48:06,030 --> 00:48:11,870 |
|
ุจุณุงูู ูุฏ W' ูุงูุต ูุฏ W' ูุฏ W' ูุงูุต C1 ู ูุฏ W' ุงููู |
|
|
|
554 |
|
00:48:11,870 --> 00:48:15,870 |
|
ูู ูุงูุต ูุงูุต C ุฒุงุฆุฏุฉ ุณุงุฑุฉ D W' ุจุณุงูู ูุงูุต D ู X |
|
|
|
555 |
|
00:48:15,870 --> 00:48:21,890 |
|
ููู ุงููู ูู ุฏุนูุง ูููู ุฃุณูู
ุทูุจ ุงูุขู ุจุณุชุนุฌู ูุฅู |
|
|
|
556 |
|
00:48:21,890 --> 00:48:29,470 |
|
ุงูููุงู
ู
ุนุงุฏ ูุนููุฃู ุงูุฃููุงุฑ ู
ุนุงุฏุฉ ุงูุขู ุงุญุทูู D of 0 |
|
|
|
557 |
|
00:48:29,470 --> 00:48:34,530 |
|
ุงูุด ููุณุงููุ Zero ูุฃู D of 0 ุจูุณุงูู ูุฐู ูุงูุต ูุฐู ู |
|
|
|
558 |
|
00:48:34,530 --> 00:48:37,630 |
|
ูุฐู ุนูุฏ ุงู zero ูุงุญุฏ ู ูุฐู ุนูุฏ ุงู zero ูุงุญุฏ |
|
|
|
559 |
|
00:48:37,630 --> 00:48:40,010 |
|
ุงูุชูุชูู ุนูุฏ ุงู zero ูุงุญุฏ ุงูุญุตู ุทุฑุญู ุงู ุงูุด ููุณุงูู |
|
|
|
560 |
|
00:48:40,010 --> 00:48:47,160 |
|
ุณูุฑ ุงูุงู D prime ุนูุฏ ุงู zeroูDW' ุนูุฏ ุงูู zero ู ู |
|
|
|
561 |
|
00:48:47,160 --> 00:48:48,760 |
|
.. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู |
|
|
|
562 |
|
00:48:48,760 --> 00:48:50,140 |
|
.. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู |
|
|
|
563 |
|
00:48:50,140 --> 00:48:52,320 |
|
.. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู |
|
|
|
564 |
|
00:48:52,320 --> 00:48:52,380 |
|
.. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู |
|
|
|
565 |
|
00:48:52,380 --> 00:48:55,440 |
|
.. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู |
|
|
|
566 |
|
00:48:55,440 --> 00:48:59,220 |
|
.. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู |
|
|
|
567 |
|
00:48:59,220 --> 00:48:59,240 |
|
.. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู |
|
|
|
568 |
|
00:48:59,240 --> 00:49:00,380 |
|
.. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู |
|
|
|
569 |
|
00:49:00,380 --> 00:49:01,520 |
|
.. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู .. ู |
|
|
|
570 |
|
00:49:01,520 --> 00:49:05,260 |
|
.. ู |
|
|
|
571 |
|
00:49:05,260 --> 00:49:15,970 |
|
.. ู .. ู .. ู .. ู .. ู .. ูุจุญูู ุนู ุงูู |
|
|
|
572 |
|
00:49:15,970 --> 00:49:25,410 |
|
derivative ุงูู dw prime ุนุจุงุฑุฉ ุนู ุงููู ูู ูุงูุต d of |
|
|
|
573 |
|
00:49:25,410 --> 00:49:30,410 |
|
0 ุนูุฏ ุงูู 0 ู ุงูู d ุนูุฏ ุงูู 00 ุฅุฐู ูุฐู ุงูู 0 ูุฐู |
|
|
|
574 |
|
00:49:30,410 --> 00:49:34,330 |
|
ูู
ูุ ูู k ุงููู ูู ุฅุชููู ู ุฃุฑุจุนุฉ ู ุณุชุฉ ู ุชู
ุงููุฉ |
|
|
|
575 |
|
00:49:34,330 --> 00:49:37,870 |
|
ุจููุณ ุงูุณุจุจ ูุชุทูุน ุณูุฑ ุงููุฑุฏูุงุช ุจูุฌู ู
ู ู
ููุ ู
ู ูุฐู |
|
|
|
576 |
|
00:49:38,330 --> 00:49:44,430 |
|
ูุฑุฏูุฉ ุงูู Derivative ูุฅูุดุ ูุฃู D' of 0 ูุชุณุงูู C1' |
|
|
|
577 |
|
00:49:44,890 --> 00:49:51,110 |
|
ููุต C2' C1' ุนูุฏ ุงูุตูุฑ ุตูุฑ ู C2' ุนูุฏ ุงู 0 0 ุฅุฐุง ูุฐู |
|
|
|
578 |
|
00:49:51,110 --> 00:49:56,730 |
|
ุฏู K ุนูุฏ ุงู 0 ุจุงูุณุงููุฉ 0 ููู K ุณูุงุก ุฒูุฌูุฉ ุฃู ุฅูุด |
|
|
|
579 |
|
00:49:56,730 --> 00:50:01,230 |
|
ุฃู ูุฑุฏูุฉ ุฅุฐุง ุฌูุฒูุง ูุฐุง ุงููู ุฌูุฒูุงู ูุจู ููู ูุนู
ู |
|
|
|
580 |
|
00:50:01,230 --> 00:50:05,940 |
|
Exponentialูุจุชูุง ูุทุจูู ุงููู ูู ู
ูู ุงูู Taylor's |
|
|
|
581 |
|
00:50:05,940 --> 00:50:09,000 |
|
theorem ูุทุจูู ุงูู Now let x element in R be |
|
|
|
582 |
|
00:50:09,000 --> 00:50:12,760 |
|
arbitrary element in R and let I x be the interval |
|
|
|
583 |
|
00:50:12,760 --> 00:50:18,940 |
|
within point 0x ุทุจูุฌูุง ุนูููุง ุฅุฐุง since D ุจุชุณุงูู C1 |
|
|
|
584 |
|
00:50:18,940 --> 00:50:25,220 |
|
ูุงูุต C2 ูT ุจุชุณุงูู S1 ูุงูุต S2 ุงููู ูู ู
ูุชุฑุถูู S1 |
|
|
|
585 |
|
00:50:25,220 --> 00:50:28,400 |
|
ูS2 ุงููู ูู two functions such that ุงููู ุจูุญูููุง |
|
|
|
586 |
|
00:50:28,400 --> 00:50:34,170 |
|
ุชุจุนุงุช ุงูู sineุงููู ูู ุจุงูุณุงููุฉ S1 ุงูุด ูู ู
ุณู
ููุง |
|
|
|
587 |
|
00:50:34,170 --> 00:50:39,950 |
|
ุงูุง ุงููู ูู ุจุฏู C2 prime ุงู ูู C2 prime ูุงูู S2 |
|
|
|
588 |
|
00:50:39,950 --> 00:50:46,510 |
|
ุงููู ูู C2 A prime ุงูุนูุณุฉ |
|
|
|
589 |
|
00:50:46,510 --> 00:50:50,530 |
|
ุงู derivative ุจูุตูุญ ุจุงูููุต are continuous on mean |
|
|
|
590 |
|
00:50:50,530 --> 00:50:55,930 |
|
on Ix ุนุงุฑููู continuous ุงูู ุงุญูุง ู
ูุชุฑุถูู ุงู ูุญูู |
|
|
|
591 |
|
00:50:55,930 --> 00:51:00,160 |
|
ููุณ ุงููู ูู ุงููู ูุจูู
ุฏุงู
continuous ุงูู D ูุงูู T |
|
|
|
592 |
|
00:51:00,160 --> 00:51:07,440 |
|
continuous ุนูู closed bounded interval I X ุฅุฐุง ูู |
|
|
|
593 |
|
00:51:07,440 --> 00:51:12,810 |
|
ุงููู ูู K ูุงุญุฏ ููุฃููููK2 ููุชุงููุฉ ุฎุฏูุง ุงู maximum |
|
|
|
594 |
|
00:51:12,810 --> 00:51:18,470 |
|
ุฅูููุง ูุงุณู
ููุง K ุฅุฐุง ูู K ููุฌูุชูู ุจุญูุซ ุงู ุงู D of T |
|
|
|
595 |
|
00:51:18,470 --> 00:51:22,930 |
|
bounded ุนูู ูุฐู ุฃุตุบุฑ ุดูู T ูู ุนูู ูู ุงููุชุฑุฉ ุงููู |
|
|
|
596 |
|
00:51:22,930 --> 00:51:27,390 |
|
ุจูุญูู ุนููุง IX ูT of T ุฃุตุบุฑ ุดูู K for all T |
|
|
|
597 |
|
00:51:27,390 --> 00:51:30,290 |
|
elements of IX ูุฃูู ุฒู ู
ุง ุฃููู continuous function |
|
|
|
598 |
|
00:51:30,290 --> 00:51:33,930 |
|
in a closed bounded interval must be boundedุงูุขู |
|
|
|
599 |
|
00:51:33,930 --> 00:51:39,170 |
|
ุฌุงูุฒูู ูุทุจู ู
ููุ ุงูู Taylor's theorem to d ู
ู Ix |
|
|
|
600 |
|
00:51:39,170 --> 00:51:44,970 |
|
and use the fact ุฏู ุงููู ุฃุซุจุชูุงู ุฏู 0 ุณูุงุก 0 ุฏู K0 |
|
|
|
601 |
|
00:51:44,970 --> 00:51:50,030 |
|
ุณูุงุก 0 ุงูุขู ุจูููู for each n unlimited n ุนู
ููุงูุง |
|
|
|
602 |
|
00:51:50,030 --> 00:51:56,510 |
|
ุนุดุงู ููู ุจุณ ู
ุงุดู ุนูู ุจุณุฑุนุฉ ุนู
ููุงูุง ูุจู ููู there |
|
|
|
603 |
|
00:51:56,510 --> 00:51:59,630 |
|
exist a point Cn unlimited Ix such that ูุฐุง |
|
|
|
604 |
|
00:51:59,630 --> 00:52:03,890 |
|
remainder ุจุชุนู
ูู remainderD ุจ X ุจูุณุงูู D of 0 ุฒู |
|
|
|
605 |
|
00:52:03,890 --> 00:52:06,850 |
|
ุฏู prime of 0 ุฒุงุฆุฏ ุฒุงุฆุฏ ุฒุงุฆุฏ ุฒุงุฆุฏ X ุงู ููุต ูุงุญุฏ |
|
|
|
606 |
|
00:52:06,850 --> 00:52:12,630 |
|
ูู
ุง ุฃุตู ูู
ูู ูู remainder ูู ูุฐูู ุฃุตูุงุฑ ุจุณุจุจ ู
ูู |
|
|
|
607 |
|
00:52:12,630 --> 00:52:16,430 |
|
ุงูู D0 ูD prime of 0 ูD ุงู ููุต ูุงุญุฏ ูุฒูุฑ ููููู
ุฅูู |
|
|
|
608 |
|
00:52:16,430 --> 00:52:20,090 |
|
ุดู
ุงููู
ุจูุณุงูู ุฃุตูุงุฑ ุนูุฏ ุงูุตูุฑ ุจูุธู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
609 |
|
00:52:20,090 --> 00:52:24,010 |
|
ูุณุงูู ุงููู ูู ุงูู
ูุฏุงุฑ ุงููู ุนูุฏู ุงููู ุชุญุช ูุฐุง ูุฐุง |
|
|
|
610 |
|
00:52:24,010 --> 00:52:27,490 |
|
ุงู derivative ูุฐุง ุงู derivative ุฃูุง ุจุนุฑูุด ุฅูุด ูู |
|
|
|
611 |
|
00:52:27,490 --> 00:52:31,230 |
|
ู
ุง ุฃูุชูุง ุนุงุฑููู ุงู derivative ูู .. ูู .. ูู C |
|
|
|
612 |
|
00:52:34,160 --> 00:52:41,940 |
|
ุฃู ุงู derivative ูููC ุฅุฐุง ูุถูุช ู
ุฑุฉ ูุงุญุฏุฉ ุจุชุทูุน |
|
|
|
613 |
|
00:52:41,940 --> 00:52:47,120 |
|
ุงููS ุฃู ุณูุจูุง ูุธูุช ุชูุช ู
ุฑุงุช ุจุชุฑุฌุน ูููุง S ุจุณ |
|
|
|
614 |
|
00:52:47,120 --> 00:52:53,180 |
|
ุจุงูู
ูุฌุฉ ูุธูุช ุฎู
ุณุฉ ุจุชุฑุฌุน ูุงูุต Sูุธูุช ุฒูุฌู ุจุชุทูุน ูู |
|
|
|
615 |
|
00:52:53,180 --> 00:52:58,920 |
|
ููุณูุง ุฃู ุณูุจูุง ุนุดุงู ูู ูุงุฏู ุฃูุง ุจุนุฑูุด ุทุจุนุง ููุง |
|
|
|
616 |
|
00:52:58,920 --> 00:53:02,400 |
|
ุนูุฏู ุงููู ูู ุจุชุชูุฒุน ุนูู ู
ุฑุฉ derivative ุชูุฏูู |
|
|
|
617 |
|
00:53:02,400 --> 00:53:04,620 |
|
derivative ุชูุงุชุฉ derivative ุฃุฑุจุนุฉ derivative ู |
|
|
|
618 |
|
00:53:04,620 --> 00:53:08,180 |
|
ุจุชุฑุฌุน ุงูุฏูุฑุฉ ุฒู ู
ุง ูู ูุฅูู ูู ุงูุฃูู ุจูููู ุงููู ูู |
|
|
|
619 |
|
00:53:08,180 --> 00:53:15,520 |
|
ุชูุงุถู ุงููC ูุงูุต S ุจุนุฏูุง ุจุชุชูุงุถู ุจุชุฑุฌุน ุงููู ูู ูุงูุต |
|
|
|
620 |
|
00:53:15,520 --> 00:53:18,770 |
|
ุญุงููุงุจุนุฏูุง ุจุชุฑุฌุน ุงููู ูู |
|
|
|
621 |
|
00:53:18,770 --> 00:53:36,410 |
|
ุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจ |
|
|
|
622 |
|
00:53:36,660 --> 00:53:40,180 |
|
ุงููู ูู ุงููC ููุตูุฑ ููุต C ูู
ุงู ู
ุฑุฉ ุจุชุฑุฌุน ุงููู ูู |
|
|
|
623 |
|
00:53:40,180 --> 00:53:45,740 |
|
ุงููS ููู
ุงู ู
ุฑุฉ ุจุชุฑุฌุน ุงููู ูู ุงููC ุจุนุฏ ููู ุจุชุตูุฑ |
|
|
|
624 |
|
00:53:45,740 --> 00:53:51,920 |
|
ุงููู ูู ุชูุฑุฑ ุญุงููุง ูุนูู ุจู
ุนูู ุขุฎุฑ ุฌุฑุจููุง ุฃูุชูุง |
|
|
|
625 |
|
00:53:51,920 --> 00:53:59,920 |
|
ูุชูุงููุง ุฃูู ุญุณุจ ุงูุฃูุณ ููุง ุจุชุทูุน ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
626 |
|
00:53:59,920 --> 00:54:11,180 |
|
ูู ุฃู ุณูุจูุง ุฃู ุงููS ุฃู ุณูุจูุงุจูู ุงูุฃุญูุงู ุจุบุถ ุงููุธุฑ |
|
|
|
627 |
|
00:54:11,180 --> 00:54:15,600 |
|
ุงููู ูู DN of CN ูู ุญุงุตู ุทุฑุญ ุงูุชูุชูู ุงููู ูู ุณู
ููุง |
|
|
|
628 |
|
00:54:15,600 --> 00:54:23,280 |
|
ูุง D ูุง T ุงูู D ุชุจุนุช ุงูู C ุงููุฑู ุทุจุนุง ูุงูู T ุงููู |
|
|
|
629 |
|
00:54:23,280 --> 00:54:29,010 |
|
ูู ุงููุฑู ุจูู ุงูุฃุณุงุช ูุนูู ูู ุงูุขุฎุฑุฒุงุฏ ุงู ูุงูุต ู ุฒุงุฏ |
|
|
|
630 |
|
00:54:29,010 --> 00:54:33,810 |
|
ุงู ูุงูุต ุณูุงุก ูุฐู ุงู ุณูุงุก ูุฐู ุญุถุฑูุง ู
ู ุงูุงุตู ุงููุง |
|
|
|
631 |
|
00:54:33,810 --> 00:54:38,870 |
|
bounded ู ููู ุงุตุบุฑ ุงู ูุณุงูู ู
ู K ุงุตุบุฑ ุงู ูุณุงูู ุงูุด |
|
|
|
632 |
|
00:54:38,870 --> 00:54:45,860 |
|
K ุจูุงุก ุนููู ูุชุทูุน ูุฐู ูููabsolute value ุฃุตุบุฑ ุฃู |
|
|
|
633 |
|
00:54:45,860 --> 00:54:51,780 |
|
ูุณุงูู ูุฐู ุฃู ุฅู ูุงูุช K ูู X ุฃูุณ N absolute value |
|
|
|
634 |
|
00:54:51,780 --> 00:54:56,880 |
|
ุนูู N factorial ุจุงุดู ุงูุญุงู ุฅุฐุง ุตูุนุช ุนูุฏู ูุฐุง |
|
|
|
635 |
|
00:54:56,880 --> 00:55:00,860 |
|
ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง as N goes to infinity |
|
|
|
636 |
|
00:55:00,860 --> 00:55:05,540 |
|
ูุฐุง ุจุฑูุญ ูู
ูุ ููุณูุฑ ููุฐุง independent of N ุจูุตูุฑ |
|
|
|
637 |
|
00:55:05,540 --> 00:55:08,100 |
|
ุฃูุจุฑ ุฃู ูุณุงูู ุงูุณูุฑ ูุนูู ูุฐุง ุงููู ุฌูุง ุจุฏู ูุตูุฑ ุณูุฑ |
|
|
|
638 |
|
00:55:08,100 --> 00:55:12,930 |
|
ุฅุฐุง ุงู D of X ูุงุดู ุจุฏูุง ุชุณุงููุจุชุณุงูู ุณูุฑ ูุจููู |
|
|
|
639 |
|
00:55:12,930 --> 00:55:21,090 |
|
ุฃุซุจุชูุง ุงู ุงูู C1 ูุงูู C2 are equivalent ุงูุงู |
|
|
|
640 |
|
00:55:21,090 --> 00:55:27,700 |
|
similar arguments ุจููุณ ุงูุงุณููุจูุฎููููุง ุฅูููู
ุฅูู |
|
|
|
641 |
|
00:55:27,700 --> 00:55:32,120 |
|
ุงููู ูู ุจูุซุจุช ุฅูู S ุฅุฐุง ูุงู S1 ูS2 are two |
|
|
|
642 |
|
00:55:32,120 --> 00:55:36,320 |
|
functions such that ุจูุญูููุง ุงููู ูู
ุง ุงูุฎูุงุตุฉ ุงููู |
|
|
|
643 |
|
00:55:36,320 --> 00:55:41,700 |
|
ุจูููููุง ุนููุง ูู ุงููุธุฑูุฉ ุงููู ูู S1 double prime |
|
|
|
644 |
|
00:55:41,700 --> 00:55:46,400 |
|
ุจูุณุงูู ููุณ S1 ูููุณ ุงู S2 ููุฐุง ุนูุฏ Zero ุจูุณุงูู Zero |
|
|
|
645 |
|
00:55:46,400 --> 00:55:50,160 |
|
ููุฐุง ุงู prime ุนูุฏ Zero ุจูุณุงูู Zero ููุชูุนูู ุบุตุจ |
|
|
|
646 |
|
00:55:50,160 --> 00:55:52,240 |
|
ุนููุง ูู ุงูุฃุฎุฑ S1 ุจูุณุงูู S2 |
|
|
|
647 |
|
00:55:55,620 --> 00:55:59,960 |
|
ุจุณ ุจุฏู ู
ุง ุชุนู
ููุง ุนูู ุงู D ูุนูู ุณุงู
ูุง ุงููู ูู T |
|
|
|
648 |
|
00:55:59,960 --> 00:56:04,040 |
|
ุจุชุณุงูู S1 ููุต S2 ูุทุจููุง ุงูุดุฑูุท ูุงู
ุดูุง ููุณ ุงููู |
|
|
|
649 |
|
00:56:04,040 --> 00:56:07,580 |
|
ุงู
ุดููุงูุง ูุชูุงููุง ุญุงููู
ุงูู ูุงุฒู
ุชุทูุน ุงู S1 ุจุณุงูู |
|
|
|
650 |
|
00:56:07,580 --> 00:56:11,800 |
|
S2 ูุจูุงุก ุนููู ุตุงุฑ ุงู ุงู two functions ุงู C ูุงูS |
|
|
|
651 |
|
00:56:11,800 --> 00:56:17,820 |
|
are unique functions ุทูุจ |
|
|
|
652 |
|
00:56:17,820 --> 00:56:24,720 |
|
ุงู answer ุงูู
ุคูููููุฐูุจ ุจุงูุงุชุฌุงู ูุซุจุช ุฃู ุงูุชุฑุถ ุฃู |
|
|
|
653 |
|
00:56:24,720 --> 00:56:27,880 |
|
ุงูู Definition of the unique function C ู
ู R ูR ู |
|
|
|
654 |
|
00:56:27,880 --> 00:56:32,400 |
|
ุฃุณู
ุงูู R ูR ุงููู ูุชุญูู CW prime of X ุจุณุงููุฉ ููุทุฉ |
|
|
|
655 |
|
00:56:32,400 --> 00:56:36,650 |
|
C of Xูู ุงูุงุตู ุงูู differential equation ุงูุชุงูู S |
|
|
|
656 |
|
00:56:36,650 --> 00:56:40,990 |
|
w ุจุฑุงู
ุฌ ู X ูุงูุต ุจุณุงูุฉ ูุงูุต S X ููู X element in R |
|
|
|
657 |
|
00:56:40,990 --> 00:56:43,470 |
|
ู ุงู C of Zero ุงููู ูู ุงู condition ุงู condition |
|
|
|
658 |
|
00:56:43,470 --> 00:56:46,350 |
|
ุจุณุงูุฉ ูุงุญุฏ ู C ุจุฑุงู
ุฌ ู Zero ุจุณุงูุฉ Zero ู ุงู S of |
|
|
|
659 |
|
00:56:46,350 --> 00:56:49,710 |
|
Zero ุจุณุงูุฉ Zero ู ุงู S ุจุฑุงู
ุฌ ู Zero ุจุณุงูุฉ Zero |
|
|
|
660 |
|
00:56:49,710 --> 00:56:57,150 |
|
ุงูุฏุงูุชูู ุงููู ุจุญูู ุฅู ุงูููุงู
ูุฐุง ุงููู ุฃุซุจุชูุง ุฅูู |
|
|
|
661 |
|
00:56:57,150 --> 00:57:02,740 |
|
uniqueุจูุณู
ููู
respectively the cosine function and |
|
|
|
662 |
|
00:57:02,740 --> 00:57:07,600 |
|
the sine function ุงููู ุงูุชูุง ุจุชุนุฑูููุง ููู cosine X |
|
|
|
663 |
|
00:57:07,600 --> 00:57:12,620 |
|
ุงููู ุจุชุนุฑูููุง ููู sin X ุงููู ุงูุชูุง ุจุชุนุฑูููุง ููุฌู |
|
|
|
664 |
|
00:57:12,620 --> 00:57:17,930 |
|
ุงูุขููุงุฎุฏ ุจุนุถ ุงูุฎูุงุต ุฎูููุง ูุงุฎุฏ ุงููู ูู ุงูุฎุงุตูุฉ |
|
|
|
665 |
|
00:57:17,930 --> 00:57:23,430 |
|
ุงููู ูู ูุธุฑูุฉ 4.6 ุจุชููู ูู ุฅุฐุง ูุงูุช f ู
ู R ู R is |
|
|
|
666 |
|
00:57:23,430 --> 00:57:27,890 |
|
such that f double prime of x ุจุณุงุนุฉ ููุต f of x for |
|
|
|
667 |
|
00:57:27,890 --> 00:57:30,370 |
|
x element in R ูุนูู ูุฐู ุงู differential equation |
|
|
|
668 |
|
00:57:30,370 --> 00:57:32,810 |
|
ุจุชููููู ูุฐู ุงู differential equation ูู ุญููููุง |
|
|
|
669 |
|
00:57:32,810 --> 00:57:37,690 |
|
ู
ุงูู then there exist Alpha ู BetaSuch that F of X |
|
|
|
670 |
|
00:57:37,690 --> 00:57:41,390 |
|
ุจูุณูุก Alpha CX ุฒุงุฆุฏ Beta S of X ุจูููููู ูุฐู ุงู |
|
|
|
671 |
|
00:57:41,390 --> 00:57:45,110 |
|
differential equation ุญุงูุฉ ุงููุง ุนุจุงุฑุฉ ุนู linear ุงู |
|
|
|
672 |
|
00:57:45,110 --> 00:57:47,870 |
|
ุฎูููู ุงููู combination ุงู linear combination |
|
|
|
673 |
|
00:57:47,870 --> 00:57:55,890 |
|
between F C of X S of Xุฎููููู ุฃุฎุฏ ูุณู
ู g of x ุฅูุด |
|
|
|
674 |
|
00:57:55,890 --> 00:57:59,590 |
|
ุจุชุณุงูู ุงููู ูู ุนุจุงุฑุฉ ุนู ุงููู ูู ุงู c of x ู ุงู a |
|
|
|
675 |
|
00:57:59,590 --> 00:58:03,770 |
|
sub x ูุณู
ู ูุฐู f of zero ู f prime of zero for x |
|
|
|
676 |
|
00:58:03,770 --> 00:58:10,330 |
|
element in R ุงูุขู ูู ุญุณุจุช ุงู gw prime of x ุงุญุณุจูุง |
|
|
|
677 |
|
00:58:10,330 --> 00:58:15,270 |
|
ูุงุถู ูุฐู |
|
|
|
678 |
|
00:58:15,270 --> 00:58:18,550 |
|
ู
ุฑุชูู ูุฏููุฉ ุซูุงุจุช ุทุจุนุง ู ูุฏููุฉ ุงููู ุจุชูุฒูู |
|
|
|
679 |
|
00:58:18,550 --> 00:58:23,970 |
|
ูุชูุงูููู
ุงููู ูู ุจุณุงูู ูุงูุต g of xุฃู .. ู ูู ุญุณุจุช |
|
|
|
680 |
|
00:58:23,970 --> 00:58:26,730 |
|
ุงูู g of zero .. g of zero ูุชูุงูููุง ุจุณุงูู of zero |
|
|
|
681 |
|
00:58:26,730 --> 00:58:30,110 |
|
ูุฅู ูุฐุง ุณูุฑ ููุฐุง .. ูุฐุง ูุงุญุฏ ููุฐุง ุณูุฑ ุงูุงู ุตุงุฑ |
|
|
|
682 |
|
00:58:30,110 --> 00:58:33,850 |
|
ุนูุฏู gw prime of x ุจุณุงูู ููุต g of x ู g of zero |
|
|
|
683 |
|
00:58:33,850 --> 00:58:40,410 |
|
ุจุณุงูู f of zero ุงูุงู ุงุญุณุจ ุงูู g prime of xุตุงุฑ ุนูุฏู |
|
|
|
684 |
|
00:58:40,410 --> 00:58:43,450 |
|
ุชูุงุช ู
ุนููู
ุงุช ู
ุนูู
ุชูู ุฌู ุฏุงุจู ุจุฑุงูู
of X ุจูุณุงูู ููุต |
|
|
|
685 |
|
00:58:43,450 --> 00:58:45,990 |
|
ุฌู of X ู ุฌู of Zero ุจูุณุงูู ุฃู of Zero ุฎูููุง ูุฌูุจ |
|
|
|
686 |
|
00:58:45,990 --> 00:58:50,330 |
|
ุฌู ุจุฑุงูู
of X ุฌู ุจุฑุงูู
of X ู
ุด ุจุชุณุงูู ูุงุถู ุงููู ูู |
|
|
|
687 |
|
00:58:50,330 --> 00:58:55,430 |
|
ุนุจุงุฑุฉ ุนู ููุต ุฃุณ of X ู ูุฏุง ุชูุถููุง ุงููู ูู C of X |
|
|
|
688 |
|
00:58:55,430 --> 00:58:58,830 |
|
ุตุงุฑ ุนูุฏู ุงููู ูู ุฌู ุจุฑุงูู
of X ุจูุณุงูู ูุฐุง ุงูููุงู
|
|
|
|
689 |
|
00:58:58,830 --> 00:59:04,720 |
|
ุฒุงุฆุฏ ูุฐุง ุงูููุงู
ุงูุงู ุงุญุณุจูู g prime of 0 ููุตูุฑ |
|
|
|
690 |
|
00:59:04,720 --> 00:59:08,420 |
|
ุนุจุงุฑุฉ ุนู ูุฐุง ุทุจุนุง ุณูุฑ ููุฐุง ูุชุตูุฑ ูุงุญุฏ ูุจุตูุฑ F |
|
|
|
691 |
|
00:59:08,420 --> 00:59:13,750 |
|
prime of 0 ุตุงุฑ ุนูุฏู ุงูุงู g prime of 0ุฃูุด ุจูุณุงูู ูุง |
|
|
|
692 |
|
00:59:13,750 --> 00:59:18,090 |
|
ุฌู
ุงุนุฉุ ุฌู ุจุฑุงูู
ุงู ุฒูุฑู ุฎูููู ุฃุทูุนูู ุฅูุงูุง ูููู |
|
|
|
693 |
|
00:59:18,090 --> 00:59:21,750 |
|
ุตุงุฑุช ุฌู ุจุฑุงูู
ุงู ุฒูุฑู ุจูุณุงูู ุฃู ุจุฑุงูู
ุงู ุฒูุฑู ู ุฌู |
|
|
|
694 |
|
00:59:21,750 --> 00:59:26,730 |
|
ุงู ุฒูุฑู ุจูุณุงูู ุฃู ุงู ุฒูุฑู ุงูุขู ุจุฏูุด ูุงุดุฑ ูุนูุฏ ุงููู |
|
|
|
695 |
|
00:59:26,730 --> 00:59:30,950 |
|
ูู therefore ุงูุขู the functions h ุจุชุณุงูู f ูุงูุต g |
|
|
|
696 |
|
00:59:30,950 --> 00:59:35,990 |
|
is such that ูุนูู ุนุฑููู function h ุฃูุด ุจูุณุงููุ f |
|
|
|
697 |
|
00:59:35,990 --> 00:59:43,220 |
|
ูุงูุต ู
ูู ูุงูุต gุงูุขู ุงูู H double prime ููุง ูู ุฌูุช |
|
|
|
698 |
|
00:59:43,220 --> 00:59:46,840 |
|
ุญุณุจุช ุงูู H double prime ุงููู ูู ูุชูุงูููุง ุจุชุณุงูู |
|
|
|
699 |
|
00:59:46,840 --> 00:59:50,260 |
|
ูุงูุต H of X ุจุชุญุณุจููุง ูุญุงููู
H double prime of X |
|
|
|
700 |
|
00:59:50,260 --> 00:59:55,140 |
|
ุนุดุงู ุจุชุณุงูู ูุงูุต H of X ููู X element in R ูู ุญุณุจุช |
|
|
|
701 |
|
00:59:55,140 --> 00:59:59,670 |
|
ุงููู ูู H of Zeroูุชุณุงูู ุงููู ูู zero ูุฅูู ุงุญูุง |
|
|
|
702 |
|
00:59:59,670 --> 01:00:03,010 |
|
ุฃุซุจุชูุง ุงู g of zero ุณุงูู f of zero ูh prime of |
|
|
|
703 |
|
01:00:03,010 --> 01:00:07,110 |
|
zero h prime of zero ุงููู ูู ุนุจุงุฑุฉ ุนู f prime ููุต |
|
|
|
704 |
|
01:00:07,110 --> 01:00:09,210 |
|
g prime ุนูุฏ ุงู zero ุงูุชุงููุฉ ู ุงูุชุณุงููุงุช ุฅุฐุง ุฅูู ู
ุด |
|
|
|
705 |
|
01:00:09,210 --> 01:00:15,170 |
|
ุณุงูู ุณูุฑ ุงูุงู it then thus it follows as in the |
|
|
|
706 |
|
01:00:15,170 --> 01:00:19,430 |
|
proof of the preceding theorem ุงููุธุฑูุฉ ุงูู
ุงุถูุฉ ุฅู |
|
|
|
707 |
|
01:00:19,430 --> 01:00:22,170 |
|
h of x ุฅูู ู
ุด ุณุงูู ุณูุฑ ูุนูู ุจุฏู ุชุนู
ู ููุณ ุงููู |
|
|
|
708 |
|
01:00:22,170 --> 01:00:25,180 |
|
ุนู
ููุงูุง ูุจู ููู ุนูู ุงู Taylor's theorem ู ุงูุงุฎุฑููู |
|
|
|
709 |
|
01:00:25,180 --> 01:00:29,300 |
|
ุชุตู ุงู H of X ุจุณุงููุฉ 0 ููู X ูู
ูู ูุชููู F of X |
|
|
|
710 |
|
01:00:29,300 --> 01:00:33,320 |
|
ุจุณุงููุฉ G of X ู
ุฏุงู
F of X ุจุณุงููุฉ G of X ุฅุฐู ูุฐู |
|
|
|
711 |
|
01:00:33,320 --> 01:00:38,580 |
|
ุงููู ูู F of X ุจุชุทูุน F of X ุจุชุณุงูู ุงููู ูู ูุฐุง |
|
|
|
712 |
|
01:00:38,580 --> 01:00:42,780 |
|
ุงุณู
ูุง Alpha ููุฐุง ุงุณู
ูุง Beta ูุจููู ุนูุฏู ูู ุงููู ูู |
|
|
|
713 |
|
01:00:42,780 --> 01:00:46,280 |
|
solution ูุงููู ูู ุงู differential equation ุงููู |
|
|
|
714 |
|
01:00:46,280 --> 01:00:50,260 |
|
ุงุญูุง ุญูููุง ุนููุง ุจุฏูุด ุฃุนูุฏ ููุณ ุงูููุงู
ุนุดุงู ูู ูุฃูุง |
|
|
|
715 |
|
01:00:50,260 --> 01:00:52,780 |
|
ุงุฎุชุตุฑุช ูุฃู ุงูุญุณุงุจุงุช ูููุง ู
ุดุงุจูุฉ |
|
|
|
716 |
|
01:00:58,150 --> 01:01:03,430 |
|
ุงูุงู ุจุฏูุง ุงููู ูู 8 4 7 the function C is even and |
|
|
|
717 |
|
01:01:03,430 --> 01:01:07,570 |
|
S is odd in the sense that ูู ุจุชููู ุงูุตุญูุญุฉ ุฏู |
|
|
|
718 |
|
01:01:07,570 --> 01:01:10,610 |
|
ุงูุฃุตู ูููุง ุชููู ุฃู ู
ุนุธู
ูุง ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
719 |
|
01:01:10,610 --> 01:01:14,430 |
|
exercises ูุฅููุง ุชุทุจููุงุช ุนูู ุงููุธุฑูุฉ ุงููู ููุชูุง ูู |
|
|
|
720 |
|
01:01:14,430 --> 01:01:19,630 |
|
ุงูุฃูู ุงู C ูุงูุต X ููุณูุก C of X ูุนูู ุนุจุงุฑุฉ ุนู even |
|
|
|
721 |
|
01:01:19,630 --> 01:01:23,230 |
|
function S ูุงูุต X ุจูุณูุก ูุงูุต S of X ููู X element |
|
|
|
722 |
|
01:01:23,230 --> 01:01:28,590 |
|
in Rุงูุขู if x,y ุงูู
ุชูุงุฑ then we have the addition |
|
|
|
723 |
|
01:01:28,590 --> 01:01:32,230 |
|
formula c of x ุฒู ุงุฏ y ุจูุณุจุจ c of x ูู c of y ููุต |
|
|
|
724 |
|
01:01:32,230 --> 01:01:35,950 |
|
s of x ูs of y ุงููู ูู ุงููู ุจุชุนุฑูููุง ุงูุชูุง sign ุงู |
|
|
|
725 |
|
01:01:35,950 --> 01:01:38,350 |
|
x ุฒู ุงุฏ y ุจูุณุจุจ sign ุงู x ุจูุณุงู ุงู y ุฒู ุงุฏ ูุณุงู ุงู |
|
|
|
726 |
|
01:01:38,350 --> 01:01:42,090 |
|
y ูู sign ุงู x ูููุฐุง ูู ูุฐู ุงูุฎูุงุต ุงููู ุงุญูุง |
|
|
|
727 |
|
01:01:42,090 --> 01:01:47,570 |
|
ุนุงุฑููููุง ูุจู ููู ูุจุฏูุง ูุดูู ููู ุงููู ูู ุงูุจุฑูู |
|
|
|
728 |
|
01:01:47,570 --> 01:01:53,660 |
|
ุงููุธุฑูุฉ ูุดูู ุงูุจุฑูุงู ุชุจุน ุงููุธุฑูุฉุงูุขู ุณู
ูููู Phi of |
|
|
|
729 |
|
01:01:53,660 --> 01:01:59,370 |
|
X ุจูุณุงูู C of ู
ุงูุต X ููู X element in Rุงุญุณุจูู ุงูู |
|
|
|
730 |
|
01:01:59,370 --> 01:02:05,010 |
|
phi w prime of x ูู ุงุชูุช ูุถูุช ูุฐู ู
ุฑุชูู ูุชูุงูููุง |
|
|
|
731 |
|
01:02:05,010 --> 01:02:09,950 |
|
ูุงูุต phi of x ููุฐุง ุงูููุงู
ุชูุถูู ุณูู ู ุจุชุฌูุจู ูุญุงูู |
|
|
|
732 |
|
01:02:09,950 --> 01:02:15,050 |
|
ุงูุขู ุงุญุณุจูู ุงู phi of 0 phi of 0 ูุชุณุงูู ุงูุดุ |
|
|
|
733 |
|
01:02:15,050 --> 01:02:19,350 |
|
ุจุชุณุงูู ูุงุญุฏ phi prime of 0 ูุชุทูุน ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
734 |
|
01:02:19,350 --> 01:02:24,430 |
|
ุงููู ูู ุงู sign ุงู sign ุงูุด ู
ุนูุงูุงุ ุจุชุณุงูู 0 ุนูุฏ |
|
|
|
735 |
|
01:02:24,430 --> 01:02:30,730 |
|
ุงู zeroุงูุงู ุตุงุฑ ุนูุฏู ุงูุงู ุงููุงู ูู ู
ููุ ูู ุงููC |
|
|
|
736 |
|
01:02:30,730 --> 01:02:35,710 |
|
ููุด ุงููุงู ูู ุงููCุ ูุฃู ุญููุช ุงููุงู ุงููู ูุฑุถุชูุง |
|
|
|
737 |
|
01:02:35,710 --> 01:02:40,790 |
|
ุจุณุงููุฉ C-X ุดุฑูุท ุงููC ู ุงููC is unique ุฅุฐุง ุงููุงู H |
|
|
|
738 |
|
01:02:40,790 --> 01:02:47,200 |
|
ุจุชุณุงูู Cุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุงู C-X ุจูุณุงูู C of X ุงูููุฑุฉ |
|
|
|
739 |
|
01:02:47,200 --> 01:02:52,060 |
|
ูุงุถุญุฉ ุฃูู ุฃูุง ุฌุจุช ุณู
ูุช ุงููC-X ูู ุงููุงูุฉ ูุงุชุจุชุช ุฃู |
|
|
|
740 |
|
01:02:52,060 --> 01:02:57,060 |
|
ูุฐู ุงููุงูุฉ ุจุชุญูู ุงูุดุฑุทูู ุงููู ุงุญูุง ุญูููุง ุนููู
ูู |
|
|
|
741 |
|
01:02:57,060 --> 01:03:01,300 |
|
ุงูุฃูู ุงูุฏุงูุฉ ุงููู ุจุชุฎูู ุงููC is unique ูุตุงุฑุช |
|
|
|
742 |
|
01:03:01,300 --> 01:03:07,080 |
|
ุงููุงูุฉ ุฃูุด ุจุชุณุงูู ุงููCุงูุงู ุจู
ุนูู ุงุฎุฑ ุตุงุฑุช C of X |
|
|
|
743 |
|
01:03:07,080 --> 01:03:10,720 |
|
ูู C ู
ู ูุงูุต X ุงููู ูุฑุถูุงูุง ุงูู Phi in a similar |
|
|
|
744 |
|
01:03:10,720 --> 01:03:16,040 |
|
way ุจุฑุถู ุจุฏู ุชุนู
ูุงุด S of ูุงูุต X ุงููู ูู ุจุชุณู
ู ุงููู |
|
|
|
745 |
|
01:03:16,040 --> 01:03:20,480 |
|
ูู ุงู .. ุงููุง .. ุจุชุณู
ููุง ุจู Psi ู
ุซูุง Psi ุจุชุณุงูู |
|
|
|
746 |
|
01:03:20,480 --> 01:03:25,020 |
|
ู
ููุุจุชุณุงูู ุงููู ูู ูุงูุต ูุชุฌูุจูุง ุณุงู
ู ุจุตู ุจูุณุงูู |
|
|
|
747 |
|
01:03:25,020 --> 01:03:29,540 |
|
ูุงูุต S ูุงูุต X ู ุชุฌูุจ ุงูุดุฑูุท ุงููู ูู ุชุจุนูุง ุงู sign |
|
|
|
748 |
|
01:03:29,540 --> 01:03:33,500 |
|
ูุชูุงูููุง ู
ุชุทุงุจู ู
ุชุญููุฉ ู ุจู
ุง ุงู ุงู S is unique ุงู |
|
|
|
749 |
|
01:03:33,500 --> 01:03:37,240 |
|
ุงู sign is unique ุงุฐุง ุงููู ูู ุงููู ุญููุชูุง ุงููู |
|
|
|
750 |
|
01:03:37,240 --> 01:03:41,500 |
|
ูุชุจุชูุง ุจุชุณุงูู ุงู S ูุตุงุฑูู ุงูู ุฌูุชูู ู
ุชุณุงููุงุช ุจููุณ |
|
|
|
751 |
|
01:03:41,500 --> 01:03:47,980 |
|
ุงูุฃุณููุจ ุทูุจ ุงูุขู ููุฌู ูุซุจุช ุงููู ูู ู
ูู VI ุดูููุง |
|
|
|
752 |
|
01:03:47,980 --> 01:03:52,850 |
|
ุตูู ุนูู ุงููุจู ุนููู ุงูุตูุงุฉ ูุงูุณูุงู
ููููุฑ ูุจุฑู ุงู vi |
|
|
|
753 |
|
01:03:52,850 --> 01:03:55,830 |
|
let y ุงูู
ุชู ุนุงุฑ ุจูุฌูุจูุง let f of x ุจูุณุงูู c of x |
|
|
|
754 |
|
01:03:55,830 --> 01:04:00,070 |
|
ุฒู dash ุฒู y for x ุงูู
ุชู ุนุงุฑ ุงูุงู a calculation |
|
|
|
755 |
|
01:04:00,070 --> 01:04:04,230 |
|
shows that ูุนูู ูุถูู ูุฐุง ู
ุฑุชูู ุงูุชูุงุถู ุณูู ูุงููู |
|
|
|
756 |
|
01:04:04,230 --> 01:04:08,010 |
|
ูุง ุฌู
ุงุนุฉ ุนุดุงูู ุงูุง ูุนูู ู
ุงุจุฏูุด ูุถูุน ูุงุฌุชูุง ูู |
|
|
|
757 |
|
01:04:08,010 --> 01:04:12,190 |
|
ุงูุชูุงุถูุฃู ูู ุงูุญุณุงุจุงุช f w prime of x ุทุจุนุง ูุงุถู |
|
|
|
758 |
|
01:04:12,190 --> 01:04:15,430 |
|
ุจุงููุณุจุงูู x y ุงูุด ู
ุง ุนูู f x ุซุงุจุช ุฃุณูุจู ู
ููุง ูุฃู |
|
|
|
759 |
|
01:04:15,430 --> 01:04:18,590 |
|
ูู ูุถูุช ู
ุฑุชูู ูุชูุงูู ูุงูุต f of x for x element in |
|
|
|
760 |
|
01:04:18,590 --> 01:04:22,550 |
|
R ู
ุฏุงู
f w prime ุจูุณุงูู ูุงูุต f of x ุจุงูุญุตุงุฑุฉ ุงููู |
|
|
|
761 |
|
01:04:22,550 --> 01:04:26,850 |
|
ูู ุญู ุงูู
ุนุงุฏูุฉ ุงูููุงุถููุฉ ูุฐู ุงููู ูู ุจุงููุธุฑูุฉ ุงููู |
|
|
|
762 |
|
01:04:26,850 --> 01:04:32,880 |
|
ูุจู ุดููู ูู 8 4 6 ูุชููู ุงููู ูู ุงู f of xุนุจุงุฑุฉ ุนู |
|
|
|
763 |
|
01:04:32,880 --> 01:04:36,300 |
|
linear combination ูุฐู ุงููู ูู ฮฑ C of X ุฒู Beta S |
|
|
|
764 |
|
01:04:36,300 --> 01:04:39,840 |
|
of X ูุงูู F of X ู
ูู ูู ุงุญูุง ูุฑุถููุง C of XY ุตุงุฑุช |
|
|
|
765 |
|
01:04:39,840 --> 01:04:43,180 |
|
ูุฐู ุนุจุงุฑุฉ ุนู ูุฐู ูุนูู ูุฐู ุจุชุณุงูู ูุฐู ู
ู ุญุงู |
|
|
|
766 |
|
01:04:43,180 --> 01:04:47,260 |
|
ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ูุฐู ุจูุงุณุทุฉ ุงููุธุฑูุฉ ูุฐู ููุฐู |
|
|
|
767 |
|
01:04:47,260 --> 01:04:51,330 |
|
ุงุตูุง ุงูุง ูุณู
ููุง ููู ุตุงุฑุช ูุฐู ุจุชุณุงูู ูุฐุง ุงูู
ูุทุนุงูุงู |
|
|
|
768 |
|
01:04:51,330 --> 01:04:55,350 |
|
ุฌูุจูู F prime F prime of X ุงููู ูู ูุฐู ุงูุชูุถููุฉ |
|
|
|
769 |
|
01:04:55,350 --> 01:04:59,070 |
|
ุจูC ูุงูุต S of X ุฒุงุฆุฏ Y ููุงุถู ูุฐู ุจูุทูุน ุงููู ูู |
|
|
|
770 |
|
01:04:59,070 --> 01:05:02,910 |
|
ุนุจุงุฑุฉ ุนู ูุงูุต Alpha S of X ุฒุงุฆุฏ Beta C of X ุซู
|
|
|
|
771 |
|
01:05:02,910 --> 01:05:09,710 |
|
ูุถูุช ู
ุงุดู ุงูุงู ุฎุฏ X ุจูุณุงูู 0 X ุจูุณุงูู 0 ูู
ุง X |
|
|
|
772 |
|
01:05:09,710 --> 01:05:18,250 |
|
ุจุชุณุงูู 0ุจูุญุตู ุงูุขู ุนูุฏู .. ุจุตูุฑ ุนูุฏู ุนูุถ X ุจุชุณุงูู |
|
|
|
773 |
|
01:05:18,250 --> 01:05:25,190 |
|
ุณูุฑ ูู ุงููู ูู ุงูู
ุนุงุฏูุฉ ุงููู ุนูุฏู ููุง ุจุตูุฑ ุนูุฏู S |
|
|
|
774 |
|
01:05:25,190 --> 01:05:31,360 |
|
of Zero ู C of Zeroุจุณุงูู
ูู F of Zero F of Zero |
|
|
|
775 |
|
01:05:31,360 --> 01:05:40,100 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู F of Zero ูู C of Y ูุฐู ูุงูู
ูู |
|
|
|
776 |
|
01:05:40,100 --> 01:05:44,560 |
|
ุนูููุงุ ุฎูููู ุฃููููุง ูุงุถุญุฉ ุฃุญุณู ุงูุขู ุจุฏูุง ูุงุฎุฏ F |
|
|
|
777 |
|
01:05:44,560 --> 01:05:52,600 |
|
ู
ููุ F ุนูุฏ Zero ูุงุดุฑุ ุจูุตูุฑ ูุฐุง C of Y ุจุณุงูู
ู |
|
|
|
778 |
|
01:05:52,600 --> 01:05:58,190 |
|
Alphaูู c of zero ูุงุญุฏ ููุฐู beta s of zero ุฒูุฑู |
|
|
|
779 |
|
01:05:58,190 --> 01:06:03,890 |
|
ุฅุฐุง ุตุงุฑุช ุนูุฏู ุงู alpha ุจุชุณุงูู c of y ูุงู ูุงุญุฏุฉ ูุฃู |
|
|
|
780 |
|
01:06:03,890 --> 01:06:09,990 |
|
similarly ุงููู ูู ูุงูุต ุฎุฏ ุนูุฏ ุงู zero ุนูุฏ ุงู zero |
|
|
|
781 |
|
01:06:09,990 --> 01:06:15,570 |
|
ุจูุตูุฑ ูุงูุต s of y ุจุณุงูู ูุฐู ุจูุตูุฑ ุณูุฑ ููุฐู ุจูุตูุฑ |
|
|
|
782 |
|
01:06:15,570 --> 01:06:20,070 |
|
beta ุจุณุงูู beta ุงูุขู ุจูุนูุถ ููู ูู ุงู formula |
|
|
|
783 |
|
01:06:20,070 --> 01:06:26,370 |
|
ุงูุฃูููุจุตูุฑ ุนูุฏู ุงูุงู ุงู formula ุงููู ุนูุฏู ุงููู ูู |
|
|
|
784 |
|
01:06:26,370 --> 01:06:30,010 |
|
ุจุชุญุท ู
ูุงู C of Y ุจุณูุฉ Alpha ู ุงูููุฑู
ููุฉ ุงูุฃููู |
|
|
|
785 |
|
01:06:30,010 --> 01:06:35,770 |
|
ุงููู ุงุญูุง ุนู
ููุงูุง ุจุตูุฑ ุนูุฏู ุงููู ูู C |
|
|
|
786 |
|
01:06:38,530 --> 01:06:43,570 |
|
Half X ุฒุงุฆุฏ Y ุจุณุงูุฉ Alpha ุงููู ูู ุงุณู
ูุง ูููุง ุทูุนุช |
|
|
|
787 |
|
01:06:43,570 --> 01:06:48,310 |
|
ุนูุฏูุง C of Y ุจุตูุฑ C of Y ูู C of X ูููุง ู
ุธุจูุทุฉ |
|
|
|
788 |
|
01:06:48,310 --> 01:06:53,130 |
|
ููุฐู ูุงูุต S ู
ูุงู ุงู Beta ุจุตูุฑ ูุงูุต S of Y ูู S of |
|
|
|
789 |
|
01:06:53,130 --> 01:07:01,740 |
|
X ุตุญูุญุฉ ุฅุฐุง ุจููู ุฅุญูุง ุฎูุตูุง ุงููู ุจุฏูุงูุงู ููุฐูุจุชุนูุถ |
|
|
|
790 |
|
01:07:01,740 --> 01:07:08,240 |
|
ุนู ุงููู ูู Alpha C of Y ุจC ููุต C of Y ููุฐู ุจุชุนูุถูุง |
|
|
|
791 |
|
01:07:08,240 --> 01:07:13,440 |
|
ููุง ุจุชุทูุน ูุฐู ุจุชุณุงูู ููุต ูุฐู ุงุนู
ู ุงูุญุณุงุจ ุงูุฃุฎูุฑ |
|
|
|
792 |
|
01:07:13,440 --> 01:07:17,400 |
|
ูุธุฑูู ุงูุฏูููุชูู ุจููุต ุจุชุทูุน ุนูุฏู ูุฐุง ุงูู
ุฎุถุฑ ูุนูู |
|
|
|
793 |
|
01:07:17,400 --> 01:07:23,840 |
|
ูุฐู ุงูุชุนููุถ ูููุง ุนู ููู
ุฉ Alpha ู Beta ุจูุฐู ููุง |
|
|
|
794 |
|
01:07:23,840 --> 01:07:30,860 |
|
ุจุชุทูุน ูุฐู ููุฐู ุงูุชุนููุถ ูุฐูุนู alpha ู beta ููุง ุงููู |
|
|
|
795 |
|
01:07:30,860 --> 01:07:35,420 |
|
ุจุชุทูุน ุงูุฃููู ุจููู ุงุญูุง ุฎูุตูุง ุงููู ูู ุงุซุจุงุช ูุฐู |
|
|
|
796 |
|
01:07:35,420 --> 01:07:42,800 |
|
ุงููู ูู ุงููุธุฑูุฉ ูุถุงู ุนูุฏู ุงููู ูู ุงููุธุฑูุฉ ูุฐู |
|
|
|
797 |
|
01:07:42,800 --> 01:07:47,350 |
|
ุงูุฃุฎูุฑุฉูุงูุจุงูู ุงููู ูู ูู ุงุชุทูุนุชูุง ุนูู ุงููู ูู |
|
|
|
798 |
|
01:07:47,350 --> 01:07:52,450 |
|
ุจุงูู ุงููุธุฑูุงุช ุงููู ูู ุจุณ ุงุชุทูุน ูุนูุฏ ุงููุง ุจูููู |
|
|
|
799 |
|
01:07:52,450 --> 01:07:55,990 |
|
ุงุญูุง ุจูููู ุฎูุตูุง chapter ุงููู ูู ุงูู
ุทููุจ ูู |
|
|
|
800 |
|
01:07:55,990 --> 01:08:00,350 |
|
chapter ูู ุชู
ุงููุฉ ุฃุฑุจุนุฉ ูุฐู ุงููู ูู ุงู theorem |
|
|
|
801 |
|
01:08:00,350 --> 01:08:03,530 |
|
ุฎูููู ุฃุทูุนูู ุนูููุง ุนูู ุงูุณุฑูุน ูุฅู ุญุณุงุจุงุช ูููุง |
|
|
|
802 |
|
01:08:03,530 --> 01:08:07,840 |
|
ุจุชุนู
ููุง ูุญุงูู ุฃููุฏ ุจุชุนุฑูุฅุฐุง ูุงู ุงูู x ุฃูุจุฑ ุฃู ุฃูู |
|
|
|
803 |
|
01:08:07,840 --> 01:08:12,880 |
|
ู
ู 0ุ ูููุงู Sx ุจููุต ุงูู x ูุงูู x ูุงูู c of x ุจูู |
|
|
|
804 |
|
01:08:12,880 --> 01:08:16,780 |
|
ุงููุงุญุฏ ููุตู x ุฃุฑุจุน ุนุฒุฑ ุชู ูุงุญุฏ ูุงูู c of x ุจูุฏุฑ |
|
|
|
805 |
|
01:08:16,780 --> 01:08:18,820 |
|
ุฃูู
ู ุงูู polynomial |
|
|
|
806 |
|
01:08:21,810 --> 01:08:25,650 |
|
ุจุงููู ุนู
ููุงูุง ุงููู ูู ุงููCN of X ุงููู ุฌุงุจูู ุดููุฉ ู |
|
|
|
807 |
|
01:08:25,650 --> 01:08:28,430 |
|
ุงููSN of X ูุฃูู ูู ุงูููุงูุฉ limitูุง ุงู series |
|
|
|
808 |
|
01:08:28,430 --> 01:08:30,790 |
|
ุงูุฃููู as N goes to infinity ู
ุง ุฃูุชูุง ุนุงุฑููู ุงููู |
|
|
|
809 |
|
01:08:30,790 --> 01:08:34,990 |
|
ูู ููุฏุฑ ููุชุจ ุงููC of X ุนูู ุตูุฑุฉ ุงู series ุงููู ูู |
|
|
|
810 |
|
01:08:34,990 --> 01:08:38,130 |
|
ุงูุฃูู ู ุงูS of X ุนุจุงุฑุฉ ุนู limit ุงู series ุงูุชุงููุฉ |
|
|
|
811 |
|
01:08:38,130 --> 01:08:43,390 |
|
ุงู terms ุฅุถุงูุฉ term ู ุทุฑุญ term ู ูุฌูู ุนูุฏ ุญุฏูุฏ ุจุงู |
|
|
|
812 |
|
01:08:43,390 --> 01:08:47,090 |
|
term ุจุชุนู
ู ุงู inequality ุงููู ุนูุฏูุง ุงููู ูู ูู ูุฐู |
|
|
|
813 |
|
01:08:47,090 --> 01:08:49,810 |
|
ุดุบูุงุช ุงููู ุฃุฎุฏูุงูุง ูู ุงู calculus ู
ุงููุด ุฏุงุนู |
|
|
|
814 |
|
01:08:49,810 --> 01:08:55,650 |
|
ููุชูุตูู ูููุงุงูุงู ุงูุงูููุนูุฏู ุงู .. ุงู .. ุงุญูุง ูููุง |
|
|
|
815 |
|
01:08:55,650 --> 01:08:59,990 |
|
sign ุชุฑุจูุน ุฒุงุฆุฏ plus sign ุชุฑุจูุน ุจุณุงูู ูุงุญุฏ ูุนูู ูู |
|
|
|
816 |
|
01:08:59,990 --> 01:09:02,670 |
|
ุงูููุงูุฉ ุงู C of T ุจูู ู
ุงูุต ูุงุญุฏ ู ูุงุญุฏ ุฏู ู
ู
ูู |
|
|
|
817 |
|
01:09:02,670 --> 01:09:06,710 |
|
ูุชุชุฌุงูุฒูุง ูุฃูู ุจุชุฎุชู ุงููู ูู ุงู C .. ูู ูุงูุช ุฃูุจุฑ |
|
|
|
818 |
|
01:09:06,710 --> 01:09:10,750 |
|
ู
ู ูุงุญุฏ ู
ุนูุงุชู ุจู C .. C of T ุชุฑุจูุน ุฒุงุฆุฏ S of T |
|
|
|
819 |
|
01:09:10,750 --> 01:09:14,550 |
|
ุชุฑุจูุน ูุชุฌุงูุฒ ู
ู ูุงุญุฏ ููู ู
ุฌู
ูุญ ุจุณูุก ูุงุญุฏ ุฅุฐุง ูุฏู |
|
|
|
820 |
|
01:09:14,550 --> 01:09:18,630 |
|
ุจูู .. ูุนูู ูุฏู ุงููู ููู ุฌุงูุฉ ู
ู C ุชุฑุจูุน ุฒุงุฆุฏ S |
|
|
|
821 |
|
01:09:18,630 --> 01:09:23,030 |
|
ุชุฑุจูุน ุจุณุงูู ูุงุญุฏ ุทูุจุงููู ููุนู
ู integration ูุฌูุชูู |
|
|
|
822 |
|
01:09:23,030 --> 01:09:26,990 |
|
ู
ู ุตูุฑ ูุนูู DX ูุฐู ุงููู ูู ุจุชุทูุน ุงููู ูู main ุงู S |
|
|
|
823 |
|
01:09:26,990 --> 01:09:30,750 |
|
of X ููุฐู ุจุชุทูุน ุฃูุฎุณ X ููุฐู ุจุชุทูุน X ูุงูู
ุนู
ู ุงู |
|
|
|
824 |
|
01:09:30,750 --> 01:09:35,990 |
|
integration ูุฏูู ุงูุงู ุจุฏู |
|
|
|
825 |
|
01:09:35,990 --> 01:09:43,300 |
|
ุฃุฌูุจ ุงูุชุงููุฉ ูุถูู ุงู S of Tูุฐู ููุฐู ูุงุถูููุง ูุฐู |
|
|
|
826 |
|
01:09:43,300 --> 01:09:48,460 |
|
ูุงุถูููุง ุจููู ุตูุฑ ุนูุฏ X ุจุชุทูุน ุงููู ูู ุจูู ูุฐู ููุฐู |
|
|
|
827 |
|
01:09:48,460 --> 01:09:53,660 |
|
ููุชูุงุถูุง ููุฐู ููุฐู ุงูุงู ุจุฏูุง ุงููู ูู ูุฌูุจ ุงููุงุญุฏ |
|
|
|
828 |
|
01:09:53,660 --> 01:09:58,280 |
|
ูุงูุต X ุงูุณุฑุจูุน ุงููู ูู ูุฐุง ููู
ุชู ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
829 |
|
01:09:58,280 --> 01:10:02,600 |
|
C ูู X ุจุงูุณุงููุฉ ูุงุญุฏ ูุงูุต ูุฐู ุจูุถุฑุจ ุงููุงูุต ู ุจูุฌู
ุน |
|
|
|
830 |
|
01:10:02,600 --> 01:10:08,280 |
|
ุงูุฌูุชูู ูุงุญุฏ ุจุทูุน ุนูุฏู ุงููู ูู ุงู inequality ุงููู |
|
|
|
831 |
|
01:10:08,280 --> 01:10:13,190 |
|
ุนูุฏู ูุฐูุฒู ู
ุง ูููุง ุถุฑุจูุง ูู ูุงูุต ู ุฌู
ุนูุง ูุงุญุฏ ุทูุนุช |
|
|
|
832 |
|
01:10:13,190 --> 01:10:16,590 |
|
ูุฐู ุงู ุนูุถูุง ูุฐู ู
ูุงู ูุฐู ุชุนููุถ ุนุงุฏู ู ุจุนุฏูู ุถุฑุจูุง |
|
|
|
833 |
|
01:10:16,590 --> 01:10:20,690 |
|
ูู ูุงูุต ูุจุตูุฑ ุนูุฏู ูุฐู ุงูู
ูุฏุงุฑ ุงููู ุนูุฏู c of x |
|
|
|
834 |
|
01:10:20,690 --> 01:10:24,310 |
|
ุฃูุจุฑ ุณูุงุก ูุฐู ู ูุงูุต ูุฐู ู ุงููู ุจุชุณุชุฎุฏู
ุงูุซุงููุฉ |
|
|
|
835 |
|
01:10:24,310 --> 01:10:27,670 |
|
ุจุชุทูุน ููุณ ุงูุงุดู ุงูู
ูุถูุน ู
ูุถูุน ุญุณุงุจุงุช ุจุญุช ุนุดุงู ููู |
|
|
|
836 |
|
01:10:27,670 --> 01:10:31,510 |
|
ุจุญุช ุนุดุงู ููู ู
ุงูู ุฏุงุนู ููุชูู
ูู ู ุงูุชูุง ุจุชูู
ููุง |
|
|
|
837 |
|
01:10:31,510 --> 01:10:35,150 |
|
ุจุงูู ุงูุญุณุงุจุงุช ุงููู ูู ุงูู
ุทููุจุฉ ูู ูุฐุง ุงููู ูู |
|
|
|
838 |
|
01:10:35,150 --> 01:10:42,700 |
|
ุงููุธุฑูุฉ ุงูุงู ุงูุฌุฒุก ุงูู
ุชุจูู ูุฐุงุญุจูุชู ุชุทูุนูุง ุนููู |
|
|
|
839 |
|
01:10:42,700 --> 01:10:46,880 |
|
ููู ุงููู ูู ู
ุด ู
ุทููุจ ู
ู ุถู
ู ุญุฏูุซูุง ู ููู ู
ู
ูู |
|
|
|
840 |
|
01:10:46,880 --> 01:10:52,700 |
|
ูุฎูุตูุงุงููู ูู section ุชู
ุงููุฉ ุฃุฑุจุนุฉ ู
ุชุณู
ุฉ ุณุจุชุฑ |
|
|
|
841 |
|
01:10:52,700 --> 01:10:58,420 |
|
ุชู
ุงููุฉ ูุฐุง ุงููู ูู ุงูุฌุฒุก ุงูุซุงูุซ ู
ู ุงูู
ุงุฏุฉ ุงูุฌุฒุก |
|
|
|
842 |
|
01:10:58,420 --> 01:11:00,160 |
|
ุงูุฃูู ูุงู ุงู differentiation ูุงูุชุงูู ุงู |
|
|
|
843 |
|
01:11:00,160 --> 01:11:01,960 |
|
integration ูุงูุชุงูุช ุงููู ูู point twice |
|
|
|
844 |
|
01:11:01,960 --> 01:11:05,700 |
|
convergence ุงูู
ุฑุฉ ุงูุฌุงูุฉ ุงู ุดุงุก ุงููู ุงููู ูู ุจูุจุฏุฃ |
|
|
|
845 |
|
01:11:05,700 --> 01:11:09,880 |
|
ูู ุงูุฌุฒุก ุงูุฑุงุจุน ู
ู ุงูู
ุงุฏุฉ ุงููู ูู ุงู series ูุงู |
|
|
|
846 |
|
01:11:09,880 --> 01:11:16,590 |
|
ุดุงุก ุงููู ุจูุฏุฑ ุงูุฅู
ูุงู ูุฃุญูู ุงูุฌุฒุก ุงูุฎุงู
ุณูู .. ู
ู |
|
|
|
847 |
|
01:11:16,590 --> 01:11:20,510 |
|
ุงูู
ุงุฏุฉ ุงููู ูู ุนุจุงุฑุฉ ุนู ุงููู ูู Topology in R ุฃู |
|
|
|
848 |
|
01:11:20,510 --> 01:11:23,570 |
|
ุงููู ูู ุงููู ูู ุงูุนูุงูุฉ ุจูู ุงููู ูู Topological |
|
|
|
849 |
|
01:11:23,570 --> 01:11:27,410 |
|
Spaces ูNormed Spaces ูHilbert Spaces ุฅูู ุขุฎุฑู |
|
|
|
850 |
|
01:11:27,410 --> 01:11:33,530 |
|
ููู
ูู ุจุชููู ูู ุงุชุฌุงูุฒุช ุฎููุง ูููู ุญุฏ ุงู .. ุงู .. ุงู |
|
|
|
851 |
|
01:11:33,530 --> 01:11:37,150 |
|
.. ุงูู
ุทููุจ ูู ุงูู
ุงุฏุฉ ููู ุนูู ุฃุณุงุณ ุฅูู ูู ูููู |
|
|
|
852 |
|
01:11:37,150 --> 01:11:42,210 |
|
ุงูุชุตููุฑ ูุงู
ู ููู .. ูููุตู ุงููู ุฃูุง ุงูุชุฑุงุญุชูุฃู ุงููู |
|
|
|
853 |
|
01:11:42,210 --> 01:11:47,230 |
|
ูู ุงููุตู ุงููู ู
ูุชุฑุญ ูู ุงูุฌุณู
ุงููู ูู ูุนูู ููุงูุฉ ุงู |
|
|
|
854 |
|
01:11:47,230 --> 01:11:49,990 |
|
series ู ุทุจุนุง ูุฐุง ุงูููุงู
ูููุง ุงุญูุง ููู ูู ุณุจุจ ูู
ุง |
|
|
|
855 |
|
01:11:49,990 --> 01:11:53,450 |
|
ุจุฏุฃูุง ูู ุงูุฃูู ุงูู ุงู series ุจุชุงุฎุฏููุง ูู advanced |
|
|
|
856 |
|
01:11:53,450 --> 01:11:56,990 |
|
calculus ูุงุญุฏ ูุนุดุงู ููู ูู
ูู ุงููู ูู |
|
|
|
857 |
|
01:12:00,350 --> 01:12:03,810 |
|
ููููู ู
ูุทูู ุฃูู ู
ุง ูุงุฎุฏุด ุงู series ู ูุงุฎุฏ ุจุฏููุง |
|
|
|
858 |
|
01:12:03,810 --> 01:12:07,110 |
|
ุงููู ูู ุงู topology ุงูุงุฑ ุฃู ุงููู ูู ุงูุนูุงูุฉ ุจูู ุงู |
|
|
|
859 |
|
01:12:07,110 --> 01:12:10,550 |
|
topological spaces ู ุงู metric spaces ู ุฅูู ููุงุก ู |
|
|
|
860 |
|
01:12:10,550 --> 01:12:12,650 |
|
ุงูุณูุงู
ุขุฎุฑ ูุงูุณูุงู
ุนูููู
ู ุฑุญู
ู ุงููู ูุจุฑูุงุชู |
|
|
|
|