abdullah's picture
Add files using upload-large-folder tool
9b50984 verified
raw
history blame
95 kB
1
00:00:05,090 --> 00:00:08,030
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุญู…ุฏ ู„ู„ู‡ ุฑุจ ุงู„ุนุงู„ู…ูŠู†
2
00:00:08,030 --> 00:00:11,070
ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุณูŠุฏู†ุง ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡
3
00:00:11,070 --> 00:00:18,250
ุฃุฌู…ุนูŠู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 24 ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ุฉ 2 ุทู„ุงุจ
4
00:00:18,250 --> 00:00:22,650
ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู‚ุณู… ุฑูŠุงุถูŠุงุช ูƒู„ูŠุฉ ุงู„ุนู„ูˆู…
5
00:00:23,470 --> 00:00:26,630
ุงู„ูŠูˆู… ู‡ู†ูƒู…ู„ ุงู† ุดุงุก ุงู„ู„ู‡ ุงู„ section ุงู„ุฃุฎูŠุฑ ููŠ
6
00:00:26,630 --> 00:00:29,870
chapter 8 ุงู„ู„ูŠ ู‡ูˆ 8 ุฃุฑุจุนุฉ ุชุญุช ุนู†ูˆุงู† the
7
00:00:29,870 --> 00:00:35,170
trigonometric functions ูˆู‡ูˆ ุฃูŠุถุง ุงู„ู„ูŠ ู‡ูˆ section
8
00:00:35,170 --> 00:00:42,210
ุฃูˆ ู…ูˆุถูˆุน ุชุทุจูŠู‚ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆุงู„ู€ pointwise and
9
00:00:42,210 --> 00:00:46,030
uniform convergence ู„ู„ู€ sequence of functions ูˆูƒูŠู
10
00:00:46,030 --> 00:00:50,510
ุจุฏู†ุง ู†ุนุฑู ุจุทุฑูŠู‚ุฉ ู…ุดุงุจู‡ุฉ ุฌุฏุง ู„ู…ุนุฑูู†ุงู‡ุง ุงู„ู…ุฑุฉ
11
00:00:50,510 --> 00:00:53,330
ุงู„ู…ุงุถูŠุฉ ุฃูˆ ุงู„ู„ูŠ ู‚ุจู„ู‡ุง ุจุฎุตูˆุต ุงู„ู€ exponential
12
00:00:53,330 --> 00:00:58,710
function ู‡ู†ุนุฑู ุงู„ูŠูˆู… ุงู„ู„ูŠ ู‡ูˆ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ูƒูŠู ู†ุนุฑู
13
00:00:58,710 --> 00:01:03,510
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ sine ูˆ ุงู„ู€ cosine as a limit ุงู„ู„ูŠ ู‡ูˆ
14
00:01:03,510 --> 00:01:07,390
of a uniformly convergent sequence of functions
15
00:01:07,950 --> 00:01:11,230
ุงู„ุนู†ูˆุงู† is in the trigonometric functions ุงู„ู„ูŠ ู‡ูˆ
16
00:01:11,230 --> 00:01:15,450
section 8 ุฃุฑุจุนุฉ ุงู„ู†ุธุฑูŠุฉ
17
00:01:15,450 --> 00:01:21,950
ุงู„ุฃูˆู„ู‰ ุงู„ู„ู‰ ุนู†ุฏู†ุง ุงู„ู„ู‰ ู…ุดุงุจู‡ุฉ ู„ู†ุธุฑูŠุฉ ุณุงุจู‚ุฉ ุงู„ู„ู‰ ู‡ูŠ
18
00:01:21,950 --> 00:01:25,870
ุงู„ exponential ุงู„ู„ู‰ ู…ู† ุฎู„ุงู„ู‡ุง ุจุฏู†ุง ู†ุตู„ ู„ุงู„ู„ูŠ ู‡ูˆ
19
00:01:25,870 --> 00:01:31,370
ุชุนุฑูŠู ุงู„ู„ู‰ ู‡ูŠ ุงู„ cosine ูˆ ุงู„ sineุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„
20
00:01:31,370 --> 00:01:35,190
ู…ุงู„ูŠ there exist functions ูŠูˆุฌุฏ ุฏูˆุงู„ ุงู„ุฃู…ู†ุงู† ููŠ
21
00:01:35,190 --> 00:01:40,570
ุจุชูˆุฌูˆุฏ ุฏูˆุงู„ C ู…ู† R ู„ R and S ู…ู† R ู„ R such that
22
00:01:40,570 --> 00:01:44,690
ุงู„ู„ูŠ ู‡ูŠ ุทุจุนุง ู…ุณุชู‚ุจู„ุง ู‡ู†ุชุณู…ูŠ ุงู„ C ุงู„ู„ูŠ ู‡ูŠ ุงู„ cosine
23
00:01:44,690 --> 00:01:48,910
ูˆู…ุณุชู‚ุจู„ุง ู‡ู†ุชุณู…ูŠ ุงู„ S ุงู„ู„ูŠ ู‡ูŠ ุงู„ sine ุงู„ู„ูŠ ุงุญู†ุง
24
00:01:48,910 --> 00:01:54,090
ุจู†ุนุฑูู‡ุงุงู„ุงู† ุจู†ู‚ูˆู„ ููŠ ุฏู‡ ุงู„ู„ูŠ ุชุงู†ูŠ ูˆุงุญุฏุฉ ุงุณู…ู‡ุง c
25
00:01:54,090 --> 00:01:59,950
ูˆุงุญุฏุฉ s ุชุญู‚ู‚ ู…ุง ูŠู„ูŠ ุงู„ู„ูŠ ู‡ูŠ cw prime of x ุจูŠุณุงูˆูŠ
26
00:01:59,950 --> 00:02:04,870
ู†ุงู‚ุต c of x s w prime of x ุจูŠุณุงูˆูŠ ู†ุงู‚ุต s of x ูˆู„ูˆ
27
00:02:04,870 --> 00:02:08,730
ุงุณุชุฐูƒุฑุช ุงู†ุช ุงู„ sine ูˆ ุงู„ cosine ุฏูŠ ู…ุง ุณูŠุญุฏุซ ู„ุงุญู‚ุง
28
00:02:08,730 --> 00:02:12,270
ุทุจุนุง ู„ูˆ ุงุณุชุฐูƒุฑุช ุงู„ cosine ู„ู…ุง ุงู† .. ุงู† .. ุงู† .. ุงู†
29
00:02:12,270 --> 00:02:16,130
ูุงุถู„ู‡ุง ู…ุฑุชูŠู† ู‡ุชุตูŠุฑ ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ ู†ูุณู‡ุง ูˆ ู„ูˆ
30
00:02:16,130 --> 00:02:19,570
ูุงุถู„ุช ุงู„ sine ุจุฑุถู‡ ูุงุถู„ู‡ุง ู…ุฑุชูŠู† ู‡ุชู„ุงู‚ูŠู‡ุง ุงูŠุด ู‡ูŠ
31
00:02:19,960 --> 00:02:23,840
ุจุชุทู„ุน ุณุงู„ุจ S ุงู„ุฎุงุตูŠุฉ ุงู„ุชุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ C of Zero
32
00:02:23,840 --> 00:02:27,780
ุจุณุงูˆุฉ ูˆุงุญุฏ ูˆู„ูˆ ุงุณุชุฐูƒุฑุช ุงู„ูƒูˆุณูŠู† ูƒูˆุณูŠู† ุงู„ Zero ุจุณุงูˆุฉ
33
00:02:27,780 --> 00:02:31,240
ูˆุงุญุฏ ูˆู„ูˆ ุงุณุชุฐูƒุฑุช ุงู„ูƒูˆุณูŠู† ู„ู…ุง ุชุงุฎุฏู‡ุง ุงู„ derivative
34
00:02:31,240 --> 00:02:35,160
ู‡ุชุตูŠุฑ ุนุจุงุฑุฉ ุนู† ุณุงู„ุจ Sin ุนู†ุฏ Zero ู‡ุชุทู„ุน H ุจุณุงูˆุฉ
35
00:02:35,160 --> 00:02:38,960
Zero and S of Zero ุจุณุงูˆุฉ Zero ูˆS prime of Zero
36
00:02:38,960 --> 00:02:45,330
ุจุณุงูˆุฉ ูˆุงุญุฏ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ูŠูˆุฌุฏ ุฏุงู„ุชูŠู† ุงู„ุขู†ุฏุงู„ุชูŠู†
37
00:02:45,330 --> 00:02:49,770
ูˆุงุญุฏุฉ ู…ู† C ู„ู€ A ุงุณู…ู‡ุง S ูˆุงุญุฏุฉ ุงุณู…ู‡ุง C ู…ู† R ู„ R
38
00:02:49,770 --> 00:02:56,690
ุชุญู‚ู‚ ุงู„ุดุฑุทูŠู† ุงู„ุชุงู„ูŠูŠู† CW' ุจุณูˆุก ู†ุงู‚ุต C ูˆSW' ุจุณูˆุก
39
00:02:56,690 --> 00:03:01,330
ู†ุงู‚ุต S ุนู„ู‰ ูƒู„ R ูˆC ุนู†ุฏ ุงู„ู€ 0 ู‡ูŠ 1 ูˆC' ุนู†ุฏ ุงู„ู€ 0
40
00:03:01,330 --> 00:03:05,650
ุจุณูˆุก 0 ูˆS ุนู†ุฏ ุงู„ู€ 0 ุจุณูˆุก 0 ูˆS' ุนู†ุฏ ุงู„ู€ 0 ุจุณูˆุก 1
41
00:03:05,650 --> 00:03:11,250
ูˆุจุนุฏ ุดูˆูŠุฉ ู‡ู‚ูˆู„ูƒ ู„ุง ูŠูˆุฌุฏ ููŠ ุงู„ุฏู†ูŠุง ุฏุงู„ุชูŠู† ุจุญู‚ู‚ ุงู†
42
00:03:11,250 --> 00:03:17,300
ุงู„ุดุฑูˆุท ู‡ุฐูˆู„ุฉุฅู„ุง ู‡ูŠ ูˆุงุญุฏุฉ ุงุณู…ู‡ุง C ูˆุงุญุฏุฉ ุงุณู…ู‡ุง S
43
00:03:17,300 --> 00:03:22,640
ูŠุนู†ูŠ ุงู„ุชู†ุชูŠู† ูˆุงุญุฏุงุช ูˆู‡ุฐุง ูŠุฌุนู„ู†ุง ู†ุณู…ูŠู‡ู… ุงู„ุชุณู…ูŠุฉ ุจุนุฏ
44
00:03:22,640 --> 00:03:26,380
ุฐู„ูƒ ูˆุงุญุฏุฉ ุงุณู…ู‡ุง cosine ูˆุงุญุฏุฉ ุงุณู…ู‡ุง sine ูˆู…ู† ุซู…
45
00:03:26,380 --> 00:03:29,320
ุจู†ุฌูŠุจ ูƒู„ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุนุฑูู‡ ุนู† ุงู„ sine ูˆ ุงู„
46
00:03:29,320 --> 00:03:34,020
cosine ู…ู† ู‡ุฐุง ุงู„ุจู†ุงุก ุฅุฐู† ุงู„ุขู† ุฃู†ุง ุจุจู†ูŠ ุจุจู†ูŠ ุจุจู†ูŠ
47
00:03:34,020 --> 00:03:36,980
ูˆุฌูˆุฏ ุงู„ sine ูˆ ุงู„ cosine ูˆ ุจุนุฏ ุดูˆูŠุฉ ุจุจู†ูŠ ุงู„ู„ูŠ ู‡ูˆ
48
00:03:36,980 --> 00:03:40,960
ุงู„ uniqueness ุทุจู‚ุง ู„ู‡ุฐู‡ ุงู„ุดุฑูˆุท ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰
49
00:03:42,380 --> 00:03:45,860
ุงู„ุงู† ุจูƒูŠู ุจุฏู†ุง ู†ุนู…ู„ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ููŠ
50
00:03:45,860 --> 00:03:48,340
ุงู„ .. ููŠ ุงู„ .. ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Exponential ุนุดุงู†ูƒ
51
00:03:48,340 --> 00:03:52,060
ู‡ุชู„ุงู‚ูˆู†ูŠ ุดูˆูŠุฉ ู…ุณุฑุน ู„ุฅู† ุงู„ู„ูŠ ุจูŠุญุถุฑ ุงู„ู„ูŠ ู‡ูŠ ู…ุญุงุถุฑุฉ
52
00:03:52,060 --> 00:03:56,620
ุงู„ู€ Exponential ู‡ูŠู„ุงู‚ูŠ ุฅู† ู‡ุฐุง ููŠ ูƒุชูŠุฑ ู…ู† ุงู„ุญุฏูŠุซ ููŠ
53
00:03:56,620 --> 00:04:00,640
ุฅุนุงุฏุฉ We define the sequence cn as n of continuous
54
00:04:00,640 --> 00:04:05,240
functions inductively as ุจุฏู†ุง ู†ุนุฑู ุงู„ู„ูŠ ู‡ูŠ .. ุงู„ู„ูŠ
55
00:04:05,240 --> 00:04:09,640
ู‡ูˆ two sequences ูˆุงุญุฏุฉ ู†ุณู…ูŠู‡ุง cn ูˆูˆุงุญุฏุฉ ู†ุณู…ูŠู‡ุง sn
56
00:04:10,270 --> 00:04:13,890
ูƒูŠู ุจุฏู†ุง ู†ุนุฑูู‡ุงุŸ ุฒูŠ ู…ุง ุนุฑูู†ุง ุงู„ู€ exponential ุจู†ุนุฑู
57
00:04:13,890 --> 00:04:19,250
C1 of X ุฅูŠุด ุจุชุณุงูˆูŠ ูˆุงุญุฏ ูˆS1 of X ุฅูŠุด ุจุฏู†ุง ู†ุณู…ูŠู‡ุง
58
00:04:19,250 --> 00:04:26,490
ุจุณุงูˆูŠ X ุงู„ุขู† S2 of X S2 of X ู‡ูŠุณุงูˆูŠ ุงู„ integration
59
00:04:26,490 --> 00:04:31,990
ู…ู† ุตูุฑ ู„ุนู†ุฏ X C2 of T DT ุทุจ C2 ู…ู† ูˆูŠู† ุฃุฌูŠุจู‡ุงุŸ C2
60
00:04:31,990 --> 00:04:36,050
ุจุชุฌูŠุจู‡ุง ู…ู† ู‡ู†ุง C ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุนู†ูŠ C2
61
00:04:36,050 --> 00:04:41,470
ุจุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต ุงู„ integration ู…ู† ุตูุฑ ู„ Xู„ู€ S1 of
62
00:04:41,470 --> 00:04:48,870
T ุงู„ู„ูŠ ู‡ุฐุง DT ูุจูƒูˆู† ุฌูŠุจุช ุงู„ C2 ูˆ ุจุชุฌูŠุจุช ุงู„ S2 ู…ู†
63
00:04:48,870 --> 00:04:55,530
ุงู„ C2 ู„ุฃู† S3 ูˆ C3 ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ in general ุงู„ู„ูŠ ุฃู†ุง
64
00:04:55,530 --> 00:04:59,170
ุนู…ู„ุช sequence of functions ุงู„ู„ูŠ ู‡ูˆ ุจุฏุฃุช ุงู„ู„ูŠ ู‡ูŠ ุงู„
65
00:04:59,170 --> 00:05:05,120
C1 ุจ1 S1 ุจ Xูˆู…ู† ุซู… S N ุจุชุณุงูˆูŠ ู…ู† ุตูุฑ ู„ X
66
00:05:05,120 --> 00:05:10,760
integration C N of T DT ูŠุนู†ูŠ ูƒู…ุงู„ุฉ C N of T DT ูˆC
67
00:05:10,760 --> 00:05:13,460
N ุฒุงุฆุฏ ูˆุงุญุฏ of X ุจุชุณุงูˆูŠ ูˆุงุญุฏ ู†ู‚ุต integration ู…ู†
68
00:05:13,460 --> 00:05:18,700
ุตูุฑ ู„ X S N of T DT ุงู„ุขู† ู‡ูˆ ุจูŠู‚ูˆู„ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡
69
00:05:18,700 --> 00:05:21,820
sequence of continuous functions ุทุจ sequence of
70
00:05:21,820 --> 00:05:25,840
continuous functions ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ุฅุซุจุงุชุทูŠุจุŒ ุงู„ุงู†
71
00:05:25,840 --> 00:05:29,500
ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ูˆ by induction ุฒู‰ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† ุงู„ุงู†
72
00:05:29,500 --> 00:05:33,600
ุนู†ุฏู‰ ุงู„ู€C1 continuous ู„ุงู† ุงู„ุซุงุจุชุฉ S1 continuous
73
00:05:33,600 --> 00:05:38,880
ู„ุงู† ู‡ู‰ ุดู…ุงู„ู‡ุง ุจุชุณุงูˆูŠ X ุจู†ุงุก ุนู„ูŠู‡ ู‡ุชุทู„ุน ุนู†ุฏู‰ ุงู„ู„ู‰
74
00:05:38,880 --> 00:05:44,920
ู‡ู‰ C2 continuous ูˆู…ู† ุซู… C3 ูˆC4 ุงู„ุงุฎุฑูŠู† ุงู„ุงู† ู„ูˆ
75
00:05:44,920 --> 00:05:49,000
ุจุฏู†ุง ู†ุซุจุชู‡ุง by induction ุจุฏู†ุง ู†ูุชุฑุถ ุงู†ู‡ ู‡ุฐูˆู„ุฉ
76
00:05:49,000 --> 00:05:52,560
ุงู„ู€Sn ูˆุงู„ู€Cn
77
00:05:53,920 --> 00:06:00,700
continuous ุณู†ุซุจุช ู‡ู†ุง continuous ู„ุฃู† S1 ุงูŠุด ุจุชุณุงูˆูŠ
78
00:06:00,700 --> 00:06:06,860
XุŸ C1 ุงูŠุด ุจุชุณุงูˆูŠ 1ุŸ continuous ุฅุฐุง ุตุงุฑุช ู‡ุฐู‡ ุงู„ู„ูŠ
79
00:06:06,860 --> 00:06:12,340
ู‡ูŠ ุงู„ุฌู…ู„ุฉ is true for N ุจุชุณุงูˆูŠ 1 ู†ูุชุฑุถ ุงู„ุขู†
80
00:06:12,340 --> 00:06:19,900
supposeby induction ุจุชู‡ุฏูŠ suppose that ุงู„ู‡ูˆ star
81
00:06:19,900 --> 00:06:25,960
ู‡ุฐูŠ is true for n ุงูŠุด ุจุชุณุงูˆูŠ n ุจุชุณุงูˆูŠ k ู…ุนู†ุงุชู‡
82
00:06:25,960 --> 00:06:33,820
ุตุงุฑุช ุงู„ S Kูˆุงู„ู€ CK are continuous ุจุชุซุจุช ุงู„ุขู† ู…ู†
83
00:06:33,820 --> 00:06:38,520
ุงู„ุตุญูŠุญุฉ ู„ู€ K ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุนู†ูŠ ุจุชุซุจุช ุงู„ู„ูŠ ู‡ูˆ CK ุฒุงุฆุฏ
84
00:06:38,520 --> 00:06:42,700
ูˆุงุญุฏ ูˆ SK ุฒุงุฆุฏ ูˆุงุญุฏ ุงู† ู‡ู†ุง ุดู…ุงู„ ู‡ู†ุง continuous ุทูŠุจ
85
00:06:42,700 --> 00:06:48,000
ุงู„ุขู† ุดูˆู CK ุฒุงุฆุฏ ูˆุงุญุฏ ุจุชุณุงูˆูŠ ุญุณุจ ุงู„ู„ูŠ ู‡ูŠ ุนู†ุฏูŠ ู‡ุงู†
86
00:06:48,000 --> 00:06:51,740
ุงูŠุด ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† CK ูˆุงุญุฏ of X ุจุชุณุงูˆูŠ ุงู„
87
00:06:51,740 --> 00:06:58,020
integration ูˆุงุญุฏ ู†ู‚ุต ุงู„ integration ู…ู† ุตูุฑ X Sูƒ ..
88
00:06:58,020 --> 00:07:03,020
ู‡ุฐุง ูƒุฒ ูˆุงุญุฏ .. ู‡ุฐุง ูƒ .. of DT ุทูŠุจ ุฃู†ุง ู…ูุชุฑุถ ุฃู† S K
89
00:07:03,020 --> 00:07:06,600
ู…ู† ุงู„ hypothesis induction ุฅู†ู‡ุง continuous ุฅุฐุง
90
00:07:06,600 --> 00:07:11,040
ุตุงุฑุช ู‡ุฐู‡ ูƒู„ู‡ุง ุฅูŠุด ู…ุงู„ู‡ุงุŸ ุงู„ู„ูŠ ู‡ูŠ S K integrable
91
00:07:11,040 --> 00:07:15,600
ูˆุตุงุฑุช ู‡ุฐู‡ ูƒู„ู‡ุง ุนู„ู‰ ุจุนุถ by fundamental theorem of
92
00:07:15,600 --> 00:07:20,980
calculus ุงู„ู„ูŠ ู‡ูŠ ุงู„ derivative ุฅู„ู‡ุง ู…ูˆุฌูˆุฏุฉ ุฅุฐุง
93
00:07:20,980 --> 00:07:23,440
ุตุงุฑุช ู‡ุฐู‡ ูƒู„ู‡ุง ุงู„ derivative ุฅู„ู‡ุง ูˆู…ูˆุฌูˆุฏุฉ ุจุงู„ู†ุณุจุฉ
94
00:07:23,440 --> 00:07:27,680
ู„ู„ Xุฅุฐุง ุตุงุฑุช ู…ุฏุงู… ู‡ูŠูƒ ู‡ุงุฐ is differentiable ุฅุฐุง
95
00:07:27,680 --> 00:07:30,940
continuous ุฅุฐุง ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ck ุฒุงุฆุฏ ูˆุงุญุฏ
96
00:07:30,940 --> 00:07:35,200
continuous ุงู„ู„ูŠ ุซุจุช ุงู„ุขู† is sk ุฒุงุฆุฏ ูˆุงุญุฏ sk ุฒุงุฆุฏ
97
00:07:35,200 --> 00:07:39,280
ูˆุงุญุฏ of x ุฃูŠุด ุจุชุณุงูˆูŠ ุญุณุจ ุงู„ู„ูŠ ุงู„ุชุนุฑูŠู ุจุชุณุงูˆูŠ ุงู„
98
00:07:39,280 --> 00:07:47,660
integration ู…ู† ุตูุฑ ุงู„ุนู†ุฏ x ck of tุฒุงูŠุฏ ูˆุงุญุฏ ู‡ุฐุง N
99
00:07:47,660 --> 00:07:52,620
ู‡ุฐุง N K ุฒุงูŠุฏ ูˆุงุญุฏ K ุฒุงูŠุฏ ูˆุงุญุฏ DT ูˆุงู†ุง ู…ุซุจุช ููˆู‚ ุงู†ู‡
100
00:07:52,620 --> 00:07:56,160
CK ุฒุงูŠุฏ ูˆุงุญุฏ is continuous ุฅุฐุง ุตุงุฑุช ู‡ุฐู‡ ูƒู„ู‡ุง ุนู„ู‰
101
00:07:56,160 --> 00:07:59,500
ุจุนุถ integrable ุงู„ู„ูŠ ู‡ูŠ CK ุฒุงูŠุฏ ูˆุงุญุฏ ุตุงุฑ ู‡ุฐุง ุงู„
102
00:07:59,500 --> 00:08:02,000
integration exist ูˆู…ุด ู‡ูŠูƒ by fundamental theorem
103
00:08:02,000 --> 00:08:04,720
of calculus ุจุฑุถู‡ ุงู„ derivative ู„ู‡ ุฅูŠู‡ ุดู…ุงู„ู‡ุง
104
00:08:04,720 --> 00:08:07,700
ู…ูˆุฌูˆุฏุฉ ุฅุฐุง ุตุงุฑุช ู‡ุฐู‡ ุงู„ differentiable ุฅุฐุง
105
00:08:07,700 --> 00:08:11,060
continuous ุฅุฐุง ุตุงุฑุช CK ุฒุงูŠุฏ ูˆุงุญุฏ ูˆSK ุฒุงูŠุฏ ูˆุงุญุฏ are
106
00:08:11,060 --> 00:08:16,160
continuous ุฅุฐุง ุตุงุฑุช ุงู„ุฌู…ู„ุฉ ู‡ุฐู‡ ุตุญูŠุญุฉู„ุฃ K ุฒุงุฆุฏ ูˆุงุญุฏ
107
00:08:16,160 --> 00:08:21,000
ุฅุฐุง ุตุงุฑุช ุตุญูŠุญุฉ ุฏุงุฆู…ุง ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ุงู„ุงู† ู…ูุฑุบ ู…ู†ู‡
108
00:08:21,000 --> 00:08:26,360
ุงู„ CN ูˆุงู„SN are continuous functions ูˆุจู†ุงุก ุนู„ูŠู‡
109
00:08:26,360 --> 00:08:29,860
ู…ุฏุงู… continuous functions by fundamental theorem
110
00:08:29,860 --> 00:08:35,460
of calculus ู‡ุชูƒูˆู† ู‡ุฐู‡ ุงู„ SN differentiable ูˆ ุงู„ CN
111
00:08:35,460 --> 00:08:39,800
ุฒุงุฆุฏ ูˆุงุญุฏ differentiable ูˆู…ุด ู‡ูŠูƒ ูƒู…ุงู† ูˆ ู‡ูŠุนุทูŠู†ูŠ ุงู„
112
00:08:39,800 --> 00:08:43,440
SN prime of X ุญุณุจ ุงู„ fundamental theorem of
113
00:08:43,440 --> 00:08:46,820
calculusุงู„ู€ differentiation ุจุชุถุงูŠู‚ ุงู„ integration
114
00:08:46,820 --> 00:08:54,580
ุจุชุถุงู„ ุจุณุงูˆูŠ cn of x ุงู„ุงู† ูˆ ุงู„ derivative ู„ู‡ุฐู‡ ุจุฑุถู‡
115
00:08:54,580 --> 00:08:59,900
exist cn ุฒุงุฆุฏ ูˆุงุญุฏ prime of x ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠ ุณุงูˆูŠ ุงู„ู„ูŠ
116
00:08:59,900 --> 00:09:10,170
ู‡ูˆ ู…ูŠู† ู‡ุชุทู„ุน ู†ุงู‚ุต snof X ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ
117
00:09:10,170 --> 00:09:15,610
ุงู„ sequence ุงู„ู„ูŠ ุนู†ุฏูŠ ุตุงุฑุช well defined ูƒู„ู‡ุง ูˆ
118
00:09:15,610 --> 00:09:20,270
continuous ูƒู„ู‡ุง ูˆ ู„ุฃ ูˆ differentiable ูƒู…ุงู† ุงู„ SN
119
00:09:20,270 --> 00:09:25,150
prime of X ุจูŠุณุงูˆูŠ CN of X ูˆ CN ุฒุงุฆุฏ ูˆุงุญุฏ prime of
120
00:09:25,150 --> 00:09:31,730
X ุจูŠุณุงูˆูŠ ู†ุงู‚ุต SN of X ุฒูŠ ู…ุง ุฃู†ุง ุฃุซุจุชู‡ุง ูˆ ุฃูˆุถุญุช ู„ูƒู…
121
00:09:31,730 --> 00:09:38,710
ุฅูŠุงู‡ุง ู‡ู†ุงุงู„ุขู† induction arguments ุจุฑุถู‡ induction
122
00:09:38,710 --> 00:09:42,970
arguments ุจู‚ูˆู„ ู„ูŠ we leave this argument for you
123
00:09:42,970 --> 00:09:46,890
ุฎู„ูŠู†ุง ู†ุดูˆูู‡ุง ู…ุน ุจุนุถ ู…ุงู‡ูŠ ุงู„ู„ูŠ ุจู†ู‚ุตุฏู‡ ุฒูŠ ู…ุง ุนู…ู„ุช
124
00:09:46,890 --> 00:09:49,870
ุจุงู„ุธุจุท ู„ูˆ ุทู„ุนุช ุนู„ู‰ ุงู„ุฎุทูˆุงุช ู‡ุชู„ุงู‚ูŠู‡ุง ู…ุดุงุจู‡ ู„ุฎุทูˆุงุช
125
00:09:49,870 --> 00:09:54,970
ุชุจุนุงุช ุงู„ exponential ุนู†ุฏ ุงู„ Sn of X ุฒูŠ ู…ุง ู‚ู„ู†ุง
126
00:09:54,970 --> 00:10:02,060
ุจุณูˆุก ุงู„ integration ู…ู† 0 ู„ X Cn of T dtC N ุฒุงุฆุฏ
127
00:10:02,060 --> 00:10:06,140
ูˆุงุญุฏ of X ุจุณุงูˆุฉ ูˆุงุญุฏ ู…ู‚ุต ุงู„ integration ู…ู† C ู„ X S
128
00:10:06,140 --> 00:10:15,360
N of T DT ูˆู…ุนุทูŠู†ุง ุทุจุนุง ุงุญู†ุง ุงุฎุฏู†ุง ุงู„ C ูˆุงุญุฏ of X
129
00:10:15,360 --> 00:10:22,530
ุจุณุงูˆุฉ ูˆุงุญุฏูˆ ุงู„ู€ c ูˆ s1 of x ุจุณูˆุฉ x ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„
130
00:10:22,530 --> 00:10:25,370
sequence of functions ุงู„ู„ูŠ ุฃุซุจุชู†ุงู‡ุง ู‡ุฐู‡ ุงู„
131
00:10:25,370 --> 00:10:27,990
sequence of functions ุงู„ sn ูˆ ุงู„ cn ุฒุงุฆุฏ ูˆุงุญุฏ
132
00:10:27,990 --> 00:10:32,230
ุงู„ุชู†ุชูŠู† are continuous for every n ูˆ ู‡ู…ุด ู‡ูŠ
133
00:10:32,230 --> 00:10:34,850
codifferentiable ูˆ ุงู„ derivative ุฅู„ู‡ุง ุฒูŠ ู…ุง ู‚ู„ู†ุง
134
00:10:34,850 --> 00:10:39,430
sn prime of x ุจุณูˆุฉ cn of x ูˆ ุงู„ cn ุฒุงุฆุฏ ูˆุงุญุฏ prime
135
00:10:39,430 --> 00:10:44,190
of x ุจุณูˆุฉ ู†ุงู‚ุต sn of x ูˆ ุฎู„ู‘ูŠู†ุง ู†ุณุฌู„ู‡ุง ู‡ุฐู‡ ู„ุฅู†ู‡
136
00:10:44,190 --> 00:10:52,370
ู‡ู†ุญุชุงุฌู‡ุง ุจุนุฏ ุดูˆูŠุฉุงู„ู„ูŠ ู‡ูŠ S N prime of X ุจุณุงูˆูŠ
137
00:10:52,370 --> 00:11:00,310
C N of X and C N ุฒุงุฆุฏ ูˆุงุญุฏ prime of X ุจุณุงูˆูŠ ู†ุงู‚ุต S
138
00:11:00,310 --> 00:11:09,070
N of X ุทูŠุจ ุงู„ุขู† ุจุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ by induction ู†ุซุจุช
139
00:11:09,070 --> 00:11:12,570
ุงู„ู„ูŠ ู‡ูˆ C N ุฒุงุฆุฏ ูˆุงุญุฏ of X ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ
140
00:11:12,570 --> 00:11:18,460
ุฃู…ุงู…ูŠ ู‡ุฐุง ุทุจุนุง ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูˆุจุนุถูƒู… ู‚ุงู„ ู…ุง ู‡ูŠ by
141
00:11:18,460 --> 00:11:24,960
induction ู†ุชุทู„ุน ุนู„ู‰ C2 of X C1 ููŠ ุงู„ู‚ุฑุขู† ุจุชุณุงูˆูŠ
142
00:11:24,960 --> 00:11:31,720
ูˆุงุญุฏ ู†ุซุจุชู‡ุง ูŠุนู†ูŠ ุงู„ุงู† C2of X ุงูŠุด ุจุชุณุงูˆูŠ ุญุณุจ
143
00:11:31,720 --> 00:11:35,960
ุงู„ู‚ุงู†ูˆู† ุจุณุงูˆูŠ ูˆุงุญุฏ ู…ุงู‚ุต ุงู„ integration ู…ู† ุตูุฑ ู„ X
144
00:11:35,960 --> 00:11:41,020
ุฃุณ ูˆุงุญุฏ ู„ุฃู†ู‡ ุจูˆุงุญุฏ ู‡ู†ุง ุฃุณ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุฌุฏุด ุฃุณ ูˆุงุญุฏ
145
00:11:41,020 --> 00:11:46,060
ุงู„ X integration ุงู„ู„ูŠ ู‡ูŠ TDT ูˆูŠุณุงูˆูŠ ุงู„ุชูุงุถู„ ุงู„ู„ูŠ
146
00:11:46,060 --> 00:11:49,820
ู‡ุฐูŠ ุจูŠุตูŠุฑ ูˆุงุญุฏ ู…ุงู‚ุต X ุชุฑุจูŠุน ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงุชู†ูŠู† ุฅุฐุง
147
00:11:49,820 --> 00:11:54,410
ูุนู„ุง ุงู„ู„ูŠ ู‡ูŠ Cุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุงุชู†ูŠู† is true for any
148
00:11:54,410 --> 00:11:58,870
ุงูŠุด ุจุชุณุงูˆูŠ ุงู† ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุจุฏู†ุง ู†ุซุจุช ุงู„ุชุงู†ูŠุฉ ู…ุนู‡ุง
149
00:11:58,870 --> 00:12:01,730
ุงู„ู„ูŠ ู‡ูŠ true for any ุจุชุณุงูˆูŠ ูˆุงุญุฏ ู„ุฅู†ู‡ุง ุฏูŠ ุฌู…ู„ุฉ
150
00:12:01,730 --> 00:12:05,690
ูˆุงุญุฏุฉ ุจุฏุฃ ุฃุซุจุชู‡ุง ุงู†ู‡ุง true for every any ุงู„ุงู† for
151
00:12:05,690 --> 00:12:10,590
any ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุฃุณ ุงุชู†ูŠู† of x ุจุฏุฃ ุฃุชุฃูƒุฏ
152
00:12:10,590 --> 00:12:15,990
ุงู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ุจุชุญู‚ู‚ ุงู„ู„ูŠ ู‡ูŠ ุงู„ .. ุงู„ู„ูŠ .. ุงูŠู‡ ู‡ุฐู‡ ุงู„
153
00:12:15,990 --> 00:12:19,960
equationS2 of X ุจูŠุณุงูˆูŠ ู…ู† ูˆูŠู† ุจุฏู‡ ุงุฌูŠุจู‡ุง ู…ู†
154
00:12:19,960 --> 00:12:23,480
ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ููˆู‚ ุจูŠุณุงูˆูŠ ุงู„ integration ู…ู† ุณูู„ ู„ X
155
00:12:23,480 --> 00:12:29,180
C2 of X ุงูŠุด C2 of X ู‡ุงูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ู†ู‚ุต T ุชุฑุจูŠุน
156
00:12:29,180 --> 00:12:34,800
ุนู„ู‰ ุงุชู†ูŠู† ู„ูƒู„ ู…ุง ู„ู‡ DT ูˆูŠุณุงูˆูŠ ุงู„ูƒู…ู„ุฉ ู‡ุฐุง ุจูŠุตูŠุฑ
157
00:12:34,800 --> 00:12:40,200
ุนุจุงุฑุฉ ุนู† Xู†ุงู‚ุต X ุชูƒุนูŠุจ ุนู„ู‰ ุชู„ุงุชุฉ ูˆููŠู‡ ุงุชู†ูŠู† ุจูŠุตูŠุฑ
158
00:12:40,200 --> 00:12:44,980
X ุชูƒุนูŠุจ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุชู„ุงุชุฉ factorial ุงู„ู„ูŠ ู‡ูŠ ุฌุฏุงุด
159
00:12:44,980 --> 00:12:50,380
ุงู„ู„ูŠ ู‡ูŠ ุณุชุฉ ุฅุฐุง ูุนู„ุง ูุนู„ุง ุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ C ุฃุณ
160
00:12:50,380 --> 00:12:55,400
ุงุชู†ูŠู† ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู†ุง ุจูˆุงุญุฏ ูŠุนู†ูŠ ุฃุณ ุงุชู†ูŠู† ุจูŠุณุงูˆูŠ X
161
00:12:55,400 --> 00:12:59,380
ู†ุงู‚ุต X ุชูƒุนูŠุจ ุนู„ู‰ ุชู„ุงุชุฉ factorial ูŠุนู†ูŠ ุตุงุฑุช ุงู„ุฌู…ู„ุฉ
162
00:12:59,380 --> 00:13:02,900
ู‡ุฐู‡ ุจุฑุถู‡ ุตุญูŠุญุฉ ููˆุฑ ุฃู† ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฅุฐุง ูƒู„ู‡ุง ุนู„ู‰ ุจุนุถ
163
00:13:02,900 --> 00:13:09,650
ู‡ุฐู‡ ุตุงุฑุช ุตุญูŠุญุฉ ููˆุฑ ุฃู† ุจุชุณุงูˆูŠ ุฌุฏุงุดุงู„ุงู† ุจุฏู†ุง ู†ูุชุฑุถ
164
00:13:09,650 --> 00:13:13,430
ุงู†ู‡ุง
165
00:13:13,430 --> 00:13:19,490
true for n ุจุชุณุงูˆูŠ k ูˆู†ุฌูŠุจ ู…ู†ู‡ุง ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ k ุฒุงุฆุฏ
166
00:13:19,490 --> 00:13:25,950
ูˆุงุญุฏ ู†ูุชุฑุถ suppose that this is true for n ุจุชุณุงูˆูŠ
167
00:13:25,950 --> 00:13:30,690
k ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุงุฎุฑ ุตุงุฑ ุนู†ุฏู‰ ck ุฒุงุฆุฏ ูˆุงุญุฏ ุจุณุงูˆูŠ ู‡ุฐุง
168
00:13:30,690 --> 00:13:37,260
ูˆู‡ู†ุง ุงุชู†ูŠู† k ูˆู‡ู†ุง kูˆู‡ู†ุง ุงุชู†ูŠู† K ูˆู‡ู†ุง ู†ูุณ ุงู„ุงุดูŠ
169
00:13:37,260 --> 00:13:41,640
ุงู„ู„ูŠ ู‡ูˆ ู†ูุชุฑุถ ุงู†ู‡ุง ุตุญูŠุญุฉ for N ุจุชุณุงูˆูŠ K ุตุงุฑุช ุนุจุงุฑุฉ
170
00:13:41,640 --> 00:13:48,460
ุนู† ุงุชู†ูŠู† K ูˆ ุงุชู†ูŠู† K ุฃูˆ ุงุณ K ู…ุงุดูŠ ุงู„ุญุงู„ ู†ุซุจุช ุงู†
171
00:13:48,460 --> 00:13:53,480
ู‡ุฐู‡ ุตุญูŠุญุฉ for ู…ู†ุŸ for K ุจุชุณุงูˆูŠ .. for N ุจุชุณุงูˆูŠ
172
00:13:53,480 --> 00:14:02,020
ูƒุฏู‡ุดุŸ K ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุนู†ูŠ ุจุฏูŠ ุงุฏูŠุจ Cูƒ ุฒุงุฆุฏ ุฌุฏุงุด ุงุชู†ูŠู†
173
00:14:02,020 --> 00:14:07,480
ู„ุฃู† ููŠ ุงู„ุงุตู„ ู‡ูŠ ูƒ ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ุงู„ุงุตู„ ุณู† ุฒุงุฆุฏ ูˆุงุญุฏ
174
00:14:07,480 --> 00:14:11,620
ูุฑุถุชู‡ุง ุตุญูŠุญุฉ ููŠ ุงู„ู‚ุฑุขู† ุจุชุณุงูˆูŠ ูƒ ู„ุฃู† ุจุชุซุจุชู‡ุง ุตุญูŠุญุฉ
175
00:14:11,620 --> 00:14:15,520
ู„ุฃู† ุจุชุณุงูˆูŠ ูƒ ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุนู†ูŠ ูƒ ุฒุงุฆุฏ ูˆุงุญุฏ ูˆุงุญุฏ ุจูŠุตูŠุฑ
176
00:14:15,520 --> 00:14:22,820
ูƒ ุฒุงุฆุฏ ุงุชู†ูŠู† of Xู…ุงุฐุง ูŠุนู†ูŠ ุญุณุงุจ ุชุนุฑูŠูู‡ุงุŸ ุชุนุฑูŠูู‡ุง 1
177
00:14:22,820 --> 00:14:29,300
ู†ุงู‚ุต ุงู„ุงู†ุชุฌุฑูŠุดู† ู…ู† 0 ุฅู„ู‰ X ู‡ุฐุง K ุฒุงุฆุฏ 2 ุฅุฐุง ู‡ุฐุง K
178
00:14:29,300 --> 00:14:34,420
N ุฒุงุฆุฏ 1 ูˆู‡ุฐุง N K ุฒุงุฆุฏ 2 ู…ุงุฐุงุŸ ู‡ุฐุง ุณูŠุตุจุญ SK ุฒุงุฆุฏ 1
179
00:14:34,420 --> 00:14:36,340
of DT
180
00:14:38,530 --> 00:14:42,870
ูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต ุงู„ููƒุฑุฉ ุงู†ุช ูุงู‡ู…ุช ู…ู† ุตูุฑ ู„ู…ูŠู†
181
00:14:42,870 --> 00:14:47,910
ู„ุฅูƒุณ ู…ูŠู† ู‡ูƒุงู…ู„ ู‡ูƒุงู…ู„ S K ุฒุงุฆุฏ ูˆุงุญุฏ ุงู†ุง ูุฑุถุช ุงู† ุงู†ุง
182
00:14:47,910 --> 00:14:52,750
ุงุชุฑูˆู‡ ููŠ ุงู„ู‚ุฑุขู† ุจุงู„ุณุงูˆูŠุฉ K ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† T ู†ุงู‚ุต
183
00:14:52,750 --> 00:15:00,450
T ุชูƒุนูŠุจ ุน ุชู„ุงุชุฉ factorial ู„ู…ุง ุงุตู„ ู„ุขุฎุฑ ูˆุงุญุฏ ุฒุงุฆุฏ
184
00:15:00,450 --> 00:15:12,390
ู†ุงู‚ุต ูˆุงุญุฏ ุฃุณ K ููŠู‡T 2K 1 2 T 1 ูƒู„ ุงูŠู‡ ุงุด ู…ุงู„ู‡ุง
185
00:15:12,390 --> 00:15:16,110
factorial ุงู„ูƒู„ ุฏูŠ ุชูŠ ุญุณุงุจุงุช ูˆุงู„ู„ู‡ ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ
186
00:15:16,110 --> 00:15:22,660
ุญุงู„ูƒู… ุจุชุนู…ู„ูˆู‡ุง ุฏูŠ ุชูŠ ูˆ ูŠุณุงูˆูŠูˆุงุญุฏ ู†ุงู‚ุต ู†ูุชุญ ุฌูˆุณ ู‡ุฐูŠ
187
00:15:22,660 --> 00:15:26,700
T ุจูŠุตูŠุฑ T ุชุฑุจูŠุน ุนู„ู‰ ุงุชู†ูŠู† factorial ู‡ุฐูŠ ุงูŠุด ุจูŠุตูŠุฑ
188
00:15:26,700 --> 00:15:32,820
ู†ุงู‚ุต T ุฃูุณ ุฃุฑุจุนุฉ ุนู„ู‰ ุฃุฑุจุนุฉ ูู‰ ุชู„ุงุชุฉ factorial ุนู†
189
00:15:32,820 --> 00:15:36,980
ุฃุฑุจุนุฉ factorial ุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ ุงู„ุฃุฎุฑ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ
190
00:15:36,980 --> 00:15:43,580
ุฃูุณ K ุฒูŠ ู…ุง ู‡ูŠ ู„ุฃู† ุฅุดุงุฑุฉ ู‡ุฐูŠ T ุจูŠุตูŠุฑ ุงุชู†ูŠู† K ุฒุงุฆุฏ
191
00:15:43,580 --> 00:15:49,130
ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุนู†ูŠ ุฒุงุฆุฏ ุงุชู†ูŠู† ุนู„ู‰ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† K
192
00:15:49,130 --> 00:15:54,490
ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠ ู‡ุฐุง ุจุชุทู„ุน ุงุชู†ูŠู† K ุฒุงุฆุฏ ุงุชู†ูŠู† ุงู„ูƒู„
193
00:15:54,490 --> 00:15:59,550
ุงูŠู‡ ุดู…ุงู„ู‡ุŸ factorial ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐุง ุทุจุนุง ูƒู„ู‡ ู…ู†
194
00:15:59,550 --> 00:16:04,630
ุตูุฑ ู„ X ุฅุฐุง ุจุชุตูŠุฑ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† X ูˆู‡ุฐุง X ูˆู‡ุฐุง
195
00:16:04,630 --> 00:16:09,010
ุงู„ุฃุฎูŠุฑ ุจุฑุถู‡ ุงูŠู‡ุŸ X ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงูŠู‡ุŸ ู‡ูˆ
196
00:16:09,010 --> 00:16:16,350
ูŠุณุงูˆูŠ1 ู†ุงู‚ุต x ุชุฑุจูŠุน ุนู„ู‰ 2 factorial ุฒุงุฆุฏ x ุฃูุณ 4
197
00:16:16,350 --> 00:16:20,310
ุนู„ู‰ 4 factorial ุถุฑุจุช ุงู„ู†ุงู‚ุต ุฌูˆุง ู„ุฅู† ุฃู†ุง ู„ู…ุง ุฃุตู„
198
00:16:20,310 --> 00:16:24,910
ู†ุงู‚ุต ู„ู…ุง ุฃุตู„ ุงู„ุฃุฎุฑ ูˆุงุญุฏ ุฒุงุฆุฏ ู†ุงู‚ุต ูˆุงุญุฏ K ูˆู†ุงู‚ุต ุฃู†ุง
199
00:16:24,910 --> 00:16:31,050
ุจุตูŠุฑ K ุฒุงุฆุฏ 1 ููŠ X ุฃูุณ 2K
200
00:16:31,910 --> 00:16:37,130
ุฒุงุฆุฏ ุงุชู†ูŠู† ุนู„ู‰ ุงุชู†ูŠู† K ุฒุงุฆุฏ ุงุชู†ูŠู† ู„ูƒู„ vector ูŠุนู†ูŠ
201
00:16:37,130 --> 00:16:41,890
ุตุงุฑุช ู‡ุฐู‡ CK ุฒุงุฆุฏ ูˆุงุญุฏ ุฒุงุฆุฏ ุงุชู†ูŠู† of X ุจุชุณุงูˆูŠ ู‡ุฐุง
202
00:16:41,890 --> 00:16:49,290
ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุตุญูŠุญ ุตุงุฑ ุจุงู„ุธุจุท ู‡ูˆ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ
203
00:16:49,290 --> 00:16:53,830
ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุนู†ุฏูŠ ุฃุซุจุชุช ูˆ ูƒุฅู„ู…ูŠ ูŠุนู†ูŠ ุงู„ุขู† ุงู† ู‡ุฐุง
204
00:16:54,470 --> 00:16:59,490
ุงู„ู„ูŠ ุนู†ุฏู‰ is true for mean for k ุฒุงุฆุฏ ู„ุฃ ูˆุงุญุฏ ู„ุฅู†ู‡
205
00:16:59,490 --> 00:17:03,950
ู„ู…ุง ุงุญุท ู…ูƒุงู† n ุจูŠุณุงูˆูŠ k ุฒุงุฆุฏ ูˆุงุญุฏ ุจูŠุตูŠุฑ ู‡ุฐู‡ k ุฒุงุฆุฏ
206
00:17:03,950 --> 00:17:09,030
ุงุชู†ูŠู† ุงุดูˆู ุงู„ู„ู‰ ุทู„ุนุชู‡ ุตุญ ูˆู„ุง ู„ุฃ ุจูŠุณุงูˆูŠ ุชุจุญุงู†ุฉ ูˆุงุญุฏ
207
00:17:09,030 --> 00:17:12,990
ู†ุงู‚ุต x ุชุฑุจูŠุน ุนู„ู‰ ุงุชู†ูŠู† ููŠูƒุชูˆุฑูŠุง ู„ู…ุง ุงุซุฑ ุงู„ุงุฎุฑ ูˆุงุญุฏ
208
00:17:12,990 --> 00:17:17,790
ุงู„ู„ู‰ ู‡ูŠ ู†ุงู‚ุต ูˆุงุญุฏ ู‚ุต ู…ูŠู† k ุฒุงุฆุฏ ูˆุงุญุฏ ููƒุณ ู‚ุต ุงุชู†ูŠู†
209
00:17:17,790 --> 00:17:20,970
ููŠ k ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุนู†ูŠ ุงุชู†ูŠู† k ุฒุงุฆุฏ ุงุชู†ูŠู† ูˆู‡ุง ุงุชู†ูŠู† k
210
00:17:20,970 --> 00:17:25,760
ุฒุงุฆุฏ ุงุชู†ูŠู† ูƒู„ ููŠูƒุชูˆุฑูŠุงุงู„ุงู† ุตุงุฑุช ู‡ุฐู‡ ุตุญูŠุญุฉ for n
211
00:17:25,760 --> 00:17:30,600
ุงูŠุด ุจุชุณุงูˆูŠ k ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ุชุงู†ูŠ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุจุซุจุชู‡ุง
212
00:17:30,600 --> 00:17:35,260
ุตุญูŠุญุฉ for ุงูŠุด for k ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุนู†ูŠ ุจุฏูŠ ุงุญุณุจ ู…ูŠู† ูŠุง
213
00:17:35,260 --> 00:17:42,300
ุฌู…ุงุนุฉ ุจุฏูŠ ุงุญุณุจ SูƒุฒุงูŠุฏ ุงุชู†ูŠู† ุงูŠุด ุญุณุจ ุงู„ู„ูŠ ููˆู‚
214
00:17:42,300 --> 00:17:47,180
ุจุชุณุงูˆูŠ ุจุณุงูˆูŠ ุงู„ integration ู…ู† ุณูุฑ ู„ X ู„ CK ุฒุงูŠุฏ
215
00:17:47,180 --> 00:17:54,020
ุงุชู†ูŠู† of T DT ูˆ ุจุงุฌูŠ ุจุนูˆุถู‡ุง ู‡ู†ุง ูˆ ุจูƒู…ู„ู‡ุง ูˆ ุจุชุทู„ุน
216
00:17:54,020 --> 00:17:57,800
ุนู†ุฏู‰ ุจุงู„ุธุจุท ุงู„ formula ู‡ุฐู‡ ูŠุนู†ูŠ ุตุญ ุจูŠุตูŠุฑ ุนู†ุฏู‰
217
00:17:57,800 --> 00:18:01,620
ุจุชุนู…ู„ู‡ุง ู„ุญุงู„ูƒ ู„ุงู† ุญุณุงุจุงุช ู†ูุณ ุงู„ุฃุณู„ูˆุจ ุจุชุทู„ุน ุนู†ุฏู‰
218
00:18:01,620 --> 00:18:06,310
ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุตุญูŠุญุฉ for mean ุจุฑุถู‡for an ุจุชุณุงูˆูŠ k
219
00:18:06,310 --> 00:18:11,050
ุฒุงุฆุฏ ูˆุงุญุฏ ุฅุฐุง ู‡ุฐุง ุตุงุฑ ุงู„ู…ู‚ุฏุงุฑ ุตุญูŠุญ ุฏุงุฆู…ุง for mean
220
00:18:11,050 --> 00:18:20,430
for any k for any n element in n ุงู„ุงู† ูˆุงุถุญ ุงู†
221
00:18:20,430 --> 00:18:26,310
ุงู„ุฎุทูˆุงุช ู…ุดุงุจู‡ุฉ ู„ุฎุทูˆุงุช ุงู„ exponential ู†ูŠุฌูŠ ุงู„ุขู†
222
00:18:26,310 --> 00:18:28,970
ู‚ุตู‘ู„ n prime
223
00:18:38,770 --> 00:18:45,020
ู†ุฌูŠ ุงู„ุขู†ูˆูŠู† ุฑุงูŠุญุŸ ุฒูŠ ุงู„ู„ูŠ ุจูƒูˆู†ุช ุฑุงูŠุญูŠ ุงู„ุฃูŠุงู… ุงู„ู€
224
00:18:45,020 --> 00:18:49,060
exponential ู‡ุซุจุชู„ูƒ ุฃู† ุงู„ู€ sequence ู‡ุฐู‡ converged
225
00:18:49,060 --> 00:18:52,220
uniformly ูˆู‡ุฐู‡ ุทุจุนุง ู‡ุชุตุจุญ converged uniformly
226
00:18:52,220 --> 00:18:55,000
automatic ูู‡ุชุตุจุญ ุงู„ู„ูŠ ู‡ูŠ differentiable ู„ุฃู†ู‡ ุจูŠุตูŠุฑ
227
00:18:55,000 --> 00:18:57,860
ุทุจู‚ุฉ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุชุจุนู‡ุง ุงู„ู€ differentiability
228
00:18:57,860 --> 00:19:01,200
ุจูŠุตูŠุฑ ุนู†ุฏ ู…ุงุฏุงู… differentiable ุงู„ู„ูŠ ู‡ูŠ ุงู„
229
00:19:01,200 --> 00:19:04,580
derivative ุงู„ู„ูŠ ู„ู‡ุง exist ูˆ ู‡ุชูƒูˆู† ุงู„ derivative
230
00:19:04,580 --> 00:19:07,960
ู…ุชุญู‚ู‚ ุงู„ุดุฑูˆุท ูˆ ุจูŠูƒูˆู† ุฎู„ุงุต ู†ุนู… ู†ุดูˆู ุฃุด ุจู‚ูˆู„ ุทูŠุจ
231
00:19:07,960 --> 00:19:12,530
ุงู„ุขู†ุจุนุฏ ู…ุง ุทู„ุนู†ุง ู‡ุฏูˆู„ุฉ let a ุฃูƒุจุฑ ู…ู† ุตูุฑ b given
232
00:19:12,530 --> 00:19:15,790
ู†ูุณ ุงู„ุฎุทูˆุงุช ุชุจุนุช ุงู„ exponential then if ุงู„absolute
233
00:19:15,790 --> 00:19:19,970
value of x ุฃุตุบุฑ ุจุณูˆุก a and m ุฃูƒุจุฑ ู…ู† n ุฃูƒุจุฑ ู…ู† 2a
234
00:19:19,970 --> 00:19:25,510
ูŠุนู†ูŠ ุจุชุฏุงุฎุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุงู…ุงุช ู„ุฃูƒุจุฑ ู…ู† n ูˆ ุฃูƒุจุฑ ู…ู† 2a
235
00:19:25,510 --> 00:19:29,650
ูŠุนู†ูŠ ุงู„ุขู† ุฃู†ุง ุจุดุชุบู„ ุนุงู„ูŠู† ูŠุง ุฌู…ุงุนุฉ ุงู„ูุชุฑุฉ ู…ู† ู†ุงู‚ุต
236
00:19:29,650 --> 00:19:34,570
a ู„ุนู†ุฏ a ูˆุฃุฎุฏุช ุงู„ a arbitrarily ุฃูƒุจุฑ ู…ู† ุตูุฑ ู„ูƒู†
237
00:19:34,570 --> 00:19:41,850
fixed ุงู„ุงู† we haveุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ..ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
238
00:19:41,850 --> 00:19:50,630
A ุงู„ู€ A ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ 2N ุจู…ุง ุฃู†ู‡ N ุฃูƒุจุฑ ู…ู† 2A ุงุฌุณู…
239
00:19:50,630 --> 00:19:56,790
ุงู„ุฌู‡ุชูŠู† ุนู„ู‰ 2N ู‡ู† ุนู„ู‰ 2N ูˆ ู‡ู† ุนู„ู‰ 2N ุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ู€
240
00:19:56,790 --> 00:20:07,710
A ุนู„ู‰ N .. A ุนู„ู‰ N ุฃุตุบุฑ ู…ู† ุงู„ู†ุตุŒ ุตุญุŸู‡ูŠ a ุชุฑูˆุญ
241
00:20:07,710 --> 00:20:11,090
ุงู„ุชู†ูŠู† ู…ุน ุงู„ุชู†ูŠู† ูˆู‡ุฐู‡ n ู…ุน ุงู„ n ุจุตูŠุฑ a ุฃุนู„ูŠู‡ุง ุฃุตุบุฑ
242
00:20:11,090 --> 00:20:16,050
ู…ู† ู†ุต ูŠุนู†ูŠ a ุนู„ู‰ 2n ุฃุตุบุฑ ู…ู† 1 ุนู„ู‰ 4 ุฌุณู…ุช ุงู„ุชู†ูŠู†
243
00:20:16,050 --> 00:20:22,400
ุนุงู„ู…ูŠุง ุนู„ู‰ 2 ุฅุฐุง ู„ู…ุง ุชูƒูˆู† ุงู„ n ุฃูƒุจุฑ ู…ู† 2aู‡ุชุทู„ุน
244
00:20:22,400 --> 00:20:24,640
ุนู†ุฏู‡ุง get ุจุชุนุฑู ู„ูŠุด ู‡ุฐู‡ ู„ุฅู† ุจุชู„ุฒู…ู†ุง ููŠ ุงู„ุญุณุงุจุงุช
245
00:20:24,640 --> 00:20:28,580
ุจุนุฏ ุดูˆูŠุฉ ู‡ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ ู„ู…ุง ุงู„ุงุชู†ูŠู† a ุฃุตุบุฑ ู…ู† n
246
00:20:28,580 --> 00:20:31,960
ุจุชูƒูˆู† ุนู†ุฏ a ุนู„ู‰ ุงุชู†ูŠู† n ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฑุจุน ุงู„ู…ุฑุฉ
247
00:20:31,960 --> 00:20:35,460
ุงู„ู„ูŠ ูุงุชุช ูƒุงู† ู„ุงุฒู…ู†ุง a ุนู„ู‰ n ุฃุตุบุฑ ู…ู† ู†ุต ูˆูƒู…ู„ู†ุง ุงู„
248
00:20:35,460 --> 00:20:40,650
series ุงู„ู„ูŠ ู…ุชุฐูƒุฑ ุงู„ู„ูŠ ุนู…ู„ู†ุง ููŠ ุงู„ู„ูŠ ู‡ูŠุงู„ู€
249
00:20:40,650 --> 00:20:43,330
Exponential ุฃู†ุง ุจุญูƒูŠุด ุชูุงุตูŠู„ู‡ ูˆ ู…ูุชุฑุถ ุงู† ุงู†ุชูˆุง
250
00:20:43,330 --> 00:20:47,570
ูุงู‡ู…ูŠู† ุญุณุจ ุญูƒูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ู€ Exponential ุงู„ุงู†
251
00:20:47,570 --> 00:20:52,290
ู„ู„ุฃู…ุงุช ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู† M ุฃูƒุจุฑ ู…ู† 2A ุจุฏูŠ ุงุญุณุจ ุงู„ู€CM
252
00:20:52,290 --> 00:20:59,870
ู†ุงู‚ุต 2 ุงู„ู€SN ุนุดุงู† ุชุธู„ู‡ุง ุฌุฏุงู…ูƒู… ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡ ุนู†ุฏู‰
253
00:20:59,870 --> 00:21:06,960
ุงู„ุงู† ุงู„ู€CMุงู„ู€ C M ุงู„ู€ C M ุดุงูŠููŠู†ู‡ุงุŸ ุจุชุธู„ู‡ุง ู…ุงุดูŠุฉ
254
00:21:06,960 --> 00:21:10,940
ูˆุงุญุฏ ู„ูˆ ู .. ุงู„ุขู† ู‡ุฐู‡ M ุจุฏุฃ ุงู„ู€ N ุฒุงุฏ ูˆุงุญุฏ ุงูŠุด
255
00:21:10,940 --> 00:21:14,880
ุงุณู…ู‡ุงุŸ M ุจุชุธู„ู‡ุง ู…ุงุดูŠุฉ ูˆุงุญุฏ ู†ุงู‚ุต X ุฃุฑุจุน ุนู„ู‰ ุงุชู†ูŠู†
256
00:21:14,880 --> 00:21:18,820
ููŠูƒุชูˆุฑูŠุงู„ X ุฃุฑุจุน ุนู„ู‰ ุฃุฑุจุน ููŠูƒุชูˆุฑูŠุงู„ ูˆุงู„ู€ M ุฃูƒุจุฑ ู…ู†
257
00:21:18,820 --> 00:21:23,160
ุงู„ู€ N ู‡ุชุฌูŠู‡ ูŠู‚ุจู„ ููŠ ุทุฑูŠู‚ู‡ุง ู…ู† ุงู„ู€ N ุงู„ู€ N ุจูŠุตูŠุฑ
258
00:21:23,160 --> 00:21:27,540
ุงู„ู€ N ุทุจุนุง ุฅูŠู‡ ุดู…ุงู„ู‡ุงุŸ ุงู„ู€ N ุนุจุงุฑุฉ ุนู† ููŠ ุฌุจู„ ุงู„
259
00:21:27,540 --> 00:21:33,590
term ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ N ู†ุงู‚ุต ูˆุงุญุฏุฃู‡ ูุจุตูŠุฑ ุฒุงุฆุฏ ุงู„ู„ูŠ
260
00:21:33,590 --> 00:21:39,350
ู‡ูˆ ู†ุงู‚ุต ูˆุงุญุฏ ุฃุณ ุงู† ู†ุงู‚ุต ูˆุงุญุฏ ููŠ X ุฃุณ ุงุชู†ูŠู† ุงู… ู†ุงู‚ุต
261
00:21:39,350 --> 00:21:44,050
ุงุชู†ูŠู† ุนู„ู‰ ุงุชู†ูŠู† ุงู… ู†ุงู‚ุต ุงุชู†ูŠู† ุงู„ูƒู„ factorial ูˆ
262
00:21:44,050 --> 00:21:48,390
ุจุชูƒู…ู„ ู‡ุฐุง ูˆ ุจุชุจู‚ู‰ ู…ูƒู…ู„ ุงูŠู‡ ุงู†ุช ู„ู…ุง ุงุชุตู„ ู„ุนู†ุฏ X ุฃุณ
263
00:21:48,390 --> 00:21:54,670
ุงุชู†ูŠู† ุงู… ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุฃู† ู‡ุฐุง ู„ู„ ุงู… ู…ุด ู„ู„ ุงู† ุฒุงุฆุฏ
264
00:21:54,670 --> 00:21:59,730
ูˆุงุญุฏ ุนู„ู‰ ุงุชู†ูŠู† ุงู… ู†ุงู‚ุต ุงุชู†ูŠู† ุงู„ูƒู„ ุงุดู…ุงู„ู‡ factorial
265
00:22:00,420 --> 00:22:08,320
ู„ู…ุง ุชุทุฑุญ ุงู„ CM ู†ู‚ุต ุงู„ CN ุงู„ู„ูŠ ู‡ูˆ ู„ู‡ุง ุจูŠุตูŠุฑ ุงู„ู…ุชุจู‚ู‰
266
00:22:08,320 --> 00:22:12,600
ู‡ูŠู‡ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ุจุงู„ุธุจุท ู‚ุจู„ ู‡ูŠูƒ ูุจูŠุตูŠุฑ ุงู„ CM ู†ู‚ุต ุงู„
267
00:22:12,600 --> 00:22:18,080
CN ุจุณุงูˆูŠ ุงู„ู†ู‚ุต ูˆุงุญุฏ ุทุจุนุง ููŠ absolute value ุนู†ุฏ X2N
268
00:22:18,080 --> 00:22:21,200
ุนุดุงู† ู‡ูŠูƒ ุทูŠุฑู†ุง ู…ุด ูุงุฑู‚ุฉ ูƒุชูŠุฑ ู†ู‚ุต ูˆ ุณุงู„ุจ ุฃุฎุฏู†ุง ู„ู‡
269
00:22:21,200 --> 00:22:25,900
absolute value ู…ุด ู‡ุชูุฑุฌ ู…ุนู†ุง ุงู„ X2N ุนู„ู‰ 2N
270
00:22:25,900 --> 00:22:32,490
vectorialู†ุงู‚ุต X ุฃุณ 2 M ุฒุงุฆุฏ 2 ุงู„ู„ูŠ ุจุนูŠุฏู‡ุง ุนู„ู‰ 2 M
271
00:22:32,490 --> 00:22:35,990
ุฒุงุฆุฏ 2 ูƒู„ู‡ factorial ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ term ุงู„ู„ูŠ ู‡ูˆ X
272
00:22:35,990 --> 00:22:41,170
ุฃุณ 2 M ู†ุงู‚ุต 2 ุนู„ู‰ 2 M ู†ุงู‚ุต 2 ูƒู„ู‡ factorial ู‡ุฐุง
273
00:22:41,170 --> 00:22:46,670
ุงู„ุฃู† ู‡ุฐุง ู†ูุณู‡ ุฃุฎุฏู†ุง ุงุญู†ุง ุงู„ absolute value ู„ู„ X
274
00:22:46,670 --> 00:22:50,350
ุฃุตุบุฑ ู…ู† A ููŠ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ุงุญู†ุง ุดุบุงู„ูŠู† ููŠ ุงู„ูุชุฑุฉ ุงู„
275
00:22:50,350 --> 00:22:54,430
absolute value X ุฃุตุบุฑ ู…ู† A ุงู„ุขู† ุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ X
276
00:22:54,430 --> 00:23:05,180
ู†ูุณู‡ุงุฃูุณ 2n ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ a ุฃูุณ 2n ุนู„ู‰
277
00:23:05,180 --> 00:23:09,240
2n ุงู„ูƒู„ factorial ุงู„ุฃูˆู„ู‰ ุฒุงุฆุฏ ุงุณุชุฎุฏู…ุช triangle
278
00:23:09,240 --> 00:23:13,440
inequality ู‡ุฐู‡ ุฒุงุฆุฏ ู‡ุฐู‡ ุฒุงุฆุฏ ู‡ุฐู‡ ุฒุงุฆุฏ ู‡ุฐู‡ ุงู„ุขู†
279
00:23:13,440 --> 00:23:18,240
ุฒุงุฆุฏ ุงู„ู„ูŠ ุจุนูŠุฏู‡ุง ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ ูˆุงุญุฏุฉ x ุฃูˆ ุงู„ู„ูŠ ุฌุงุจ
280
00:23:18,240 --> 00:23:23,420
ุงู„ู„ูŠ ุฎู„ูŠู†ูŠ ุงูƒุชุจู‡ุง ุนุดุงู† x ุงู„ู„ูŠ ู‡ูŠ ุจุตูŠุฑ aุฃุณ ุงุชู†ูŠู† ุงู†
281
00:23:23,420 --> 00:23:28,060
ุฒุงุฆุฏ ุงุชู†ูŠู† ุนู„ู‰ ุงุชู†ูŠู† ุงู† ุฒุงุฆุฏ ุงุชู†ูŠู† ู„ูƒู„ factorial
282
00:23:28,060 --> 00:23:37,020
ุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ term ุนู†ุฏูŠ ู‡ู†ุง ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ term
283
00:23:37,020 --> 00:23:43,160
ุงู„ู„ูŠ ู‡ูˆ ุฒุงุฆุฏ
284
00:23:43,160 --> 00:23:57,230
ู‡ุฐุง ุงู„ term ุงู„ู„ูŠ ู‡ูˆ ุฒุงุฆุฏA 2M-2 2M-2 ูƒู„ A ุดู…ุงู„ู‡
285
00:23:57,230 --> 00:24:03,930
ููƒุชูˆุฑูŠุง ุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏ ู‡ุฐุง A 2N 2N ูƒู„ ููƒุชูˆุฑูŠุง ุงู„ุนุงู…
286
00:24:03,930 --> 00:24:11,460
ุงู„ู…ุดุชุฑูƒุจุธู„ ุนู†ุฏู‰ 1 ุฒุงุฆุฏ a ุชุฑุจูŠุน ู„ุฃู†ู‡ ุจูŠุตูŠุฑ a ูŠุณูˆู‰ 2
287
00:24:11,460 --> 00:24:17,960
a ุชุฑุจูŠุน ุนู„ู‰ ู…ูŠู† ุนู„ู‰ 2n ุฒุงุฆุฏ 2 ุฃูƒูŠุฏ ุงู„ 1 ุนู„ู‰ 2n
288
00:24:17,960 --> 00:24:23,280
ุฒุงุฆุฏ 2 ุฃุตุบุฑ ู…ู† 1 ุนู„ู‰ 2n ู„ุฃู†ู‡ 2n ุฃุตุบุฑ ู…ู† ู‡ุฐู‡
289
00:24:23,280 --> 00:24:27,240
ูู…ู‚ู„ูˆุจู‡ุง ุจูŠุตูŠุฑ ุฃูƒุจุฑู…ุงุดูŠ ูˆ ุจุถู„ ุฒูŠ ู…ุง ุนู…ู„ุชู‡ ุงู„ู…ุฑุฉ
290
00:24:27,240 --> 00:24:32,700
ุงู„ูุงุชุฉ ุฃุณุญุจ ู…ู†ู‡ A ุฃุณ 2 ุนู„ู‰ N ูˆ ููŠ ุงู„ุขุฎุฑ ุฃุณุชุจุฏู„
291
00:24:32,700 --> 00:24:37,680
ุงู„ู„ูŠ ู‡ูˆ 2N ู‡ุฐู‡ ุนู† ุงู„ุฑู‚ู… ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู†ู‡ N ูุจุตูŠุฑ ู‡ูŠ
292
00:24:37,680 --> 00:24:41,400
ู…ู‚ู„ูˆุจู‡ุง ุฃูƒุจุฑ ูุจุชุถู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ inequality ุฒูŠ ู‡ูŠูƒ
293
00:24:41,400 --> 00:24:45,840
ูˆ ุจูƒูˆู† ุณุญุจุชูŠ 2 ู…ู† ู‡ุฐู‡ ุจูŠุตูŠุฑ 2 ุงู… ู†ู‚ุต 2 ุงู… ู†ู‚ุต ุงูŠุด
294
00:24:45,840 --> 00:24:53,350
ู†ู‚ุต 2 ูˆุตู„ู†ุง ู„ุนู†ุฏ ุงู„ inequality ู‡ุฐู‡ ุงู„ุขู†ุฃุญู†ุง ู‚ู„ู†ุง a
295
00:24:53,350 --> 00:24:58,950
ุนู„ู‰ 2n ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฑุจุนู‡ ูŠุนู†ูŠ ุจูŠุตูŠุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
296
00:24:58,950 --> 00:25:05,310
ูƒู„ู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ a ุฃุณ 2n ุนู„ู‰ 2n ู„ูƒู„ factorial
297
00:25:05,310 --> 00:25:09,550
ู…ุถุฑูˆุจ ููŠ ู…ูŠู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู„ุฃู† ุงู„ุฑุจุน ุฃูƒุจุฑ ู…ู†ู‡ู… ุจุณ
298
00:25:09,550 --> 00:25:14,930
ุชุจุฏุฃ ูƒู„ ูˆุงุญุฏ ูˆู‚ุช ู…ุง ูƒุงู†ูˆุง ุฅูŠู‡ุงุด ุฑุจุน ูˆุงุญุฏ ุฒุงุฏ ูˆุงุญุฏ
299
00:25:14,930 --> 00:25:23,510
ุนู„ู‰ ุฃุฑุจุนุฉ ุชุฑุจูŠุนุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ ูˆุงุญุฏ a ุงู„ู„ูŠ ู‡ูˆ
300
00:25:23,510 --> 00:25:31,370
ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุนุฉ ุงู„ูƒู„ ุฃุณ ุงุชู†ูŠู† ุงู… ู†ุงู‚ุต
301
00:25:31,370 --> 00:25:36,590
ุงุชู†ูŠู† ุงู… ู†ุงู‚ุต ุงูŠุด ุงุชู†ูŠู† ู‡ุฐู‡ ุงู„ุงู† ุงู„ ุงู„ ุงู„ ุงู„
302
00:25:36,590 --> 00:25:39,710
finite geometric series ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ infinite
303
00:25:39,710 --> 00:25:45,770
ุงู„ู„ูŠ ู‡ูŠ a ุฃุณ ุงุชู†ูŠู† ุงู† ุนู„ู‰ ุงุชู†ูŠู† ุงู† ู„ูƒู„ factorial
304
00:25:45,770 --> 00:25:53,570
ููŠ ุงู„ู„ูŠ ู‡ูˆุงู„ู€ summation ุฏู‡ ูˆุงุญุฏ ุฒุงุฆุฏ ุฑุจุน ุชุฑุจูŠุน
305
00:25:53,570 --> 00:26:00,310
ุฒุงุฆุฏ ุฑุจุน ุชูƒุนูŠุจ ุฒุงุฆุฏ ู„ู…ู‘ุง ุฃุตู„ ุฑุจุน ุฃุณ ุฃุฑุจุนุฉ ุฒุงุฆุฏ ุฅู„ู‰
306
00:26:00,310 --> 00:26:05,070
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐู‡ ุงู„ุฃู† ุฃุณุงุณู‡ุง ุฌุฏุงุด ูˆูƒุฃู†ู‡ ุฃุณุงุณู‡ุง ูƒู„
307
00:26:05,070 --> 00:26:11,750
ู…ุฑุฉ ุชู…ุฏ ูˆุงุญุฏ ุนู„ู‰ ุณุช ุนุดุฑ ูุจุชุตูŠุฑ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุญุฉ ุงู„ู„ูŠ
308
00:26:11,750 --> 00:26:16,470
ู‡ูŠ ูˆุงุญุฏ ู…ุฌู…ูˆุญุฉ ุจุชุนุฑููˆู‡ุง ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุณุช ุนุดุฑ
309
00:26:17,250 --> 00:26:21,750
Passive ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุณุช ุนุดุฑ ูˆูŠุณุงูˆูŠ
310
00:26:21,750 --> 00:26:27,810
ุฌุฏุงุด ุฎู…ุณุช ุนุดุฑ ุงูˆ ุณุช ุนุดุฑ ุนู„ู‰ ุฎู…ุณุช ุนุดุฑ ู„ุฃู† ู‡ุฐู‡ ูˆุงุญุฏ
311
00:26:27,810 --> 00:26:29,870
ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุณุช ุนุดุฑ ุชุทู„ุน ุฎู…ุณุช ุนุดุฑ ุนู„ู‰ ุณุช ุนุดุฑ
312
00:26:29,870 --> 00:26:34,830
ู…ุฌู„ูˆุจุฉ ุจูŠุตูŠุฑ ุณุช ุนุดุฑ ุนู„ู‰ ุฎู…ุณุช ุนุดุฑุงู„ู…ูู‡ูˆู… ุงู„ู…ู‚ุตูˆุฏ ู‡ูˆ
313
00:26:34,830 --> 00:26:38,670
ุจุณู…ุญู‡ุง Geometric Series ุจุถู„ ุจู‚ูˆู„ ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ
314
00:26:38,670 --> 00:26:41,930
ุงู„ุตู…ุงุดู† ุฅู„ู‰ ู…ุงู„ู‡ ู†ู‡ุงูŠุฉ ูˆ ุจุฒุฏุจุฏู„ ู‡ุฐุง ุจุงู„ู„ูŠ ุฃูƒุจุฑ
315
00:26:41,930 --> 00:26:46,070
ู…ู†ู‡ุง ูุจุชุธู„ ู‡ุฐู‡ ุฃูƒุจุฑ ุงู„ุงู† ู…ุฌู…ูˆุญู‡ุง ุจูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† 16
316
00:26:46,070 --> 00:26:51,010
ููŠ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู„ูŠ ุฏู„ู‡ ู…ูˆุฎูˆุฏ ุนุงู… ุงู„ู…ุดุชุฑูƒ ูุจูŠุตูŠุฑ
317
00:26:51,010 --> 00:26:58,940
ุนู†ุฏู‰ ุงู„ุขู† ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ CMู†ู‚ุต ุงู„ู€CN ุฒูŠ ู…ุง
318
00:26:58,940 --> 00:27:04,460
ุญูƒูŠู†ุง ู‚ุจู„ ุฐู„ูƒ ุจุงู„ุธุจุท ุฃุตุบุฑ ู…ู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ุฐุง
319
00:27:04,460 --> 00:27:09,000
limit ูˆ ุงูŠู† ุจูŠุฑูˆุญ as N goes to infinity ุจูŠุฑูˆุญ ู„ู€ 0
320
00:27:09,000 --> 00:27:13,760
ุฅุฐุง ุจูŠุตูŠุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ CM
321
00:27:13,760 --> 00:27:20,800
of X ู†ู‚ุต CN of X ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณูˆุก Y for very
322
00:27:20,800 --> 00:27:28,700
large M and NM and N ู„ุฃู†ู‡ ู„ู…ุง ุชูƒุจุฑ M ูƒุซูŠุฑ N ูƒุซูŠุฑ
323
00:27:28,700 --> 00:27:33,100
ุชุฑูˆุญ ู„ู†ุง ู„ู†ู‡ุงูŠุฉ ู„ุฃู†ู‡ limit ุจุฑูˆุญ ู„ู‡ุง ุณูุฑ as N goes
324
00:27:33,100 --> 00:27:37,080
to infinity ุงู„ M ุจุฑุถู‡ ุจุชูƒุจุฑ ุฅุฐุง for very large M
325
00:27:37,080 --> 00:27:40,800
ู‡ูŠูƒูˆู† ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฅุจุณู„ูˆู† ู„ุฃูŠ ุฅุจุณู„ูˆู† ููŠ
326
00:27:40,800 --> 00:27:44,480
ุงู„ุฏู†ูŠุง ู„ุฃู†ู‡ ู‡ุฐุง ุจูŠู‚ุฏูŠ ู„ู„ุณูุฑ ูุจูŠุตูŠุฑ ุตุบูŠุฑ ุตุบูŠุฑ ุตุบูŠุฑ
327
00:27:44,480 --> 00:27:48,720
ุตุบูŠุฑ ู„ุฏุฑุฌุฉ ุฅู†ู‡ ู…ุถุฑูˆุจ ููŠ ู‡ุฐุง ูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†
328
00:27:48,720 --> 00:27:53,360
ูˆู‡ุฐู‡ ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡ุงุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Cauchy criterion
329
00:27:53,360 --> 00:28:00,040
for uniform continuity ู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ู‡ ู„ู…ูŠู†ุŸ ุตุญูŠุญ
330
00:28:00,040 --> 00:28:06,880
ู„ุฃูŠ X ูˆูŠู† ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูˆ absolute value X ุฃุตุบุฑ
331
00:28:06,880 --> 00:28:11,220
ุฃูˆ ูŠุณุงูˆูŠ A ูŠุนู†ูŠ ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู…ูˆู„ู‚ุฉ ู…ู† ู†ุงู‚ุต A ู„ุนู†ุฏ
332
00:28:11,220 --> 00:28:19,110
A ูˆู‡ุฐุง ุจูŠุนุทูŠู†ูŠ ุฃู† ุงู„ู€is uniformly continuous ุนู„ู‰
333
00:28:19,110 --> 00:28:24,150
ุงู„ูุชุฑุฉ ู…ู† ู†ูุณ A ู„ุนู†ุฏ A is as if is uniformly is
334
00:28:24,150 --> 00:28:28,330
uniformly convergence ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ู†ูุณ A ู„ A ูŠุนู†ูŠ
335
00:28:28,330 --> 00:28:35,790
ุจู…ุนู†ู‰ ุขุฎุฑ ุตุงุฑุช ุนู†ุฏูŠ ุงู„ sequence ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ CNN
336
00:28:35,790 --> 00:28:43,150
converts uniformly to some function ุนุงู„ู…ูŠุง ุนู„ู‰
337
00:28:43,150 --> 00:28:50,730
ุงู„ูุชุฑุฉู…ู† ู†ุงู‚ุต a ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ a ุงู„ุขู† ุทุจ ู…ุง ู‡ูˆ ุงู„ู„ูŠ
338
00:28:50,730 --> 00:28:53,930
ุนู…ู„ู†ุงู‡ุง ุฃู†ุง ุนู„ู‰ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ู†ู‚ุฏุฑ ู†ุนู…ู„ู‡ ุนู„ู‰ ุฃูŠ ุดูŠุก
339
00:28:53,930 --> 00:28:58,310
ุซุงู†ูŠ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ู„ูˆ ุฌูŠุช ุฃุฎุฏุช x element in R
340
00:28:58,310 --> 00:29:04,400
ู‡ู„ุงุฌูŠ number aุจุญูŠุซ ุฃู† ู‡ุฐุง ุงู„ number a ู‡ูŠ ุงู„ x ููŠ
341
00:29:04,400 --> 00:29:10,180
ุงู„ R ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ a ุจุญูŠุซ ุฃู† ู†ุงู‚ุต a ูˆ a ุชูƒูˆู† ุงู„ x ููŠ
342
00:29:10,180 --> 00:29:15,340
ุงู„ูุชุฑุฉ ุจูŠู† ู†ุงู‚ุต a ูˆ a ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู‡ุนู…ู„ ู†ูุณ ุงู„ู„ูŠ
343
00:29:15,340 --> 00:29:18,100
ุนู…ู„ุชู‡ ููŠ ุงู„ุฃูˆู„ ูˆ ู‡ุญุตุฑ ุนู„ู‰ c ุฃู† uniformly
344
00:29:18,100 --> 00:29:23,030
convergence ุนู„ู‰ ู‡ุฐู‡ ุงู„ูุชุฑุฉูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ุขู† ุตุงุฑ
345
00:29:23,030 --> 00:29:29,450
ุนู†ุฏูŠ limit cn of x for any x exist ุจุฏู‡ ุฃุณู…ูŠู‡ุง ู‡ุฐู‡
346
00:29:29,450 --> 00:29:35,190
limit c of x ูˆุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุฃุนุฑู ุงู„ุขู† in
347
00:29:35,190 --> 00:29:38,710
particular this means that cn of x converge for
348
00:29:38,710 --> 00:29:42,710
each x element in R we define c ู…ู† R ู„R by c of x
349
00:29:42,710 --> 00:29:45,650
ุจุณูˆุงูŠุฉ limit cn of x for x element in R
350
00:29:53,570 --> 00:29:59,630
ุงู„ุงู† .. ุจู…ุง ุงู†ู‡ ุงู„ุงู† ุงู„ู€Cn ู…ุฑุชุจุท ุจุดูƒู„ ู…ุฑุชุจุท ู„ู€C ุฒูŠ
351
00:29:59,630 --> 00:30:04,690
ู…ุง ู‚ู„ู†ุง ุฃูˆ ุงู„ู€Cn of X ูƒู„ู‡ู… ู…ุฑุชุจุท ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ
352
00:30:04,690 --> 00:30:08,030
ุงู„ู†ุธุฑูŠุฉ ููŠ ุงู„ู€pointwise .. ุงู„ู€uniform convergence
353
00:30:08,030 --> 00:30:12,360
ุงู„ู„ูŠ ู‡ูˆ the limit .. the uniform .. limitุฃูˆ ุงู„ู€
354
00:30:12,360 --> 00:30:15,220
Form convergence of a sequence of continuous
355
00:30:15,220 --> 00:30:18,480
functions ู…ุตู…ุฏ ูƒูˆู†ุชู†ูŠูˆุงุณ ุงู„ู€ limit ุชุจุนุชู‡ุง ูŠุนู†ูŠ
356
00:30:18,480 --> 00:30:21,160
ู‡ุชุทู„ุน ุนู†ุฏูŠ C of X continuous ู…ุซู„ุงู‹ C of X
357
00:30:21,160 --> 00:30:25,000
continuous ุฅุฐุง ุนู†ุฏูŠ .. ุงู„ู„ูŠ ู‡ูˆ ุตุงุฑ ุนู†ุฏูŠ ุงู„ู€
358
00:30:25,000 --> 00:30:28,160
function ู‡ุฐู‡ continuous ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ C ุงู„ู„ูŠ ุฅุญู†ุง
359
00:30:28,160 --> 00:30:33,730
ุจุฏู†ุง ุฅูŠุงู‡ุง ูˆู…ุด ู‡ูŠูƒ ูˆ limitCn of 0 as n goes to
360
00:30:33,730 --> 00:30:37,270
infinity ุจุณุงูˆุฉ limit ุงู„ู„ูŠ ู‡ูŠ Cn of 0 ุงูŠุด ุจุชุณุงูˆูŠ
361
00:30:37,270 --> 00:30:41,910
ูˆุงุญุฏ ูˆู‡ูŠ ุณุงูˆูŠุฉ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุงู„ู€C of
362
00:30:41,910 --> 00:30:47,370
ุงูŠุด of 0 ู„ุฃู† ุงุญู†ุง ู…ุชูุฌูŠู† ุงู„ู€C of X ุจุณุงูˆูŠุฉ limit Cn
363
00:30:47,370 --> 00:30:51,310
of X ูˆ in particular for X ุจุชุณุงูˆูŠุฉ ุณูุฑ ุจุณูŠุฑุฉ limit
364
00:30:51,310 --> 00:30:55,430
Cn of 0 ุจุณุงูˆูŠุฉ C of 0 ูˆCn of 0 ูƒู„ู‡ุง ูˆุงุญุฏ ุงูŠุถุง
365
00:30:55,430 --> 00:30:57,730
limit ุงู„ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุจุณุงูˆูŠุฉ ูˆุงุญุฏ ูŠุนู†ูŠ ุงู„ู€C of 0
366
00:30:57,730 --> 00:31:05,970
ุงูŠุด ู‡ุชุณุงูˆูŠุŸ ู‡ุชุณุงูˆูŠ ูˆุงุญุฏุฎุตู‘ู„ุช ูƒู…ุงู† ุดุบู„ุฉ ุงู†ู‡ ุญุตู„ุช
367
00:31:05,970 --> 00:31:10,070
ุนู†ุฏูŠ ุงู† ุงู„ู€ c of zero ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
368
00:31:13,750 --> 00:31:19,670
ู„ุฃ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€S ุงู„ู€CN ุจุนู…ู„ ุงุดูŠ ู…ุดุงุจู‡ ู„ู‡ ู„ู…ูŠู† ู„ู„ู€SN
369
00:31:19,670 --> 00:31:25,250
ุนุดุงู† ู†ุซุจุช ุงู„ุขู† ุงู„ู„ูŠ ุฃุซุจุชู†ุงู‡ ุงู†ู‡ ุตุงุฑ ููŠ ุนู†ุฏู‰ ุฏู‡
370
00:31:25,250 --> 00:31:31,730
ุงู„ู„ูŠ ุนุฑูู†ุงู‡ุง ุงุณู…ู‡ุง ุงู„ู€C of X ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† limit
371
00:31:31,730 --> 00:31:38,970
CN of X ุญูŠุซ ุงู„ู€C ู…ู† R ุฅู„ู‰ R ุทูŠุจ
372
00:31:41,560 --> 00:31:45,380
ุงู„ุงู† ู†ุงุฎุฏ ุงูŠุถุง ุงู„ absolute value X ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
373
00:31:45,380 --> 00:31:49,960
ุงูŠู‡ ูˆุงู„ M ุฃูƒุจุฑ ุงูˆ ูŠุณุงูˆูŠ N ูˆ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงุชู†ูŠู†
374
00:31:49,960 --> 00:32:00,360
ุงูŠู‡ ุงู„ุงู† ู†ุญุณุจ ู„ SM ู†ุงู‚ุต SN SM ุงูŠู‡ ู‚ูŠู…ุชู‡ุงDT ู…ู† ุตูุฑ
375
00:32:00,360 --> 00:32:05,400
ุงู„ุงู†ุฏูƒุณ SN ูˆู‡ูŠ SM
376
00:32:05,400 --> 00:32:11,240
ู†ุงู‚ุต ู‡ุฐู‡ ู‡ูŠ ู‚ูŠู…ุชู‡ุง ุฅุฐุง ุตุงุฑ ู‡ุฐู‡ ู†ุงู‚ุต ู‡ุฐู‡ ู‡ูŠ ู‚ูŠู…ุชู‡ุง
377
00:32:11,240 --> 00:32:19,680
ุงู„ุงู† ู‡ุฐู‡ ุณู‡ู„ ุฅุซุจุงุชู‡ุง ุฃู†ู‡ุง ุชุชุนุงู…ู„ ุงู„ absolute value
378
00:32:19,680 --> 00:32:24,200
ู„ู‡ุฐู‡ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ absolute value ู„ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ
379
00:32:24,200 --> 00:32:27,700
ูŠุณุงูˆูŠ ุงู„ integration ู…ู† 0 ู„ X ู„ absolute value CM
380
00:32:27,700 --> 00:32:35,600
of T ู†ู‚ุต CN of T ุงุดู…ุงู„ู‡ DT ู…ุงุดูŠ ุงู„ุญุงู„ ุฃูˆ ุจู†ูƒู…ู„
381
00:32:35,600 --> 00:32:39,580
ุงู„ู„ูŠ ู‡ูˆ ุจู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ
382
00:32:39,580 --> 00:32:42,820
ูŠุณุงูˆูŠ ู…ู† ุงู„ุญุณุงุจุงุช ุงู„ู„ูŠ ุญุณุจู†ุงู‡ุง ู‚ุจู„ ุดูˆูŠุฉ ู‡ุฐุง
383
00:32:42,820 --> 00:32:45,380
ุญุณุจู†ุงู‡ุง ุฃุตุบุฑ ู…ู† ู…ูŠู† ุงู„ุญุณุงุจุงุช ุงู„ู„ูŠ ู‚ุจู„ ุดูˆูŠุฉ ุฃุตุบุฑ ุฃูˆ
384
00:32:45,380 --> 00:32:52,510
ุณุงูˆูŠ A ุฃุณ 2N ุนู„ู‰ 2N ุงู„ูƒู„ factorialู…ุถุฑูˆุจุฉ ููŠ ุงู„ู„ูŠ
385
00:32:52,510 --> 00:32:58,130
ู‡ูˆ ุณุช ุนุดุฑ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุฎู…ุณุฉ ููŠ ุงู„ integration ู…ู†
386
00:32:58,130 --> 00:33:02,750
ุตูุฑ ู„ู„ X ู„ DT ู‡ุฐุง ุงู„ integration ุงูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ
387
00:33:02,750 --> 00:33:08,230
X ู…ุงุดูŠ ูˆ ุงู„ X ุนู†ุฏูŠ ุงุญู†ุง ู…ุงุฎุฏูŠู†ู‡ุง ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ู…ูŠู†
388
00:33:08,230 --> 00:33:13,010
ุงูŠู‡ ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ุงูŠู‡ ูุจุตูŠุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจูŠูƒูˆู†
389
00:33:13,680 --> 00:33:18,020
ู„ู…ุง ู†ุจุนุฏ ู…ูƒุงู†ู‡ ุจูŠุทู„ุน X ู‚ูŠู…ุชู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ A
390
00:33:18,020 --> 00:33:22,040
ูุจูŠุตูŠุฑ ู‡ุฐุง ู…ุถุฑูˆุจ ููŠ ู…ูŠู† ููŠ ุงูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ู‡ุงูŠ ุงู„ู…ู‚ุฏุงุฑ
391
00:33:22,040 --> 00:33:26,680
ูˆู‡ูŠ 16 ุนู„ู‰ 5 ูˆู‡ูŠ ุงูŠุด ุงู„ A ุตุงุฑ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
392
00:33:26,680 --> 00:33:31,600
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู†ูุณ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ุงู† as N goes
393
00:33:31,600 --> 00:33:36,690
to infinityู‡ุฐู‡ ู‚ูŠู…ุชู‡ุง ุจูŠุณุงูˆูŠ 0 ุฅุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ for
394
00:33:36,690 --> 00:33:41,470
very large M ูˆ N ู‡ูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆูŠ ูŠุณุงูˆูŠ Y ูˆ ุจุงู„ูƒูˆุดูŠ
395
00:33:41,470 --> 00:33:45,350
criterion ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ S N converts
396
00:33:45,350 --> 00:33:49,470
uniformly ูˆ ุงู„ุขู† ุนู„ู‰ ุงู„ูุชุฑุฉ ู†ู‚ุต A ูˆ A ูˆ ุงู„ A ูƒุงู†ุช
397
00:33:49,470 --> 00:33:53,730
arbitrary ุฅุฐุง S ู…ู† R ู„ R ุจู†ู‚ุฏุฑ ู†ุนุฑูู‡ุง ุจุญูŠุซ ุฅู†ู‡
398
00:33:53,730 --> 00:33:57,880
limit S N of X ุงู„ู„ูŠ ุตุงุฑุช ู…ูˆุฌูˆุฏุฉ ุนู„ู‰ ู‡ุฐู‡ูˆุจู†ุงุก ุนู„ู‰
399
00:33:57,880 --> 00:34:00,460
ุงู„ู€ A-arbitrary ุตุงุฑุช ู…ูˆุฌูˆุฏุฉ ุนู„ู‰ ูƒู„ ุงู„ู€ R ุฒูŠ ู…ุง
400
00:34:00,460 --> 00:34:04,340
ู‚ู„ู†ุง ูƒูŠู ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุณู…ูŠ limit S N of X ุงู„ูŠู…ูŠู† S
401
00:34:04,340 --> 00:34:08,980
of X ูˆู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ function ุงู„ุซุงู†ูŠุฉ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ
402
00:34:08,980 --> 00:34:13,380
ูˆุจู†ูุณ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู†ุทู‚ ูˆุจู†ูุณ ุงู„ุฃุณุจุงุจ ุจู…ุง ุฃู† ุงู„ S N
403
00:34:13,380 --> 00:34:16,860
conversion formally to S ูˆS N continuous ุฅุฐุง ุญุฏ
404
00:34:16,860 --> 00:34:22,340
ุทู„ุน ุงู„ S ุจุฑุถู‡ ู†ูุณ ุฅุดู…ุงู„ู‡ุง continuousูˆุฃูŠุถู‹ุง limit
405
00:34:22,340 --> 00:34:28,540
of S of 0 ู‡ูˆ ุนุจุงุฑุฉ ุนู† S of 0 ูˆุจู…ุง ุฃู† S of 0 ุฏุงูŠู…ุงู‹
406
00:34:28,540 --> 00:34:31,640
0 ุฅุฐู‹ุง limitู‡ุง ุณูŠูƒูˆู† as N goes to infinity 0 ูŠุนู†ูŠ
407
00:34:31,640 --> 00:34:35,300
ุณุชุธู‡ุฑ ู„ุฏูŠ S of 0 ุฅูŠุด ุจุงู„ุณุงูˆุฉ 0 ุฅุฐู‹ุง ุงู„ุขู† ุทู„ุนู†ุง
408
00:34:35,300 --> 00:34:45,840
ูƒู…ุงู† ุดุบู„ุฉ ุฃุซุจุชู†ุงู‡ุง ุฃู† S of 0ุจุณุงูˆุฉ 0 ูˆ C of 0 ุจุณุงูˆุฉ
409
00:34:45,840 --> 00:34:54,400
1 ูˆุนุฑูู†ุง ู‡ุฐูˆู„ุฉ ุงู„ุฏุงู„ุชูŠู† ุฃุณูŠ ูˆ ุฃุณ ู…ู† ุงู„ู„ูŠ ู‡ูŠ R ู„ุนู†ุฏ
410
00:34:54,400 --> 00:34:59,680
ู…ูŠู† ู„ุนู†ุฏ R ุฅุฐู† ุงู„ุขู† ุงุญู†ุง ุงู„ุฏุงู„ุชูŠู† ุงู„ู„ูŠ ุฃุซุจุชู†ุง ู„ุงู†
411
00:34:59,680 --> 00:35:05,430
ูˆุฌูˆุฏ ู‡ู†ุง ุงู„ุขู† ุงู„ู„ูŠ ุจุญูƒูŠ ุนู†ู‡ู… ู‡ุฐูˆู„ุฉ ุงู„ุฏุงู„ุชูŠู†ุงู„ู„ูŠ ู‡ูŠ
412
00:35:05,430 --> 00:35:10,190
ุงู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ุณู…ูŠุชู‡ุง ุฃุณูˆุฉ ุชุงู†ูŠุฉ C ูˆู„ุงู‚ูŠุช ุงู†ู‡ C of
413
00:35:10,190 --> 00:35:15,790
0 ุจุณุงูˆุฉ ูˆุงุญุฏ ูˆ S of 0 ุจุณุงูˆุฉ H0 ูˆุธู„ ุฃุซุจุช ู‡ุฐู‡ ูˆ ุฃุซุจุช
414
00:35:15,790 --> 00:35:22,910
ู‡ุฐู‡ ูˆ ุฃุซุจุช ู‡ุฐูˆู„ุฉ ุงู„ู„ูŠ ุฃุณุชุจุนุชู†ุง ุจุชุญู‚ู‚ู‡ู… ูุฎู„ูŠู†ุง ู†ุดูˆู
415
00:35:22,910 --> 00:35:29,670
ูƒูŠู ู†ุซุจุชู‡ุง ุทูŠุจ ุงู„ุขู† ุฃูˆุตู„ู†ุง ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู†ุทู‚ุฉ
416
00:35:29,670 --> 00:35:39,670
ู‡ุฐู‡ ู„ุฃู† ุงุญู†ุง ุงุชูุฌู†ุง ุนู„ู‰ ู…ุง ูŠู„ูŠู‡ุงุชูุฌู†ุง ุงู† ุงู„ู€ S N
417
00:35:39,670 --> 00:35:47,170
ุชุชุนุงู…ู„ ุจุดูƒู„ ุนุงู… ู„ุชุนู…ู„ S ูˆ ุงู„ู€ C N ุชุชุนุงู…ู„ ุจุดูƒู„ ุนุงู…
418
00:35:47,170 --> 00:35:54,280
ู„ุชุนู…ู„ Cู„ูƒู† ุงู„ุงู† ุงุญู†ุง ุงุซุจุชู†ุง ููŠ ุงู„ุฃูˆู„ ู‡ูŠ ุงู† ู…ุง
419
00:35:54,280 --> 00:36:00,880
ู…ุญุชุงุด ุงู„ S N ุจุฑุงูŠู… ุจุณูˆุก ุงู„ C NุŒ ู…ุธุจูˆุทุŸ ูŠุนู†ูŠ ูˆ ูƒุฃู†ู‡
420
00:36:00,880 --> 00:36:04,860
ุจู†ุงุก ุนู„ู‰ ู‡ุฐุง ู…ุฒุงู… ุงู„ S N ุจุฑุงูŠู… ุจุณูˆุก ุงู„ C N ูุจุตูŠุฑ
421
00:36:04,860 --> 00:36:09,520
ุงู„ S N ุจุฑุงูŠู…ุŒ ู‡ุฐู‡ุŒ ู…ูƒุงู†ู‡ุง ุฏูŠ S N ุจุฑุงูŠู… ุจุตูŠุฑ ุงู„ S N
422
00:36:09,520 --> 00:36:15,340
ุจุฑุงูŠู… converges uniformly to some function mean C
423
00:36:15,340 --> 00:36:22,060
ุงู„ุงู† ุจู…ุง ุงู† S N ุจุฑุงูŠู… converges uniformly to Cุงู„ุงู†
424
00:36:22,060 --> 00:36:28,900
ูˆ ุงู„ุงุณู† converged to us uniformly ุจุฑุถู‡ุญุณุจ ู†ุธุฑูŠุฉ
425
00:36:28,900 --> 00:36:32,360
ุจุชุทู„ุน ุนู†ุฏู‰ ุจู…ุง ุงู† s n prime differentiable ู‡ุชูƒูˆู†
426
00:36:32,360 --> 00:36:37,140
ุงู„ limit ู‡ differentiable ูˆ ุงู„ c prime ุงู„ู„ูŠ ู‡ูŠ ุงู„
427
00:36:37,140 --> 00:36:42,340
s prime ู‡ุฏู‰ ู‡ูŠ ู…ูŠู† ุงู„ c ุงู„ู„ูŠ ุทู„ุนุช ู‡ู† ูŠุนู†ูŠ s n
428
00:36:42,340 --> 00:36:45,960
prime differentiable ุงูˆ s n differentiable ูˆ
429
00:36:45,960 --> 00:36:48,560
converts to some function ุงุฐุง ุจุชุชุฐูƒุฑ ูƒู†ุง ู†ุณู…ูŠู‡ุง g
430
00:36:48,560 --> 00:36:52,520
ูˆ ู‡ุฏ ูƒู†ุง ู†ุณู…ูŠู‡ุง f ููƒู†ุง ู†ู‚ูˆู„ ุจู…ุง ุงู† s n ุจุชุฑูˆุญ ู„ู„ f
431
00:36:52,520 --> 00:36:56,740
ูˆ ุงู„ s n prime ุจุชุฑูˆุญ ู„ู„ g ุฅุฐุง ู†ุชูŠุฌุฉ ุงู„ู†ุธุฑูŠุฉ ู‡ุชูƒูˆู†
432
00:36:56,740 --> 00:37:00,000
ุงู„ู„ูŠ ู‡ูŠุงู„ู€ F ู‡ูŠ ุงู„ู€ Differentiable ูˆุงู„ู€ Derivative
433
00:37:00,000 --> 00:37:04,940
ู„ู‡ุง ุฅูŠุด ุจุชุทู„ุน D ูŠุนู†ูŠ ุงู„ู€ Derivative ู„ู„ู€ S' ุฅูŠุด
434
00:37:04,940 --> 00:37:12,260
ู‡ุชุทู„ุน ุนุจุงุฑุฉ ุนู† ู…ูŠู† C' ุฃุณู C ู‡ุชุทู„ุน ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
435
00:37:12,260 --> 00:37:21,000
C ุฅุฐุง ุฃุซุจุชุช ุฃู†ุง ุงู„ุขู† S' of X ุจุชุณุงูˆูŠ C of X ู‡ุงูŠ
436
00:37:21,000 --> 00:37:28,190
ุงู„ู„ูŠ ุฃุซุจุชุชู‡ ู‡ู†ุง ุงู„ุขู† ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ุฅุญู†ุง
437
00:37:28,190 --> 00:37:35,850
ุฃุซุจุชู†ุง ุงู„ู„ูŠ ู‡ูŠ ู‚ุจู„ ู‡ูŠูƒ ุฃู† ุงู„ู€CN ุจุฑุงูŠู… ุจุณูˆุก ู†ุงู‚ุต SN
438
00:37:35,850 --> 00:37:42,450
ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ู€CN ุจุฑุงูŠู… ุจุณูˆุก ู†ุงู‚ุต SN of ูˆุงุญุฏ ูŠุนู†ูŠ
439
00:37:42,450 --> 00:37:47,790
ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ู€CN ุจุฑุงูŠู… of X ุฃุซุจุชู†ุง ุจุณูˆุก ู†ุงู‚ุต SN
440
00:37:47,790 --> 00:37:54,640
ู†ุงู‚ุต ูˆุงุญุฏ of Xุงู„ุงู† ุจู…ุง ุงู† ุงู„ S Unconverted ุฒูŠ ุงู„ S
441
00:37:54,640 --> 00:38:00,260
ุฎู„ุตู†ุง ู‡ุฐู‡ ุงู‡ ุฎู„ุตู†ุง ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ุฎู„ูŠู†ูŠ ุงุดุฑุญ ุจู„ุบุฉ
442
00:38:00,260 --> 00:38:05,060
ุชุงู†ูŠุฉ ุนุดุงู† ุงู…ูŠุฒ ุจูŠู† ุงู„ูƒู„ุงู…ูŠู† ุนู†ุฏูŠ ุงู„ุงู† ุงู†ุชุจู‡ูˆุง
443
00:38:05,060 --> 00:38:08,860
ุจุชุนู…ู„ ู†ูุณูŠ ุงุดูŠ ุจุณ ุจุงู„ู†ุณุจุฉ ู„ู…ู† ุงู„ุงู† ุจุงู„ู†ุณุจุฉ ุนุดุงู†
444
00:38:08,860 --> 00:38:13,780
ุงุฌูŠุจ ุงู„ derivative ู„ู„ S ู„ู„ C primeุนู†ุฏู‰ ุงู„ุงู† ุงู„ู€CN
445
00:38:13,780 --> 00:38:19,740
prime of X ุจุณูˆุก ู†ู‚ุต SN ู†ู‚ุต ูˆุงุญุฏ of X ุจู…ุง ุฃู† SN
446
00:38:19,740 --> 00:38:23,500
ุฑุงุญุช ู„ู„ู€S ุฅุฐุง ุงู„ู„ู‰ ู‡ู‰ ุงู„ derivative ู‡ู‰ ุงู„ู„ู‰
447
00:38:23,500 --> 00:38:30,280
ุจุชุณูˆูŠู‡ุง ุงู„ู„ู‰ ู‡ู‰ CNN ุฒุงุฆุฏ ูˆุงุญุฏ prime of X ู‡ุชุฑูˆุญ
448
00:38:30,280 --> 00:38:36,770
ู„ู…ูŠู†ุŸุงู„ู„ูŠ ู‡ูŠ ู…ุด ู‡ูŠ ู†ุงู‚ุตู‡ุง ู„ุฃู† S N ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ู„ูŠ
449
00:38:36,770 --> 00:38:40,730
ู‡ูŠ ุจุณุงูˆูŠ ู†ุงู‚ุต ู‡ุฐู‡ ุฃู†ุฌู„ ู†ุงู‚ุตู‡ุง ุจุนุฏ ุฃุฐู†ูƒู… ูŠุนู†ูŠ ุจุฏูŠ
450
00:38:40,730 --> 00:38:44,810
ุฃุณุชุจุฏู„ ุงู„ู€ S N ุจู…ูŠู† ุจู‚ูŠู…ุชู‡ุง ู‡ุฐู‡ ุตุงุฑุช ู†ุงู‚ุต ุงู„ู€ C N
451
00:38:44,810 --> 00:38:50,330
prime of X ุฃูŠุด ุจุชุณุงูˆูŠ ุจุชุฑูˆุญ ู„ู„ู€ S ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ุตุงุฑ
452
00:38:50,330 --> 00:38:56,620
ุนู†ุฏูŠ ู…ู† ู‡ู†ุง ู…ู† ู‡ู†ุง ุงู„ู„ูŠ ุจุชุทู„ุน ุนู†ุฏูŠ ู‡ู†ุงุตุงุฑ ุนู†ุฏู‰
453
00:38:56,620 --> 00:39:03,640
ุงู„ุงู† ู…ู† ู‡ู†ุง ุงู„ู„ู‰ ู‡ูˆ cn ุฒุงุฆุฏ ูˆุงุญุฏ prime of x ุจุชุฑูˆุญ
454
00:39:03,640 --> 00:39:08,080
ู„ู†ุงู‚ุต ุทุจุนุง uniformly ุจุชุฑูˆุญ ู„ู…ูŠู† ู†ุงู‚ุต s ู„ุฃู†ู‡ ู†ุงู‚ุตู‡ุง
455
00:39:08,080 --> 00:39:13,040
ุจุชุฑูˆุญ ู„ู„ s ุฅุฐุง ู‡ูŠ ุจุชุฑูˆุญ ู„ู†ุงู‚ุต ุงู„ sูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช
456
00:39:13,040 --> 00:39:19,840
ุฃู†ุง ุจู‚ูˆู„ ุงู„ู€CN ู†ูุณู‡ุง ุจุชุฑูˆุญ uniform ู„ู…ูŠู†ุŸ ู„ู„ู€C ุจู†ูุณ
457
00:39:19,840 --> 00:39:24,740
ุงู„ุฅุณู„ูˆุจ ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุจู…ุง ุฃู†ู‡ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
458
00:39:24,740 --> 00:39:27,580
differentiable sequence of functions ูˆ converge
459
00:39:27,580 --> 00:39:31,260
uniform to some function ุฅุฐุง ู‡ุฐู‡ ู‡ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ
460
00:39:31,260 --> 00:39:35,600
ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€C ุงู„ุฃุตู„ูŠุฉ differentiable ูˆ ุงู„
461
00:39:35,600 --> 00:39:40,070
derivative ููŠู‡ ู„ู‡ุง ู…ูŠู†ุŸ ุงู„ู†ุงู‚ุต SูุจุตูŠุฑ ุนู†ุฏูŠ ุงู„ู€ C'
462
00:39:40,530 --> 00:39:45,970
of X ุจุณูˆุก ู†ุงู‚ุต S of X ุจูƒูˆู† ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุชูŠุฌุฉ
463
00:39:45,970 --> 00:39:50,330
ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ุทุจู‚ู†ุง ุนู„ูŠู‡ุง ุทู„ุนุช ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡
464
00:39:50,330 --> 00:39:54,050
ุงู„ุฎุงุตูŠุฉ ูˆ ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ู…ุชุญู‚ู‚ุฉ ูŠุนู†ูŠ ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ
465
00:39:54,050 --> 00:40:02,590
ุงู„ู„ูŠ ู‡ูˆ ุชุญู‚ู‚ ู…ุง ูŠู„ูŠู‡ ุฃู†ู‡ ุชุจุนุชู†ุง ู‡ุฐู‡ ุงู„ู€ C'of X
466
00:40:02,590 --> 00:40:08,530
ุจูŠุณุงูˆูŠ ู†ุงู‚ุต S of X ูˆุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ S prime of X
467
00:40:08,530 --> 00:40:16,290
ุจูŠุณุงูˆูŠ C of X ู…ุงุดูŠ ุงู„ุญุงู„ ุจูŠูƒูˆู† ู‡ูŠูƒ ุงุญู†ุง ุถุงู„ ุนู„ูŠู†ุง
468
00:40:16,290 --> 00:40:21,230
ุดุบู„ ุงุฎุฑู‰ ู„ุญุงูˆู„ ู†ุซุจุชู‡ุง ุจูŠูƒูˆู† ุงุซุจุชู†ุง ุงู„ู„ูŠ ู‡ูˆ ูƒู„
469
00:40:21,230 --> 00:40:27,630
ุงู„ุตูุงุช ุงู„ู…ุทู„ูˆุจุฉ ุงู„ู„ูŠ ุชุชุญู‚ู‚ ููŠ ุงู„ S ูˆุญุฏุฏุช ู‡ูˆูŠุฉ ุงู„ S
470
00:40:27,630 --> 00:40:28,050
ูˆ ุงู„ C
471
00:40:38,700 --> 00:40:48,060
ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุณู‡ู„ ูุถู„ ุงู„ู€ cw prime of x
472
00:41:00,590 --> 00:41:05,470
ุจุชุตูŠุฑ c double prime ู‡ูŠู‡ุง ูˆ ู‡ุฐู‡ ูุถู„ู‡ุง ุจู†ูุนู„ู‡ุง
473
00:41:05,470 --> 00:41:09,550
ู„ุฃู†ู‡ุง ู‚ุจู„ ุงู„ุชูุงุถู„ ุงู„ู„ูŠ ูุถู„ู†ุงู‡ุง ูˆุจุชุตูŠุฑ ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ
474
00:41:09,550 --> 00:41:15,030
s prime of x ุงู„ู„ูŠ ู‡ูŠ s prime of x ู‡ูŠุด ุจุชุณุงูˆูŠ c of
475
00:41:15,030 --> 00:41:20,350
x ูุจุตูŠุฑ ู†ุงู‚ุต ู…ูŠู†ุŸ c of xูˆุงู„ุขู† S W' of X ู…ู† ุฃูŠู† ุจุฏูŠ
476
00:41:20,350 --> 00:41:23,650
ุฃุฌูŠุจู‡ุง ู…ู† ู‡ู†ุง S W' ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุงู„
477
00:41:23,650 --> 00:41:26,050
derivative ุงู„ู„ูŠ ู‡ูŠ ุงู„ derivative ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
478
00:41:26,050 --> 00:41:31,530
ู†ุงู‚ุต S of X ูุจุตูŠุฑ ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต S of X ูุจุตูŠุฑ ุนู†ุฏูŠ
479
00:41:31,530 --> 00:41:38,910
ู‡ุฐุง ุจุฑุถู‡ ุงูŠุด ุชุญู‚ู‚ ุงุฎุฑ ุงุดูŠ ุงู„ู„ูŠ ู‡ูŠ C' of Zero C' of
480
00:41:38,910 --> 00:41:42,410
Zero ุจูŠุณุงูˆูŠ ู†ุงู‚ุต S of Zero ูˆS of Zero ุจูŠุณุงูˆูŠ ุตูุฑ
481
00:41:42,410 --> 00:41:47,030
ุงุฐุง C' of Zero ุจูŠุณุงูˆูŠ Zero ุงู„ S' of Zero
482
00:41:52,540 --> 00:41:56,800
ูˆู‡ูƒุฐุง ุงุซุจุชู†ุง ูˆุฌูˆุฏ ุฏุงู„ุฉ
483
00:41:59,570 --> 00:42:04,970
ุงู„ู„ูŠ ู‡ูŠ ุญู‚ู‚ุชู„ูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุดุฑุท ุงู„ุฃูˆู„ ู‡ุฐุง ูˆุงู„ุฏุงู„ุชูŠู†
484
00:42:04,970 --> 00:42:09,710
ุงุณู ูˆุงู„ุดุฑุท ุงู„ุซุงู†ูŠ ุงู‡ ุงู„ู„ูŠ ุจุนุฏู‡ ู‡ุฐู‡ ุจุชูƒูˆู† ุฃุซุจุชู†ุง
485
00:42:09,710 --> 00:42:15,290
ูˆุฌูˆุฏ ุงู„ู€C ูˆุงู„ู€S ู„ุฃู† ุจุนุถ ุงู„ู†ุชุงุฆุฌ ุงู„ุฃุฎุฑู‰ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ
486
00:42:15,290 --> 00:42:18,830
ุงู„ุฏุงู„ุชูŠู†
487
00:42:18,830 --> 00:42:19,790
ุงู„ู„ูŠ ุฃูˆุฌุฏู†ุงู‡ู…
488
00:42:24,500 --> 00:42:28,960
ู†ุดูˆู ุงูŠุด ุงู„ู€ Corollary ุงู„ุฃูˆู„ู‰ ุจู‚ูˆู„ ู„ูŠ if C and S
489
00:42:28,960 --> 00:42:33,680
are the functions in 3x,8x,4x,1 then C' of X
490
00:42:33,680 --> 00:42:39,560
ุจูŠุณุงูˆูŠ ู†ู‚ุต S of X ุฃุซุจุชู†ุงู‡ุง ู‡ูŠู‡ุง and ุทุจุนุง ููŠ ุทุฑูŠู‚ู†ุง
491
00:42:39,560 --> 00:42:44,020
ููŠ ุงู„ุจุฑู‡ุงู† S' of X ุจูŠุณุงูˆูŠ C of X ู‡ูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุฎูˆุงุต
492
00:42:44,020 --> 00:42:50,340
ุงู„ู„ูŠ ู‡ูŠ ุฃุซุจุชู†ุงู‡ุง ุทูŠุจ ุงู„ุขู† ุจู‚ูˆู„ ู„ูŠ moreover these
493
00:42:50,340 --> 00:42:54,630
functions have derivatives of all orderูŠุนู†ูŠ ุจุฃูŠ
494
00:42:54,630 --> 00:42:57,710
order ุงู„ derivative ู…ูˆุฌูˆุฏุฉ ุทุจุนุงู‹ ู‡ุฐุง by induction
495
00:42:57,710 --> 00:43:01,550
by induction ุงู„ู„ูŠ ู‡ูˆ ุจุฏูƒ ุชุซุจุช ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ
496
00:43:01,550 --> 00:43:06,670
cn ู‡ุชูƒูˆู† ู…ูˆุฌูˆุฏุฉ ูˆ ุจูŠุณุงูˆูŠ ู†ุงู‚ุต a of x ุงูˆ ุฒุงุฏ a of x
497
00:43:06,670 --> 00:43:11,450
ุญุณุจ ุงู„ู„ูŠ ู‡ูŠ ุฌุฏุงุด ุฏุฑุฌุฉ ุงู„ n ูˆู…ู…ูƒู† ุชุณุงูˆูŠ c of x ุงูˆ
498
00:43:11,450 --> 00:43:16,930
ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต c of x ุญุณุจ ุฏุฑุฌุฉ ุงู„ n ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉุงุฐุง
499
00:43:16,930 --> 00:43:19,990
ุงู„ุงู† ู‡ุฐู‡ by induction ุจู†ู‚ุฏุฑ ู†ุซุจุช ุงู† ุงู„ derivative
500
00:43:19,990 --> 00:43:26,390
ุงู„ู„ูŠ ู‡ูˆ ู…ูˆุฌูˆุฏุฉ for any or ุถุฑ ุจู†ุงุก ุนู„ู‰ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡
501
00:43:26,390 --> 00:43:32,300
ู†ูŠุฌูŠ ุงู„ุงู† ู„ู€ Corollary ุงู„ู„ูŠ ุจุนุฏู‡ุงุจู‚ูˆู„ ุงู„ุขู† ุงู„ู€
502
00:43:32,300 --> 00:43:38,280
function C and S ุจุญู‚ู‚ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Pythagorean
503
00:43:38,280 --> 00:43:42,280
Identity ุงู„ู„ูŠ ูƒู†ุง ู†ุนุฑูู‡ุง ูƒุตูŠู† ุชุฑุจูŠุน ุฒุงุช ุตูŠู† ุชุฑุจูŠุน
504
00:43:42,280 --> 00:43:47,660
ุฅุด ุจุณุงูˆูŠ ุจุณุงูˆูŠ ูˆุงุญุฏ ููƒุฑุฉ ุงู„ุจุฑูˆุญุงู† ุณู‡ู„ุฉ ุจุณู…ูŠ ู‡ุฐู‡
505
00:43:47,660 --> 00:43:51,520
ูƒู„ู‡ุง ุจุณู…ูŠู‡ุง function ุงุณู…ู‡ุง F of X ุจู‚ูˆู„ ุณู…ูŠ ู‡ุฐู‡
506
00:43:51,520 --> 00:43:56,080
ุงู„ู„ูŠ ู‡ูŠ F of X ุจุณุงูˆูŠ ู‡ุฐู‡ ูุถู„ูŠู‡ุง ุจู„ู‘ุง ุจุชูุถู„ูŠู‡ุง F
507
00:43:56,080 --> 00:44:01,200
prime of X ุจุณุงูˆูŠ ุงุชู†ูŠู†ูู‰ C of X ูู‰ ุชูุงุถู„ ุงู„ู„ู‰ ุฌูˆุง
508
00:44:01,200 --> 00:44:06,300
ุงู„ู„ู‰ ู‡ูˆ ู†ุงู‚ุต S of X ูˆุงู„ุชุงู†ูŠุฉ ุฒุงุฆุฏ ุงุชู†ูŠู† ูS of X
509
00:44:06,300 --> 00:44:11,880
ูุชูุงุถู„ู‡ุง ู‡ูŠ C of X ู‡ุฐู‡ ู‡ูŠ ู‡ุฐู‡ ุจุณ ุจุงู„ุณุงู„ุฏ ุงุฐุง ุญุตู„
510
00:44:11,880 --> 00:44:15,100
ุทุฑุญ ุญู„ูˆ ุงุณู… ุณุงูˆู‰ ุณูุฑ ุงุฐุง ุตุงุฑุช ุนู†ุฏ ุงู„ derivative ู„ู„
511
00:44:15,100 --> 00:44:18,320
function ู‡ุฐู‡ ุงุดู…ุงู„ู‡ุง ุจุณุงูˆู‰ ุณูุฑ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุงุฎุฑ
512
00:44:18,320 --> 00:44:22,490
ุงู„ุฏุงู„ุฉ ู‡ูŠ ุฏุงู„ุฉ ุซุงุจุชุฉูŠุนู†ูŠ F is a constant function
513
00:44:22,490 --> 00:44:27,210
ูŠุนู†ูŠ ู‚ูŠู…ุฉ ุงู„ู€ F ุนู†ุฏ ุฃูŠ ู‚ูŠู…ุฉ ุฅูŠุด ุจุชุณุงูˆูŠ ู…ู‚ุฏุงุฑ ุซุงุจุช
514
00:44:27,210 --> 00:44:31,310
ุฅุฐุง ุงุชูุงุฌ ุฃู†ู‡ุง ุซุงุจุชุฉ ุฃุณู‡ู„ ุฅุดูŠ ุฃุณู‡ู„ ุฅุดูŠ ุฃูˆุฌุฏู„ูŠ F of
515
00:44:31,310 --> 00:44:34,670
Zero ุนุดุงู† ุฃุชุนุฑู ุฅูŠุด ุฏู‡ ุงู„ู„ูŠ ุจุงู„ุณุงูˆูŠุฉ ุจุงู„ุธุจุท C of
516
00:44:34,670 --> 00:44:38,730
Zero ูˆุงุญุฏ S of Zero ุณูุฑ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ F of Zero
517
00:44:38,730 --> 00:44:42,170
ุจุณุงูˆูŠุฉ ูˆุงุญุฏ ูˆู‡ูŠ ุซุงุจุชุฉ ุฅุฐุง ุตุงุฑุช F of X ุฏุงูŠู…ุง
518
00:44:42,170 --> 00:44:46,270
ุจุงู„ุณุงูˆูŠุฉ ูˆุงุญุฏ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุณุงูˆูŠุฉ ูˆุงุญุฏ ุฏุงุฆู…ุง
519
00:44:46,270 --> 00:44:48,690
ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู†
520
00:44:51,700 --> 00:44:57,820
ู„ุฃ ุงู„ู€ theorem ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ู€ functions C and S
521
00:44:57,820 --> 00:45:02,820
satisfy the properties I and II of theorem 8-4-1
522
00:45:02,820 --> 00:45:07,020
are unique ู„ู…ุง ุจู‚ูˆู„ู‘ูŠ ุจุฑุถู‡ ู‡ุชู„ุงู‚ูŠ ุงู„ uniqueness
523
00:45:07,020 --> 00:45:13,020
ุจุดุจู‡ ุงู„ uniqueness ู„ู…ู†ุŸ ู„ุฃ ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„ ..
524
00:45:13,020 --> 00:45:18,030
ู‚ูˆู„ูˆุง ู…ุนุงูŠุง ุงู„ uniqueness ู„ู„ู€ exponentialูˆ ุณู…ู†ุงู‡ุง
525
00:45:18,030 --> 00:45:21,170
ุงู„ู„ูŠ ู‡ูˆ let E ูˆุงุญุฏ .. ู†ูุชุฑุถ ุฃู†ู‡ ููŠ E ูˆุงุญุฏ ูˆ E
526
00:45:21,170 --> 00:45:24,070
ุงุชู†ูŠู† ูˆ ุณู…ู‡ุง ูุฑู‚ ุจูŠุณุงูˆูŠ D ูˆ ููŠ ุงู„ุขุฎุฑ ุฑูˆุญู†ุง ู„ูุฑู‚
527
00:45:24,070 --> 00:45:28,390
ุจูŠุณุงูˆูŠ ุฅูŠุดุŸ ุจูŠุณุงูˆูŠ ุณูุฑ ู‡ู†ุง ู†ูุณ ุงู„ุงุดูŠ ู‡ู†ุดุชุบู„ ูˆ ุจุฑุถู‡
528
00:45:28,390 --> 00:45:31,590
ู‡ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ Taylor's theorem ุฒูŠ ู…ุง ุงุณุชุฎุฏู…ู†ุง
529
00:45:31,590 --> 00:45:34,470
ู‡ู†ุงูƒ ุงู„ Taylor's theorem ูŠุนู†ูŠ ู‡ุชู„ุงู‚ูŠู‡ ุงู„ sketch
530
00:45:34,470 --> 00:45:37,470
ู„ู„ุจุฑู‡ุงู† ู‡ูˆ ู†ูุณ ุงู„ sketch ุงู„ุฃูˆู„ุงู†ูŠ ุนุดุงู† ู‡ูŠูƒ
531
00:45:37,470 --> 00:45:43,110
ู‡ุชู„ุงู‚ูˆู†ูŠ ุณุฑูŠุน ููŠู‡ ุจุฏู†ุง ู†ุซุจุช ุฃู† ุงู„ C ูˆ ุงู„ S are
532
00:45:43,110 --> 00:45:47,930
unique functionsุทุจุนุง ุงู„ุทุฑูŠู‚ุฉ let c1 and c2 be two
533
00:45:47,930 --> 00:45:52,290
functions on R that satisfy it satisfies ู…ูŠู† ุงู„
534
00:45:52,290 --> 00:45:55,850
conditions ุงู„ู„ูŠ ุงุญู†ุง ุจู†ู‚ูˆู„ ุนู†ู‡ู… ุงู„ู„ูŠ ู‡ูŠ ุงู„ I ูˆ I I
535
00:45:55,850 --> 00:46:00,930
ุงู„ู„ูŠ ู‡ูˆ ุจุญูŠุซ ุงู†ู‡ c1 double prime of x ุจุณุงูˆูŠ c1 of
536
00:46:00,930 --> 00:46:01,150
x
537
00:46:16,750 --> 00:46:18,150
2๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ปฟ๏ฟฝ
538
00:46:18,550 --> 00:46:24,010
ู„ุฃู† ู†ูุชุฑุถ ุฃู† ุฏูŠ ุจุชุณุงูˆูŠ C1-C2 ูˆุจุฏู†ุง ู†ุตู„ ููŠ ุงู„ู†ู‡ุงูŠุฉ
539
00:46:24,010 --> 00:46:27,410
ุฃู† ุฏูŠ ู‡ุฐูŠ ู„ุงุฒู… ุชุทู„ุน ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุจุชุณุงูˆูŠ 0 ู…ุฏุงู… ุฏูŠ
540
00:46:27,410 --> 00:46:32,710
ุจุชุณุงูˆูŠ 0 ู…ุฏุงู… C1 ุจุชุณุงูˆูŠ ุฅูŠุดุŸ C2 ู„ุงุญุธ ุงู„ุขู† ุฏูŠ W' of
541
00:46:32,710 --> 00:46:38,190
X ูุงุถู„ ู‡ุฐุง ู…ุฑุชูŠู† ุชุตูŠุฑ C1W'-C2W'
542
00:46:39,860 --> 00:46:47,500
ุงู„ุงู† ุจุณุงูˆูŠ ู‡ุชุทู„ุน ุงูŠุด ุจุชุณุงูˆูŠ ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† D of
543
00:46:47,500 --> 00:46:59,700
X ู†ุนู…ู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุญุณุงุจุงุช D of X ุจุณุงูˆูŠ D of X ุจุณุงูˆูŠ
544
00:46:59,700 --> 00:47:08,540
C1 ู†ุงู‚ุต C2 D prime of X ุงูŠุด ู‡ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ
545
00:47:08,540 --> 00:47:16,670
ุนู†ุฃุณ ูˆุงุญุฏ ู†ุงู‚ุต ุงุณ ูˆุงุญุฏ ู†ุงู‚ุต ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ุงุณ
546
00:47:16,670 --> 00:47:19,810
ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ู†ุณุจุฉ ู„ู‡ุฐู‡ ุงู„ู„ูŠ ุฃูˆุฌุฏู†ุงู‡ุง ู†ุงู‚ุต ุงุณ
547
00:47:19,810 --> 00:47:25,350
ุงุชู†ูŠู† ุจูŠุตูŠุฑ ุฒุงุฆุฏ ู„ุงู† ุฏูŠ double prime ุจุณุงูˆูŠ ุจุชูุงุถู„
548
00:47:25,350 --> 00:47:30,030
ู‡ุฐุง ูƒู…ุงู† ู…ุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุจุชุฑุฌุน ู…ูŠู† ู†ูุณู‡ุง C ูˆุงุญุฏูˆู‡ุฐู‡
549
00:47:30,030 --> 00:47:38,390
ุชุฑุฌุน ู†ูุณู‡ุง C2 ุงู„ุชูŠ ู‡ูŠ ู†ุงู‚ุต D ุงู„ุชูŠ ู‡ูŠ ู†ุงู‚ุต D ุทูŠุจ
550
00:47:38,390 --> 00:47:43,410
ุฅุฐุง ุงู„ D ู„ุฃู†ู‡ ู…ูุชุฑุถูŠู† ุงู„ C1 ูˆC2 ุฃุดู…ุงู„ู‡ุง ุจุชุญู‚ู‚
551
00:47:43,410 --> 00:47:52,470
ุงู„ุดุฑูˆุท ุงู„ู„ูŠ ููˆู‚ ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡ุงDouble prime ุจุณุงูˆุฉ D
552
00:47:52,470 --> 00:48:02,390
of X ุฃูˆ D double prime ุจุณุงูˆุฉ D double prime ุจุณุงูˆุฉ
553
00:48:06,030 --> 00:48:11,870
ุจุณุงูˆูŠ ู‡ุฏ W' ู†ุงู‚ุต ู‡ุฏ W' ู‡ุฏ W' ู†ุงู‚ุต C1 ูˆ ู‡ุฏ W' ุงู„ู„ูŠ
554
00:48:11,870 --> 00:48:15,870
ู‡ูŠ ู†ุงู‚ุต ู†ุงู‚ุต C ุฒุงุฆุฏุฉ ุณุงุฑุฉ D W' ุจุณุงูˆูŠ ู†ุงู‚ุต D ูˆ X
555
00:48:15,870 --> 00:48:21,890
ู‡ูŠูƒ ุงู„ู„ูŠ ู‡ูˆ ุฏุนู†ุง ู†ู‚ูˆู„ ุฃุณู„ู… ุทูŠุจ ุงู„ุขู† ุจุณุชุนุฌู„ ู„ุฅู†
556
00:48:21,890 --> 00:48:29,470
ุงู„ูƒู„ุงู… ู…ุนุงุฏ ูŠุนู†ูŠุฃูˆ ุงู„ุฃููƒุงุฑ ู…ุนุงุฏุฉ ุงู„ุขู† ุงุญุทู„ูŠ D of 0
557
00:48:29,470 --> 00:48:34,530
ุงูŠุด ู‡ูŠุณุงูˆูŠุŸ Zero ู„ุฃู† D of 0 ุจูŠุณุงูˆูŠ ู‡ุฐูŠ ู†ุงู‚ุต ู‡ุฐูŠ ูˆ
558
00:48:34,530 --> 00:48:37,630
ู‡ุฐูŠ ุนู†ุฏ ุงู„ zero ูˆุงุญุฏ ูˆ ู‡ุฐูŠ ุนู†ุฏ ุงู„ zero ูˆุงุญุฏ
559
00:48:37,630 --> 00:48:40,010
ุงู„ุชู†ุชูŠู† ุนู†ุฏ ุงู„ zero ูˆุงุญุฏ ุงู†ุญุตู„ ุทุฑุญูŠ ุงู† ุงูŠุด ู‡ูŠุณุงูˆูŠ
560
00:48:40,010 --> 00:48:47,160
ุณูุฑ ุงู„ุงู† D prime ุนู†ุฏ ุงู„ zeroูˆDW' ุนู†ุฏ ุงู„ู€ zero ูˆ ูˆ
561
00:48:47,160 --> 00:48:48,760
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
562
00:48:48,760 --> 00:48:50,140
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
563
00:48:50,140 --> 00:48:50,140
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
564
00:48:50,140 --> 00:48:52,320
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
565
00:48:52,320 --> 00:48:52,380
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
566
00:48:52,380 --> 00:48:55,440
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
567
00:48:55,440 --> 00:48:59,220
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
568
00:48:59,220 --> 00:48:59,240
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
569
00:48:59,240 --> 00:49:00,380
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
570
00:49:00,380 --> 00:49:01,520
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
571
00:49:01,520 --> 00:49:05,260
.. ูˆ
572
00:49:05,260 --> 00:49:15,970
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆุจุญูƒูŠ ุนู† ุงู„ู€
573
00:49:15,970 --> 00:49:25,410
derivative ุงู„ู€ dw prime ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต d of
574
00:49:25,410 --> 00:49:30,410
0 ุนู†ุฏ ุงู„ู€ 0 ูˆ ุงู„ู€ d ุนู†ุฏ ุงู„ู€ 00 ุฅุฐู† ู‡ุฐู‡ ุงู„ู€ 0 ู‡ุฐู‡
575
00:49:30,410 --> 00:49:34,330
ู„ู…ู†ุŸ ู„ู€ k ุงู„ู„ูŠ ู‡ูŠ ุฅุชู†ูŠู† ูˆ ุฃุฑุจุนุฉ ูˆ ุณุชุฉ ูˆ ุชู…ุงู†ูŠุฉ
576
00:49:34,330 --> 00:49:37,870
ุจู†ูุณ ุงู„ุณุจุจ ู‡ุชุทู„ุน ุณูุฑ ุงู„ูุฑุฏูŠุงุช ุจูŠุฌูŠ ู…ู† ู…ูŠู†ุŸ ู…ู† ู‡ุฐู‡
577
00:49:38,330 --> 00:49:44,430
ูุฑุฏูŠุฉ ุงู„ู€ Derivative ู„ุฅูŠุดุŸ ู„ุฃู† D' of 0 ู‡ุชุณุงูˆูŠ C1'
578
00:49:44,890 --> 00:49:51,110
ู†ู‚ุต C2' C1' ุนู†ุฏ ุงู„ุตูุฑ ุตูุฑ ูˆ C2' ุนู†ุฏ ุงู„ 0 0 ุฅุฐุง ู‡ุฐู‡
579
00:49:51,110 --> 00:49:56,730
ุฏูŠ K ุนู†ุฏ ุงู„ 0 ุจุงู„ุณุงูˆูŠุฉ 0 ู„ูƒู„ K ุณูˆุงุก ุฒูˆุฌูŠุฉ ุฃูˆ ุฅูŠุด
580
00:49:56,730 --> 00:50:01,230
ุฃูˆ ูุฑุฏูŠุฉ ุฅุฐุง ุฌู‡ุฒู†ุง ู‡ุฐุง ุงู„ู„ูŠ ุฌู‡ุฒู†ุงู‡ ู‚ุจู„ ู‡ูŠูƒ ูŠุนู…ู„
581
00:50:01,230 --> 00:50:05,940
Exponentialูˆุจุชู†ุง ู†ุทุจู‘ูƒ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู€ Taylor's
582
00:50:05,940 --> 00:50:09,000
theorem ู†ุทุจู‘ูƒ ุงู„ู€ Now let x element in R be
583
00:50:09,000 --> 00:50:12,760
arbitrary element in R and let I x be the interval
584
00:50:12,760 --> 00:50:18,940
within point 0x ุทุจู‘ุฌู†ุง ุนู„ูŠู‡ุง ุฅุฐุง since D ุจุชุณุงูˆูŠ C1
585
00:50:18,940 --> 00:50:25,220
ู†ุงู‚ุต C2 ูˆT ุจุชุณุงูˆูŠ S1 ู†ุงู‚ุต S2 ุงู„ู„ูŠ ู‡ูŠ ู…ูุชุฑุถูŠู† S1
586
00:50:25,220 --> 00:50:28,400
ูˆS2 ุงู„ู„ูŠ ู‡ูˆ two functions such that ุงู„ู„ูŠ ุจูŠุญู‚ู‚ูˆุง
587
00:50:28,400 --> 00:50:34,170
ุชุจุนุงุช ุงู„ู€ sineุงู„ู„ูŠ ู‡ูŠ ุจุงู„ุณุงูˆูŠุฉ S1 ุงูŠุด ู‡ูŠ ู…ุณู…ูŠู‡ุง
588
00:50:34,170 --> 00:50:39,950
ุงู†ุง ุงู„ู„ูŠ ู‡ูŠ ุจุฏู„ C2 prime ุงูˆ ู‡ูŠ C2 prime ูˆุงู„ู€ S2
589
00:50:39,950 --> 00:50:46,510
ุงู„ู„ูŠ ู‡ูŠ C2 A prime ุงู„ุนูƒุณุฉ
590
00:50:46,510 --> 00:50:50,530
ุงู„ derivative ุจูŠุตูŠุญ ุจุงู„ู†ู‚ุต are continuous on mean
591
00:50:50,530 --> 00:50:55,930
on Ix ุนุงุฑููŠู† continuous ุงู†ู‡ ุงุญู†ุง ู…ูุชุฑุถูŠู† ุงู† ู†ุญู‚ู‚
592
00:50:55,930 --> 00:51:00,160
ู†ูุณ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‚ุจู„ู…ุฏุงู… continuous ุงู„ู€ D ูˆุงู„ู€ T
593
00:51:00,160 --> 00:51:07,440
continuous ุนู„ู‰ closed bounded interval I X ุฅุฐุง ููŠ
594
00:51:07,440 --> 00:51:12,810
ุงู„ู„ูŠ ู‡ูˆ K ูˆุงุญุฏ ู„ู„ุฃูˆู„ู‰ูˆK2 ู„ู„ุชุงู†ูŠุฉ ุฎุฏูˆุง ุงู„ maximum
595
00:51:12,810 --> 00:51:18,470
ุฅู„ูŠู‡ุง ูˆุงุณู…ูˆู‡ุง K ุฅุฐุง ููŠ K ู„ู„ุฌู‡ุชูŠู† ุจุญูŠุซ ุงู† ุงู„ D of T
596
00:51:18,470 --> 00:51:22,930
bounded ุนู„ูŠ ู‡ุฐู‡ ุฃุตุบุฑ ุดู‡ูˆ T ูƒูŠ ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ
597
00:51:22,930 --> 00:51:27,390
ุจู†ุญูƒูŠ ุนู†ู‡ุง IX ูˆT of T ุฃุตุบุฑ ุดู‡ูˆ K for all T
598
00:51:27,390 --> 00:51:30,290
elements of IX ู„ุฃู†ู‡ ุฒูŠ ู…ุง ุฃู‚ูˆู„ continuous function
599
00:51:30,290 --> 00:51:33,930
in a closed bounded interval must be boundedุงู„ุขู†
600
00:51:33,930 --> 00:51:39,170
ุฌุงู‡ุฒูŠู† ู†ุทุจู‚ ู…ูŠู†ุŸ ุงู„ู€ Taylor's theorem to d ู…ู† Ix
601
00:51:39,170 --> 00:51:44,970
and use the fact ุฏูŠ ุงู„ู„ูŠ ุฃุซุจุชู†ุงู‡ ุฏูŠ 0 ุณูˆุงุก 0 ุฏูŠ K0
602
00:51:44,970 --> 00:51:50,030
ุณูˆุงุก 0 ุงู„ุขู† ุจู†ู‚ูˆู„ for each n unlimited n ุนู…ู„ู†ุงู‡ุง
603
00:51:50,030 --> 00:51:56,510
ุนุดุงู† ู‡ูŠูƒ ุจุณ ู…ุงุดูŠ ุนู†ู‡ ุจุณุฑุนุฉ ุนู…ู„ู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒ there
604
00:51:56,510 --> 00:51:59,630
exist a point Cn unlimited Ix such that ู‡ุฐุง
605
00:51:59,630 --> 00:52:03,890
remainder ุจุชุนู…ู„ูŠ remainderD ุจ X ุจูŠุณุงูˆูŠ D of 0 ุฒูŠ
606
00:52:03,890 --> 00:52:06,850
ุฏูŠ prime of 0 ุฒุงุฆุฏ ุฒุงุฆุฏ ุฒุงุฆุฏ ุฒุงุฆุฏ X ุงู† ู†ู‚ุต ูˆุงุญุฏ
607
00:52:06,850 --> 00:52:12,630
ู„ู…ุง ุฃุตู„ ู„ู…ูŠู† ู„ู„ remainder ูƒู„ ู‡ุฐูˆู„ ุฃุตูุงุฑ ุจุณุจุจ ู…ูŠู†
608
00:52:12,630 --> 00:52:16,430
ุงู†ู‡ D0 ูˆD prime of 0 ูˆD ุงู† ู†ู‚ุต ูˆุงุญุฏ ูˆุฒูŠุฑ ูˆูƒู„ู‡ู… ุฅูŠู‡
609
00:52:16,430 --> 00:52:20,090
ุดู…ุงู„ู‡ู… ุจูŠุณุงูˆูŠ ุฃุตูุงุฑ ุนู†ุฏ ุงู„ุตูุฑ ุจูŠุธู„ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
610
00:52:20,090 --> 00:52:24,010
ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ุชุญุช ู‡ุฐุง ู‡ุฐุง
611
00:52:24,010 --> 00:52:27,490
ุงู„ derivative ู‡ุฐุง ุงู„ derivative ุฃู†ุง ุจุนุฑูุด ุฅูŠุด ู‡ูŠ
612
00:52:27,490 --> 00:52:31,230
ู…ุง ุฃู†ุชูˆุง ุนุงุฑููŠู† ุงู„ derivative ู„ู„ .. ู„ู„ .. ู„ู„ C
613
00:52:34,160 --> 00:52:41,940
ุฃูˆ ุงู„ derivative ู„ู„ู€C ุฅุฐุง ูุถู„ุช ู…ุฑุฉ ูˆุงุญุฏุฉ ุจุชุทู„ุน
614
00:52:41,940 --> 00:52:47,120
ุงู„ู€S ุฃูˆ ุณู„ุจู‡ุง ูุธู„ุช ุชู„ุช ู…ุฑุงุช ุจุชุฑุฌุน ู„ูŠู‡ุง S ุจุณ
615
00:52:47,120 --> 00:52:53,180
ุจุงู„ู…ูˆุฌุฉ ูุธู„ุช ุฎู…ุณุฉ ุจุชุฑุฌุน ู†ุงู‚ุต Sูุธู„ุช ุฒูˆุฌูŠ ุจุชุทู„ุน ู‡ูŠ
616
00:52:53,180 --> 00:52:58,920
ู†ูุณู‡ุง ุฃูˆ ุณู„ุจู‡ุง ุนุดุงู† ู‡ูŠ ูƒุงุฏู„ ุฃู†ุง ุจุนุฑูุด ุทุจุนุง ู‡ู†ุง
617
00:52:58,920 --> 00:53:02,400
ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูŠ ุจุชุชูˆุฒุน ุนู„ู‰ ู…ุฑุฉ derivative ุชู†ุฏูŠู†
618
00:53:02,400 --> 00:53:04,620
derivative ุชู„ุงุชุฉ derivative ุฃุฑุจุนุฉ derivative ูˆ
619
00:53:04,620 --> 00:53:08,180
ุจุชุฑุฌุน ุงู„ุฏูˆุฑุฉ ุฒูŠ ู…ุง ู‡ูŠ ู„ุฅู†ู‡ ููŠ ุงู„ุฃูˆู„ ุจูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ
620
00:53:08,180 --> 00:53:15,520
ุชูุงุถู„ ุงู„ู€C ู†ุงู‚ุต S ุจุนุฏู‡ุง ุจุชุชูุงุถู„ ุจุชุฑุฌุน ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต
621
00:53:15,520 --> 00:53:18,770
ุญุงู„ู‡ุงุจุนุฏู‡ุง ุจุชุฑุฌุน ุงู„ู„ูŠ ู‡ูŠ
622
00:53:18,770 --> 00:53:36,410
ุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจ
623
00:53:36,660 --> 00:53:40,180
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€C ูˆูŠุตูŠุฑ ู†ู‚ุต C ูƒู…ุงู† ู…ุฑุฉ ุจุชุฑุฌุน ุงู„ู„ูŠ ู‡ูŠ
624
00:53:40,180 --> 00:53:45,740
ุงู„ู€S ูˆูƒู…ุงู† ู…ุฑุฉ ุจุชุฑุฌุน ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€C ุจุนุฏ ู‡ูŠูƒ ุจุชุตูŠุฑ
625
00:53:45,740 --> 00:53:51,920
ุงู„ู„ูŠ ู‡ูŠ ุชูƒุฑุฑ ุญุงู„ู‡ุง ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุฌุฑุจูˆู‡ุง ุฃู†ุชูˆุง
626
00:53:51,920 --> 00:53:59,920
ู‡ุชู„ุงู‚ูˆุง ุฃู†ู‡ ุญุณุจ ุงู„ุฃูุณ ู‡ู†ุง ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
627
00:53:59,920 --> 00:54:11,180
ู‡ูŠ ุฃูˆ ุณู„ุจู‡ุง ุฃูˆ ุงู„ู€S ุฃูˆ ุณู„ุจู‡ุงุจูƒู„ ุงู„ุฃุญูˆุงู„ ุจุบุถ ุงู„ู†ุธุฑ
628
00:54:11,180 --> 00:54:15,600
ุงู„ู„ูŠ ู‡ูŠ DN of CN ู‡ูŠ ุญุงุตู„ ุทุฑุญ ุงู„ุชู†ุชูŠู† ุงู„ู„ูŠ ู‡ูŠ ุณู…ู†ู‡ุง
629
00:54:15,600 --> 00:54:23,280
ูŠุง D ูŠุง T ุงู„ู€ D ุชุจุนุช ุงู„ู€ C ุงู„ูุฑู‚ ุทุจุนุง ูˆุงู„ู€ T ุงู„ู„ูŠ
630
00:54:23,280 --> 00:54:29,010
ู‡ูŠ ุงู„ูุฑู‚ ุจูŠู† ุงู„ุฃุณุงุช ูŠุนู†ูŠ ููŠ ุงู„ุขุฎุฑุฒุงุฏ ุงูˆ ู†ุงู‚ุต ูˆ ุฒุงุฏ
631
00:54:29,010 --> 00:54:33,810
ุงูˆ ู†ุงู‚ุต ุณูˆุงุก ู‡ุฐู‡ ุงูˆ ุณูˆุงุก ู‡ุฐู‡ ุญุถุฑู†ุง ู…ู† ุงู„ุงุตู„ ุงู†ู‡ุง
632
00:54:33,810 --> 00:54:38,870
bounded ูˆ ูƒู„ู‡ ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ู…ู† K ุงุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ ุงูŠุด
633
00:54:38,870 --> 00:54:45,860
K ุจู†ุงุก ุนู„ูŠู‡ ู‡ุชุทู„ุน ู‡ุฐู‡ ู‡ูŠูƒabsolute value ุฃุตุบุฑ ุฃูˆ
634
00:54:45,860 --> 00:54:51,780
ูŠุณุงูˆูŠ ู‡ุฐู‡ ุฃูŠ ุฅู† ูƒุงู†ุช K ููŠ X ุฃูุณ N absolute value
635
00:54:51,780 --> 00:54:56,880
ุนู„ู‰ N factorial ุจุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ุตู„ุนุช ุนู†ุฏูŠ ู‡ุฐุง
636
00:54:56,880 --> 00:55:00,860
ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง as N goes to infinity
637
00:55:00,860 --> 00:55:05,540
ู‡ุฐุง ุจุฑูˆุญ ู„ู…ู†ุŸ ู„ู„ุณูุฑ ูˆู‡ุฐุง independent of N ุจูŠุตูŠุฑ
638
00:55:05,540 --> 00:55:08,100
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุณูุฑ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู„ูŠ ุฌูˆุง ุจุฏู‡ ูŠุตูŠุฑ ุณูุฑ
639
00:55:08,100 --> 00:55:12,930
ุฅุฐุง ุงู„ D of X ู‡ุงุดูŠ ุจุฏู‡ุง ุชุณุงูˆูŠุจุชุณุงูˆูŠ ุณูุฑ ูˆุจูƒูˆู†
640
00:55:12,930 --> 00:55:21,090
ุฃุซุจุชู†ุง ุงู† ุงู„ู€ C1 ูˆุงู„ู€ C2 are equivalent ุงู„ุงู†
641
00:55:21,090 --> 00:55:27,700
similar arguments ุจู†ูุณ ุงู„ุงุณู„ูˆุจูˆุฎู„ู‘ูŠู‡ุง ุฅู„ูŠูƒู… ุฅู†ู‡
642
00:55:27,700 --> 00:55:32,120
ุงู„ู„ูŠ ู‡ูŠ ุจู†ุซุจุช ุฅู†ู‡ S ุฅุฐุง ูƒุงู† S1 ูˆS2 are two
643
00:55:32,120 --> 00:55:36,320
functions such that ุจูŠุญู‚ู‚ูˆุง ุงู„ู„ูŠ ู‡ู…ุง ุงู„ุฎูˆุงุตุฉ ุงู„ู„ูŠ
644
00:55:36,320 --> 00:55:41,700
ุจู†ู‚ูˆู„ู‡ุง ุนู†ู‡ุง ููŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูŠ S1 double prime
645
00:55:41,700 --> 00:55:46,400
ุจูŠุณุงูˆูŠ ู†ูุณ S1 ูˆู†ูุณ ุงู„ S2 ูˆู‡ุฐุง ุนู†ุฏ Zero ุจูŠุณุงูˆูŠ Zero
646
00:55:46,400 --> 00:55:50,160
ูˆู‡ุฐุง ุงู„ prime ุนู†ุฏ Zero ุจูŠุณุงูˆูŠ Zero ู‡ูŠุชู„ุนู„ูƒ ุบุตุจ
647
00:55:50,160 --> 00:55:52,240
ุนู†ู‡ุง ููŠ ุงู„ุฃุฎุฑ S1 ุจูŠุณุงูˆูŠ S2
648
00:55:55,620 --> 00:55:59,960
ุจุณ ุจุฏู„ ู…ุง ุชุนู…ู„ูˆุง ุนู„ู‰ ุงู„ D ูŠุนู†ูŠ ุณุงู…ูˆุง ุงู„ู„ูŠ ู‡ูˆ T
649
00:55:59,960 --> 00:56:04,040
ุจุชุณุงูˆูŠ S1 ู†ู‚ุต S2 ูˆุทุจู‚ูˆุง ุงู„ุดุฑูˆุท ูˆุงู…ุดูˆุง ู†ูุณ ุงู„ู„ูŠ
650
00:56:04,040 --> 00:56:07,580
ุงู…ุดูŠู†ุงู‡ุง ู‡ุชู„ุงู‚ูˆุง ุญุงู„ูƒู… ุงู†ู‡ ู„ุงุฒู… ุชุทู„ุน ุงู„ S1 ุจุณุงูˆูŠ
651
00:56:07,580 --> 00:56:11,800
S2 ูˆุจู†ุงุก ุนู„ูŠู‡ ุตุงุฑ ุงู„ ุงู„ two functions ุงู„ C ูˆุงู„S
652
00:56:11,800 --> 00:56:17,820
are unique functions ุทูŠุจ
653
00:56:17,820 --> 00:56:24,720
ุงู„ answer ุงู„ู…ุคู‡ู„ูŠู†ู†ุฐู‡ุจ ุจุงู„ุงุชุฌุงู‡ ู†ุซุจุช ุฃู† ุงูุชุฑุถ ุฃู†
654
00:56:24,720 --> 00:56:27,880
ุงู„ู€ Definition of the unique function C ู…ู† R ู„R ูˆ
655
00:56:27,880 --> 00:56:32,400
ุฃุณู… ุงู„ู€ R ู„R ุงู„ู„ูŠ ูŠุชุญู‚ู‚ CW prime of X ุจุณุงูˆูŠุฉ ู†ู‚ุทุฉ
656
00:56:32,400 --> 00:56:36,650
C of Xู‡ูˆ ุงู„ุงุตู„ ุงู„ู€ differential equation ุงู„ุชุงู†ูŠ S
657
00:56:36,650 --> 00:56:40,990
w ุจุฑุงู…ุฌ ูˆ X ู†ุงู‚ุต ุจุณุงูˆุฉ ู†ุงู‚ุต S X ู„ูƒู„ X element in R
658
00:56:40,990 --> 00:56:43,470
ูˆ ุงู„ C of Zero ุงู„ู„ูŠ ู‡ูˆ ุงู„ condition ุงู„ condition
659
00:56:43,470 --> 00:56:46,350
ุจุณุงูˆุฉ ูˆุงุญุฏ ูˆ C ุจุฑุงู…ุฌ ูˆ Zero ุจุณุงูˆุฉ Zero ูˆ ุงู„ S of
660
00:56:46,350 --> 00:56:49,710
Zero ุจุณุงูˆุฉ Zero ูˆ ุงู„ S ุจุฑุงู…ุฌ ูˆ Zero ุจุณุงูˆุฉ Zero
661
00:56:49,710 --> 00:56:57,150
ุงู„ุฏุงู„ุชูŠู† ุงู„ู„ูŠ ุจุญู‚ู‚ ุฅู† ุงู„ูƒู„ุงู… ู‡ุฐุง ุงู„ู„ูŠ ุฃุซุจุชู†ุง ุฅู†ู‡
662
00:56:57,150 --> 00:57:02,740
uniqueุจู†ุณู…ูŠู‡ู… respectively the cosine function and
663
00:57:02,740 --> 00:57:07,600
the sine function ุงู„ู„ูŠ ุงู†ุชูˆุง ุจุชุนุฑููˆู‡ุง ูˆู‡ูŠ cosine X
664
00:57:07,600 --> 00:57:12,620
ุงู„ู„ูŠ ุจุชุนุฑููˆู‡ุง ูˆู‡ูŠ sin X ุงู„ู„ูŠ ุงู†ุชูˆุง ุจุชุนุฑููˆู‡ุง ู†ูŠุฌูŠ
665
00:57:12,620 --> 00:57:17,930
ุงู„ุขู†ู„ุงุฎุฏ ุจุนุถ ุงู„ุฎูˆุงุต ุฎู„ูŠู†ุง ู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฎุงุตูŠุฉ
666
00:57:17,930 --> 00:57:23,430
ุงู„ู„ูŠ ู‡ูŠ ู†ุธุฑูŠุฉ 4.6 ุจุชู‚ูˆู„ ู„ูŠ ุฅุฐุง ูƒุงู†ุช f ู…ู† R ู„ R is
667
00:57:23,430 --> 00:57:27,890
such that f double prime of x ุจุณุงุนุฉ ู†ู‚ุต f of x for
668
00:57:27,890 --> 00:57:30,370
x element in R ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ differential equation
669
00:57:30,370 --> 00:57:32,810
ุจุชู‚ูˆู„ู„ูŠ ู‡ุฐู‡ ุงู„ differential equation ู‡ูŠ ุญู„ูˆู„ู‡ุง
670
00:57:32,810 --> 00:57:37,690
ู…ุงู„ูŠ then there exist Alpha ูˆ BetaSuch that F of X
671
00:57:37,690 --> 00:57:41,390
ุจูŠุณูˆุก Alpha CX ุฒุงุฆุฏ Beta S of X ุจูŠู‚ูˆู„ู„ูŠ ู‡ุฐู‡ ุงู„
672
00:57:41,390 --> 00:57:45,110
differential equation ุญุงู„ุฉ ุงู†ู‡ุง ุนุจุงุฑุฉ ุนู† linear ุงูˆ
673
00:57:45,110 --> 00:57:47,870
ุฎู„ูŠู†ูŠ ุงู‚ูˆู„ combination ุงูˆ linear combination
674
00:57:47,870 --> 00:57:55,890
between F C of X S of Xุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏ ู†ุณู…ูŠ g of x ุฅูŠุด
675
00:57:55,890 --> 00:57:59,590
ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ c of x ูˆ ุงู„ a
676
00:57:59,590 --> 00:58:03,770
sub x ู†ุณู…ูŠ ู‡ุฐู‡ f of zero ูˆ f prime of zero for x
677
00:58:03,770 --> 00:58:10,330
element in R ุงู„ุขู† ู„ูˆ ุญุณุจุช ุงู„ gw prime of x ุงุญุณุจู‡ุง
678
00:58:10,330 --> 00:58:15,270
ูุงุถู„ ู‡ุฐู‡
679
00:58:15,270 --> 00:58:18,550
ู…ุฑุชูŠู† ู‡ุฏูˆู„ุฉ ุซูˆุงุจุช ุทุจุนุง ูˆ ู‡ุฏูˆู„ุฉ ุงู„ู„ูŠ ุจุชู†ุฒู„ูƒ
680
00:58:18,550 --> 00:58:23,970
ู‡ุชู„ุงู‚ูŠู‡ู… ุงู„ู„ูŠ ู‡ูˆ ุจุณุงูˆูŠ ู†ุงู‚ุต g of xุฃู‡ .. ูˆ ู„ูˆ ุญุณุจุช
681
00:58:23,970 --> 00:58:26,730
ุงู„ู€ g of zero .. g of zero ู‡ุชู„ุงู‚ูŠู‡ุง ุจุณุงูˆูŠ of zero
682
00:58:26,730 --> 00:58:30,110
ู„ุฅู† ู‡ุฐุง ุณูุฑ ูˆู‡ุฐุง .. ู‡ุฐุง ูˆุงุญุฏ ูˆู‡ุฐุง ุณูุฑ ุงู„ุงู† ุตุงุฑ
683
00:58:30,110 --> 00:58:33,850
ุนู†ุฏู‰ gw prime of x ุจุณุงูˆูŠ ู†ู‚ุต g of x ูˆ g of zero
684
00:58:33,850 --> 00:58:40,410
ุจุณุงูˆูŠ f of zero ุงู„ุงู† ุงุญุณุจ ุงู„ู€ g prime of xุตุงุฑ ุนู†ุฏู‰
685
00:58:40,410 --> 00:58:43,450
ุชู„ุงุช ู…ุนู„ูˆู…ุงุช ู…ุนู„ู…ุชูŠู† ุฌูŠ ุฏุงุจู„ ุจุฑุงูŠู… of X ุจูŠุณุงูˆูŠ ู†ู‚ุต
686
00:58:43,450 --> 00:58:45,990
ุฌูŠ of X ูˆ ุฌูŠ of Zero ุจูŠุณุงูˆูŠ ุฃู of Zero ุฎู„ูŠู†ุง ู†ุฌูŠุจ
687
00:58:45,990 --> 00:58:50,330
ุฌูŠ ุจุฑุงูŠู… of X ุฌูŠ ุจุฑุงูŠู… of X ู…ุด ุจุชุณุงูˆูŠ ูุงุถู„ ุงู„ู„ู‰ ู‡ู‰
688
00:58:50,330 --> 00:58:55,430
ุนุจุงุฑุฉ ุนู† ู†ู‚ุต ุฃุณ of X ูˆ ู‡ุฏุง ุชูุถู„ู‡ุง ุงู„ู„ู‰ ู‡ู‰ C of X
689
00:58:55,430 --> 00:58:58,830
ุตุงุฑ ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ู‰ ุฌูŠ ุจุฑุงูŠู… of X ุจูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ูƒู„ุงู…
690
00:58:58,830 --> 00:59:04,720
ุฒุงุฆุฏ ู‡ุฐุง ุงู„ูƒู„ุงู…ุงู„ุงู† ุงุญุณุจู„ูŠ g prime of 0 ู‡ูŠุตูŠุฑ
691
00:59:04,720 --> 00:59:08,420
ุนุจุงุฑุฉ ุนู† ู‡ุฐุง ุทุจุนุง ุณูุฑ ูˆู‡ุฐุง ู‡ุชุตูŠุฑ ูˆุงุญุฏ ูุจุตูŠุฑ F
692
00:59:08,420 --> 00:59:13,750
prime of 0 ุตุงุฑ ุนู†ุฏู‰ ุงู„ุงู† g prime of 0ุฃูŠุด ุจูŠุณุงูˆูŠ ูŠุง
693
00:59:13,750 --> 00:59:18,090
ุฌู…ุงุนุฉุŸ ุฌูŠ ุจุฑุงูŠู… ุงู ุฒูŠุฑูˆ ุฎู„ูŠู†ูŠ ุฃุทู„ุนู„ูƒ ุฅูŠุงู‡ุง ู„ููˆู‚
694
00:59:18,090 --> 00:59:21,750
ุตุงุฑุช ุฌูŠ ุจุฑุงูŠู… ุงู ุฒูŠุฑูˆ ุจูŠุณุงูˆูŠ ุฃู ุจุฑุงูŠู… ุงู ุฒูŠุฑูˆ ูˆ ุฌูŠ
695
00:59:21,750 --> 00:59:26,730
ุงู ุฒูŠุฑูˆ ุจูŠุณุงูˆูŠ ุฃู ุงู ุฒูŠุฑูˆ ุงู„ุขู† ุจุฏูŠุด ู†ุงุดุฑ ู†ุนูŠุฏ ุงู„ู„ูŠ
696
00:59:26,730 --> 00:59:30,950
ู‡ูˆ therefore ุงู„ุขู† the functions h ุจุชุณุงูˆูŠ f ู†ุงู‚ุต g
697
00:59:30,950 --> 00:59:35,990
is such that ูŠุนู†ูŠ ุนุฑูู„ูŠ function h ุฃูŠุด ุจูŠุณุงูˆูŠุŸ f
698
00:59:35,990 --> 00:59:43,220
ู†ุงู‚ุต ู…ูŠู† ู†ุงู‚ุต gุงู„ุขู† ุงู„ู€ H double prime ู„ู‡ุง ู„ูˆ ุฌูŠุช
699
00:59:43,220 --> 00:59:46,840
ุญุณุจุช ุงู„ู€ H double prime ุงู„ู„ูŠ ู‡ูŠ ู‡ุชู„ุงู‚ูŠู‡ุง ุจุชุณุงูˆูŠ
700
00:59:46,840 --> 00:59:50,260
ู†ุงู‚ุต H of X ุจุชุญุณุจูˆู‡ุง ู„ุญุงู„ูƒู… H double prime of X
701
00:59:50,260 --> 00:59:55,140
ุนุดุงู† ุจุชุณุงูˆูŠ ู†ุงู‚ุต H of X ู„ูƒู„ X element in R ู„ูˆ ุญุณุจุช
702
00:59:55,140 --> 00:59:59,670
ุงู„ู„ูŠ ู‡ูŠ H of Zeroู‡ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ zero ู„ุฅู†ู‡ ุงุญู†ุง
703
00:59:59,670 --> 01:00:03,010
ุฃุซุจุชู†ุง ุงู† g of zero ุณุงูˆูŠ f of zero ูˆh prime of
704
01:00:03,010 --> 01:00:07,110
zero h prime of zero ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† f prime ู†ู‚ุต
705
01:00:07,110 --> 01:00:09,210
g prime ุนู†ุฏ ุงู„ zero ุงู„ุชุงู†ูŠุฉ ูˆ ุงู„ุชุณุงูˆูŠุงุช ุฅุฐุง ุฅูŠู‡ ู…ุด
706
01:00:09,210 --> 01:00:15,170
ุณุงูˆูŠ ุณูุฑ ุงู„ุงู† it then thus it follows as in the
707
01:00:15,170 --> 01:00:19,430
proof of the preceding theorem ุงู„ู†ุธุฑูŠุฉ ุงู„ู…ุงุถูŠุฉ ุฅู†
708
01:00:19,430 --> 01:00:22,170
h of x ุฅูŠู‡ ู…ุด ุณุงูˆูŠ ุณูุฑ ูŠุนู†ูŠ ุจุฏูƒ ุชุนู…ู„ ู†ูุณ ุงู„ู„ูŠ
709
01:00:22,170 --> 01:00:25,180
ุนู…ู„ู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒ ุนู„ู‰ ุงู„ Taylor's theorem ูˆ ุงู„ุงุฎุฑูŠู†ูˆ
710
01:00:25,180 --> 01:00:29,300
ุชุตู„ ุงู„ H of X ุจุณุงูˆูŠุฉ 0 ู„ูƒู„ X ูˆู…ู†ู‡ ู‡ุชู‚ูˆู„ F of X
711
01:00:29,300 --> 01:00:33,320
ุจุณุงูˆูŠุฉ G of X ู…ุฏุงู… F of X ุจุณุงูˆูŠุฉ G of X ุฅุฐู† ู‡ุฐู‡
712
01:00:33,320 --> 01:00:38,580
ุงู„ู„ูŠ ู‡ูŠ F of X ุจุชุทู„ุน F of X ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐุง
713
01:00:38,580 --> 01:00:42,780
ุงุณู…ู‡ุง Alpha ูˆู‡ุฐุง ุงุณู…ู‡ุง Beta ูˆุจูƒูˆู† ุนู†ุฏูŠ ู‡ูŠ ุงู„ู„ูŠ ู‡ูˆ
714
01:00:42,780 --> 01:00:46,280
solution ู„ุงู„ู„ูŠ ู‡ูŠ ุงู„ differential equation ุงู„ู„ูŠ
715
01:00:46,280 --> 01:00:50,260
ุงุญู†ุง ุญูƒูŠู†ุง ุนู†ู‡ุง ุจุฏูŠุด ุฃุนูŠุฏ ู†ูุณ ุงู„ูƒู„ุงู… ุนุดุงู† ู‡ูŠ ูƒุฃู†ุง
716
01:00:50,260 --> 01:00:52,780
ุงุฎุชุตุฑุช ู„ุฃู† ุงู„ุญุณุงุจุงุช ูƒู„ู‡ุง ู…ุดุงุจู‡ุฉ
717
01:00:58,150 --> 01:01:03,430
ุงู„ุงู† ุจุฏู†ุง ุงู„ู„ูŠ ู‡ูŠ 8 4 7 the function C is even and
718
01:01:03,430 --> 01:01:07,570
S is odd in the sense that ู‡ูˆ ุจุชูƒูˆู† ุงู„ุตุญูŠุญุฉ ุฏูŠ
719
01:01:07,570 --> 01:01:10,610
ุงู„ุฃุตู„ ูƒู„ู‡ุง ุชูƒูˆู† ุฃูˆ ู…ุนุธู…ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
720
01:01:10,610 --> 01:01:14,430
exercises ู„ุฅู†ู‡ุง ุชุทุจูŠู‚ุงุช ุนู„ู‰ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‚ู„ุชู‡ุง ููŠ
721
01:01:14,430 --> 01:01:19,630
ุงู„ุฃูˆู„ ุงู„ C ู†ุงู‚ุต X ู‡ูŠุณูˆุก C of X ูŠุนู†ูŠ ุนุจุงุฑุฉ ุนู† even
722
01:01:19,630 --> 01:01:23,230
function S ู†ุงู‚ุต X ุจูŠุณูˆุก ู†ุงู‚ุต S of X ู„ูƒู„ X element
723
01:01:23,230 --> 01:01:28,590
in Rุงู„ุขู† if x,y ุงู„ู…ุชู†ุงุฑ then we have the addition
724
01:01:28,590 --> 01:01:32,230
formula c of x ุฒูŠ ุงุฏ y ุจูŠุณุจุจ c of x ููŠ c of y ู†ู‚ุต
725
01:01:32,230 --> 01:01:35,950
s of x ูˆs of y ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุชุนุฑููˆู‡ุง ุงู†ุชูˆุง sign ุงู„
726
01:01:35,950 --> 01:01:38,350
x ุฒูŠ ุงุฏ y ุจูŠุณุจุจ sign ุงู„ x ุจูƒุณุงู† ุงู„ y ุฒูŠ ุงุฏ ูƒุณุงู† ุงู„
727
01:01:38,350 --> 01:01:42,090
y ููŠ sign ุงู„ x ูˆู‡ูƒุฐุง ู‡ูŠ ู‡ุฐู‡ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ ุงุญู†ุง
728
01:01:42,090 --> 01:01:47,570
ุนุงุฑููŠู†ู‡ุง ู‚ุจู„ ู‡ูŠูƒ ูˆุจุฏู†ุง ู†ุดูˆู ูƒูŠู ุงู„ู„ูŠ ู‡ูŠ ุงู†ุจุฑู‡ู†
729
01:01:47,570 --> 01:01:53,660
ุงู„ู†ุธุฑูŠุฉ ู†ุดูˆู ุงู„ุจุฑู‡ุงู† ุชุจุน ุงู„ู†ุธุฑูŠุฉุงู„ุขู† ุณู…ู‘ูŠู„ูŠ Phi of
730
01:01:53,660 --> 01:01:59,370
X ุจูŠุณุงูˆูŠ C of ู…ุงู‚ุต X ู„ูƒู„ X element in Rุงุญุณุจู„ูŠ ุงู„ู€
731
01:01:59,370 --> 01:02:05,010
phi w prime of x ู„ูˆ ุงุชูŠุช ูุถู„ุช ู‡ุฐู‡ ู…ุฑุชูŠู† ู‡ุชู„ุงู‚ูŠู‡ุง
732
01:02:05,010 --> 01:02:09,950
ู†ุงู‚ุต phi of x ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุชูุถู„ู‡ ุณู‡ู„ ูˆ ุจุชุฌูŠุจู‡ ู„ุญุงู„ูƒ
733
01:02:09,950 --> 01:02:15,050
ุงู„ุขู† ุงุญุณุจู„ูŠ ุงู„ phi of 0 phi of 0 ู‡ุชุณุงูˆูŠ ุงูŠุดุŸ
734
01:02:15,050 --> 01:02:19,350
ุจุชุณุงูˆูŠ ูˆุงุญุฏ phi prime of 0 ู‡ุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
735
01:02:19,350 --> 01:02:24,430
ุงู„ู„ูŠ ู‡ูŠ ุงู„ sign ุงู„ sign ุงูŠุด ู…ุนู†ุงู‡ุงุŸ ุจุชุณุงูˆูŠ 0 ุนู†ุฏ
736
01:02:24,430 --> 01:02:30,730
ุงู„ zeroุงู„ุงู† ุตุงุฑ ุนู†ุฏู‰ ุงู„ุงู† ุงู„ูุงู‰ ู‡ูŠ ู…ูŠู†ุŸ ู‡ูŠ ุงู„ู€C
737
01:02:30,730 --> 01:02:35,710
ู„ูŠุด ุงู„ูุงู‰ ู‡ูŠ ุงู„ู€CุŸ ู„ุฃู† ุญู‚ู‚ุช ุงู„ูุงู‰ ุงู„ู„ู‰ ูุฑุถุชู‡ุง
738
01:02:35,710 --> 01:02:40,790
ุจุณุงูˆูŠุฉ C-X ุดุฑูˆุท ุงู„ู€C ูˆ ุงู„ู€C is unique ุฅุฐุง ุงู„ูุงู‰ H
739
01:02:40,790 --> 01:02:47,200
ุจุชุณุงูˆูŠ Cุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ ุงู„ุงู† C-X ุจูŠุณุงูˆูŠ C of X ุงู„ููƒุฑุฉ
740
01:02:47,200 --> 01:02:52,060
ูˆุงุถุญุฉ ุฃู†ู‡ ุฃู†ุง ุฌุจุช ุณู…ูŠุช ุงู„ู€C-X ู‡ูŠ ุงู„ูุงูŠุฉ ูˆุงุชุจุชุช ุฃู†
741
01:02:52,060 --> 01:02:57,060
ู‡ุฐู‡ ุงู„ูุงูŠุฉ ุจุชุญู‚ู‚ ุงู„ุดุฑุทูŠู† ุงู„ู„ูŠ ุงุญู†ุง ุญูƒูŠู†ุง ุนู†ู‡ู… ููŠ
742
01:02:57,060 --> 01:03:01,300
ุงู„ุฃูˆู„ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุชุฎู„ูŠ ุงู„ู€C is unique ูุตุงุฑุช
743
01:03:01,300 --> 01:03:07,080
ุงู„ูุงูŠุฉ ุฃูŠุด ุจุชุณุงูˆูŠ ุงู„ู€Cุงู„ุงู† ุจู…ุนู†ู‰ ุงุฎุฑ ุตุงุฑุช C of X
744
01:03:07,080 --> 01:03:10,720
ู‡ูŠ C ู…ู† ู†ุงู‚ุต X ุงู„ู„ูŠ ูุฑุถู†ุงู‡ุง ุงู„ู€ Phi in a similar
745
01:03:10,720 --> 01:03:16,040
way ุจุฑุถู‡ ุจุฏูƒ ุชุนู…ู„ุงุด S of ู†ุงู‚ุต X ุงู„ู„ูŠ ู‡ูˆ ุจุชุณู…ูŠ ุงู„ู„ูŠ
746
01:03:16,040 --> 01:03:20,480
ู‡ูŠ ุงู„ .. ุงู„ูุง .. ุจุชุณู…ูŠู‡ุง ุจู€ Psi ู…ุซู„ุง Psi ุจุชุณุงูˆูŠ
747
01:03:20,480 --> 01:03:25,020
ู…ูŠู†ุŸุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต ู‡ุชุฌูŠุจู‡ุง ุณุงู…ูŠ ุจุตูŠ ุจูŠุณุงูˆูŠ
748
01:03:25,020 --> 01:03:29,540
ู†ุงู‚ุต S ู†ุงู‚ุต X ูˆ ุชุฌูŠุจ ุงู„ุดุฑูˆุท ุงู„ู„ูŠ ู‡ูŠ ุชุจุนู‡ุง ุงู„ sign
749
01:03:29,540 --> 01:03:33,500
ู‡ุชู„ุงู‚ูŠู‡ุง ู…ุชุทุงุจู‚ ู…ุชุญู‚ู‚ุฉ ูˆ ุจู…ุง ุงู† ุงู„ S is unique ุงูˆ
750
01:03:33,500 --> 01:03:37,240
ุงู„ sign is unique ุงุฐุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุญู‚ู‚ุชู‡ุง ุงู„ู„ูŠ
751
01:03:37,240 --> 01:03:41,500
ูƒุชุจุชู‡ุง ุจุชุณุงูˆูŠ ุงู„ S ูˆุตุงุฑูŠู† ุงูŠู‡ ุฌู‡ุชูŠู† ู…ุชุณุงูˆูŠุงุช ุจู†ูุณ
752
01:03:41,500 --> 01:03:47,980
ุงู„ุฃุณู„ูˆุจ ุทูŠุจ ุงู„ุขู† ู†ูŠุฌูŠ ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† VI ุดูˆููˆุง
753
01:03:47,980 --> 01:03:52,850
ุตู„ู‰ ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…ู‡ู†ููŠุฑ ู†ุจุฑู‡ ุงู† vi
754
01:03:52,850 --> 01:03:55,830
let y ุงู„ู…ุชู† ุนุงุฑ ุจูŠุฌูŠุจู†ุง let f of x ุจูŠุณุงูˆูŠ c of x
755
01:03:55,830 --> 01:04:00,070
ุฒูŠ dash ุฒูŠ y for x ุงู„ู…ุชู† ุนุงุฑ ุงู„ุงู† a calculation
756
01:04:00,070 --> 01:04:04,230
shows that ูŠุนู†ูŠ ูุถู„ูŠ ู‡ุฐุง ู…ุฑุชูŠู† ุงู„ุชูุงุถู„ ุณู‡ู„ ูˆุงู„ู„ู‡
757
01:04:04,230 --> 01:04:08,010
ูŠุง ุฌู…ุงุนุฉ ุนุดุงู†ูƒ ุงู†ุง ูŠุนู†ูŠ ู…ุงุจุฏูŠุด ู†ุถูŠุน ูˆุงุฌุชู†ุง ููŠ
758
01:04:08,010 --> 01:04:12,190
ุงู„ุชูุงุถู„ุฃูˆ ููŠ ุงู„ุญุณุงุจุงุช f w prime of x ุทุจุนุง ูุงุถู„
759
01:04:12,190 --> 01:04:15,430
ุจุงู„ู†ุณุจุงู„ูŠ x y ุงูŠุด ู…ุง ุนู„ู‰ f x ุซุงุจุช ุฃุณูŠุจูƒ ู…ู†ู‡ุง ู„ุฃู†
760
01:04:15,430 --> 01:04:18,590
ู„ูˆ ูุถู„ุช ู…ุฑุชูŠู† ู‡ุชู„ุงู‚ูŠ ู†ุงู‚ุต f of x for x element in
761
01:04:18,590 --> 01:04:22,550
R ู…ุฏุงู… f w prime ุจูŠุณุงูˆูŠ ู†ุงู‚ุต f of x ุจุงู„ุญุตุงุฑุฉ ุงู„ู„ูŠ
762
01:04:22,550 --> 01:04:26,850
ู‡ูŠ ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู‚ูุงุถู„ูŠุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
763
01:04:26,850 --> 01:04:32,880
ู‚ุจู„ ุดูˆูŠู‡ ู‡ูŠ 8 4 6 ู‡ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ f of xุนุจุงุฑุฉ ุนู†
764
01:04:32,880 --> 01:04:36,300
linear combination ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ฮฑ C of X ุฒูŠ Beta S
765
01:04:36,300 --> 01:04:39,840
of X ูˆุงู„ู€ F of X ู…ูŠู† ู‡ูŠ ุงุญู†ุง ูุฑุถูŠู†ุง C of XY ุตุงุฑุช
766
01:04:39,840 --> 01:04:43,180
ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ู‡ุฐู‡ ูŠุนู†ูŠ ู‡ุฐู‡ ุจุชุณุงูˆูŠ ู‡ุฐู‡ ู…ู† ุญุงู„
767
01:04:43,180 --> 01:04:47,260
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ู‡ุฐู‡ ุจูˆุงุณุทุฉ ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ูˆู‡ุฐู‡
768
01:04:47,260 --> 01:04:51,330
ุงุตู„ุง ุงู†ุง ู†ุณู…ูŠู‡ุง ู‡ูŠูƒ ุตุงุฑุช ู‡ุฐู‡ ุจุชุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุทุนุงู„ุงู†
769
01:04:51,330 --> 01:04:55,350
ุฌูŠุจู„ู‡ F prime F prime of X ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุงู„ุชูุถูŠู„ุฉ
770
01:04:55,350 --> 01:04:59,070
ุจู€C ู†ุงู‚ุต S of X ุฒุงุฆุฏ Y ูˆูุงุถู„ ู‡ุฐู‡ ุจูŠุทู„ุน ุงู„ู„ูŠ ู‡ูˆ
771
01:04:59,070 --> 01:05:02,910
ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต Alpha S of X ุฒุงุฆุฏ Beta C of X ุซู…
772
01:05:02,910 --> 01:05:09,710
ูุถู„ุช ู…ุงุดูŠ ุงู„ุงู† ุฎุฏ X ุจูŠุณุงูˆูŠ 0 X ุจูŠุณุงูˆูŠ 0 ู„ู…ุง X
773
01:05:09,710 --> 01:05:18,250
ุจุชุณุงูˆูŠ 0ุจู†ุญุตู„ ุงู„ุขู† ุนู†ุฏู‰ .. ุจุตูŠุฑ ุนู†ุฏู‰ ุนูˆุถ X ุจุชุณุงูˆูŠ
774
01:05:18,250 --> 01:05:25,190
ุณูุฑ ููŠ ุงู„ู„ู‰ ู‡ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ู‰ ุนู†ุฏู‰ ู‡ู†ุง ุจุตูŠุฑ ุนู†ุฏู‰ S
775
01:05:25,190 --> 01:05:31,360
of Zero ูˆ C of Zeroุจุณุงูˆู…ูŠู† F of Zero F of Zero
776
01:05:31,360 --> 01:05:40,100
ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† F of Zero ู‡ูŠ C of Y ู‡ุฐู‡ ูุงู‡ู…ูŠู†
777
01:05:40,100 --> 01:05:44,560
ุนู„ูŠู‡ุงุŸ ุฎู„ูŠู†ูŠ ุฃู‚ูˆู„ู‡ุง ูˆุงุถุญุฉ ุฃุญุณู† ุงู„ุขู† ุจุฏู†ุง ู†ุงุฎุฏ F
778
01:05:44,560 --> 01:05:52,600
ู…ูŠู†ุŸ F ุนู†ุฏ Zero ูุงุดุฑุŸ ุจูŠุตูŠุฑ ู‡ุฐุง C of Y ุจุณุงูˆู…ูŠ
779
01:05:52,600 --> 01:05:58,190
AlphaููŠ c of zero ูˆุงุญุฏ ูˆู‡ุฐู‡ beta s of zero ุฒูŠุฑูˆ
780
01:05:58,190 --> 01:06:03,890
ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ุงู„ alpha ุจุชุณุงูˆูŠ c of y ู‡ุงูŠ ูˆุงุญุฏุฉ ู„ุฃู†
781
01:06:03,890 --> 01:06:09,990
similarly ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต ุฎุฏ ุนู†ุฏ ุงู„ zero ุนู†ุฏ ุงู„ zero
782
01:06:09,990 --> 01:06:15,570
ุจูŠุตูŠุฑ ู†ุงู‚ุต s of y ุจุณุงูˆูŠ ู‡ุฐูŠ ุจูŠุตูŠุฑ ุณูุฑ ูˆู‡ุฐู‡ ุจูŠุตูŠุฑ
783
01:06:15,570 --> 01:06:20,070
beta ุจุณุงูˆูŠ beta ุงู„ุขู† ุจู†ุนูˆุถ ูˆูŠู† ููŠ ุงู„ formula
784
01:06:20,070 --> 01:06:26,370
ุงู„ุฃูˆู„ู‰ุจุตูŠุฑ ุนู†ุฏู‰ ุงู„ุงู† ุงู„ formula ุงู„ู„ู‰ ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ู‰
785
01:06:26,370 --> 01:06:30,010
ุจุชุญุท ู…ูƒุงู† C of Y ุจุณูˆุฉ Alpha ูˆ ุงู„ููˆุฑู…ูˆู„ุฉ ุงู„ุฃูˆู„ู‰
786
01:06:30,010 --> 01:06:35,770
ุงู„ู„ู‰ ุงุญู†ุง ุนู…ู„ู†ุงู‡ุง ุจุตูŠุฑ ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ู‰ C
787
01:06:38,530 --> 01:06:43,570
Half X ุฒุงุฆุฏ Y ุจุณุงูˆุฉ Alpha ุงู„ู„ูŠ ู‡ูŠ ุงุณู…ู‡ุง ู‚ู„ู†ุง ุทู„ุนุช
788
01:06:43,570 --> 01:06:48,310
ุนู†ุฏู†ุง C of Y ุจุตูŠุฑ C of Y ููŠ C of X ู‡ูŠู‡ุง ู…ุธุจูˆุทุฉ
789
01:06:48,310 --> 01:06:53,130
ูˆู‡ุฐู‡ ู†ุงู‚ุต S ู…ูƒุงู† ุงู„ Beta ุจุตูŠุฑ ู†ุงู‚ุต S of Y ููŠ S of
790
01:06:53,130 --> 01:07:01,740
X ุตุญูŠุญุฉ ุฅุฐุง ุจูƒูˆู† ุฅุญู†ุง ุฎู„ุตู†ุง ุงู„ู„ูŠ ุจุฏู†ุงูŠุงู‡ ูˆู‡ุฐู‡ุจุชุนูˆุถ
791
01:07:01,740 --> 01:07:08,240
ุนู† ุงู„ู„ูŠ ู‡ูŠ Alpha C of Y ุจC ู†ู‚ุต C of Y ูˆู‡ุฐู‡ ุจุชุนูˆุถู‡ุง
792
01:07:08,240 --> 01:07:13,440
ู‡ู†ุง ุจุชุทู„ุน ู‡ุฐู‡ ุจุชุณุงูˆูŠ ู†ู‚ุต ู‡ุฐู‡ ุงุนู…ู„ ุงู„ุญุณุงุจ ุงู„ุฃุฎูŠุฑ
793
01:07:13,440 --> 01:07:17,400
ูˆุธุฑูˆู ุงู„ุฏู‚ูŠู‚ุชูŠู† ุจู†ู‚ุต ุจุชุทู„ุน ุนู†ุฏูƒ ู‡ุฐุง ุงู„ู…ุฎุถุฑ ูŠุนู†ูŠ
794
01:07:17,400 --> 01:07:23,840
ู‡ุฐู‡ ุงู„ุชุนูˆูŠุถ ููŠู‡ุง ุนู† ู‚ูŠู…ุฉ Alpha ูˆ Beta ุจู‡ุฐู‡ ู‡ู†ุง
795
01:07:23,840 --> 01:07:30,860
ุจุชุทู„ุน ู‡ุฐู‡ ูˆู‡ุฐู‡ ุงู„ุชุนูˆูŠุถ ู‡ุฐู‡ุนู† alpha ูˆ beta ู‡ู†ุง ุงู„ู„ูŠ
796
01:07:30,860 --> 01:07:35,420
ุจุชุทู„ุน ุงู„ุฃูˆู„ู‰ ุจูƒูˆู† ุงุญู†ุง ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงุซุจุงุช ู‡ุฐู‡
797
01:07:35,420 --> 01:07:42,800
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ูˆุถุงู„ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡
798
01:07:42,800 --> 01:07:47,350
ุงู„ุฃุฎูŠุฑุฉูˆุงู„ุจุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ ุงุชุทู„ุนุชูˆุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ
799
01:07:47,350 --> 01:07:52,450
ุจุงู‚ูŠ ุงู„ู†ุธุฑูŠุงุช ุงู„ู„ูŠ ู‡ูŠ ุจุณ ุงุชุทู„ุน ู„ุนู†ุฏ ุงู„ู‡ุง ุจูŠูƒูˆู†
800
01:07:52,450 --> 01:07:55,990
ุงุญู†ุง ุจูŠูƒูˆู† ุฎู„ุตู†ุง chapter ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ููŠ
801
01:07:55,990 --> 01:08:00,350
chapter ููŠ ุชู…ุงู†ูŠุฉ ุฃุฑุจุนุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ theorem
802
01:08:00,350 --> 01:08:03,530
ุฎู„ูŠู†ูŠ ุฃุทู„ุนู„ูƒ ุนู„ูŠู‡ุง ุนู„ู‰ ุงู„ุณุฑูŠุน ู„ุฅู† ุญุณุงุจุงุช ูƒู„ู‡ุง
803
01:08:03,530 --> 01:08:07,840
ุจุชุนู…ู„ู‡ุง ู„ุญุงู„ูƒ ุฃูƒูŠุฏ ุจุชุนุฑูุฅุฐุง ูƒุงู† ุงู„ู€ x ุฃูƒุจุฑ ุฃูˆ ุฃู‚ู„
804
01:08:07,840 --> 01:08:12,880
ู…ู† 0ุŒ ูู‡ู†ุงูƒ Sx ุจู†ู‚ุต ุงู„ู€ x ูˆุงู„ู€ x ูˆุงู„ู€ c of x ุจูŠู†
805
01:08:12,880 --> 01:08:16,780
ุงู„ูˆุงุญุฏ ู†ู‚ุตู‡ x ุฃุฑุจุน ุนุฒุฑ ุชูˆ ูˆุงุญุฏ ูˆุงู„ู€ c of x ุจู‚ุฏุฑ
806
01:08:16,780 --> 01:08:18,820
ุฃูƒู…ู„ ุงู„ู€ polynomial
807
01:08:21,810 --> 01:08:25,650
ุจุงู„ู„ูŠ ุนู…ู„ู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€CN of X ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุดูˆูŠุฉ ูˆ
808
01:08:25,650 --> 01:08:28,430
ุงู„ู€SN of X ู„ุฃู†ู‡ ููŠ ุงู„ู†ู‡ุงูŠุฉ limitู‡ุง ุงู„ series
809
01:08:28,430 --> 01:08:30,790
ุงู„ุฃูˆู„ู‰ as N goes to infinity ู…ุง ุฃู†ุชูˆุง ุนุงุฑููŠู† ุงู„ู„ูŠ
810
01:08:30,790 --> 01:08:34,990
ู‡ูŠ ู†ู‚ุฏุฑ ู†ูƒุชุจ ุงู„ู€C of X ุนู„ู‰ ุตูˆุฑุฉ ุงู„ series ุงู„ู„ูŠ ููŠ
811
01:08:34,990 --> 01:08:38,130
ุงู„ุฃูˆู„ ูˆ ุงู„S of X ุนุจุงุฑุฉ ุนู† limit ุงู„ series ุงู„ุชุงู†ูŠุฉ
812
01:08:38,130 --> 01:08:43,390
ุงู„ terms ุฅุถุงูุฉ term ูˆ ุทุฑุญ term ูˆ ูˆุฌูˆู ุนู†ุฏ ุญุฏูˆุฏ ุจุงู„
813
01:08:43,390 --> 01:08:47,090
term ุจุชุนู…ู„ ุงู„ inequality ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ูƒู„ ู‡ุฐู‡
814
01:08:47,090 --> 01:08:49,810
ุดุบู„ุงุช ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ุง ููŠ ุงู„ calculus ู…ุงููŠุด ุฏุงุนูŠ
815
01:08:49,810 --> 01:08:55,650
ู„ู„ุชูุตูŠู„ ููŠู‡ุงุงู„ุงู† ุงู„ุงูˆู„ู‰ุนู†ุฏูŠ ุงู„ .. ุงู„ .. ุงุญู†ุง ู‚ู„ู†ุง
816
01:08:55,650 --> 01:08:59,990
sign ุชุฑุจูŠุน ุฒุงุฆุฏ plus sign ุชุฑุจูŠุน ุจุณุงูˆูŠ ูˆุงุญุฏ ูŠุนู†ูŠ ููŠ
817
01:08:59,990 --> 01:09:02,670
ุงู„ู†ู‡ุงูŠุฉ ุงู„ C of T ุจูŠู† ู…ุงู‚ุต ูˆุงุญุฏ ูˆ ูˆุงุญุฏ ุฏู‡ ู…ู…ูƒู†
818
01:09:02,670 --> 01:09:06,710
ู‡ุชุชุฌุงูˆุฒู‡ุง ู„ุฃู†ู‡ ุจุชุฎุชู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ C .. ู„ูˆ ูƒุงู†ุช ุฃูƒุจุฑ
819
01:09:06,710 --> 01:09:10,750
ู…ู† ูˆุงุญุฏ ู…ุนู†ุงุชู‡ ุจู€ C .. C of T ุชุฑุจูŠุน ุฒุงุฆุฏ S of T
820
01:09:10,750 --> 01:09:14,550
ุชุฑุจูŠุน ูŠุชุฌุงูˆุฒ ู…ู† ูˆุงุญุฏ ู„ูƒู† ู…ุฌู…ูˆุญ ุจุณูˆุก ูˆุงุญุฏ ุฅุฐุง ู‡ุฏูŠ
821
01:09:14,550 --> 01:09:18,630
ุจูŠู† .. ูŠุนู†ูŠ ู‡ุฏูŠ ุงู„ู„ูŠ ูˆูŠู† ุฌุงูŠุฉ ู…ู† C ุชุฑุจูŠุน ุฒุงุฆุฏ S
822
01:09:18,630 --> 01:09:23,030
ุชุฑุจูŠุน ุจุณุงูˆูŠ ูˆุงุญุฏ ุทูŠุจุงู„ู„ูŠ ู‡ู†ุนู…ู„ integration ู„ุฌู‡ุชูŠู†
823
01:09:23,030 --> 01:09:26,990
ู…ู† ุตูุฑ ู„ุนูŠู† DX ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ main ุงู„ S
824
01:09:26,990 --> 01:09:30,750
of X ูˆู‡ุฐู‡ ุจุชุทู„ุน ุฃู†ุฎุณ X ูˆู‡ุฐู‡ ุจุชุทู„ุน X ูุงู„ู…ุนู…ู„ ุงู„
825
01:09:30,750 --> 01:09:35,990
integration ู‡ุฏูˆู„ ุงู„ุงู† ุจุฏูŠ
826
01:09:35,990 --> 01:09:43,300
ุฃุฌูŠุจ ุงู„ุชุงู†ูŠุฉ ูุถู„ูŠ ุงู„ S of Tู‡ุฐู‡ ูˆู‡ุฐู‡ ูุงุถู„ูŠู‡ุง ู‡ุฐู‡
827
01:09:43,300 --> 01:09:48,460
ูุงุถู„ูŠู‡ุง ุจู†ู‚ู„ ุตูุฑ ุนู†ุฏ X ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ ุจูŠู† ู‡ุฐู‡ ูˆู‡ุฐู‡
828
01:09:48,460 --> 01:09:53,660
ู‡ูŠุชูุงุถูˆุง ู„ู‡ุฐู‡ ูˆู‡ุฐู‡ ุงู„ุงู† ุจุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ู†ุฌูŠุจ ุงู„ูˆุงุญุฏ
829
01:09:53,660 --> 01:09:58,280
ู†ุงู‚ุต X ุงู„ุณุฑุจูŠุน ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ู‚ูŠู…ุชู‡ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู†
830
01:09:58,280 --> 01:10:02,600
C ููŠ X ุจุงู„ุณุงูˆูŠุฉ ูˆุงุญุฏ ู†ุงู‚ุต ู‡ุฐู‡ ุจู†ุถุฑุจ ุงู„ู†ุงู‚ุต ูˆ ุจู†ุฌู…ุน
831
01:10:02,600 --> 01:10:08,280
ุงู„ุฌู‡ุชูŠู† ูˆุงุญุฏ ุจุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ inequality ุงู„ู„ูŠ
832
01:10:08,280 --> 01:10:13,190
ุนู†ุฏูŠ ู‡ุฐู‡ุฒูŠ ู…ุง ู‚ู„ู†ุง ุถุฑุจู†ุง ููŠ ู†ุงู‚ุต ูˆ ุฌู…ุนู†ุง ูˆุงุญุฏ ุทู„ุนุช
833
01:10:13,190 --> 01:10:16,590
ู‡ุฐู‡ ุงูˆ ุนูˆุถู†ุง ู‡ุฐู‡ ู…ูƒุงู† ู‡ุฐู‡ ุชุนูˆูŠุถ ุนุงุฏูŠ ูˆ ุจุนุฏูŠู† ุถุฑุจู†ุง
834
01:10:16,590 --> 01:10:20,690
ููŠ ู†ุงู‚ุต ูุจุตูŠุฑ ุนู†ุฏู‰ ู‡ุฐู‡ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ู‰ ุนู†ุฏู‰ c of x
835
01:10:20,690 --> 01:10:24,310
ุฃูƒุจุฑ ุณูˆุงุก ู‡ุฐู‡ ูˆ ู†ุงู‚ุต ู‡ุฐู‡ ูˆ ุงู„ู„ู‰ ุจุชุณุชุฎุฏู… ุงู„ุซุงู†ูŠุฉ
836
01:10:24,310 --> 01:10:27,670
ุจุชุทู„ุน ู†ูุณ ุงู„ุงุดูŠ ุงู„ู…ูˆุถูˆุน ู…ูˆุถูˆุน ุญุณุงุจุงุช ุจุญุช ุนุดุงู† ู‡ูŠูƒ
837
01:10:27,670 --> 01:10:31,510
ุจุญุช ุนุดุงู† ู‡ูŠูƒ ู…ุงููŠ ุฏุงุนูŠ ู„ู„ุชูƒู…ูŠู„ ูˆ ุงู†ุชูˆุง ุจุชูƒู…ู„ูˆุง
838
01:10:31,510 --> 01:10:35,150
ุจุงู‚ู‰ ุงู„ุญุณุงุจุงุช ุงู„ู„ู‰ ู‡ูŠ ุงู„ู…ุทู„ูˆุจุฉ ููŠ ู‡ุฐุง ุงู„ู„ู‰ ู‡ูŠ
839
01:10:35,150 --> 01:10:42,700
ุงู„ู†ุธุฑูŠุฉ ุงู„ุงู† ุงู„ุฌุฒุก ุงู„ู…ุชุจู‚ู‰ ู‡ุฐุงุญุจูŠุชู‡ ุชุทู„ุนูˆุง ุนู„ูŠู‡
840
01:10:42,700 --> 01:10:46,880
ู„ูƒู† ุงู„ู„ูŠ ู‡ูˆ ู…ุด ู…ุทู„ูˆุจ ู…ู† ุถู…ู† ุญุฏูŠุซู†ุง ูˆ ู‡ูŠูƒ ู…ู…ูƒู†
841
01:10:46,880 --> 01:10:52,700
ู†ุฎู„ุตู†ุงุงู„ู„ูŠ ู‡ูˆ section ุชู…ุงู†ูŠุฉ ุฃุฑุจุนุฉ ู…ุชุณู…ุฉ ุณุจุชุฑ
842
01:10:52,700 --> 01:10:58,420
ุชู…ุงู†ูŠุฉ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก ุงู„ุซุงู„ุซ ู…ู† ุงู„ู…ุงุฏุฉ ุงู„ุฌุฒุก
843
01:10:58,420 --> 01:11:00,160
ุงู„ุฃูˆู„ ูƒุงู† ุงู„ differentiation ูˆุงู„ุชุงู†ูŠ ุงู„
844
01:11:00,160 --> 01:11:01,960
integration ูˆุงู„ุชุงู„ุช ุงู„ู„ูŠ ู‡ูˆ point twice
845
01:11:01,960 --> 01:11:05,700
convergence ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุจู†ุจุฏุฃ
846
01:11:05,700 --> 01:11:09,880
ููŠ ุงู„ุฌุฒุก ุงู„ุฑุงุจุน ู…ู† ุงู„ู…ุงุฏุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ series ูˆุงู†
847
01:11:09,880 --> 01:11:16,590
ุดุงุก ุงู„ู„ู‡ ุจู‚ุฏุฑ ุงู„ุฅู…ูƒุงู† ู‡ุฃุญูƒูŠ ุงู„ุฌุฒุก ุงู„ุฎุงู…ุณููŠ .. ู…ู†
848
01:11:16,590 --> 01:11:20,510
ุงู„ู…ุงุฏุฉ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ Topology in R ุฃูˆ
849
01:11:20,510 --> 01:11:23,570
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ู„ูŠ ู‡ูŠ Topological
850
01:11:23,570 --> 01:11:27,410
Spaces ูˆNormed Spaces ูˆHilbert Spaces ุฅู„ู‰ ุขุฎุฑู‡
851
01:11:27,410 --> 01:11:33,530
ูˆูŠู…ูƒู† ุจุชูƒูˆู† ู‡ูŠ ุงุชุฌุงูˆุฒุช ุฎู„ู†ุง ู†ู‚ูˆู„ ุญุฏ ุงู„ .. ุงู„ .. ุงู„
852
01:11:33,530 --> 01:11:37,150
.. ุงู„ู…ุทู„ูˆุจ ููŠ ุงู„ู…ุงุฏุฉ ู„ูƒู† ุนู„ู‰ ุฃุณุงุณ ุฅู†ู‡ ู„ูˆ ูŠูƒูˆู†
853
01:11:37,150 --> 01:11:42,210
ุงู„ุชุตูˆูŠุฑ ูƒุงู…ู„ ู„ู„ูˆ .. ู„ู„ูˆุตู ุงู„ู„ูŠ ุฃู†ุง ุงู‚ุชุฑุงุญุชู‡ุฃูˆ ุงู„ู„ูŠ
854
01:11:42,210 --> 01:11:47,230
ู‡ูˆ ุงู„ูˆุตู ุงู„ู„ูŠ ู…ู‚ุชุฑุญ ููŠ ุงู„ุฌุณู… ุงู„ู„ูŠ ู‡ูˆ ู„ุนูŠู† ู†ู‡ุงูŠุฉ ุงู„
855
01:11:47,230 --> 01:11:49,990
series ูˆ ุทุจุนุง ู‡ุฐุง ุงู„ูƒู„ุงู… ู‚ู„ู†ุง ุงุญู†ุง ููŠู‡ ู„ู‡ ุณุจุจ ู„ู…ุง
856
01:11:49,990 --> 01:11:53,450
ุจุฏุฃู†ุง ููŠ ุงู„ุฃูˆู„ ุงู†ู‡ ุงู„ series ุจุชุงุฎุฏูˆู‡ุง ููŠ advanced
857
01:11:53,450 --> 01:11:56,990
calculus ูˆุงุญุฏ ูุนุดุงู† ู‡ูŠูƒ ูŠู…ูƒู† ุงู„ู„ูŠ ู‡ูˆ
858
01:12:00,350 --> 01:12:03,810
ู‡ูŠูƒูˆู† ู…ู†ุทู‚ูŠ ุฃู†ู‡ ู…ุง ู†ุงุฎุฏุด ุงู„ series ูˆ ู†ุงุฎุฏ ุจุฏู„ู‡ุง
859
01:12:03,810 --> 01:12:07,110
ุงู„ู„ูŠ ู‡ูˆ ุงู„ topology ุงู†ุงุฑ ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ุงู„
860
01:12:07,110 --> 01:12:10,550
topological spaces ูˆ ุงู„ metric spaces ูˆ ุฅู„ู‰ ู„ู‚ุงุก ูˆ
861
01:12:10,550 --> 01:12:12,650
ุงู„ุณู„ุงู… ุขุฎุฑ ูˆุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆ ุฑุญู…ู‡ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡