abdullah's picture
Add files using upload-large-folder tool
9b50984 verified
raw
history blame
90.3 kB
1
00:00:04,910 --> 00:00:11,030
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฑุงุจุนุฉ ุจุนุฏ ุญุงู„ุฉ
2
00:00:11,030 --> 00:00:19,410
ุงู„ุทูˆุงุฑุฆููŠ ู…ุงุฏุฉ ุงูˆ ู…ุณุงู‚ ุชุญู„ูŠู„ ู„ุฑูŠุงุถูŠ 2 ุงูˆ ุชุญู„ูŠู„
3
00:00:19,410 --> 00:00:23,970
ุญู‚ูŠู‚ูŠ 2 ู„ุทู„ุจุฉ ูˆ ุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู„ูŠุฉ
4
00:00:23,970 --> 00:00:30,110
ุงู„ุนู„ูˆู… ู‚ุณู… ุงู„ุฑูŠุงุถูŠุงุช ูˆู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 14 ููŠ ุงู„ู…ุงุฏุฉ
5
00:00:30,110 --> 00:00:35,970
ุงูˆ ููŠ ุงู„ู…ุณุงู‚ ุนู†ูˆุงู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู… ุงู„ู„ูŠ ู‡ูˆ
6
00:00:35,970 --> 00:00:43,260
fundamental theorem ofof calculus ุจุดู‚ูŠู‡ุง ุดู‚ ุชูุงุถู„
7
00:00:43,260 --> 00:00:50,640
ุงู„ุชูƒุงู…ู„ ูˆุดู‚ ุชูƒุงู…ู„ ุงู„ุชูุงุถู„ roughly ู†ุจุฏุฃ ุงู„ู„ูŠ ู‡ูˆ ููŠ
8
00:00:50,640 --> 00:00:54,960
ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ุฉ ุฃูˆ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูŠ
9
00:00:54,960 --> 00:00:58,760
ุงู„ first form ุงู„ fundamental theorem of calculus
10
00:00:58,760 --> 00:01:04,870
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุจุชู‚ูˆู„ ู…ุง ูŠู„ูŠlet f from a ูˆ b
11
00:01:04,870 --> 00:01:08,430
ู„ุนู†ุฏ R be an integrable function on a ูˆ b ูŠุนู†ูŠ
12
00:01:08,430 --> 00:01:12,070
ูุฑุถู†ุง ุฃู† ุงู„ู€ function f ุนุจุงุฑุฉ ุนู† ุฏุงู„ุฉ ู‚ุงุจู„ุฉ
13
00:01:12,070 --> 00:01:17,190
ู„ู„ุชูƒุงู…ู„ ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ a ูˆ b and let f capital
14
00:01:17,190 --> 00:01:22,190
ู…ู† a ูˆ b ู„ุนู†ุฏ R ุชุญู‚ู‚ ุงู„ุดุฑูˆุท ุงู„ุชุงู„ูŠุฉุชุญู‚ู‚ ุฃูˆู„ ุดูŠุก
15
00:01:22,190 --> 00:01:25,110
ุฃู†ู‡ุง ุชูƒูˆู† ุงู„ุงู ูƒุงุจุชู†ุงู„ ู‡ุงุฏูŠ continuous ุนู„ู‰ ุงู„ูุชุฑุฉ
16
00:01:25,110 --> 00:01:30,530
a ูˆ b ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ f prime exists and f prime of x
17
00:01:30,530 --> 00:01:34,130
ุจุณุงูˆูŠ ุงู„ุงู small ุงู„ู„ูŠ ุจุฏุฃู†ุง ููŠู‡ุง ุฏูŠ ุงู„ูุฑุถ ู…ู†ู‡ุง
18
00:01:34,130 --> 00:01:39,880
integrable ู„ูƒู„ x element in a ูˆ bุจู†ู‚ูˆู„ ุงู„ู€
19
00:01:39,880 --> 00:01:44,900
integration ู…ู† A ู„B ู„ู„ู€ F ุจุณุงูˆูŠ F of B ู†ุงู‚ุต F of A
20
00:01:44,900 --> 00:01:50,400
ุฅุฐุง ุงู„ุขู† ูˆ ูƒุฅู†ูŠ ุจู‚ูˆู„ ู†ูุชุฑุถ ุฃู†ู‡ ุงู„ู€ F small
21
00:01:50,400 --> 00:01:56,100
integrable ูˆ ู†ูุชุฑุถ F continuous ุนู„ู‰ closed bounded
22
00:01:56,100 --> 00:02:01,160
interval A ูˆ B ูˆ F ู†ูุณู‡ุง differentiable ุนู„ู‰ ุงู„ู€
23
00:02:01,160 --> 00:02:05,260
open ุงู„ู„ูŠ ู‡ูˆ interval A ูˆ B ุจุดุฑุท ุฃู†ู‡ ุงู„ู€ F prime
24
00:02:05,260 --> 00:02:07,940
ุงู„ derivative ู„ู‡ุง ุงู„ู€ F capital ุทุจุนุง ุจุณุงูˆูŠ ุงู„ู€ F
25
00:02:07,940 --> 00:02:13,240
small of Xูˆุจู†ุงุก ุนู„ู‰ ูƒู„ ุงู„ู…ุนุทูŠุงุช ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ุจูŠูƒูˆู†
26
00:02:13,240 --> 00:02:17,120
ุงู„ integration ู…ู† a ู„b ู„ู„ f small ู‡ูˆ ุนุจุงุฑุฉ ุนู† fb
27
00:02:17,120 --> 00:02:21,760
ู†ุงู‚ุต f of a ุงูˆ ุงุฎุชุตุงุฑุง ูˆุงุณู‡ู„ูƒ ู„ู„ุญูุธ ุงู„ integration
28
00:02:21,760 --> 00:02:29,670
ู…ู† a ู„b ู„ู„ f prime of x dx ู‡ูŠ ุนุจุงุฑุฉ ุนู†ูˆูƒุฃู†ู‡
29
00:02:29,670 --> 00:02:36,250
ุงู„ุชูƒุงู…ู„ ุจู„ุบ ุงู„ุชูุงุถู„ ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูŠ f of b ู†ุงู‚ุต f of
30
00:02:36,250 --> 00:02:40,610
a ู‡ุฐุง ูุถูˆุก mean ูŠุนู†ูŠ ู‡ุงูŠ ู‡ุงุฏุฉ ุจุงุฎุชุตุงุฑ ู‡ูŠูƒ ูุถูˆุก
31
00:02:40,610 --> 00:02:44,710
mean ุฃู† f prime of x ุชูƒูˆู† ู…ูˆุฌูˆุฏุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† a ูˆ
32
00:02:44,710 --> 00:02:51,370
b ูˆ ุฃูŠุถุง ุจุชูƒูˆู† ุงู†ู‡ุงุด integrable ู†ูุณู‡ุง integrable ูˆ
33
00:02:51,370 --> 00:02:56,110
ุชูƒูˆู† ุงู„ f ู†ูุณู‡ุง continuous ุนู„ู‰ close ู…ู† a ู„ ุนู†ุฏ b
34
00:02:56,390 --> 00:03:00,270
ู‡ุฐู‡ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุฅุฐุง ุงู„ู„ูŠ ุจุฏู†ุง ู†ุซุจุชู‡ ุงู„ุขู† ุฃู†ู‡ ู‚ูŠู…ุฉ
35
00:03:00,270 --> 00:03:04,470
ุงู„ integration ู‡ุฐุง ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ุงู„ู„ูŠ
36
00:03:04,470 --> 00:03:09,590
ู‡ูŠ f of b ู†ุงู‚ุต ู…ู† ู†ุงู‚ุต f of a ุฎู„ูŠู†ุง ู†ุดูˆู ุฅูŠุด
37
00:03:09,590 --> 00:03:15,030
ุงู„ุจูƒุงุก ููŠ ุงู„ุจุญุฑุงู† ูŠุง ุฌู…ุงุนุฉุงู„ุงู† ุงู„ู„ูŠ ูˆุงุถุญ ุงู†ู‡ ุงู†ุง
38
00:03:15,030 --> 00:03:18,530
ุจุฏู‡ ุงุซุจุช ุงู†ู‡ ุงู„ integration ู‡ูˆ ุนุจุงุฑุฉ ุนู† f of b
39
00:03:18,530 --> 00:03:24,990
ู†ุงู‚ุต f of a ุดูˆู ุงู†ุง ูƒูŠู ุจุฏู‡ ุงูˆุตู„ูƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„
40
00:03:24,990 --> 00:03:28,670
integration ู„ู…ู†ู‚ู„ุฉ ุงู„ b ู„ู„ f ุจุณุงูˆูŠ f of b ู†ุงู‚ุต f
41
00:03:28,670 --> 00:03:32,010
of a ุงู†ุง ุจุนุฑู ุงูˆู„ ุญุงุฌุฉ ู‡ูˆ ู…ุนุทูŠู„ูŠ ุงู„ f small ู‡ุฐู‡
42
00:03:32,010 --> 00:03:35,290
ุงู„ู„ูŠ ู‡ูŠ ุงู„ f prime ุงู„ู„ูŠ ู‡ูŠ ุงู„ f small ุณู…ูŠุชู‡ุง ู‡ุฐู‡
43
00:03:35,290 --> 00:03:39,240
ู…ุนุทูŠู†ูŠู‡ุง integrallyMadame Integrable ุฅุฐู† ุจูˆุงุณุทุฉ
44
00:03:39,240 --> 00:03:44,160
ุงู„ู„ูŠ ู‡ูŠ .. ุฅุฐุง ุจุชุชุฐูƒุฑูˆุง Integrable criterion ูˆู‡ูŠ
45
00:03:44,160 --> 00:03:46,900
ุงู„ู„ูŠ ุจู†ุณุชุฎุฏู…ู‡ุง ูƒุซูŠุฑ ุงุญู†ุง ู„ุฅู†ู‡ุง .. ูŠุนู†ูŠ ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„
46
00:03:46,900 --> 00:03:51,400
ุตูŠุบุฉ ู…ู‡ู…ุฉ ููŠ ุฅุซุจุงุช ุงู„ู†ุธุฑูŠุงุช ุงู„ู„ูŠ ู‡ูŠ ุจู…ุง ุฅู†ู‡ ุฃู
47
00:03:51,400 --> 00:03:56,380
Integrable ุฅุฐู† ู„ูƒู„ Y ุฃูƒุจุฑ ู…ู† 0 ูŠูˆุฌุฏ there exists a
48
00:03:56,380 --> 00:04:00,600
partition B ุงู„ู„ูŠ ู‡ูˆ X0 X1 ุนู†ุฏ X ู„ .. ุนู†ุฏ ..
49
00:04:00,600 --> 00:04:03,280
partition ู„ู…ูŠู† ุทุจุนุงู‹ ู„ู„ูุชุฑุฉ ุงู„ู„ูŠ ุฃู†ุชูˆุง ุนุงุฑููŠู†ู‡ุง
50
00:04:03,280 --> 00:04:06,800
ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุดุชุบู„ ุนู„ูŠู‡ุง ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ B
51
00:04:06,960 --> 00:04:12,920
There exists a partition B X0 X1 XN of A ูˆ B such
52
00:04:12,920 --> 00:04:20,280
that ุงู„ other sum B F'-LB F' ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† F' ู…ู†
53
00:04:20,280 --> 00:04:24,000
ู‡ู†ุง ู…ู† ู‡ูŠ ูŠุง ุฌู…ุงุนุฉุŸ ู‡ูŠ ุงู„ F ู„ุฃู†ู†ุง ู…ูุชุฑุถูŠู† ุงู„ F
54
00:04:24,000 --> 00:04:29,940
small ุฃูˆ ุงู„ F' is integrable ุฅุฐุง ุจูˆุงุณุทุฉ ุงู„ุฑู…ุงุก ุงู„
55
00:04:29,940 --> 00:04:34,760
integrable criterion ุญุตู„ู†ุง ุนู„ู‰ ูˆุงุญุฏ ุงู„ู„ูŠ ุนู†ุฏู‡
56
00:04:34,760 --> 00:04:40,880
ุฅู„ุญุงุฉุฃุญูƒูŠ ุนู†ู‡ุง ุงู„ุขู† ุฃูˆ ุฃุณุชุฎุฏู…ู‡ุง ู„ู„ูˆุตูˆู„ ู„ู‡ุฏููŠ ุทูŠุจ
57
00:04:40,880 --> 00:04:44,040
because ุทุจุนุง F prime ุงู„ู„ูŠ ู‡ูŠ meme ุฒูŠ ู…ุง ู‚ู„ู†ุง F of
58
00:04:44,040 --> 00:04:48,820
X is integrable on A ุฃูˆ B ุงู„ุขู† ููŠ ุดุบู„ุฉ ุชุงู†ูŠุฉ ุงุญู†ุง
59
00:04:48,820 --> 00:04:55,880
ุจุฏุฃ ุงู„ุขู† ุฃุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุฃู…ุฑ ุขุฎุฑ ุฎู„ูŠู†ุง ู†ูƒุชุจ ุงู„ุขู†
60
00:04:55,880 --> 00:05:00,920
ุฃูˆู„ ุดุบู„ุฉ ุญุตู„ู†ุงู‡ุง ุนุดุงู† ุชุนุฑู ุฃูŠู† ุฃู†ุง ุฑุงูŠุญ ุงู„ู„ูŠ ู‡ูŠ
61
00:05:00,920 --> 00:05:06,550
ู‚ู„ู†ุง F is integrableF ุงู„ุชูŠ ุจูŠุณู…ู‰ F' Integrable ุฃูŠุด
62
00:05:06,550 --> 00:05:12,270
ุฃุนุทุชู†ุง ูŠุง ุฌู…ุงุนุฉุŸ ุฃุนุทุชู†ุง ุฃู† ู‡ู†ุงูƒ ุจุงุฑุชูŠุดู† B ู‡ู†ุงูƒ B
63
00:05:12,270 --> 00:05:15,830
ุทุจุนุง for every epsilon ุฃูƒุจุฑ ู…ู† ุณูุฑ ู‡ู†ุงูƒ ุจุงุฑุชูŠุดู† B
64
00:05:15,830 --> 00:05:23,390
such that U, B ูˆ F ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ F' ุทุจุนุง ุงู„ู€ F ูŠู…ูŠู†
65
00:05:23,390 --> 00:05:29,530
ุงู„ู€ F' ู†ุงู‚ุต ุงู„ู€ B ูˆ F ู‡ูŠ ุฃุตุบุฑ ู…ู† Y ูˆู‡ุฐุง ุณู…ู†ุงู‡ุง
66
00:05:29,530 --> 00:05:34,710
ุฅูŠุดุŸ ุณู…ู†ุงู‡ุง 1ู„ุฃู† ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ูŠุง ุฌู…ุงุนุฉ ุจุฏูŠ ุฃุณุชุบู„
67
00:05:34,710 --> 00:05:37,810
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู…ุนุทูŠู†ูŠู‡ ุฃู† ุงู„ุฃููƒุงุฑ ุจุชู„ู‚ูˆุง continuous
68
00:05:37,810 --> 00:05:41,490
ุฃู†ุง ุงู„ุขู† ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฌุฒุงู‚ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ A ูˆ B
69
00:05:41,490 --> 00:05:52,230
ุฅู„ู‰ุงู„ู„ูŠ ู‡ูŠ X0 X1 X2 ูุชุฑุฉ ู†ู…ูˆุฐุฌูŠุฉ Xk-1 ู„ุนู†ุฏ Xk ู„ุนู†ุฏ
70
00:05:52,230 --> 00:05:56,010
ู…ูŠู† ู„ุนู†ุฏ Xn ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† ุงู„ู€ B ู‡ุฐุง ุงู„ partition
71
00:05:56,010 --> 00:05:59,930
ุงู„ู„ูŠ ู„ุฌูŠุชู‡ ุฃู†ุง ุงู„ุขู† ุฃู†ุง ุจุนุฑู ุฃู† ุงู„ F capital
72
00:05:59,930 --> 00:06:03,330
continuous ุนู„ู‰ ุงู„ closed interval ูƒู„ู‡ุง ู…ู† A ู„ุนู†ุฏ B
73
00:06:03,330 --> 00:06:06,870
ุฅุฐุง ุงู„ุฃูƒูŠุฏ continuous ุนู„ู‰ ูƒู„ sub interval ู…ูˆุฌูˆุฏุฉ
74
00:06:06,870 --> 00:06:12,540
ูŠุนู†ูŠ ุตุงุฑุช ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ F capital continuouson a
75
00:06:12,540 --> 00:06:18,560
ุงู„ุชูŠ ู‡ูŠ xk-1 ูˆุนู†ุฏ xk ู‡ุฐู‡ ู‡ูŠ ุงู„ sub interval ุงู„ู„ูŠ
76
00:06:18,560 --> 00:06:24,080
ุงู„ function f continuous ุนู„ูŠู‡ุง ูˆุฅุญู†ุง ู…ูุชุฑุถูŠู† ุฃูŠุถุง
77
00:06:24,080 --> 00:06:29,220
ุฃู† ุงู„ f prime exist ุนู„ู‰ ุงู„ open interval ูƒู„ู‡ุง ุฅุฐุง
78
00:06:29,220 --> 00:06:33,860
ุฃูƒูŠุฏ ุงู„ fis differentiable ู„ุฃู† f' exist ุนู„ู‰ ุงู„
79
00:06:33,860 --> 00:06:37,360
open interval ู…ู† a ู„ุนู†ุฏ b ุฅุฐุง ุฃูƒูŠุฏ f is
80
00:06:37,360 --> 00:06:41,980
differentiable ุนู„ู‰ ุงู„ูุชุฑุฉ xk minus ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู†
81
00:06:41,980 --> 00:06:45,140
ู„ุนู†ุฏ ุงู„ xk ูŠุนู†ูŠ ูŠุง ุฌู…ุงุนุฉ ุดุฑูˆุท ุงู„ mean value
82
00:06:45,140 --> 00:06:50,020
theorem ู…ุญู‚ู‚ุฉ ุฅุฐุง ุฃูƒูŠุฏ there existthere exist ุจู…ุง
83
00:06:50,020 --> 00:06:54,540
ุงู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ุดุฑูˆุท ุงู„ mean value ู…ุญู‚ู‚ุฉ ุงุฐุง there
84
00:06:54,540 --> 00:06:59,620
exist ุจุณู…ูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ bk ุงูˆ tk there exist tk ููŠ
85
00:06:59,620 --> 00:07:06,440
ุงู„ูุชุฑุฉ xk minus ูˆุงุญุฏ ุนู†ุฏ ุงู„ xk such that ุงู„ู„ูŠ ู‡ูˆ F
86
00:07:06,440 --> 00:07:11,520
ู‡ูŠ ุงู„ุฏู„ู„ ุงู„ู„ูŠ ุจุทุจู‚ ุนู„ูŠู‡ุง ุงู„ mean value theorem ูŠุง
87
00:07:11,520 --> 00:07:19,320
ุฌู…ุงุนุฉ F of xk ู†ุงู‚ุต F of xk minus ูˆุงุญุฏุงู„ู„ูŠ ู‡ูˆ
88
00:07:19,320 --> 00:07:24,560
ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ xk ู†ุงู‚ุต xk ู…ุงูŠู„ูˆุณ ูˆุงุญุฏ ุทุจุนุง ุงุญู†ุง
89
00:07:24,560 --> 00:07:29,280
ุจู†ูƒุณุจ ุนู„ูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงูŠุด ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ F prime
90
00:07:30,370 --> 00:07:35,630
of ุงู„ู‡ูŠ main TK ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Main Value Theorem
91
00:07:35,630 --> 00:07:39,710
ู†ุชุฌุชู‡ุง ู…ุทุจู‚ ุนู„ู‰ ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ XK
92
00:07:39,710 --> 00:07:43,770
minus ูˆุงุญุฏ ู„ุนู†ุฏ XK ุทุจุนุง ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูƒู„ K ู„ุฃู†ู‡ ู„ูƒู„
93
00:07:43,770 --> 00:07:48,170
ู…ูŠู† ู„ูƒู„ ุงู„ sub intervals ุจุชุชุญู‚ู‚ ู†ูุณ ุงู„ุดุฑูˆุท ุจู†ุงุก
94
00:07:48,170 --> 00:07:55,010
ุนู„ูŠู‡ ุงุญู†ุง ุจู†ุนุฑู ู‚ุจู„ ู‡ูŠูƒ ุฎู„ูŠู†ูŠ ุฃุจุฏุฃ ุฃุดุชุบู„ู‡ุง ุนู†ุฏ ุงู„
95
00:07:55,010 --> 00:08:04,450
MK ุฅุจุฑุงู‡ูŠู…ุงู„ู„ูŠ ู‡ูŠ ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ Fุงู„ู„ูŠ ู‡ูŠ
96
00:08:04,450 --> 00:08:11,370
ุงู„ F ุนู†ุฏูƒ ุงู„ mk' ุงูŠุด ู†ุฐุงูƒุฑูƒู… ููŠู‡ุง ุงูŠุด ู‡ูŠ ุงู„ mk' ุงู„
97
00:08:11,370 --> 00:08:15,190
mk' ู‡ูŠ ู…ูƒุชูˆุจุฉ ู„ู†ูƒุชุจู‡ุง ูƒู…ุงู† ู…ุฑุฉ ุงู„ mk' ู‡ูŠ ู…ูŠู† ุงู„
98
00:08:15,190 --> 00:08:19,610
infimum ู„ู„ F' F of X X element of X K minus ูˆุงุญุฏ X
99
00:08:19,610 --> 00:08:24,950
K ุงู„ F' ู…ูŠู† ู‡ุฐู‡ ุงู„ F small ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ ุงู„ F ุงูˆ
100
00:08:24,950 --> 00:08:30,590
ุงู„ mk' ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ infimum ู„ู…ูŠู† ู„ู„ F' ุนู„ู‰ ุงู„
101
00:08:30,590 --> 00:08:37,110
sub interval ู‡ุฐู‡ ุงุฐุง ุงูƒูŠุฏุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ F of ุฃูŠ
102
00:08:37,110 --> 00:08:41,630
ู…ู‚ุทูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ sub-interval ูˆุงู„ู€ TK ู‡ุฏูˆูŠู†
103
00:08:41,630 --> 00:08:46,410
ู…ูˆุฌูˆุฏุฉ ููŠ ู‡ุฐุง ุงู„ู€ sub-interval ุฅุฐู† ุฃูƒูŠุฏ F of TK
104
00:08:46,410 --> 00:08:50,670
ุฃุตุบุฑ ู…ู† ุงู„ู€ MK' ู„ุฃู† ุงู„ู€ MK' ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€
105
00:08:50,670 --> 00:08:57,290
infimum ู„ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ F' of TK ุนุงู„ู…ูŠุงู‹ ุนู„ู‰ ุงู„ูุชุฑุฉ
106
00:08:57,290 --> 00:09:01,440
ุงู„ู„ูŠ ู‡ูŠ ุงู„ sub-interval ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†ู‡ุง ูƒูƒู„ูˆู‡ุฐู‡
107
00:09:01,440 --> 00:09:06,040
ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ู† ุงู„ู€ MK Ibrahim ู…ูŠู† ุงู„ู€ MK
108
00:09:06,040 --> 00:09:11,060
Ibrahim ู‡ุฐู‡ุŸ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ Supremum ู„ู…ูŠู†ุŸ ู„ู‚ูŠู…ุฉ
109
00:09:11,060 --> 00:09:16,990
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุนู†ุฏู‡ู…ุงุดูŠ ุงู„ุญุงู„
110
00:09:16,990 --> 00:09:23,110
ุฅุฐุง ู‡ุฐู‡ ุฏุงุฆู…ุง ุตุญูŠุญุฉ ุทุจ ู„ูˆ ุถุฑุจุช ุฌู‡ุชูŠ ูƒู„ ุงู„ุฃุทุฑุงู ููŠ
111
00:09:23,110 --> 00:09:27,650
ุทูˆู„ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ xk minus xk minus ูˆุงุญุฏ ุทุจุนุง
112
00:09:27,650 --> 00:09:31,510
ุฃูƒูŠุฏ ู‡ุฐู‡ xk ู†ุงู‚ุต xk minus ูˆุงุญุฏ ูƒู…ูŠุฉ ู…ูˆุฌุจุฉ ุฅุฐุง ู„ู…ุง
113
00:09:31,510 --> 00:09:35,010
ุฃุถุฑุจู‡ุง ููŠ ุงู„ุฃุทุฑุงู ูƒู„ู‡ุง ุจุชุธู„ู‡ุง ุงู„ inequality ุตุญูŠุญุฉ
114
00:09:35,010 --> 00:09:40,610
ูˆุฒูŠ ู…ุง ู‡ูŠ ููŠ xk ู†ุงู‚ุต xk minus ูˆุงุญุฏ ูˆู‡ู†ุง ููŠ xk ู†ุงู‚ุต
115
00:09:40,610 --> 00:09:46,280
xk minus ูˆุงุญุฏ ู…ุธุจูˆุท ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃูƒูŠุฏ ุตุญุทูŠุจ ู„ูƒู† ู‡ุฐุง
116
00:09:46,280 --> 00:09:52,220
ุงู„ู…ู‚ุฏุงุฑ ู‡ูˆ ู‡ุฐุง ุฅุฐุง ุจุงุฌูŠ ุจุญุท ู‡ุฐู‡ ู‡ุงู† ู…ุนุงูŠุง ุฌู…ุงุนุฉ
117
00:09:52,220 --> 00:09:57,000
ุจุญุท ู‡ุฐู‡ ููŠ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ุงู„ู…ูƒุงู† ุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
118
00:09:57,000 --> 00:10:05,190
ู‡ุฐู‡ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุฃู† Fof xk ู†ุงู‚ุต f of xk minus 1
119
00:10:05,190 --> 00:10:12,070
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ Mk' ููŠ ุงู„ xk minus xk minus 1
120
00:10:12,070 --> 00:10:18,490
ูˆู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ Mk' ููŠ ุงู„ xk minus xk minus
121
00:10:18,490 --> 00:10:24,290
1ุฅุฐุง ูˆุงุถุญ ุฅู† ุฃู†ุง ุญุตู„ุช ุนู„ู‰ ู‡ุฐู‡ ูˆู‡ุฐู‡ ุตุญูŠุญุฉ ู„ูƒู„ ู…ูŠู†
122
00:10:24,290 --> 00:10:28,150
ู„ูƒู„ ูƒูŠู‡ ู„ุฅู†ู‡ ุฃุฎุฏุช ุฃู†ุง ู‡ุฐู‡ ูุชุฑุฉ ุนุดูˆุงุฆูŠุฉ ูŠุนู†ูŠ ู„ูƒูŠ
123
00:10:28,150 --> 00:10:33,790
ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ูˆุงุชู†ูŠู† ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู„ุงู† ุจู†ุงุก
124
00:10:33,790 --> 00:10:38,250
ุนู„ูŠู‡ ุฃู†ุง ูˆุตู„ุช ุงู„ุขู† ุฅู„ู‰ ู…ุง ูŠู„ูŠู‡ ูˆุตู„ุช ุฅู„ู‰ ู‡ุฐู‡
125
00:10:38,250 --> 00:10:43,670
ุงู„ู†ุชูŠุฌุฉ ุดุงูŠููŠู† ูŠุง ุฌู…ุงุนุฉ ูˆุตู„ุช ุฅู„ู‰ ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ
126
00:10:43,670 --> 00:10:48,860
ุฃู†ุง ูˆุถุญุชู„ูƒู… ุฅูŠุงู‡ุง ูƒูŠู ุฅุฌุชุงู„ุงู† ูˆ ุงู„ mk prime ุฒูŠ ู…ุง
127
00:10:48,860 --> 00:10:55,280
ู‚ู„ู†ุง ุงูŠุด ู‡ูŠ ูˆ ุงู„ mk capital prime ู‡ูŠู‡ุง ุงู…ุงู…ูƒู… ู†ูŠุฌูŠ
128
00:10:55,280 --> 00:10:59,720
ุงู„ุงู† ุงูŠุด ุงู„ู„ูŠ ุจุฏู‡ ุญุตู„ู‡ ุดูˆู ุงู„ K ุงูŠุด ุจุฏู‡ ุญุตู„ ุงู†ุง
129
00:10:59,720 --> 00:11:03,020
ุนู…ุงู„ ุจู‚ูˆู„ ุงู†ู‡ ุตุญูŠุญ ุนู„ู‰ ูƒู„ K ุงุฐุง ู„ูˆ ุฃุฎุฏุช ุงู„
130
00:11:03,020 --> 00:11:05,900
summation ู‡ู†ุง ูˆ ุฃุฎุฏุช ุงู„ summation ู‡ู†ุง ูˆ ุฃุฎุฏุช ุงู„
131
00:11:05,900 --> 00:11:10,440
summation ู‡ู†ุง ุจุธู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ inequality ุตุญูŠุญุฉ ุฎุฏ
132
00:11:10,440 --> 00:11:16,050
ุงู„ุขู† ุงู„ summationุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู€ summation ุนู„ู‰
133
00:11:16,050 --> 00:11:19,530
ุงู„inquality ุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู†ู‡ุง ู‡ูŠู‡ุง ุจูŠุตูŠุฑ ุงู„
134
00:11:19,530 --> 00:11:23,630
summation ู„ู„ M K ุจุฑุงูŠู… ููŠ X K X K minus ูˆุงุญุฏ K ู…ู†
135
00:11:23,630 --> 00:11:26,630
ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ M ูˆู‡ู†ุง ู‡ูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ุณุงูˆู‰ ุงู„
136
00:11:26,630 --> 00:11:31,090
summation ู„ู„ F of X K ู†ุงู‚ุต F of X K minus ูˆุงุญุฏ
137
00:11:31,090 --> 00:11:36,190
ุงู„ู„ูŠ ู‡ูŠ ุงุญู†ุง ู‡ู†ุง ุญุตู„ู†ุงู‡ุง ู‡ุงู† ูˆู‡ุฐู‡ ุงู„ summation
138
00:11:36,190 --> 00:11:39,490
ุนู„ูŠู‡ุง ูˆู‡ุฐู‡ ุงู„ summation ุนู„ูŠู‡ุง ู‡ูŠ ุงู„ summation ู‡ุฐุง
139
00:11:39,850 --> 00:11:43,210
ุทูŠุจ ูŠุง ุฌู…ุงุนุฉ ุฃูƒูŠุฏ ุฃู†ุชู… ุงุฐูƒุฑูŠู† ู‡ุฐุง ุงู„ summation ู‡ูˆ
140
00:11:43,210 --> 00:11:47,770
ุนุจุงุฑุฉ ุนู† ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ lower sum ู„ู„
141
00:11:47,770 --> 00:11:52,370
partition ุจูŠ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจู†ุนู…ู„ ุนู„ูŠู‡ุง
142
00:11:52,370 --> 00:11:56,330
ุงู„ู„ูŠ ู‡ูŠ ุงู„ F' ุงู„ู„ูŠ ุงุดุชุบู„ู†ุง ุนู„ูŠู‡ุง ุงู„ู„ูŠ ุฃุฎุฏู†ุง ุงู„ F'
143
00:11:57,150 --> 00:12:01,270
ุงู„ MK' ู‡ูŠ ุงู„ infimum ู„ู„ F' ุนู„ู‰ ุงู„ sub interval
144
00:12:02,160 --> 00:12:07,220
ูˆุงู„ุงู† ู‡ุฐู‡ ูŠุดุจู‡ ูŠุง ุฌู…ุงุนุฉ ู‡ูŠ ุงู„ upper sum ูŠุนู†ูŠ ุจู…ุนู†ู‰
145
00:12:07,220 --> 00:12:12,960
ุขุฎุฑ ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ู‡ูŠ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู„ู‰
146
00:12:12,960 --> 00:12:17,680
ู…ุญุงุท ุจุงู„ุฃุฒุฑู‚ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูˆ ุจุงู„ุฃุญู…ุฑ ุตุงุฑ ุจูŠู† ุงู„ู„ู‰ ู‡ูˆ
147
00:12:17,680 --> 00:12:22,120
ุงู„ lower sum ูˆ ุจูŠู† ุงู„ upper sum ู„ูƒู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
148
00:12:22,120 --> 00:12:25,860
ุงู„ุตู…ุดูŠ ุงู„ู„ู‰ ุงุญู†ุง ุนู…ู„ู†ุงู‡ ู‚ุจู„ ุฐู„ูƒ ูƒุชูŠุฑ ู„ูˆ ูุฑุถู†ุงู‡
149
00:12:25,860 --> 00:12:33,860
ู‡ูŠูƒูˆู† ุนุจุงุฑุฉ ุนู† F of X ูˆุงุญุฏู†ุงู‚ุต F of X Note ุฒุงุฆุฏ F
150
00:12:33,860 --> 00:12:40,360
of X 2 ู†ุงู‚ุต F of X 1 ุฒุงุฆุฏ F of X 3 ู†ุงู‚ุต F of X 2
151
00:12:40,360 --> 00:12:45,460
ุฒุงุฆุฏ ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ ุฅุดูŠ F of X N ู†ุงู‚ุต F of X N ู†ุงู‚ุต
152
00:12:45,460 --> 00:12:50,520
1 ุญู„ุงุฌูŠ ูƒู„ู‡ ุจุฑูˆุญ ูˆ ุจุธู„ ุนู†ุฏูƒ ูƒู„ ู‡ุฐุง ุจุฑูˆุญ ูˆ ุจุธู„ ุนู†ุฏูƒ
153
00:12:50,520 --> 00:12:54,860
ุจุณ F of X ู†ุงู‚ุต F of X N ู†ุงู‚ุต ู…ูŠู† F of X Note ูƒู„
154
00:12:54,860 --> 00:13:00,340
term ุจ cancel ุงู„ู„ูŠ ู‚ุจู„ู‡ ูˆ ูŠุณุงูˆูŠF of Xn ุงู„ู„ูŠ ู‡ูŠ
155
00:13:00,340 --> 00:13:07,420
ู…ูŠู†ุŸ F of B F of Xnot ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ F of A ุฅุฐุง ุตุงุฑ
156
00:13:07,420 --> 00:13:10,920
ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู€Summation ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณูˆูŠ F of B
157
00:13:10,920 --> 00:13:16,440
ู†ู‚ุต ู…ูŠู†ุŸ ู†ู‚ุต F of A ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุจู†ุดูŠู„ ู‡ุฐุง ูˆ
158
00:13:16,440 --> 00:13:20,580
ุจู†ุญุท ู…ูƒุงู†ู‡ ู‚ูŠู…ุชู‡ ุงู„ู„ูŠ ู‡ูˆ F of B ู†ู‚ุต F of A ุจูŠุตูŠุฑ F
159
00:13:20,580 --> 00:13:25,320
of B minus F of A ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ L of B ูˆ F' ูˆ ุจูŠู†
160
00:13:25,320 --> 00:13:34,230
ุงู„ุฃุจู‚ู‰ ุงู„ู€U of B ูˆ F'ุทูŠุจ ุงุทู„ุน ุนู„ู‰ ููˆู‚ ุดูˆูŠุฉ ุฎู„ูŠู†ูŠ
161
00:13:34,230 --> 00:13:39,830
ุงูˆุถุญู„ูƒ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ุชูˆุตู„ูŠ ู„ู„ูŠ ุจุฏูŠู‡ุง ุงู†ุง ุงูŠุด
162
00:13:39,830 --> 00:13:44,170
ุจุฏูŠ ุงุซุจุช ุงู†ุง ุจุฏูŠ ุงุซุจุช ุงู† ุงู„ integration ุฎู„ูŠู†ูŠ ุจุณ
163
00:13:44,170 --> 00:13:51,710
ุงุดูŠู„ ู‡ุฐุง ุจุนุฏ ุงุฐู†ูƒู… ุงู†ุง
164
00:13:51,710 --> 00:13:58,260
ุจุฏูŠ ุงุซุจุช ุงู† ุงู„ integration ู„ู„ F prime of x dxุฃูˆ
165
00:13:58,260 --> 00:14:06,320
ุงู„ู€ F of X DX ุจุณุงูˆูŠ F of B ู†ุงู‚ุต F of A ู…ู† A ู„ุนู†ุฏ
166
00:14:06,320 --> 00:14:12,870
ู…ูŠู†ุŸ ู„ุนู†ุฏ BุŒ ู‡ูŠุงุŒ ุจุฏูŠ ุฃุณู‡ู„ุดูˆู ุงู„ุงู† ูƒูŠู ุงู†ุง ููŠ
167
00:14:12,870 --> 00:14:17,590
ุงู„ูˆุงู‚ุน ุจุชูˆุตู„ูƒู… ู‡ุฐุง ู†ู‚ุต ู‡ุฐุง ูŠูƒูˆู† ุงูƒุจุฑ ุงูˆ ูŠุณุงูˆูŠ ุณูุฑ
168
00:14:17,590 --> 00:14:20,990
ูˆ ุงุตุบุฑ ู…ู† epsilon ู„ุฃูŠ ุงุตุบุฑ ูŠุณุงูˆูŠ epsilon ู„ูƒู„
169
00:14:20,990 --> 00:14:24,110
epsilon ููŠ ุงู„ุฏู†ูŠุง ูˆ ู…ู† ุซู… ู‡ูŠุณุงูˆูŠ ุณูุฑ ูŠุนู†ูŠ ู‡ุชุญุฏุซ
170
00:14:24,110 --> 00:14:29,090
ู…ูŠู† ุงู„ู…ุณุงูˆุงุฉ ุงู„ู„ูŠ ู…ุงูู‡ู…ุด ุนู„ูŠู‡ุง ู‡ูŠ ุงู„ุงู† ู†ุฌู„ุฉ ุชูุตูŠู„
171
00:14:29,090 --> 00:14:39,060
ุงุชูุฌู†ุง ุงุญู†ุง ุงู†ู‡ ุงุญู†ุง ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆุงู„ู€ F of D โ€“
172
00:14:39,060 --> 00:14:44,520
F of A ุจูŠู† ุงู„ู€ U ูˆ ุจูŠู† ุงู„ู€ L ู„ูƒู† ุงุญู†ุง ุจู†ู‚ูˆู„ ุงู„ู€ F
173
00:14:44,520 --> 00:14:49,420
ู†ูุณู‡ุง ูŠุง ุฌู…ุงุนุฉ ุงู„ู€ F' ู‡ุฐู‡ is integrable ู…ุฒุงู…
174
00:14:49,420 --> 00:14:55,380
Integrable ู…ู† A ู„ุนู†ุฏ Bุฃุฐู† ุงู„ู€ U of F ูˆ ุงู„ู€ L of F
175
00:14:55,380 --> 00:14:58,560
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Upper Integral ูˆ ุงู„ู€ Lower Integral
176
00:14:58,560 --> 00:15:01,960
ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠุณุงูˆูŠ ู‚ูŠู…ุฉ ุงู„ู€ Integration ุนุงุฑููŠู†ูˆุง ู‡ุฐุง
177
00:15:01,960 --> 00:15:05,760
ุงู„ูƒู„ุงู… ุงุญู†ุง ุจู†ุชุนุฑู ุดูˆ ู…ุนู†ุงุชู‡ Integrable ุงู„ู€ U of F
178
00:15:05,760 --> 00:15:11,640
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุนู† ุงู„ู€ infimum ู„ู…ูŠู†ุŸ ู„ู„ูƒุจุงุฑ ุงู„ู„ูŠ
179
00:15:11,640 --> 00:15:19,640
ู‡ูŠ U L ุฃูˆ U P ูˆ Fูˆู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ู€ Supremum ู„ู†ูŠุฉ
180
00:15:19,640 --> 00:15:28,200
ู„ู„ู€ L, B ูˆ F ูŠุนู†ูŠ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุนุจุงุฑุฉ ุนู†
181
00:15:28,200 --> 00:15:32,420
ุงู„ U of F ู…ู† ุฌู‡ุฉ ูˆู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ L of F ู…ู† ุฌู‡ุฉ
182
00:15:32,420 --> 00:15:35,900
ุฃุฎุฑู‰ ู‡ุฐุง ุงู„ integration ู†ู‚ู„ุฉ ุจูŠู‡ ุงู„ F' ู„ูŠุดุŸ ู„ุฃู† ุงู„
183
00:15:35,900 --> 00:15:40,630
F' is integrable ุฒูŠ ู…ุง ู‚ู„ู†ุงู‡ุทูŠุจุŒ ุฅูŠุด ุนู„ุงู‚ุฉ ุงู„ู€ L ูˆ
184
00:15:40,630 --> 00:15:44,130
F ุจู‡ุฐู‡ุŸ L ูˆ F ุนุจุงุฑุฉ ุนู† ุงู„ู€ Supremum ู„ูƒู„ ู‡ุฐูˆู„ุŒ ุฅุฐุง
185
00:15:44,130 --> 00:15:47,450
ุฃูƒูŠุฏ ุงู„ู€ L ูˆ F ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐู‡ุŒ ุฅุฐุง ุตุงุฑ ุงู„
186
00:15:47,450 --> 00:15:51,610
integration ู‡ุฐุง ุงู„ู„ูŠ ุนู†ุฏู‰ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ L ูˆ FุŒ
187
00:15:51,610 --> 00:15:56,070
ุฎู„ุตู†ุง ู…ู† ู‡ุฐู‡ุŒ ู„ุฃู† ู…ู† ุฌู‡ุฉ ุซุงู†ูŠุฉ ุงู„ integration ู„ู„ F
188
00:15:56,070 --> 00:15:58,510
ุจุฑุงูŠู† ู‡ูˆ ุงู„ู€ U of FุŒ ู„ุฃู† ุงู„ู€ F is integrable ุฒูŠ ู…ุง
189
00:15:58,510 --> 00:16:04,770
ู‚ู„ู†ุงุŒ ูˆ ุงู„ู€ U of F ู…ูŠู† ู‡ูˆุŸู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ infimum
190
00:16:04,770 --> 00:16:08,810
ู„ู‡ุง ุฏูˆู„ ุฅุฐุง ุงู„ู€ U of F ุฃุตุบุฑ ุฃูˆ ูŠุดูˆูŠู‡ุง ู…ุฒุงู… ุฃุตุบุฑ ุฃูˆ
191
00:16:08,810 --> 00:16:12,210
ูŠุดูˆูŠู‡ุง ูŠุนู†ูŠ ุตุงุฑ ุงู„ integration ุฃุตุบุฑ ุฃูˆ ูŠุดูˆูŠู‡ุง ูŠุนู†ูŠ
192
00:16:12,210 --> 00:16:18,050
ุจู…ุนู†ู‰ ุขุฎุฑ ุงุญู†ุง ูˆุตู„ู†ุง ุงู† ุงู„ integration ุชุจุนู†ุงุงู„ู€
193
00:16:18,050 --> 00:16:23,450
integration ุงู„ู„ูŠ ู‡ูˆ ู…ู† A ู„ุนู†ุฏ A ุจูŠ ู„ู„ F ุจุฑุงูŠู… ุจูŠู†
194
00:16:23,450 --> 00:16:29,530
ุงู„ L ูˆ ุจูŠู† ู…ูŠู† ูˆ ุจูŠู† ุงู„ U ู…ุงุดูŠ ุงู„ุญุงู„ุฉ ุงู„ุขู† ูˆ ู‡ุฐุง
195
00:16:29,530 --> 00:16:35,390
ุจุฑุถู‡ ุจูŠู† ุงู„ L ูˆ ุจูŠู† ู…ูŠู† ุงู„ U ุงุถุฑุจู„ูŠ ุงู„ุขู† ุงู„ู„ูŠ ุชุญุช
196
00:16:35,390 --> 00:16:41,820
ุงู„ู„ูŠ ู‡ูˆ ุจุณุงู„ุจุจุชู†ุนูƒุณ ุงู„ inequality ูˆุจุนุฏูŠู† ุงุฌู…ุนู„
197
00:16:41,820 --> 00:16:46,320
ุงู„ุฌู‡ุชูŠู† ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐูŠ ุจูŠุตูŠุฑ ุณุงู„ุจ ูˆู‡ุฐูŠ ุจูŠุตูŠุฑ ุฃูƒุจุฑ
198
00:16:46,320 --> 00:16:51,220
ุฃูˆ ูŠุณุงูˆูŠ ุณุงู„ุจ ูˆู‡ุฐูŠ ุจูŠุตูŠุฑ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุณุงู„ุจ ุงุฌู…ุนู„
199
00:16:51,220 --> 00:16:56,980
ุงู„ุฌู‡ุชูŠู† ุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ integrationุฃูˆ ุงู„ุนูƒุณ ุงุถุฑุจ ุงู„ู„ูŠ
200
00:16:56,980 --> 00:16:59,720
ููˆู‚ ุจุงู„ุณุงู„ุจ ุนุณุงุณ ุงู† ุงุนู…ู„ ุฒูŠ ู…ุง ุนุงู…ู„ ู‡ูˆ ู‡ุงู† ุงุถุฑุจ
201
00:16:59,720 --> 00:17:02,000
ุงุณู ุงู„ู„ูŠ ู‡ูˆ ุงุถุฑุจ ู…ูŠู† ุงู„ู„ูŠ ููˆู‚ ุจุงู„ุณุงู„ุจ ูŠุตูŠุฑ ู‡ุฐุง
202
00:17:02,000 --> 00:17:07,640
ู†ุงู‚ุต ูˆู‡ุฐุง ูƒู„ู‡ ู†ุงู‚ุต ูˆู‡ุฐุง ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต ูˆู‡ุฐุง ุงูƒุจุฑ ุงูˆ
203
00:17:07,640 --> 00:17:12,760
ูŠุณุงูˆูŠ ูˆู‡ุฐุง ุงูƒุจุฑ ุงูˆ ูŠุณุงูˆูŠ ูˆุงุฌู…ุญ ู„ุจุนุถ ุงูˆ ุจู„ุบุฉ ุงุฎุฑู‰
204
00:17:13,150 --> 00:17:16,790
ู‚ูˆู„ ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ุชุญุช ู†ุงู‚ุต ุงู„ู„ูŠ ููˆู‚
205
00:17:16,790 --> 00:17:20,130
ุจุทู„ุน ุนู†ุฏู‰ ุงู„ integration ู„ู„ F prime ู…ู† A ู„ ุนู†ุฏ B
206
00:17:20,130 --> 00:17:24,730
ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ F of B minus F of A ุฃุตุบุฑ ูŠุณุงูˆูŠ ุงู„ U
207
00:17:24,730 --> 00:17:30,770
ู†ุงู‚ุต ุงู„ L ูˆ ุฃูƒุจุฑ ุฃูˆูŠ ูŠุณุงูˆูŠ ุงู„ L ู†ุงู‚ุต ุงู„ U ูˆุงุถุญ ุฃู†ู‡
208
00:17:30,770 --> 00:17:36,480
ู‡ุฐู‡ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต ู‡ุฐู‡ ูˆู‡ุฐู‡ ูƒู…ูŠุฉ ู…ูˆุฌุจุฉ ุฅุฐุง ุตุงุฑ ุนู†ุฏ
209
00:17:36,480 --> 00:17:41,000
ุงู„ absolute value ู„ู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ U
210
00:17:41,000 --> 00:17:49,300
ู†ุงู‚ุต ู…ูŠู† ุงู„ L ูƒู…ุงู† ู…ุฑุฉ ู‡ุฐู‡ ุณุงู„ุจ ู‡ุฐู‡ูˆู‡ุฐู‡ ู…ูˆุฌุจุฉ ุฅุฐุงู‹
211
00:17:49,300 --> 00:17:53,540
ู‡ุฐู‡ ุงู„ู€ Inquality ุตุงุฑุช ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ููƒูˆูƒ ุงู„ู€
212
00:17:53,540 --> 00:17:57,440
absolute value ู„ู„ู€ F prime ุงู„ integration ู†ุงู‚ุต
213
00:17:57,440 --> 00:18:01,840
ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู‚ูŠู…ุฉ ูˆู‡ุฐุง ุงู„ู‚ูŠู…ุฉ
214
00:18:01,840 --> 00:18:05,700
ู„ุณู‡ ู…ุง ุณุญู†ู‡ุงุด ุงุญู†ุง ุฅูŠุด ู‚ู„ู†ุง ุนู†ู‡ุง ุฃุตุบุฑ ู…ู† ู…ู† ุฅุจุณู„ุงู†
215
00:18:05,700 --> 00:18:09,280
ูˆุงู†ุง ู‚ุงุนุฏ ุจุงุดุชุบู„ ุนู„ู‰ ุงู„ partition ุงู„ู„ูŠ ู„ุฌูŠุชู‡ ุฃุนู„ู‰
216
00:18:09,280 --> 00:18:15,390
ุฅุฐุง ุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ุงู„ู„ูŠ ูˆุตู„ุชู„ู‡ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„
217
00:18:15,390 --> 00:18:20,150
absolute value ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆุทุจุนุง ุฃูƒุจุฑ ุฃูˆูŠ
218
00:18:20,150 --> 00:18:24,790
ุณุงูˆูŠ ุณูุฑ ูˆุงู„ุฅุจุณู„ูˆู† ูˆุงุฒ ุฅูŠู‡ ุดู…ุงู„ู‡ุง arbitrary ูŠุนู†ูŠ
219
00:18:24,790 --> 00:18:29,430
ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ู„ุฃูŠ ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง ู„ุฃูŠ ุฅุจุณู„ูˆู† ููŠ
220
00:18:29,430 --> 00:18:33,770
ุงู„ุฏู†ูŠุง ู‡ุฐุง ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ุฅุจุณู„ูˆู† ู‡ูˆ ุฃูƒุจุฑ ุฃูˆูŠ ุณูุฑ
221
00:18:33,970 --> 00:18:38,510
ุฅุฐุงู‹ ู„ุงุฒู… ูŠูƒูˆู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุณูุฑ
222
00:18:38,510 --> 00:18:42,530
ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ integration ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ F of B
223
00:18:42,530 --> 00:18:47,050
ู†ู‚ุต F of A ูˆ ู‡ูŠูƒ ูˆ ู†ูƒูˆู† ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู…ุทู„ูˆุจ ูˆ ุฃุซุจุชู†ุง
224
00:18:47,050 --> 00:18:51,470
ุงู„ู†ุธุฑูŠุฉ ุทูŠุจ
225
00:18:51,470 --> 00:18:57,850
ุงู„ุฌู…ุงุนุฉ ุงู„ุงู† ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู†
226
00:18:57,850 --> 00:19:00,890
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Fundamental Theorem of Calculus ุงู„ู„ูŠ
227
00:19:00,890 --> 00:19:05,750
ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุชูƒุงู…ู„ ุงู„ุชูุงุถู„ ุงู„ู„ูŠ ู‡ูŠ ุนู…ู„ูŠุฉ ุงู„ุชูƒุงู…ู„
228
00:19:05,750 --> 00:19:10,470
ู‡ุชู„ุบู‰ ุนู…ู„ูŠุฉ ุงู„ุชูุงุถู„ ุฒูŠ ู…ุง ุดูู†ุง ุงู„ู„ูŠ ู‡ูˆ ู‚ุจู„ ุจุดูˆูŠุฉ
229
00:19:10,470 --> 00:19:15,130
ูˆุดูู†ุง ุฅูŠู‡ ุงู„ู„ูŠ ุฌุงู„ุชู‡ ุงู„ู€ Fundamental Theorem ุทุจุนุง
230
00:19:15,130 --> 00:19:20,270
ู‡ุฐุง ุงู„ูƒู„ุงู… ุชุญุช ุงู„ุดุฑูˆุท ุงู„ู…ุฐูƒูˆุฑุฉุงู„ุขู† ุจู‚ูˆู„ ู„ูŠ .. ูŠู…ูƒู†
231
00:19:20,270 --> 00:19:24,810
ุญูƒูŠุช ู‡ุงุฏู‰ ุญุชู‰ ุจู‚ูˆู„ ู„ูŠ corollary ุจู‚ูˆู„ ุงู†ุง ุฃุญูŠุงู†ุง
232
00:19:24,810 --> 00:19:29,530
ุจุญุจ ุฃุฑูŠุญ ุญุงู„ูŠ ูˆ ู†ู‚ูˆู„ ุฎู„ูŠู†ุง ู†ุงุฎุฏ .. ุนุดุงู† ู†ุณุชุฐูƒุฑ ุงู„
233
00:19:29,530 --> 00:19:32,790
.. ุงู„ .. ุงู„ .. ุงู„ fundamental theorem ุงู„ุฌุฒุก ุงู„ุฃูˆู„
234
00:19:32,790 --> 00:19:37,950
ุจุดูƒู„ ุณุฑูŠุน ุจุณ ุดูˆูŠู‡ ุนู†ุฏู†ุง ู†ุนู…ู„ .. ููŠ ุงู„ุดุฑูˆุท ุงู† ู‡ูˆ ู‚ู
235
00:19:37,950 --> 00:19:41,630
ู…ู† a ู„ b ู„ุนู†ุฏ R satisfy the conditionsุงู„ู„ูŠ ู‡ูˆ F'
236
00:19:42,150 --> 00:19:45,790
exists on A ูˆBุŒ ู…ุงุจุชุฏุด ุฃุฌูŠุจ ุณูŠุฑุฉ ู…ูŠู† ุงู„ู€ F SmallุŸ
237
00:19:45,790 --> 00:19:49,250
ู…ุงุจุชุฏุด ุฃุดุบู„ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ู€ F Capital ู„ูˆ ูุฑุถู†ุง ุฅู† ุงู„ู€
238
00:19:49,250 --> 00:19:54,010
F ู‡ุฐู‡ ู…ู† A ูˆB ู„ุนู†ุฏ R ุฅู†ู‡ุง ุงู„ู€ F' ุงู„ู„ูŠ ู‡ูŠ ุงู„ุดู…ุงู„ู‡ุง
239
00:19:54,010 --> 00:19:57,890
exist ุนู„ู‰ ุงู„ู€ A ูˆB ูŠุนู†ูŠ ูุฑุถ ุฅู†ู‡ุงุŒ ุจุณ ู‡ู†ุง ุฒุงุฏ ุดูˆูŠุฉ
240
00:19:57,890 --> 00:20:01,130
ุนู„ู‰ ุงู„ุดุฑูˆุท ุงู„ู„ูŠ ุฌุงุจู„ ุจุดูˆูŠุฉ ุฅู† F is differentiable
241
00:20:01,130 --> 00:20:03,790
ุนู„ู‰ ุงู„ู€ closed interval ูƒู†ุง ูุฑุถูŠู†ู‡ุง ุฅู†ู‡ุง F
242
00:20:03,790 --> 00:20:06,740
differentiable ุนู„ู‰ ุงู„ู€ OpenูˆูุฑุถูŠู† ุฅู†ู‡ุง continuous
243
00:20:06,740 --> 00:20:10,760
ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Closed ู…ุฏุงู… ุงู„ุขู† ุฅุฐุง ููŠู‡ุง ุฏูŠ ุณู†ุฉ
244
00:20:10,760 --> 00:20:16,680
ุฒูŠุงุฏุฉ ู…ู† ุงู„ .. ู…ู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ุดุฑูˆุท F' exists ุนู„ู‰ ุงู„ู€
245
00:20:16,680 --> 00:20:19,820
A ูˆ ุงู„ู€ B ูŠุนู†ูŠ continuous ูˆ differentiable ุนู„ู‰ ุงู„ู€
246
00:20:19,820 --> 00:20:24,350
closed open .. ุนู„ู‰ ุงู„ closed interval A ูˆ Bุงู„ุงู† ู‡ูŠ
247
00:20:24,350 --> 00:20:29,550
ุงู„ุดุฑุท ูˆุงู„ุดุฑุท ุงู„ุซุงู†ูŠ ูุฑุถ ุงู† ุงู„ F' ู…ุด ู…ูˆุฌูˆุฏุฉ ูˆ ุจุณ ุงู„
248
00:20:29,550 --> 00:20:33,030
F' ุงู†ุชุฌุฑ ุจุงู„ุนู„ู‰ ุงู„ A ูˆ ุงู„ B ุฅุฐุง ุงู†ุชุฌู‚ุช ุดุฑูˆุท ุงู„
249
00:20:33,030 --> 00:20:36,210
fundamental theorem ุฅุฐุง ุญุณุจ ุงู„ fundamental theorem
250
00:20:36,210 --> 00:20:39,410
ุงู„ู„ูŠ ู‚ุจู„ู‡ ุดูˆูŠุฉ ุจูƒูˆู† ุนู†ุฏู‡ ุงู„ integration ู…ู† A ู„B
251
00:20:39,410 --> 00:20:44,190
ู„ู…ูŠู† ุงู„ุขู†ู„ู„ู€ f prime ุงู„ู„ูŠ ูƒู†ุง ู†ุณู…ูŠู‡ ููŠ ุงู„ุฌุจู„ f
252
00:20:44,190 --> 00:20:49,310
small ุจุชุณุงูˆูŠ f of b ู†ุงู‚ุต f of a ุฅุฐุง ูุนู„ุง ู‡ูŠ
253
00:20:49,310 --> 00:20:53,130
automatic ุญู‚ู‚ุช ุดุฑูˆุท ุงู„ fundamental theorem ูˆุฒูŠุงุฏุฉ
254
00:20:53,130 --> 00:20:59,850
ุณู†ุฉ ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู†ุชูŠุฌุฉ ุจุชูƒูˆู† ุตุญูŠุญุฉ ูŠุนู†ูŠุชูƒุงู…ู„ ุงู„ุฏุงู„ุฉ
255
00:20:59,850 --> 00:21:05,210
ุงู„ู…ุชูุงุถู„ุฉ ุจุณุงูˆุก ุฃุตู„ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ ุฃุตู„ ุงู„ุฏุงู„ุฉ ุนู†ุฏู‡
256
00:21:05,210 --> 00:21:09,070
ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ู†ู‚ุต ุงู„ู†ู‚ุทุฉ ู…ูŠู† ุจู†ุญูƒูŠ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ
257
00:21:09,070 --> 00:21:13,950
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† integration F of B ู†ู‚ุต ู…ูŠู† F of A
258
00:21:13,950 --> 00:21:19,210
ุทุจ ู„ูˆ ูƒุงู†ุช X ู…ุชุบูŠุฑ ูŠุนู†ูŠ ู„ูˆ ุฃุฎุฐู†ุง ุฃูŠ X ุจูŠู† ุงู„ูุชุฑุชูŠู†
259
00:21:19,210 --> 00:21:23,550
ูˆุทุจู‘ุฌู†ุง ู†ุธุฑูŠุฉ ุนู„ู‰ ุงู„ู€A ุงู„ู„ูŠ ุนู†ุฏ ุงู„ู€XูุจุตูŠุฑ ุงู„
260
00:21:23,550 --> 00:21:27,130
integration ู…ู† ุฅู„ูŠ ุฅู„ู‰ ุนู†ุฏ ุงู„ X ุฃู ุจุฑุงูŠู† ุจุณุงูˆูŠ ุฃู
261
00:21:27,130 --> 00:21:32,490
of X ู†ุงู‚ุต ุฃู of A X ู‡ุฐู‡ ู‡ุชุตุจุญ ู…ุชุบูŠุฑุฉ ูˆุงู„ุฃู of A
262
00:21:32,490 --> 00:21:39,190
ุซุงุจุชุฉ ูˆู‡ุฐุง ุจูŠุฐูƒุฑู†ุง ุงู†ู‡ ุงุญู†ุง ู‚ูŠู…ุฉ ุงู„ุชูƒุงู…ู„ ู„ุฏุงู„ุฉ
263
00:21:39,190 --> 00:21:43,790
ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฅุฌุงุจุฉ ุงู„ู„ูŠ ู‡ูŠ
264
00:21:43,790 --> 00:21:47,630
ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุชุทู„ุน ุฒุงุฆุฏ some constant C ุงู„ู„ูŠ ู‡ูˆ ุงู„
265
00:21:47,630 --> 00:21:53,660
constant ุทุจุนุง ู„ุงู„ู„ูŠ ู‡ูŠุทุจูŠุนุฉ ุงู„ุฏูŠุงู„ูŠ ู„ู‚ุฏุงุด ุจูŠุทู„ุนู„ู†ุง
266
00:21:53,660 --> 00:21:56,420
ุงู„ู„ูŠ ู‡ูˆ ุงู„ initial conditions ุจูŠุณูุฑู„ู†ุง ุฅูŠุงู‡ ุงู„
267
00:21:56,420 --> 00:21:59,620
constant ุฃูˆ ุจูŠุนุทูŠู†ุง ุฅูŠุงู‡ ุฎู…ุณุฉ ุฃุฑุจุนุฉ ุณุชุฉ ุฃูˆ ุจูŠุธู„ูˆุง
268
00:21:59,620 --> 00:22:03,720
ุจุตูˆุฑุฉ ุนุงู…ุฉ Constancy ุทูŠุจ ุดูˆููˆุง ุตู„ูˆุง ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡
269
00:22:03,720 --> 00:22:08,090
ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู€
270
00:22:08,090 --> 00:22:11,470
Fundamental theorem ุฎู„ุตู†ุง ุฌุฒุก ุงู„ู„ูŠ ู‡ูˆ ุชูƒุงู…ู„
271
00:22:11,470 --> 00:22:16,870
ุงู„ุชูุงุถู„ุŒ ุงู„ุขู† ุจู†ุชูˆู‚ุน ุฅู†ู‡ ุงู†ูุงุถู„ ุงู„ุชูƒุงู…ู„ุŒ ุงู†ูุงุถู„
272
00:22:16,870 --> 00:22:20,530
ุงู„ุชูƒุงู…ู„ุŒ ุชุญุช ุดุฑูˆุทุŒ ุจู†ุดูˆู ุงู„ู„ูŠ ู‡ูŠ ุงู„ Fundamental
273
00:22:20,530 --> 00:22:24,650
theorem of calculus second form ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก
274
00:22:24,650 --> 00:22:27,850
ุงู„ุซุงู†ูŠ ู…ู† ุงู„ Fundamental theoremุŒ ุฅูŠุด ุงู„ู„ูŠ ุจูŠู‚ูˆู„ู‡ุŸ
275
00:22:27,850 --> 00:22:33,540
ุงู„ู„ูŠ ุจูŠู‚ูˆู„ ู…ุนุงูŠุง ู„ูŠู‡ุŒ ู†ูุชุฑุถ ุฅู† F smallู…ู† a ูˆ b
276
00:22:33,540 --> 00:22:38,060
ู„ุนู†ุฏ r ุงู„ู„ูŠ ู‡ูˆ is integrable in a ูˆ b ุฅุฐุง ุงู†ูุฑุถู†ุงู‡
277
00:22:38,060 --> 00:22:41,460
ุงู†ู‡ integrable ูˆู†ูุฑุถ ุฃู† f of x ู‡ูˆ ุจูŠุณุงูˆูŠ ุงู„
278
00:22:41,460 --> 00:22:46,160
integration ู…ู† a ู„ x f for all x element in a ูˆ b
279
00:22:46,160 --> 00:22:52,200
ุจุณ ู„ุงู† ู†ูŠุฌูŠ ู„ู„ู†ุชูŠุฌุฉ thenู‡ูŠุทู„ุน ู‡ุฐุง ุนุจุงุฑุฉ ุนู†
280
00:22:52,200 --> 00:22:55,360
continuous function ููŠ ุงู„ .. ููŠ ุงู„ .. ุงู„ู„ูŠ ู‡ูŠ main
281
00:22:55,360 --> 00:23:02,700
ููŠ ุงู„ู„ูŠ ู‡ูŠ ุนู„ู‰ ุงู„ูุชุฑุฉ a ุฃูˆ b ูˆู…ุด ู‡ูŠ ูƒู…ุงู† ูˆู„ูˆ ูƒุงู†
282
00:23:02,700 --> 00:23:09,830
ุงู„ Fsmall continuous ุนู†ุฏ ู†ู‚ุทุฉ C ููŠ ุงู„ูุชุฑุฉ ู…ู† A
283
00:23:09,830 --> 00:23:14,050
ู„ุนู†ุฏ B ุฃูˆ ู…ู† A ู„ุนู†ุฏ X ู‡ุชูƒูˆู† ุงู„ F ู‡ุฐู‡ ู†ูุณู‡ุง
284
00:23:14,050 --> 00:23:16,950
differentiable ูˆ ุงู„ derivative ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ุจุณุงูˆูŠ
285
00:23:16,950 --> 00:23:22,590
ุจุณุงูˆูŠ ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ F ุงู„ู„ูŠ ุฌูˆุง ูŠุนู†ูŠ ุจุงุฎุชุตุงุฑ ูŠุง
286
00:23:22,590 --> 00:23:29,450
ุฌู…ุงุนุฉ ุจุชุชูƒุฑุฑู‡ุง ุณู‡ู„ ุจู‚ูˆู„ูƒ ู…ูุชุฑุถ FIntegrable ู…ุงุดูŠ
287
00:23:29,450 --> 00:23:34,690
ุงู„ุญุงู„ ู‡ุงูŠ ุจุณ ุงู„ุงู† ุจู‚ูˆู„ ู„ูˆ ุฌูŠุช ุงุฎุฏุช ู…ู† A ู„ X on
288
00:23:34,690 --> 00:23:44,670
ุทุจุนุง A ูˆ B ู„ูˆ ุงุฎุฏุช ุงู„ุงู† A ูˆ X F small of T DT ู‡ุงูŠ
289
00:23:44,670 --> 00:23:51,510
ุฏู‡ ุทุจุนุง ุงู„ุงู† ุตุงุฑุช ูƒู„ู‡ุง ุชุนุชู…ุฏ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ X ุจู‚ูˆู„ูƒ
290
00:23:51,510 --> 00:23:55,370
ู‡ุฐู‡ู‡ุฐู‡ ุงู„ู„ูŠ ุทู„ุน ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ integration ู„ู„ู€
291
00:23:55,370 --> 00:24:01,130
integrable function ู…ู† A ู„ X F of T DT ู‡ุชุทู„ุน ู„ูŠ
292
00:24:01,130 --> 00:24:05,210
continuous function ู„ูˆ ุณู…ูŠุชู‡ุง F capital ุฒูŠ ู…ุง ู‡ูˆ
293
00:24:05,210 --> 00:24:08,730
ู…ุณู…ูŠู‡ุง F of X ุจุชูƒูˆู† ุงู„ู€ F ุนู†ุฏู‡ุง ุดู…ุงู„ู‡ุง is
294
00:24:08,730 --> 00:24:16,430
continuous ุงู„ุขู† ุจู‚ูˆู„ูƒ ู„ูˆ ุงุฌูŠุช ูˆ ู‚ู„ุช ุงู† Fis
295
00:24:16,430 --> 00:24:21,390
continuous ุงู„ู€ F ุงู„ู„ูŠ ุฌูˆุง ู‡ุฐู‡ at C element in A ูˆB
296
00:24:21,390 --> 00:24:25,650
ู„ูˆ ูƒุงู†ุช F is continuous at C element in A ูˆB
297
00:24:25,650 --> 00:24:31,730
ู‡ูŠุทู„ุนู„ูƒ ุจู‚ูˆู„ูƒ ุฅุฐุง ุงู„ู€ F capital ู‡ุฐู‡ F prime of C
298
00:24:31,730 --> 00:24:39,870
existsูˆ ู…ุด exist ุจุณ ูˆ ุงู„ F prime of C ู‡ุชุณุงูˆูŠ ุงู„ F
299
00:24:39,870 --> 00:24:46,030
small of ุฅูŠุดุŸ of C ูŠุนู†ูŠ ูˆ ูƒุฃู†ู‡ ุจู‚ูˆู„ูƒ ู„ู…ุง ู†ุชูุงุถู„
300
00:24:46,030 --> 00:24:50,210
ู‡ุฐู‡ F prime of C ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุฅูŠู‡ ุงู„ู„ูŠ ุนู†ุฏ C ูŠุนู†ูŠ
301
00:24:50,210 --> 00:24:57,370
ุชู‚ูˆู„ F prime of C ุจุณุงูˆูŠ ุชูุงุถู„ ุฑูู„ุฉ by DXุนู†ุฏู‡
302
00:24:57,370 --> 00:25:02,630
ุงู„ู†ู‚ุทุฉ C ู„ู„ integration ู…ู† A ู„ X F of T DT
303
00:25:27,580 --> 00:25:33,180
C ู…ุซู„ุงู‹ ุจุชุณุงูˆูŠ F of C ุงู„ู„ูŠ ู‡ูŠ F small of C ู‡ูˆ ูƒูˆู†
304
00:25:33,180 --> 00:25:36,540
ุงู„ F ุงู„ู„ูŠ ุฌูˆุง continuous ุนู†ุฏู‡ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุจู†ุญูƒูŠ
305
00:25:36,540 --> 00:25:39,940
ุนู†ู‡ุง ุทุจ ู„ูˆ ูƒุงู†ุช F ุงู„ู„ูŠ ุฌูˆุง ู‡ุงุฏู‰ continuous ูˆูŠู†
306
00:25:39,940 --> 00:25:43,620
ู…ุงูƒุงู† ุนู„ู‰ ุงู„ูุชุฑุฉ ู‡ุงุฏู‰ ุจุตูŠุฑ ุฎู„ุงุต ูˆุงู†ุช ู…ุบู…ุถ ุนู†ุงูƒ
307
00:25:43,620 --> 00:25:47,980
ุจุชูŠุฌูŠ ุจุชู‚ูˆู„ ุชูุงุถู„ ู‡ุงุฏูŠ ุจุชุดูŠู„ ุงู„ุชูƒุงู…ู„ ูˆ ุจุชุญุทู‡ ุงู„ู„ูŠ
308
00:25:47,980 --> 00:25:53,540
ุฌูˆุง ุจุฏู„ุงู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ X ุงู„ู…ุชุบูŠุฑูˆุงุถุญ ุงู„ู…ูุฑูˆุถ ุทูŠุจ
309
00:25:53,540 --> 00:25:59,660
ู†ูŠุฌูŠ ุงู„ุขู† ู†ุซุจุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ู†ุซุจุช ุดุบู„ุชูŠู† ุฃู† ุงู„ F
310
00:25:59,660 --> 00:26:02,580
ูƒุงุจุชู†ุงู„ continuous ุนุดุงู† ุฃุซุจุชู„ูƒ continuous ู‡ุซุจุชู„ูƒ
311
00:26:02,580 --> 00:26:05,940
ุฃูƒุซุฑ ู…ู† continuous ู‡ุซุจุชู„ูƒ uniform ู„ continuous ู„ุฃ
312
00:26:05,940 --> 00:26:09,780
ุฃู‚ูˆู„ูƒ ู‡ุซุจุชู„ูƒ ุฃูƒุซุฑ ู…ู† uniform ู„ continuous ู‡ุซุจุชู„ูƒ
313
00:26:09,780 --> 00:26:12,920
ุฃู† ุงู„ F is Lipschitz function ู…ุซู„ุง ู…ู† Lipschitz
314
00:26:12,920 --> 00:26:15,400
function ุฅุฐุง ุนู„ู‰ ุทูˆู„ uniform ู„ continuous ูˆู…ู† ุซู…
315
00:26:15,400 --> 00:26:18,460
ุนู„ู‰ ุทูˆู„ ุฅูŠุด ู…ุง ู„ู‡ุง continuous ุฅูŠุด Lipschitz
316
00:26:18,460 --> 00:26:25,240
function ูŠุนู†ูŠ ู‡ุซุจุชู„ูƒ ุฃู† Fof x-f of y absolute
317
00:26:25,240 --> 00:26:30,720
value ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ k ููŠ x-y had there exist k ุจุญูŠุซ
318
00:26:30,720 --> 00:26:35,260
ุฃู† f of x-f of y ุฃุตุบุฑ ู…ู† k ููŠ xy ู„ูƒู„ x ูˆ y element
319
00:26:35,260 --> 00:26:40,020
in a ูˆ b ู‡ุซุจุช ู„ูƒ f ุจุชุญู‚ู‚ ู‡ุฐุง ุงู„ุดุฑุท ู‡ุซุจุชู‡ุง ู…ุง ุฏู‡
320
00:26:40,020 --> 00:26:42,540
ู‡ุซุจุชู‡ุง ู…ุง ุฏู‡ ู‡ุชุญู‚ู‚ ู‡ุฐุง ุงู„ุดุฑุท ุฅุฐุง ู…ุง ุนู„ู‰ ุทูˆู„ ุงู„ู„ูŠ
321
00:26:42,540 --> 00:26:45,680
ู‡ูŠ ู‡ุชูƒูˆู† lipschitz ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู‡ุชูƒูˆู† is
322
00:26:45,680 --> 00:26:49,480
continuous ู‡ุฐุง ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ูŠุง ุดุจุงุจ ูˆ
323
00:26:49,480 --> 00:26:55,760
ูŠุง ุจู†ุงุชู„ุฃู† if F is continuous at C ู‡ู†ุซุจุช ุฃู† F is
324
00:26:55,760 --> 00:26:59,320
differentiable ุนู†ุฏ C ูŠุนู†ูŠ ุจุฏุฃ ุฃุซุจุชู„ูƒ F is
325
00:26:59,320 --> 00:27:03,460
differentiable ุนู†ุฏ C ูŠุนู†ูŠ ุงูŠุด F is differentiable
326
00:27:03,460 --> 00:27:14,660
ูŠุนู†ูŠ ุจุฏุฃ ุฃุซุจุชู„ูƒ ุฃู† limit F of X ุฒูŠ ุฏุงุชุด ู…ุซู„ุง ุงูˆ F
327
00:27:14,660 --> 00:27:21,440
of C ุฒูŠ ุฏุงุชุด ู†ุงู‚ุต F of Cุนู„ู‰ H ุงุฐุง H ุจุชุฑูˆุญ ู„ู„ุตูุฑ
328
00:27:21,440 --> 00:27:27,380
ุจุชุซุจุช ู„ูƒ ุงูŠู‡ ุงูŠุด ุจูŠุณุงูˆูŠ F capital ุทุจุนุง ุจูŠุณุงูˆูŠ F
329
00:27:27,380 --> 00:27:33,660
small of CุจุฏูŠ ุฃุซุจุชู„ูƒ ูŠุนู†ูŠ ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ู‡ุฃุซุจุชู„ูƒ ู„ูƒู„
330
00:27:33,660 --> 00:27:37,000
Y ุฃูƒุจุฑ ู…ู† 0 ุฏุงุฑูŠูƒุฒูŠุฒ ุฏูŠู„ุชุง ุจุญูŠุซ ุฃู†ู‡ absolute value
331
00:27:37,000 --> 00:27:41,320
ุฃุตุบุฑ ู…ู† Delta L ุนู„ู‰ H ุฃุตุบุฑ ู…ู† Delta ูŠุคุฏูŠ ุฅู„ู‰ F of
332
00:27:41,320 --> 00:27:48,260
C ุฒุงุฆุฏ H ู†ุงู‚ุต F of C ุนู„ู‰ H ู†ุงู‚ุต F of C ุจุฏูŠ ุฃุซุจุชู„ูƒ
333
00:27:48,260 --> 00:27:53,180
ูŠู‡ ุฃุตุบุฑ ู…ู† 200 ู…ู† Epsilonุจูƒูˆู† ุงุซุจุชุช ูุนู„ุง ุงู†ู‡ ู‡ุฐู‡
334
00:27:53,180 --> 00:27:56,540
ุงู„ limit ุจุงู„ุณุงูˆูŠุฉ ู‡ุฐู‡ ู…ุนู†ุงุชู‡ ู‡ุฐู‡ ุงู„ limit ุทุจุนุง ุงูŠุด
335
00:27:56,540 --> 00:28:01,000
ุจุชุนู†ูŠ ุงู† F prime F capital prime of C exist ูˆ
336
00:28:01,000 --> 00:28:06,480
ุจุชุณุงูˆูŠุฉ F of C ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ ุทุงู„ุจู‡ ุงู†ู‡ ู„ู…ุง ุชูƒูˆู†
337
00:28:06,480 --> 00:28:09,280
F continuous ุนู†ุฏ ุงู„ C ุจุชูƒูˆู† F capital
338
00:28:09,280 --> 00:28:12,040
differentiable ุนู†ุฏ ุงู„ C ูˆ ุงู„ derivative ู„ู„ F
339
00:28:12,040 --> 00:28:15,700
capital ุจุชุณุงูˆูŠุฉ ุงู„ F ุงุณู…ู‡ ูู†ุดูˆู
340
00:28:17,960 --> 00:28:21,380
Media ู†ุซุจุช ุงู„ู€ Continuity ุฃูˆ ู†ุซุจุช ุงู„ู€ Lipschitz
341
00:28:21,380 --> 00:28:27,450
function ูŠุนู†ูŠ ุงู„ุฃู…ุฑ ุณู‡ู„ุฃุญู†ุง ู…ูุชุฑุถูŠู† ูŠุง ุฌู…ุงุนุฉ ุฃู†
342
00:28:27,450 --> 00:28:31,490
ุงู„ู€F small ู‡ุฐูŠ is integrable ู…ุฒุงู… is integrable
343
00:28:31,490 --> 00:28:37,650
ุฅุฐุง is bounded S ูŠุนู†ูŠ ุฃู†ู‡ ู„ูƒู„ .. ู†ู‚ุฏุฑ ู†ู„ุงู‚ูŠ K ุฃูƒุจุฑ
344
00:28:37,650 --> 00:28:41,830
ู…ู† 0 ุจุญูŠุซ ุฃู† ุงู„ absolute value ู„ F of X small ุฃุตุบุฑ
345
00:28:41,830 --> 00:28:48,070
ุณูˆู‰ K ู„ูƒู„ X ู…ูˆุฌูˆุฏุฉ ุงู„ A ูˆ ุงู„ B ุณุจุจ ู‡ุฐู‡ ุฃู† F ู†ูุณู‡ุง
346
00:28:48,070 --> 00:28:52,350
is integrable ุทูŠุจุŒ ุจุฏุฃ ุงุนุชู…ุฏ ุนู„ู‰ ู‡ุฐู‡ ู„ู„ูˆุตูˆู„ ุฅู†ู‡ุง
347
00:28:52,350 --> 00:28:58,620
ู„ุจุดุชุงู„ุงู† ุฎุฏ ุงูŠ x ูˆ y ููŠ ุงู„ a ูˆ ุงู„ b ูˆุงุณู…ุญูˆู„ูŠ ุงุฎุฏ x
348
00:28:58,620 --> 00:29:01,760
ุงู‚ู„ ู…ู† y without loss of generality ู…ุด ุนุงุฏ ุจุงุฎุฏ y
349
00:29:01,760 --> 00:29:06,100
ุงูƒุจุฑ ู…ู† .. ุงุตุบุฑ ู…ู† x ุงู„ุงู† ุญุงู„ุฉ ุงู„ x ุจุชุณุงูˆูŠ
350
00:29:06,100 --> 00:29:09,660
ู‡ุชู„ุงู‚ูˆู‡ุง automatic ุจุชุชุญู‚ู‚ ู„ู„ูŠ ุจุฏูŠู‡ุง ู†ุดูˆู ุงูŠุด ุงู„ู„ูŠ
351
00:29:09,660 --> 00:29:13,790
ุจุฏูŠู‡ุงุงู„ุงู† ุฎุฏ x ูˆ y ููŠ ุงู„ a ูˆ ุงู„ b ูˆ ู†ูุชุฑุถ ุงู† x
352
00:29:13,790 --> 00:29:16,610
ุฃุฒุฑุงุฑ ู…ู† y without most of generality ุฒูŠ ู…ุง ู‚ู„ู†ุง
353
00:29:16,610 --> 00:29:22,890
ุงู„ุงู† ุงุญุณุจู„ูŠ f of x f of y ู†ู‚ุต ู…ูŠู† f of x ุงู„ูƒุจูŠุฑุฉ y
354
00:29:22,890 --> 00:29:26,630
ูˆ ุงู„ูƒุจูŠุฑุฉ x ุงุญุณุจ f of y ู†ู‚ุต f of x ุงูŠุด ู‡ูŠุณุงูˆูŠ ุงู„
355
00:29:26,630 --> 00:29:29,470
integration ุญุณุจ ุงู„ุชุนุฑูŠู f of x ุจุชุณุงูˆูŠ ุงู„
356
00:29:29,470 --> 00:29:33,390
integration ู…ู† ุงู„ x ู„ ุงู„ f smallุงู„ุฃู† f of y ู‡ูŠ
357
00:29:33,390 --> 00:29:36,930
ุนุจุงุฑุฉ ุนู† ุงู„ integration ู…ู† a ู„ yุŒ f smallุŒ ู†ุงู‚ุตุŒ f
358
00:29:36,930 --> 00:29:40,210
of x ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุงู„ integration ู…ู† a ู„ x ู„ ู…ูŠู†ุŸ ู„ู„
359
00:29:40,210 --> 00:29:47,290
FุŒ ุฅุฐุง ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุงุŒ ุงู„ุขู† ุจุฏูŠ ุฃุญูˆู„ ู‡ุฐู‡ุŒ ุฃุฌู„ุจู‡ุงุŒ
360
00:29:47,290 --> 00:29:52,670
ุจูŠุตูŠุฑ ุฒุงุฆุฏ ุงู„ integration ู…ู† x ู„ุนู†ุฏ ู…ูŠู†ุŒ ู„ุนู†ุฏ ุงู„
361
00:29:52,670 --> 00:29:57,640
aุŒ ู„ู„ Fุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ุงู„ integration ู…ู† X ู„ุนู†ุฏ ุงู„ A
362
00:29:57,640 --> 00:30:00,520
ูˆ ู…ู† A ู„ุนู†ุฏ ุงู„ Y ุฅุฐุง ุญูŠุตูŠุฑ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„
363
00:30:00,520 --> 00:30:05,940
integration ู…ู† X ู„ู…ูŠู† ู…ู† X ู„ุนู†ุฏ ุงู„ Y ุนุงุฑููŠู† ู‡ุฐู‡
364
00:30:05,940 --> 00:30:09,960
ุงู„ุฎุงุตูŠุฉ ุฅุฐุง ุตุงุฑ ุนู†ุฏ ุงู„ F of X F of Y ู†ุงู‚ุต F of X
365
00:30:09,960 --> 00:30:15,760
ุจุณูˆุก ุงู„ integration ู…ู† X ู„ Y ู„ู…ูŠู† ู„ู„ F ุดูˆู ุงู„ุขู†
366
00:30:15,760 --> 00:30:20,100
ุฅูŠุด ุจุฏู‡ ุฃุตู„ุŸ ุจุฏู‡ ุฃุตู„ ุฅู†ู‡ absolute value F of Y
367
00:30:20,100 --> 00:30:24,830
ู†ุงู‚ุต F of Xุฃุตุบุฑ ุฃูˆ ุณูˆู‰ K ููŠ ุงู„ู€ absolute value X
368
00:30:24,830 --> 00:30:31,450
ู…ุงู†ุณ Y ูŠุนู†ูŠ ุตุงุฑุช ู„ุจุดุช ู„ู†ุดูˆู ูƒูŠู ู†ุตู„ู‡ุง ูˆุฃูƒูŠุฏ ุจุนุถูƒู…
369
00:30:31,450 --> 00:30:36,450
ูู‡ู… ุงูˆ ุงุชูˆู‚ุน ูƒูŠู ุจุชุณูˆูŠ ู„ุฃู† ุตุงุฑ ุงู„ absolute value
370
00:30:36,450 --> 00:30:40,250
ู„ู‡ุฐู‡ ุจุณูˆู‰ ุงู„ absolute value ู„ู‡ุฐู‡ ู‡ูŠู‡ุง ู„ุฃู† ุงู„
371
00:30:40,250 --> 00:30:43,010
absolute value ุงู„ integration ุจุฎุงุตูŠุฉ ุงุญู†ุง ุนุงุฑููŠู†ู‡ุง
372
00:30:43,010 --> 00:30:46,770
ุฃุตุบุฑ ุฃูˆ ุณูˆู‰ ุงู„ integration ู„ู„ absolute valueูˆุงู„ู€
373
00:30:46,770 --> 00:30:50,990
absolute value ู„ู„ู€ F ููŠ ุงู„ูุชุฑุฉ X ูˆY ุฃุดู…ู„ู‡ุง .. ู‡ูŠ
374
00:30:50,990 --> 00:30:53,570
ู…ุด ููŠ ุงู„ูุชุฑุฉ X ูˆY ุจุณ ุงู„ู€ absolute value ู„ู„ู€ F ุงู„ู€
375
00:30:53,570 --> 00:30:56,170
absolute value ู„ู„ู€ F ุฃุตุบุฑ ุฃูˆ ุณูˆู‰ K ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ
376
00:30:56,170 --> 00:31:01,030
ุงู„ูƒุจูŠุฑุฉ ุงู„ู„ูŠ ู‡ูŠ A ูˆB ูุฃูƒูŠุฏ ุจุฑุถู‡ ู‡ุชูƒูˆู† ุฃุตุบุฑ ุฃูˆ ุณูˆู‰
377
00:31:01,030 --> 00:31:05,670
K ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ุตุบูŠุฑุฉ ูุตุงุฑ ุนู†ุฏูŠ ุฃุตุบุฑ ุฃูˆ ุณูˆู‰ K ููŠ
378
00:31:05,670 --> 00:31:07,890
ู…ูŠู†ุŸ ููŠ ุงู„ integration ู…ู† X ู„ุนู†ุฏ Y ุงู„ integration
379
00:31:07,890 --> 00:31:13,080
ู…ู† X ู„ุนู†ุฏ Y ู‡ูˆ ุฅูŠุด ุจุณุงูˆูŠุŸ ุงู„ู„ูŠ ู‡ูˆ Y minus Xุงู„ู€
380
00:31:13,080 --> 00:31:19,400
integration ูŠุนู†ูŠ ุงู„ integration ู„ู€ DT ู…ู† X ู„ู€ DT
381
00:31:19,400 --> 00:31:28,660
ุงู„ integration ู„ู€ DT ู…ู† X ุนู†ุฏ Y ุงูŠุด ุจูŠุณุงูˆูŠ Y minus
382
00:31:28,660 --> 00:31:36,240
X Y minus X ูู‡ุฐุง ุตุงุฑ Y minus X ูˆ ุงู„ู„ูŠ ุฌูˆุง ุฃุตุบุฑ
383
00:31:36,240 --> 00:31:40,790
ุจูŠุณุงูˆูŠ Kุงู„ุงู† ู‡ุฐุง ุนู„ู‰ ุฎุทูˆุชูŠู† ุณู‡ู„ุงุช ุจุชุตูˆุฑ ุงู† ุงู†ุชูˆุง
384
00:31:40,790 --> 00:31:44,370
ูุงู‡ู…ูŠู†ุด ุจุญูƒูŠ ู…ู† X ู„ุนู†ุฏ Y ุงู„ integration ู„ู„ F ูุฏู‡
385
00:31:44,370 --> 00:31:47,850
ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ integration ู…ู† X ู„ุนู†ุฏ Y
386
00:31:47,850 --> 00:31:55,370
ู‡ุฐู‡ ุจุฏู„ุฉ K ู„ูƒู„ DT ูˆู‡ุฐุง ุจุณุงูˆูŠ K ุจุฑุฉ ููŠ Y minus X
387
00:31:55,370 --> 00:31:59,230
ุงู„ู„ูŠ ู‡ูˆ ุฃูƒูŠุฏ ุญูŠุตูŠุฑ ุนู†ุฏ ุงู„ absolute value ู‡ุฐู‡ ุฃุตุบุฑ
388
00:31:59,230 --> 00:32:03,770
ุฃูˆ ุณุงูˆูŠ K ููŠ ุงู„ absolute value Y minus Xุงู„ุงู† ู‡ุฐู‡
389
00:32:03,770 --> 00:32:07,570
ุงู„ Xุงุช ุงู„ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Y ู„ูƒู† ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู†
390
00:32:07,570 --> 00:32:11,150
ุญุงู„ุฉ ุงู„ X ุจุชุณุงูˆูŠ Y is trivial ู„ุฃู† ู„ู…ุง ุชูƒูˆู† X
391
00:32:11,150 --> 00:32:14,450
ุจุชุณุงูˆูŠ Y ู‡ุฐุง ุณูุฑ ูˆ ู„ู…ุง ุชูƒูˆู† X ุจุชุณุงูˆูŠ Y ู‡ุฐุง ุณูุฑ ุฅุฐุง
392
00:32:14,450 --> 00:32:18,610
ุงู„ inequality ู‡ุฐู‡ ุตุญูŠุญุฉ ุฏุงุฆู…ุง ุฅุฐุง ุงู„ุฃู† ุตุงุฑ ุนู†ุฏู‰
393
00:32:18,610 --> 00:32:25,590
ู‡ุฐู‡ ุงู„ inequality staris true for all x ูˆ y
394
00:32:25,590 --> 00:32:30,390
limiting a ูˆ b ู„ุฃู†ู‡ ู‚ู„ู†ุง ุงู„ x ุฃุตุบุฑ ู…ู† y ุงู„ y ุฃุตุบุฑ
395
00:32:30,390 --> 00:32:33,990
ู…ู† x ุฃูƒูŠุฏ similarly ูˆ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุฃูˆ ุญุชู‰ without
396
00:32:33,990 --> 00:32:38,170
loss of generality ูŠุนู†ูŠ ุจุฏูˆู† ู…ุง ู†ูู‚ุฏ ุฃูŠ ุฅุดูŠ ู…ู†
397
00:32:38,170 --> 00:32:44,530
ุงู„ุชุนู…ูŠู… ุจู†ูุชุฑุถ ุฃู† x ุฃุตุบุฑ ู…ู† y ุตุงุฑ
398
00:32:44,530 --> 00:32:53,230
ุนู†ุฏูŠ ูŠุง ุฌู…ุงุนุฉุงู„ุงู† F ู…ุณุชู…ุฑ ุนู„ู‰ A ูˆB ู„ุฃู† F ุจูŠุตุจุญ
399
00:32:53,230 --> 00:33:02,750
ุนู…ู„ูŠุฉ Lipschitz ุงู„ู„ูŠ ู‡ูŠ ุงู„ุขู† ุถุงู„ ุนู„ูŠ ุฃุซุจุช ุฃู† ุงู„ู€ F
400
00:33:02,750 --> 00:33:11,100
ู…ุณุชุฎุฏู… ูˆุฒูŠ ู…ุง ู‚ู„ุช ุจุฏุฃ ุฃุซุจุช ุฃู† ุงู„ู€ Limitู„ู„ู€ F of C
401
00:33:11,100 --> 00:33:17,800
ุฒุงุฆุฏ H ู†ู‚ุต F of C ุนู„ู‰ H ู„ู…ุง H ุชุฑูˆุญ ู„ู„ุตูุฑ ุจุณุงูˆุฉ F
402
00:33:17,800 --> 00:33:23,480
small of C ุฃูˆ ุฃุซุจุช ู„ูƒู… ุงู„ูุฑู‚ ุจูŠู† ู‡ุฐูˆู„ุชูŠู† ุฃุตุบุฑ ู…ู†
403
00:33:23,480 --> 00:33:28,880
ุฅุจุณู„ูˆู† ูˆู‡ุฐุง ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠู…ุซู„ F' of C ุฏู‡
404
00:33:28,880 --> 00:33:34,160
ู†ุดูˆู ูƒูŠู ุทูŠุจ ุงู„ุตู„ุงุฉ ุนู„ู‰ ุงู„ู†ุจูŠ ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ูŠูƒ
405
00:33:37,390 --> 00:33:42,130
ุฎู„ู‘ูŠู†ุง ู†ุฌู ุนู†ุฏ .. ุฃูŠูˆุฉ ู†ูŠุฌูŠ ุงู„ุขู† ุงู„ุจุฑู‡ุงู† ู‡ุชู„ุงู‚ูˆู‡
406
00:33:42,130 --> 00:33:49,730
ุจุฑุถู‡ ุณู‡ู„ ูˆููƒุฑุชู‡ ุณู‡ู„ุฉ ุดูˆููˆุง ูƒูŠู ุนู†ุฏูŠ ู†ูุชุฑุถ ุงู„ุขู†
407
00:33:49,730 --> 00:33:53,550
suppose that f is continuous at c limiting a ูˆb
408
00:33:53,550 --> 00:33:58,790
ู…ุฏุงู… continuous ุฅุฐู† limit
409
00:34:01,700 --> 00:34:08,460
F of X as X ุจุชุฑูˆุญ ู„ู„ู€ C ุจุณุงูˆูŠ F of C ู…ุธุจูˆุท ูˆู„ุง ู„ุฃุŸ
410
00:34:08,460 --> 00:34:12,300
ุฃูƒูŠุฏ ู…ุธุจูˆุท ูุจู‚ู‰ ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ุฎู„ูŠู†ุง ู†ูƒุชุจู‡ุง ุจุตูˆุฑุฉ
411
00:34:12,300 --> 00:34:18,660
ุซุงู†ูŠุฉ X ู†ุงู‚ุต C ุจุชุฑูˆุญ ู„ู„ุณูุฑ if and only if ุงู„ู„ูŠ ู‡ูˆ
412
00:34:18,660 --> 00:34:23,960
X ุจุชุฑูˆุญ ู„ู…ูŠู† ู„ู„ู€ C ุณู…ูˆู„ูŠ ู‡ุฐู‡ X minus C ุฅูŠุด ุงุณู…ู‡ุง H
413
00:34:23,960 --> 00:34:31,410
ุจุตูŠุฑ ู‡ุฐู‡ ุงู„ู„ูŠ ููˆู‚ ู…ูŠู† ู‡ูŠ limitF of ุงู„ู€ X minus C
414
00:34:31,410 --> 00:34:36,490
ุจุชุณุงูˆูŠ ุงู„ู€ H ูŠุนู†ูŠ ุงู„ู€ X ุจุชุณุงูˆูŠ H ุฒุงุฆุฏ C ุฃูˆ C ุฒุงุฆุฏ
415
00:34:36,490 --> 00:34:41,190
Hู„ุฃู† x ุจุชุฑูˆุญ ู„ู„ู€ c ุชูƒุงูุฆ ุฃู†ู‡ .. ุงู„ู„ูŠ ู‡ูˆ x minus c
416
00:34:41,190 --> 00:34:44,610
ุชุฑูˆุญ ู„ู„ุตูุฑุŒ ูŠุนู†ูŠ ุจุชูƒุงูุฆ H ุชุฑูˆุญ ู„ู…ูŠู† ู„ู„ุตูุฑุŒ ุฅูŠุด ุญูŠุซ
417
00:34:44,610 --> 00:34:49,650
ู‡ูˆ ู‡ุฐุงุŸ F of CุŒ ุฅุฐุง ู‡ุฐู‡ ู‡ูŠ ุชุนุจูŠุฑ ุขุฎุฑ ุนู† ุงู„
418
00:34:49,650 --> 00:34:56,250
continuity ู„ู„ F ู„ู…ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู„ F ุนู†ุฏ ู…ูŠู†ุŒ
419
00:34:56,250 --> 00:34:59,210
ุนู†ุฏ ุงู„ CุŒ ูŠุนู†ูŠ ู‡ุฐู‡ ุชุนุจูŠุฑ ุขุฎุฑุŒ ุงู„ continuity ู„ู„
420
00:34:59,210 --> 00:35:05,900
function ู„ู…ุง ุนู†ุฏ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ูŠ Cู‡ุฐู‡ ุงู„ุขู† ุดูˆ ุจุฏูŠ
421
00:35:05,900 --> 00:35:09,520
ุงุณุชุฎุฏู…ู‡ุง ู„ู„ูˆุตูˆู„ ุงู„ู„ูŠ ุจุฏูŠู‡ุง ู„ุฃู† ู…ุงุฏุงู… F is
422
00:35:09,520 --> 00:35:12,600
continuous ุฏู‡ ู‡ุฐูŠ ู…ุชุญู‚ู‚ุฉ ู‡ูŠู‡ุง ู…ุงุฏุงู… F is
423
00:35:12,600 --> 00:35:15,480
continuous ุนู† C ุฏู‡ ู‡ุฐูŠ ู…ุชุญู‚ู‚ุฉ ูู…ุงุฏุงู… ู‡ุฐูŠ ู…ุชุญู‚ู‚ุฉ
424
00:35:15,480 --> 00:35:18,720
ุงุฐุง by epsilon delta definition for every epsilon
425
00:35:18,720 --> 00:35:22,880
ุฃูƒุจุฑ ู…ู† 0 there exists delta ุฃูƒุจุฑ ู…ู† 0 such that
426
00:35:22,880 --> 00:35:28,950
ู„ู…ุง ูŠูƒูˆู† ุงู„ absolute value ู„ู„ H ุฃุตุบุฑ ู…ู† Deltaูˆ
427
00:35:28,950 --> 00:35:32,230
ุทุจุนุง ุงู†ุง ูˆูŠู† ุจุดุชุบู„ ููŠ ุงู„ู…ู†ุทู‚ุฉ ุงู†ู‡ุง ุชูƒูˆู† C ุฒุงุฆุฏ H
428
00:35:32,230 --> 00:35:36,370
ูˆูŠู† ู…ุง ู„ุฃ ููŠ ุงู„ูุชุฑุฉ ุชุจุนุช ู…ู† A ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ B ูŠุนู†ูŠ
429
00:35:36,370 --> 00:35:41,230
ุงุฎุชุฑุช ุงู„ H ุตุบูŠุฑุฉ ูƒูุงูŠุฉ ุจุญูŠุซ ุงู†ู‡ C ุฒุงุฆุฏ H ุงุถู„ูŠ ูˆูŠู†
430
00:35:41,230 --> 00:35:45,090
ุฌุงุนุฏ ููŠ ุงู„ูุชุฑุฉ ู…ู† A ูˆ B ู„ุนู†ุฏู‡ ู„ุฅู† ู‡ุงูŠ ุงู„ูุชุฑุฉ A ูˆู‡ูŠ
431
00:35:45,090 --> 00:35:49,330
Bูˆุงู„ูุชุฑุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ I C ุนู†ุฏูŠ ู…ุซู„ุง ููŠ ุฏุงุฎู„ู‡ุง ุงู„ู„ูŠ
432
00:35:49,330 --> 00:35:55,690
ู‡ูŠ ุจุชุฎุชุงุฑ H ุฏู„ุชุชู‡ุง ุตุบูŠุฑุฉ ูƒูุงูŠุฉ ุฃู†ู‡ ุถุงู„ C ุฒุงุฆุฏ H
433
00:35:55,690 --> 00:36:01,050
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ B ุนุดุงู† ุชุตูŠุฑ ู…ุนุฑูุฉ ู„ุฅู†
434
00:36:01,050 --> 00:36:05,330
ุฏุงู„ุชูŠ ุฃู†ุง ุนุดุงู† ุชูƒูˆู† ู…ุนุฑูุฉ ุนู†ุฏ C ุฒุงุฆุฏ H ู„ุงุฒู… ุชูƒูˆู† C
435
00:36:05,330 --> 00:36:08,490
ุฒุงุฆุฏ H ููŠ ุฏุงุฎู„ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ู„ุฅู† ุฏุงู„ุชูŠ ู…ุนุฑูุฉ ุนู„ู‰
436
00:36:08,490 --> 00:36:11,770
ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ B ุนุดุงู† ู‡ูŠูƒ ุฃู‚ูˆู„ู†ุง C ุฒุงุฆุฏ H ู„ุงุฒู…
437
00:36:11,770 --> 00:36:16,630
ุชูƒูˆู† ููŠ ุงู„ูุชุฑุฉ ุฒุงุฆุฏ Bุฅุฐู† ุงุฎุชูŠุงุฑ ุงู„ู€ Delta ูŠุนุชู…ุฏ
438
00:36:16,630 --> 00:36:20,210
ุนู„ู‰ ุงู„ limit ูˆูŠุนุชู…ุฏ ุนู„ู‰ ุงู†ู‡ ุฃุถู…ู† ุงู„ C ุฒูŠ ุฏุงุดุฑ ุถุงู„
439
00:36:20,210 --> 00:36:24,510
ู‡ูˆูŠู† ููŠ ุงู„ูุชุฑุฉ A ูˆB ุฅุฐุง ุชุนุฑูŠู ุงู„ continuity ุจูŠู‚ูˆู„
440
00:36:25,950 --> 00:36:27,530
ู„ูƒู„ y ุฃู‚ูˆู… ุจุงุณุชุฎุฏุงู… ุตูุฑ ูŠูˆุฌุฏ ุฏู„ุชุง ู„ูƒู„ y ุฃู‚ูˆู…
441
00:36:27,530 --> 00:36:28,970
ุจุงุณุชุฎุฏุงู… ุตูุฑ ูŠูˆุฌุฏ ุฏู„ุชุง ู„ูƒู„ y ุฃู‚ูˆู… ุจุงุณุชุฎุฏุงู… ุตูุฑ
442
00:36:28,970 --> 00:36:29,950
ูŠูˆุฌุฏ ุฏู„ุชุง ู„ูƒู„ y ุฃู‚ูˆู… ุจุงุณุชุฎุฏุงู… ุตูุฑ ูŠูˆุฌุฏ ุฏู„ุชุง ู„ูƒู„ y
443
00:36:29,950 --> 00:36:30,650
ุฃู‚ูˆู… ุจุงุณุชุฎุฏุงู… ุตูุฑ ูŠูˆุฌุฏ ุฏู„ุชุง ู„ูƒู„ y ุฃู‚ูˆู… ุจุงุณุชุฎุฏุงู…
444
00:36:30,650 --> 00:36:32,710
ุตูุฑ ูŠูˆุฌุฏ ุฏู„ุชุง ู„ูƒู„ y ุฃู‚ูˆู… ุจุงุณุชุฎุฏุงู… ุตูุฑ ูŠูˆุฌุฏ ุฏู„ุชุง
445
00:36:32,710 --> 00:36:35,050
ู„ูƒู„ y ุฃู‚ูˆู… ุจุงุณุชุฎุฏุงู… ุตูุฑ ูŠูˆุฌุฏ ุฏู„ุชุง ู„ูƒู„ y ุฃู‚ูˆู…
446
00:36:35,050 --> 00:36:41,110
ุจุงุณุชุฎุฏุงู… ุตูุฑ ูŠูˆุฌุฏ ุฏู„ุชุง
447
00:36:41,110 --> 00:36:49,400
ู„ูƒู„ y ุฃู‚ูˆู… ุจุงุณุชุฎุฏุงู… ุตูุฑ ูŠูˆุฌุฏ ุฏู„ุชุง ู„ูƒู„ y ุฃุทูŠุจุŒ ุงู„ุขู†
448
00:36:49,400 --> 00:36:54,020
ูˆูŠู† ุฃู†ุง ุจุฏุฃ ุฃุฑูˆุญุŸ ุจุฏุฃ ุฃุซุจุช ู„ูƒู… ุฅู†ู‡ ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง
449
00:36:54,020 --> 00:36:58,240
ุฃุตุบุฑ ู…ู† epsilon ุนุดุงู† ุฐู„ูƒ ุฏุนู†ุง ู†ุญุณุจ F of C ุฒุงุฏ H
450
00:36:58,240 --> 00:37:03,060
ู†ุงู‚ุต F of C ุนู„ู‰ H ู†ุงู‚ุต ู…ูŠู† ูŠุง ุฌู…ุงุนุฉุŸ F of C ูˆูŠุณุงูˆูŠ
451
00:37:03,060 --> 00:37:13,170
ุงู„ุขู† F of C ุฒุงุฏ H ู†ุงู‚ุต F of Cุฎุฏ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ H
452
00:37:13,170 --> 00:37:16,850
ู‡ุฏุนู… ุงู„ู…ุดุชุฑูƒ ุจุงู„ู€ C ุงู„ูˆุงุญุฏุฉ ู„ู„ู€ H ู…ุงุดูŠ F of C ุฒูŠ
453
00:37:16,850 --> 00:37:21,910
ุฏุชุด ุชุนุฑูŠูู‡ุง ู…ู† A ู„ุนู†ุฏ C ุฒูŠ ุฏุชุด ู„ู„ F of X DX ู‚ู„ู†ุงู‡ุง
454
00:37:21,910 --> 00:37:26,090
ู‡ุฐู‡ ุงู„ู„ูŠ ู…ุงุนุทูŠู†ุงู‡ุง ู…ู† ุฑุฃุณ ุงู„ุฏูˆุฑ ู†ุงู‚ุต ู…ุงุดูŠ ุชุนุฑูŠู F
455
00:37:26,090 --> 00:37:30,230
of C Capital of C ู‡ูˆ ุงู„ integration ู…ู† A ู„ุนู†ุฏ C ุฒูŠ
456
00:37:30,230 --> 00:37:35,630
ุฏุชุด ุงู„ุขู† ุฏูŠ ู…ุด C ุฒูŠ ุฏุชุด ู…ู† A ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู„ู€ C
457
00:37:35,630 --> 00:37:40,110
ูˆุงุญุฏุฉ ู„ู„ู€ H ู…ู† A ู„ุนู†ุฏ ุงู„ู€ C ุงู„ู„ูŠ ู‡ูŠ F of C ุฒูŠ ุฏุชุด
458
00:37:40,110 --> 00:37:46,360
ู‡ูŠู‡ุงูˆู‡ูŠ ุงู„ูˆุงุญุฏุฉ ุงู„ู€ H ุงู„ู„ูŠ ุจุฑุง ุงู„ F of C ู‡ูŠู‡ุง ู…ู† A
459
00:37:46,360 --> 00:37:51,780
ู„ C ูˆุงุญุฏุฉ ุงู„ู€ H ู†ุงู‚ุต ู…ูŠู† F of C ู‡ุฐุง ู…ู† ุงู„ุชุนุฑูŠู
460
00:37:51,780 --> 00:37:55,460
ู…ุจุงุดุฑุฉ ู„ุฅู†ู‡ ุงุญู†ุง ุนุฑูู†ุง ุงู„ F capital of X ู‡ูŠ ุนุจุงุฑุฉ
461
00:37:55,460 --> 00:38:01,820
ุนู† integration ู…ู† A ู„ุนู†ุฏ X F of T DT ู„ุฃู† ู„ู…ุง ู†ูƒูˆู†
462
00:38:01,820 --> 00:38:06,120
F of C ุฒูŠ ุฏุชุด ุจู†ุญุทู‡ุง ุฏูŠ C ุฒูŠ ุฏุชุด C ุจู†ุญุทู‡ุง ุฏูŠ ุนูŠุงุด
463
00:38:06,120 --> 00:38:13,460
C ูˆู‡ูŠ C ุฒูŠ ุฏุชุด ูˆู‡ูŠ ุงู„ู€ C ูˆู‡ูŠ ุณุงูˆูŠุฉุงู„ุงู† ู‡ุฐู‡ ู…ู† ..
464
00:38:13,460 --> 00:38:18,780
ู…ู† .. ู…ู† ุนู†ุฏ A ู„ู€ C ุฒูŠ ุฏู‡ ุงุชุด ูˆู‡ุฐู‡ ู…ู† A ู„ุนู†ุฏ B
465
00:38:18,780 --> 00:38:23,980
ู„ุนู†ุฏ C ู‡ุฏูˆู„ุฉ ู…ุน ุจุนุถ ู‡ุงูŠ ู‡ุฏูˆู„ุฉ ุงู„ุชู†ุชูŠู† ุจุฏู‡ ุงุญุณุจู‡ุง
466
00:38:23,980 --> 00:38:28,120
ู…ุน ุจุนุถ ุญุณุจู†ุง ุฒูŠูŠู† ู‚ุจู„ ูˆ ุดูˆูŠุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰
467
00:38:28,120 --> 00:38:32,400
ุงุชุด ุฎุฏูˆุง ุนุงู…ู„ ู…ุดุชุฑูƒ ุฎุฏูˆุง ูˆุงุญุฏ ุนู„ู‰ ุงุชุด ุนุงู…ู„ ู…ุดุชุฑูƒ
468
00:38:32,400 --> 00:38:37,340
ุจูŠู† ุงู„ุฌู‡ุชูŠู† ุชุตุจุญ ูˆุงุญุฏ ุนู„ู‰ ุงุชุด ุงูุชุญ ุฌูˆุณ ุงู„
469
00:38:37,340 --> 00:38:41,660
integration ู…ู† A ู„ุนู†ุฏ C ุฒูŠ ุฏู‡ ุงุชุดู„ุฃู† ุจุฏู„ ุงู„ู†ุงู‚ุต
470
00:38:41,660 --> 00:38:46,020
ุจูŠุตูŠุฑ H ุงูƒุชุจ ุฒุงุฆุฏ ุจุฏู„ ู‡ุฐุง ุงู„ู†ุงู‚ุต ุจูŠูƒุชุจ ุฒุงุฆุฏ ู„ุฃู†
471
00:38:46,020 --> 00:38:52,460
ู‡ุชู†ู‚ู„ุจ ู…ูŠู† ุงู„ุขู† ู…ู† C ู„ุนู†ุฏ ุงู„ A ู†ุธุจุท ุงู„ู„ูŠ ู‡ูˆ ู„ู†ูุณู‡ุง
472
00:38:52,460 --> 00:38:58,020
F F ู‡ุฐู‡ ุงู„ุขู† ู…ู† C ู„ุนู†ุฏ ุงู„ A ูˆู…ู† A ู„ุนู†ุฏ ุงู„ C ุฒุงุฏ H
473
00:38:58,020 --> 00:39:02,000
ุฅุฐุง ุฃูƒูŠุฏ ู‡ุฐู‡ ูƒู„ู‡ุง ุนู„ู‰ ุจุนุถ ูŠุตูŠุฑ ุงู„ integration ู…ู† C
474
00:39:02,000 --> 00:39:08,930
ู„ C ุฒุงุฏ H ู„ู„ F ููŠ ูˆุงุญุฏ ุนู„ู‰ H ุฅุฐุง ู‡ุฐู‡ ูƒู„ู‡ุงุจุณ
475
00:39:08,930 --> 00:39:11,350
ุงุจุฏู„ุชู‡ุง ุจู‚ูŠู…ุชู‡ุง ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„
476
00:39:11,350 --> 00:39:15,810
integration ู…ู† C ู„ C ุฒูŠ H ุงู„ู„ูŠ ุงูˆุฌุฏุชู‡ ุจุฏู„ ู‡ุฐุง ูƒู„ู‡
477
00:39:15,810 --> 00:39:23,190
ู…ู† ูˆุงุญุฏ ุงู„ H ู„ F of X DX ู†ุงู‚ุต ุงู„ุงู† ู‡ุฐุง ู‡ุฐุง ุงู„ู„ูŠ ู‡ูŠ
478
00:39:23,190 --> 00:39:28,090
F of C ุดูˆู ูƒูŠู ุจุฏู‡ ุงุนู…ู„ู‡ุง ุนู„ู‰ ุฌู‡ุฉ ุชุนุงู„ูŠ ุงุญุณุจ ุงู„
479
00:39:28,090 --> 00:39:33,660
integrationุงู„ู€ integration ู…ู† C ู„ู€ C ุฒุงุฆุฏ H ู„ู„ู€
480
00:39:33,660 --> 00:39:38,180
constant ูˆุงุญุฏ ุจุนุฏ ุฃุฐู†ูƒู… DX ุฅูŠุด ู‡ูŠุณุงูˆูŠ ุงู„
481
00:39:38,180 --> 00:39:44,140
integration ู‡ุฏุง ุนุจุงุฑุฉ ุนู† C ุฒุงุฆุฏ H ู†ุงู‚ุต C ูˆู‡ูŠุณุงูˆูŠ
482
00:39:44,140 --> 00:39:48,760
ู‚ุฏุงุด H ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู„ูˆ ุฌูŠุชู‡ุง ุงู„ุฌุฏ ุชุนุฑููˆุง ู„ูŠุด
483
00:39:48,760 --> 00:39:52,640
ุจุนู…ู„ ู‡ูŠูƒ ูˆุงุญุฏ ุนู„ู‰ H ููŠ ุงู„ integration ู…ู† C ู„ู€ C
484
00:39:52,640 --> 00:39:58,720
ุฒุงูŠุฏ H ุงู„ู„ูŠ ู‡ูˆ ุงู„ูˆุงุญุฏ ู‡ูŠุณุงูˆูŠ ุฅูŠุดุŸ ูˆุงุญุฏุŒ ู…ุธุจูˆุท ูˆู„ุง
485
00:39:58,720 --> 00:40:03,450
ู„ุฃุŸุฃูƒูŠุฏ ู…ุธุจูˆุท ู…ุงุดูŠ ู‡ุงูŠู…ู„ ู‡ุงุฏูŠ ูƒุณู…ุช ุงู„ุฏูŠูˆุง ุชุงู†ูŠ
486
00:40:03,450 --> 00:40:10,570
ุนู„ุดุงู† ุชุทู„ุน ุญุฏ ูˆุงุญุฏ ุงู„ุงู† ุตุงุฑ ุนู†ุฏู‰ ู„ูˆ ุถุฑุจุช ู‡ุงุฏูŠ
487
00:40:11,920 --> 00:40:18,320
ุงู„ุฌู‡ุชูŠู† ููŠ F of C ู‡ูŠ F of C ุจูŠุณุงูˆูŠ ุงูŠุดุŸ F of C ุตุงุฑ
488
00:40:18,320 --> 00:40:21,260
ุงู„ุงู† F of C ุจูŠุณุงูˆูŠ ู‡ุฐู‡ ุจุฏูŠ ุฃุดูŠู„ F of C ุชุจุนุชูŠ ูˆ ุฃุญุท
489
00:40:21,260 --> 00:40:25,360
ู…ูƒุงู†ู‡ุง ู‡ุฐู‡ ุงู„ุตูˆุฑุฉ ู„ูŠุด ุญุทูŠุชู‡ุงุŸ ุนุดุงู† ู‡ุฐู‡ ุฃู‚ุฏุฑ ุฃุชุญู…ู„
490
00:40:25,360 --> 00:40:30,380
ู…ุญุง ู…ุญุง ุฏูŠ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู…ู† ุงู„ุฃุตู„ ุดูˆู ูƒูŠู ุงู„ุงู† ุดูŠู„ุช
491
00:40:30,380 --> 00:40:33,320
ุงู„ F of C ูˆ ุญุทูŠุช ู‚ูŠู…ุชู‡ุง ุงู„ู„ูŠ ุฃูˆุฌุฏู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ
492
00:40:33,320 --> 00:40:37,660
ุนุจุงุฑุฉ ุนู† F of C ุนู„ู‰ H ููŠ ุงู„ integration ู…ู† C ู„C ุฒูŠ
493
00:40:37,660 --> 00:40:42,480
H ู„ู…ู†ุŸ ู„ู„ูˆุงุญุฏู…ุงุดูŠ ู„ุงู† ุตุงุฑ ู‡ุฐุง ุงู„ integration ูˆ ู‡ุฐุง
494
00:40:42,480 --> 00:40:45,920
ุงู„ integration ู†ูุณ ุงู„ุงุดูŠ ูˆุงุญุฏ ู„ F of X ูˆ ูˆุงุญุฏ ู„
495
00:40:45,920 --> 00:40:50,380
ูˆุงุญุฏ ูŠุนู†ูŠ ุจู‚ุฏุฑ ุงุดุชุบู„ ููŠู‡ู… ุจูŠุตูŠุฑ ุนู†ุฏู‰ ุฎุฏ ุงู„ ูˆุงุญุฏ ุงู„
496
00:40:50,380 --> 00:40:53,960
H ุจุฑุง ุนู† ุงู„ู…ุดุชุฑูƒ ุฎุงู„ุต ุจูŠุธู„ ุนู†ุฏู‰ ุงู„ integration ู…ู†
497
00:40:53,960 --> 00:40:58,720
C ู„ C ุฒุงุฏ H ู‡ุฐุง ู…ูŠู† ุงูŠุด ุงุณู…ู‡ F of X ูˆ ู‡ุฐุง F of C
498
00:40:58,720 --> 00:41:01,580
ุฏุฎู„ุชู‡ุง ุฌูˆุง ูˆ ู…ุถุฑุจุชู‡ุง ุจุงู„ูˆุงุญุฏ ุตุงุฑุช ู…ูŠู† ุจู‚ุฏุฑ ุงุนู„ู† ูˆ
499
00:41:01,580 --> 00:41:06,520
ุซุงุจุช ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต F of C ู„ูƒู„ ุงุด ู…ุงู„ู‡ DX ู‡ุฐุง ุงู„ูƒู„ุงู…
500
00:41:06,520 --> 00:41:14,340
ูƒู„ู‡ ู…ู† C ู„ C ุฒุงุฏ Hุตุงุฑ ุนู†ุฏู‰ ุงู„ุขู† ุงู„ุตูˆุฑุฉ ู‡ุฐู‡ ู‡ูŠู‡ุง ุงู‡
501
00:41:14,340 --> 00:41:20,840
ูˆ ู‡ุฐู‡ ุงู„ุตูˆุฑุฉ ุงุตู„ุง ุงู†ุง ุจุฏูŠุงู‡ุง ุงู„ุงู† ูˆุงุญุฏ ุนู„ู‰ H ุฃุฒุฑุน
502
00:41:20,840 --> 00:41:23,760
ุฃูˆ ุณุงูˆูŠ ู‚ูˆู„ู†ุง absolute value of integration ุฃุฒุฑุน
503
00:41:23,760 --> 00:41:28,740
ุฃูˆ ุณุงูˆูŠ ุงู„ integration ู„ู„ absolute value DX ุงู„ุงู†
504
00:41:28,740 --> 00:41:35,320
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ F of X ู†ุงู‚ุต F of Cู‚ู„ู†ุง ุนู†ู‡ุง ู…ู† ุฑุงุณ
505
00:41:35,320 --> 00:41:40,420
ุงู„ุฏูˆุฑ ุฃู† F of X ู†ุงู‚ุต F of C ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู†
506
00:41:40,420 --> 00:41:44,420
Epsilon ู„ุฃู† limit F of X ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€C ุฃุดู‡ุฑ
507
00:41:44,420 --> 00:41:50,240
ู…ุณุงูˆูŠ F of C ู„ุฃู† X ุงู„ู€N ู‡ุฐู‡ ููŠ ุงู„ูุชุฑุฉ ู…ู† C ู„ู€C
508
00:41:50,240 --> 00:41:56,100
ุฒุงุฆุฏุงุชุด ูŠุนู†ูŠ ุจุชุณู…ุญ ู„ูŠ ุฃู† ุฃู‚ูˆู„ limit F of X as X
509
00:41:56,100 --> 00:42:01,220
ุจุชุฑูˆุญ ู„ู„ู€C ุจุชุณุงูˆูŠ F of C ู„ู…ุง X ุจุชุฑูˆุญ ู„ู„ู€C ุงู„ู„ูŠ ู‡ูŠ
510
00:42:01,220 --> 00:42:05,980
ุฃุฏุด ุจุชุฑูˆุญ ู„ู…ูŠู†ู„ู„ุณูุฑ ู…ุถู„ ููŠ ู†ูุณ ุงู„ู…ู†ุทู‚ุฉ ู„ุฃู† ู‚ู„ู†ุง
511
00:42:05,980 --> 00:42:10,300
ู‚ุจู„ ุดูˆูŠุฉ x minus c ุจุชุฑูˆุญ ู„ู„ุณูุฑ ุฅุฐุง ูˆูู‚ุท ุฅุฐุง ุงู„ู„ูŠ
512
00:42:10,300 --> 00:42:13,880
ู‡ูŠ ุงู„ H ุงู„ู„ูŠ ุจุชุฑูˆุญ ู„ู„ุณูุฑ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† x minus
513
00:42:13,880 --> 00:42:18,260
c ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุงู„ continuity ู„ู„ F ุนู†ุฏ ุงู„ C
514
00:42:18,260 --> 00:42:21,980
ุจุฑุถู‡ ุจูƒูˆู† ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุนู„ู‰ ุงู„ absolute value
515
00:42:21,980 --> 00:42:25,160
ู„ู…ูŠู† ู„ู„ H ููŠ ุงู„ integration ู…ู† C ู„C ุฒุงุฏ H
516
00:42:27,990 --> 00:42:33,050
ูˆุงุถุญุฉ ุงู‡ุŸ ุงูƒูŠุฏ ู‡ุฐุง ุงู„ุงู† ุงูŠุด ู‚ูŠู…ุชู‡ุŸ C ุฒูŠ ุฏุงุด ู†ุงู‚ุต C
517
00:42:33,050 --> 00:42:36,050
ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† H ูุจุตูŠุฑ Y ุนุจุงุฑุฉ ุนู† absolute value
518
00:42:36,050 --> 00:42:42,430
of H ููŠ mean ููŠู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H
519
00:42:42,430 --> 00:42:42,470
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ
520
00:42:42,470 --> 00:42:42,490
ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H
521
00:42:42,490 --> 00:42:42,570
ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ
522
00:42:42,570 --> 00:42:42,710
ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H
523
00:42:42,710 --> 00:42:46,490
ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€H
524
00:42:46,490 --> 00:42:52,450
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ุทูŠุจ .. ุจูŠุตูŠุฑ ุนู†ุฏู‡ุง .. ุจูŠุตูŠุฑ ุฃูƒุจุฑ ู…ู† 0
525
00:42:52,450 --> 00:42:55,790
ุฃุณู ู‡ุฐู‡ ุจุญุงุฌุฉ ุฏูŠ ุจุชุทู„ุน ุฃูŠุด ุจุชุณุงูˆูŠ .. ุจูŠุณุงูˆูŠ ุจุณุงูˆูŠ
526
00:42:55,790 --> 00:42:58,150
.. ุจู‚ุฏุฑ ุฃุฎุชุงุฑ H positiveุŸ ุฃู‡ ุจู‚ุฏุฑ ุฃุฎุชุงุฑ H positive
527
00:42:58,150 --> 00:43:03,130
ุทูŠุจ ูˆ ู„ูˆ ุญุชู‰ ุงู„ H negative ุจุชูƒูˆู† similarly ุจุณ
528
00:43:03,130 --> 00:43:06,950
ุจุชูƒูˆู† .. ูƒู„ ุงู„ุจุฑู‡ุงู… ุจูŠุตูŠุฑ .. ุจุชุฑุชุจ ุนู„ู‰ ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูŠ
529
00:43:06,950 --> 00:43:12,890
ุงู„ .. ุงู„ C ุฒุงุฆุฏ H ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ C without loss
530
00:43:12,890 --> 00:43:17,250
of generality ุงู„ H ุฃูƒุจุฑ ู…ู† 0ุจุตูŠุฑ ุนู†ุฏู‰ ู„ุงู† ู‡ุฐุง
531
00:43:17,250 --> 00:43:24,750
ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุฅูŠุด ูŠุนู†ูŠ ุงู„ู„ู‰ ุนู…ู„ู†ุง
532
00:43:24,750 --> 00:43:28,290
ุงู„ู„ู‰ ุนู…ู„ู†ุง ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† Zero ู„ุงุฌุฆู†ุง Delta
533
00:43:28,290 --> 00:43:33,350
ุจุญูŠุซ ุฃู†ู‡ ู„ู…ุง H absolute value ุฃุตุบุฑ ู…ู† DeltaูŠุนุทูŠู†ูŠ
534
00:43:33,350 --> 00:43:39,330
ุฃู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฅุจุณู„ูˆู† ูŠุนู†ูŠ ุตุงุฑ
535
00:43:39,330 --> 00:43:43,450
ุนู†ุฏูŠ limit ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุณูˆุก f of c ูˆ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
536
00:43:43,450 --> 00:43:46,290
ุงู„ู„ูŠ ู‡ูˆ f prime of c ูŠุนู†ูŠ ุงุนุชุจุชู†ุง f prime of c
537
00:43:46,290 --> 00:43:56,410
ุจุณูˆุก f small of c ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู† ู„ุงู„ู„ูŠ
538
00:43:56,410 --> 00:44:02,210
ู‡ูŠ ุงู„ corollaryุจุฑุถู‡ ุงู„ู‰ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ู‰ ุฌุงู…ู„ุฉ ุจุดูˆูŠุฉ
539
00:44:02,210 --> 00:44:10,790
ุงูˆ ุฎู„ู‘ูŠู†ูŠ ู†ู‚ูˆู„ ุชู„ุฎูŠุตู‡ุง ุณุฑูŠุน ูˆุงุณุชุฐูƒุฑู‡ุง ุณุฑูŠุนู‡ุง ุงู„ู„ู‰
540
00:44:10,790 --> 00:44:17,830
ู‡ูˆ ุงู„ุฃูˆู„ู‰ ูƒุงู†ุช ุชูƒุงู…ู„ ูˆุงู„ุชูุงุถู„ ู‡ุฐู‡ ุชูุงุถู„ ุงู„ุชูƒุงู…ู„
541
00:44:17,830 --> 00:44:23,470
ุทุจุนุง ูƒู„ ูˆุงุญุฏุฉ ุชุญุช ุดุฑูˆุทู‡ุง ุงู„ู…ุฐูƒูˆุฑุฉ ููŠ ู†ุธุฑูŠุชู‡ุง
542
00:44:25,860 --> 00:44:30,340
ู†ุฌูŠ ู†ุดูˆู ูŠุง ุฌู…ุงุนุฉ ุงู„ corollary let f ู…ู† a ูˆ b ู„ุนู†ุฏ
543
00:44:30,340 --> 00:44:34,940
r ุจูŠ continuous on a ูˆ b and let f of x ุจูŠ ุณูˆู‰ ุงู„
544
00:44:34,940 --> 00:44:37,720
integration ู…ู† ุงู„ a ู„ ุงู„ x ู„ ุงู„ f ุฅุฐุง ูุฑุถ f
545
00:44:37,720 --> 00:44:40,160
continuous ุงู„ f ุงุณู…ู‡ ุงู„ continuous ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ
546
00:44:40,160 --> 00:44:44,980
ุฑูŠุญ ุญุงู„ู‡ ุทุจุนุง ุฃุนุทู‰ ุฅุดูŠ ุฃูƒุจุฑ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ูุงุชุช
547
00:44:44,980 --> 00:44:47,640
ูŠุนู†ูŠ ูุฑุถ ุงู„ continuity ุนู„ู‰ ุงู„ a ูˆ ุงู„ b ู…ุง ุฒู…
548
00:44:47,640 --> 00:44:49,840
continuous ุฅุฐุง ู…ุง ุจุชุฒู…ุด ุชู‚ูˆู„ integrable ู„ุฅู† ูˆ ุฃู†ุง
549
00:44:49,840 --> 00:44:52,340
continuous function ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅูŠุด ู…ุง ู„ู‡ุง is
550
00:44:52,340 --> 00:44:58,190
integrable ุฅุฐุง ู…ุฏุงู…ุฉ f continuousุงู„ุงู† ุจูŠุตูŠุฑ ู‡ุฐู‡ ุงู„
551
00:44:58,190 --> 00:45:01,810
integration ุงู„ู„ูŠ ู‡ูŠ ู…ู† a ู„ุนู†ุฏ ุงู„ x ู†ูุณู‡ุง
552
00:45:01,810 --> 00:45:06,030
continuous ู„ุฃ ู…ุด continuous ุจุณ is differentiable
553
00:45:06,030 --> 00:45:09,270
ูŠุนู†ูŠ ุฃุฌู… ุงู„ continuous ูŠุนู†ูŠ ู‡ุชูƒูˆู† ุนู†ุฏูŠ ุงู„ f is
554
00:45:09,270 --> 00:45:13,670
differentiable ูˆ ุงู„ f ุจุฑุงู…ูŠ ูŠู…ูŠู† ู‡ูŠ ุงู„ f then f is
555
00:45:13,670 --> 00:45:17,730
differentiable ู…ู† a ูˆ b ุนู†ุฏ f ุจุฑุงู…ูŠ ุจูŠุณุงูˆูŠ ูƒุฏู‡ ุฅุฐู†
556
00:45:17,730 --> 00:45:25,000
ุจุงุฎุชุตุงุฑ ู…ู† a ู„ x ุงู„ู„ูŠ ู‡ูˆ fof t dt ู„ูˆ ูุฑุถู†ุง ู‡ุฐู‡
557
00:45:25,000 --> 00:45:33,060
continuous ุนู„ู‰ ุงู„ a ูˆ ุงู„ b ุฅุฐุง ู„ูƒู„ x element in a
558
00:45:33,060 --> 00:45:38,080
ูˆ ุงู„ b ุจูŠุตูŠุฑ f of x ุจุงู„ุณุงูˆูŠ ู‡ุฐุง is differentiable
559
00:45:38,080 --> 00:45:45,500
ูˆ ุงู„ f prime of x ู‡ุชุณุงูˆูŠ f of ุงู„ู„ูŠ ู‡ูŠ x ูŠุนู†ูŠ ุจู…ุนู†ู‰
560
00:45:45,500 --> 00:45:52,590
ุขุฎุฑ ุงู„ู„ูŠ ู‡ูˆุงู†ูุถู„ ู‡ุฐุง ุงู„ุชูƒุงู…ู„ ูˆ ู†ุฒูŠู„ ุงู„ุชูุงุถู„ ูˆ ู†ุญุท
561
00:45:52,590 --> 00:46:00,830
ุงู„ู€ L ุฌูˆุง ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ D by DX ู„ู„ู€ integration
562
00:46:00,830 --> 00:46:08,530
ู…ู† A ู„ุนู†ุฏ X F of D DT ู„ู…ุง ุชูƒูˆู† F continuous ู‡ุฐุง
563
00:46:08,530 --> 00:46:14,610
ุจูƒูˆู† ุจ cancel ู‡ุฐุง ุฃูˆ ุนู…ู„ูŠุฉ ุนูƒุณูŠุฉ ู„ู‡ูˆุจุชุธู„ู„ู†ุง F of X
564
00:46:14,610 --> 00:46:19,070
ูŠุนุฏู‰ ุงู„ุฃุญู‚ุงู„ู‡ุง ุฃูˆ F of T ูˆุงู„ู€ T ู‡ูŠ ุงู„ู…ุชุบูŠุฑ ุฃูˆ ุงู„ู€
565
00:46:19,070 --> 00:46:23,370
X ู‡ูŠ ุงู„ู…ุชุบูŠุฑ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูƒู„ุฑูŠุฉ ุงู„ุขู† ุจุฏูˆุง ูŠู„ู…ู‘ูˆุง
566
00:46:23,370 --> 00:46:26,610
ุงู„ู†ุธุฑูŠุชูŠู† ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ููŠ ู†ุธุฑูŠุฉ ูˆุงุญุฏุฉ ูŠู„ุฎุตู† ููŠ
567
00:46:26,610 --> 00:46:30,910
ู†ุธุฑูŠุฉ ูˆุงุญุฏุฉ ู†ุดูˆู ูƒูŠู ุจุฏูˆุง ูŠู„ุฎุตู† ููŠ ู†ุธุฑูŠุฉ ูˆุงุญุฏุฉ
568
00:46:30,910 --> 00:46:40,630
ูŠุนู†ูŠ ุจุฏูˆุง ูŠุนูŠุฏ ุจุณ ุงู„ู„ูŠ ู‡ูˆ ุตูŠุงุบุฉ ุงู„ู†ุธุฑูŠุชูŠู† ุตู„ูˆุง
569
00:46:40,630 --> 00:46:44,540
ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…ุงู„ุงู† fundamental
570
00:46:44,540 --> 00:46:48,580
theorem of calculus combined form ูŠุนู†ูŠ ุงู„ุชู†ุชูŠู†
571
00:46:48,580 --> 00:46:53,790
ุงู„ุงู† ู…ูˆุฌูˆุฏุงุช ููŠ ู†ูุณ ุงู„ู†ุธุฑูŠุฉ ุดูˆู ุงูŠุด ุจู‚ูˆู„ูƒlet
572
00:46:53,790 --> 00:46:57,610
Fcapital and Fsmall be continuous on a and b ูุฑุถ
573
00:46:57,610 --> 00:47:00,710
ุฃู† Fcapital ูˆ Fsmall ุฃุดู…ุงู„ู‡ู… ุฅุชู† ุชุงู† continuous
574
00:47:00,710 --> 00:47:04,670
ุนู„ู‰ ุงู„ูุชุฑุฉ a ูˆ b ูˆ ูุฑุถูƒ ุฃู† F of a ุจุณุงูˆุฉ ุณูุฑ ูŠุนู†ูŠ
575
00:47:04,670 --> 00:47:07,610
ุจุฏูŠ ุฃุญุท ุงู„ initial condition F of a ุจุณุงูˆุฉ ุณูุฑ ุนุณู‰
576
00:47:07,610 --> 00:47:11,070
ุฃู† ูŠุฌู…ู‘ู„ ุงู„ุตูˆุฑุฉ ู…ุงุญุทู‡ ุนุดุงู† ุณูุฑ ุจุชุทู„ุน F of a ููŠ
577
00:47:11,070 --> 00:47:14,290
ุงู„ุฌูˆุงุจ then the following statements are
578
00:47:14,290 --> 00:47:18,380
equivalentูŠุนู†ูŠ ู„ู…ุง ุชูƒูˆู† ู‡ุฐุง ุตุญูŠุญุฉ ู‡ุฐุง ุตุญูŠุญุฉ ูˆ ู„ู…ุง
579
00:47:18,380 --> 00:47:22,640
ุชูƒูˆู† ู‡ุฐุง ุตุญูŠุญุฉ ู‡ุฐุง ุตุญูŠุญุฉ ู†ูŠุฌูŠ ู„ู„ุฌุฒุก ุงู„ุฃูˆู„ ู„ูˆ ูุฑุถู†ุง
580
00:47:22,640 --> 00:47:29,160
ุฃู† F prime of X ุจูŠุณุงูˆูŠ F of X ุฅุฐุง ุญูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ F
581
00:47:29,160 --> 00:47:33,460
ู‡ุฐู‡ is differential ุงู„ู…ุงุดูŠ ู‡ูŠูƒ ู…ูุชุฑุถ ุฃู† F prime of
582
00:47:33,460 --> 00:47:38,620
X ุจูŠุณุงูˆูŠ F of X ุจู‚ูˆู„ ุฅุฐุงุฅุฐุงู‹ ู‡ุฐู‡ ุตุญูŠุญุฉุŒ ุฅูŠุด ูŠุนู†ูŠ
583
00:47:38,620 --> 00:47:43,260
ู‡ุฐู‡ ุตุญูŠุญุฉุŸ ูŠุนู†ูŠ ุงู„ integration ู…ู† ุงู„ AX ู„ู„ F of
584
00:47:43,260 --> 00:47:48,400
ุงู„ุชูŠ ู‡ูŠ T DTุŒ ู‡ุฐู‡ DT ูŠุง ุฌู…ุงุนุฉุŒ ุจุณ .. ุจุณ ู†ุฎู„ู ุนู†
585
00:47:48,400 --> 00:47:58,200
ู‡ุฐู‡ุŒ F of T DTุŒ ู‡ุฐุง ู‡ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ู‡ูŠุณุงูˆูŠ F of XุŒ
586
00:47:58,200 --> 00:48:03,070
ู†ุงุดูŠุŸุงู„ุงู† then the following statements are
587
00:48:03,070 --> 00:48:06,950
equivalent ูŠุนู†ูŠ ู„ู…ุง ุชูƒูˆู† ู‡ุฐู‡ ุตุญูŠุญุฉ ุจุชุนุทูŠู‡ุง ุฏูŠ ุงู‡
588
00:48:06,950 --> 00:48:11,350
ูุฑุถู†ุง ุงู† f prime of x ุจูŠุณุงูˆูŠ f of x ุงุฐุง ุญูŠูƒูˆู† ุนู†ุฏ
589
00:48:11,350 --> 00:48:14,290
ุงู„ integration ู…ู† a ู„ x f of t dt ุจูŠุณุงูˆูŠ ุงูŠุด
590
00:48:14,290 --> 00:48:20,630
ุจุงู„ุธุจุทุŸ f of x ูƒูŠู ุฏู‡ ุชุจุชู‡ุงุŸ ุงู„ุงู† ูุฑุถู†ุง ู‡ุฐุง ุตุญูŠุญ
591
00:48:20,630 --> 00:48:24,710
ุงุฐุง ุงู„ integration ู…ู† a ู„ ุนู†ุฏ ุงู„ x f of t ุงู„ู„ูŠ ู‡ูŠ
592
00:48:24,710 --> 00:48:33,010
ู…ูŠู† ู‡ุชุตูŠุฑุŸ f prime of tDT ู‡ุฐู‡ ู‚ุจู„ ุจุดูˆูŠุฉ ู…ู† ู†ุธุฑูŠุฉ
593
00:48:33,010 --> 00:48:36,470
ุงู„ุฃูˆู„ู‰ ู‚ู„ู†ุง ูƒุงู…ู„ ุงู„ุชูุงูˆุถ ูˆ ู„ูŠุด ุจุชุทู„ุน ุนู†ุฏูƒ ุฌูˆุงุจ F
594
00:48:36,470 --> 00:48:42,210
of X ู†ุงู‚ุต ู…ูŠู† F of A ู„ุฅู† ูƒู„ ุงู„ุดุฑูˆุท ู…ุชุญู‚ู‚ุฉ ู…ุงุดูŠ
595
00:48:42,210 --> 00:48:48,110
ุงู„ุขู† ู‡ุงูŠ ูƒู…ุงู† ู…ุฑุฉ ูŠุง ุฌู…ุงุนุฉ ูุฑุถู†ุง ุฅู† ู‡ุฐุง ู…ุชุญู‚ู‚ ุจุฏูŠ
596
00:48:48,110 --> 00:48:51,250
ุฃุญุณุจ ู‡ุฐู‡ ุฃุชุจุชู‡ุง ุจุงู„ุณุงูˆูŠุฉ ู‡ุฐู‡ ุฎุฏ ุงู„ integration ู…ู†
597
00:48:51,250 --> 00:48:55,510
X F of T DTู‡ูˆ ู…ุงุนุทูŠู†ูŠ ุงู„ู€ F small ู‡ุฏ ู…ูŠู† ู‡ูŠ ุงู„ู€ F
598
00:48:55,510 --> 00:48:58,830
ุจุฑุงู‡ู† ุดูุช .. ุดูŠู„ุช ุงู„ู€ F small ุฅูŠุด ุญุทูŠุช ู…ูƒุงู†ู‡ุงุŸ F
599
00:48:58,830 --> 00:49:03,510
ุจุฑุงู‡ู† ุงู„ุขู† ู‡ุฐู‡ ู‚ุจู„ ุจุดูˆูŠุฉ ููŠ ุงู„ู€ Corollary ูุธู„ู†ุง ..
600
00:49:03,510 --> 00:49:07,490
ูƒู…ู„ู†ุง ุงู„ุชูุงุถู„ ูƒูŠู ูƒู…ู„ู†ุง ุงู„ุชูุงุถู„ุŸ ุฅู†ู‡ ู‚ูˆู„ู†ุง ุดูŠู„
601
00:49:07,490 --> 00:49:11,230
ุงู„ุชูุงุถู„ .. ุดูŠู„ ุงู„ุชูƒุงู…ู„ .. ุดูŠู„ ุงู„ุชูุงุถู„ ุจุชุตูŠุฑ ุนุจุงุฑุฉ
602
00:49:11,230 --> 00:49:15,270
ุนู† F ุงู„ู„ูŠ ููˆู‚ ุงู„ู„ูŠ ูƒุงู†ุช B ู†ุงู‚ุต F ุงู„ู„ูŠ ุชุญุช ุงู„ู„ูŠ ู‡ูŠ
603
00:49:15,270 --> 00:49:19,390
A ูˆูŠุณุงูˆูŠุฃู of X ู†ู‚ุต ุฃู of A ุฃู of A ู…ุงุนุทูŠู†ูŠู‡ุง ู…ู†
604
00:49:19,390 --> 00:49:24,350
ุฑุฃุณ ุงู„ุฏูˆุงุฑ ุตูุฑ ุฅุฐุง ุฅูŠุด ู‡ุชุณุงูˆูŠ ุฃู of X ุฅุฐุง ู‡ุฐู‡ ุงู„ู„ูŠ
605
00:49:24,350 --> 00:49:28,290
ุจุฏู‘ูŠู†ุง ุญุณุงุจุงุชู‡ุง ุจุชุณุงูˆูŠ ู‡ุฐู‡ ุทู„ุนุช ุฅูŠุด ุจุชุณุงูˆูŠ ุฃู of X
606
00:49:28,290 --> 00:49:32,830
ูŠุนู†ูŠ ุฃู of X ุจุชุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุทูŠุจ
607
00:49:32,830 --> 00:49:36,730
ู‡ุฐุง ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ู†ูŠุฌูŠ ู„ู„ุฌุฒุก
608
00:49:36,730 --> 00:49:42,240
ุงู„ุซุงู†ูŠ ู†ูุชุฑุถ ุงู„ุขู† ุฅู† ู‡ุฐู‡ ุตุญูŠุญุฉ ูˆุฏู‡ ุชุนุทูŠู‡ุงุงู„ุงู† ุจุฑุถู‡
609
00:49:42,240 --> 00:49:44,760
ุงู„ุดุฑูˆุท ูƒู„ู‡ุง ู…ุชุญู‚ู‚ุฉ ู„ุฃู† ุงู„ู€ F ููŠ ุงุณู…ู‡ ู„ูŠุด ู…ุงู„ู‡ุง
610
00:49:44,760 --> 00:49:47,340
continuous ู„ุณู‡ ุงู† ุงู†ุง ู…ุง .. ู…ุง .. ู…ุง ู…ู„ุงุญุชูˆุด ุงู†ุง
611
00:49:47,340 --> 00:49:52,080
ู‡ุฐุง ุงูŠู‡ ุนู†ุฏูŠ F continuous ู…ุฏุงู… F continuous ุงู„
612
00:49:52,080 --> 00:49:57,720
integration ู…ู† ุงุนู„ู‰ ุนู†ุฏ ุงู„ X ู‡ุฐุง ูƒู„ู‡ุงู„ู„ูŠ ู‡ูˆ ุงุณู…ู‡ F
613
00:49:57,720 --> 00:50:01,320
of X ู‡ูŠูƒูˆู† differentiable ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ู…ุฒุงู…
614
00:50:01,320 --> 00:50:04,780
differentiable ุญุณุจ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุฅุฐุง F prime of X
615
00:50:04,780 --> 00:50:11,100
ุฅูŠุด ู‡ุชุณุงูˆูŠุŸ F of X ูŠุนู†ูŠ ุญู‚ู‚ู†ุง ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูŠ I ูŠุนู†ูŠ
616
00:50:11,100 --> 00:50:20,070
ู‡ุฐุง ูŠุคุฏูŠ ุฅู„ู‰ ู‡ุฐุงู†ุฌูŠ ุงู„ุขู† ุจุนุถ ุงู„ุชุนุฑูŠูุงุช ุงู„ู„ูŠ
617
00:50:20,070 --> 00:50:26,890
ู‡ู†ุชูƒุฑู‡ุง ู„ูƒู… ูˆุงู†ุชูˆุง ู‡ุชูƒูˆู†ูˆุง ุงู„ู„ูŠ ู‡ูˆ ุงุชุงุจุนูˆุง ุงู„ุฃู…ุซู„ุฉ
618
00:50:26,890 --> 00:50:32,130
ู…ู† ุฎู„ุงู„ ุงู„ homework ุงู„ู„ูŠ ู…ุนุงูƒู… ู‡ู†ุนุทูŠ ุงู„ู„ูŠ ู‡ูŠ ุชุนุฑูŠู
619
00:50:32,130 --> 00:50:36,830
ู…ู…ูƒู† ุงู†ุชูˆุง ุญุชู‰ ู…ุฑ ุนู„ูŠูƒู… ููŠ ุงู„ calculus ูˆู…ู† ุซู… ุงู„ู„ูŠ
620
00:50:36,830 --> 00:50:41,710
ู‡ูˆู†ุนุทูŠ ุจุนุถ ุงู„ counter examples ุงู„ู„ูŠ ู‡ูŠ ู‡ู†ุฑุฌุนูƒู…
621
00:50:41,710 --> 00:50:47,370
ููŠู‡ุง ู„ู„ูŠ ู‡ูŠ ุงู„ุฃุณุฆู„ุฉ ุงู„ู„ูŠ ููŠ ุงู„ูƒุชุงุจ ุชุดูˆููˆุง ู†ุตูˆุตู‡ุง
622
00:50:47,370 --> 00:50:53,530
ุนู„ู‰ ุงู„ุฃู‚ู„ ูˆ ุงู„ู„ูŠ ู…ุทู„ูˆุจ ุชุญู„ูˆู‡ุง ุงูŠู‡ ุชุญู„ูˆู‡ุง ูˆ ุงู„ู„ูŠ ู…ุง
623
00:50:53,530 --> 00:50:56,910
ุจุชุญู„ูˆู‡ ูŠุนุฑูุด ุชุญู„ูˆู‡ุงููŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ homework
624
00:50:56,910 --> 00:51:01,230
ุงู„ุญู„ูˆู„ ุงู„ู…ูˆุฌูˆุฏุฉ ุจุชุฏุฑุณูˆู‡ุง ู„ุญุงู„ูƒู… ู…ุงุฏุฑุณุชูˆู‡ุง ุจุฑุถู‡
625
00:51:01,230 --> 00:51:04,310
ู…ุงูู‡ู…ุชูˆู‡ุงุด ุงุญู†ุง ุจู†ุนู…ู„ ููŠู‡ุง discussion ูˆู„ูˆ ุนู…ู„ู†ุงู‡ุง
626
00:51:04,310 --> 00:51:07,930
ุญุชู‰ ุจุดูƒู„ ุตูˆุชูŠ ุนู„ู‰ ุฃุณุงุณ ุงู„ู„ูŠ ู‡ูˆ ุงุญู†ุง ูŠู…ูƒู† ู…ุงู†ู‚ุฏุฑุด
627
00:51:07,930 --> 00:51:12,110
ู†ุตูˆุฑ ุจุดูƒู„ ูƒุงู…ู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ discussions ุนุจุฑ ุงู„ู„ูŠ ู‡ูˆ
628
00:51:12,110 --> 00:51:16,270
ุงู„ุชุตูˆูŠุฑ ุงู„ู„ูŠ ุงุญู†ุง ุงู„ุญุงู„ูŠ ุจู†ุตูˆุฑู‡ ุนุจุฑ ุงู„ power point
629
00:51:16,270 --> 00:51:22,710
ู…ู† ุงู„ุจูŠุช ุงู† ุดุงุก ุงู„ู„ู‡ ุทูŠุจ definitionlet I ุจุชุณุงูˆูŠ A
630
00:51:22,710 --> 00:51:27,630
ูˆB subset ู…ู† ู…ูŠู†ุŸ ู…ู† R ุฅุฐุง ูƒุงู†ุช F small ู…ู† I ู„R
631
00:51:30,720 --> 00:51:35,400
then ูุฑุถู†ุง ุฃู†ู‡ ููŠ ุฏุงู„ุฉ ุงุณู… F ู…ู† I ู„ุนู†ุฏ R then the
632
00:51:35,400 --> 00:51:42,280
antiderivative of F ูŠุนู†ูŠ ูˆูƒุฃู†ู‡ุง ุนูƒุณ ุนู…ู„ูŠุฉ ุนูƒุณ
633
00:51:42,280 --> 00:51:45,920
ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจู†ูุถู„ู‡ุง roughly antiderivative of F on
634
00:51:45,920 --> 00:51:50,620
I is a function F ู…ู† I ู„ุนู†ุฏ R such that F prime of
635
00:51:50,620 --> 00:51:59,830
X ุณูˆู‰ F of X ูŠุนู†ูŠ ุนู†ุฏู†ุง ุฏุงู„ุฉ Fู…ู† ุนู†ุฏ I ู„ุนู†ุฏ R ู„ูˆ
636
00:51:59,830 --> 00:52:05,310
ุฌูŠู†ุง ู„ุฌูŠู†ุง F ุชุงู†ูŠุฉ ู…ู† ุนู†ุฏ I ู„ุนู†ุฏ R ูˆ ู„ุฌูŠู†ุง F prime
637
00:52:05,310 --> 00:52:10,450
of X ู„ู„ูŠ ุงู„ู„ูŠ ููŠ ุงู„ู€ I ุจุชุณุงูˆูŠ mean ู„ู€ F small of X
638
00:52:11,290 --> 00:52:15,490
ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู†ุณู…ูŠ ุงู„ F capital ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู†
639
00:52:15,490 --> 00:52:19,850
antiderivative ู„ู„ F ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ู„ูˆ ูุถู„ู†ุงู‡ุง ู‡ุฐู‡
640
00:52:19,850 --> 00:52:25,130
ุงู„ antiderivative ู‡ุชุทู„ุน ู…ูŠู†ุŸ ุงู„ F ุงู„ุฃุตู„ูŠุฉ ูŠุนู†ูŠ
641
00:52:25,130 --> 00:52:30,890
ุจุชูƒูˆู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ F capital ู‡ูŠ ุงู„
642
00:52:30,890 --> 00:52:35,210
antiderivative ู„ู„ F ูˆุงู„ F small ู‡ูŠ ุงู„ derivative
643
00:52:35,210 --> 00:52:41,910
ู„ู„ F ูˆุงุถุญ ุฃุฎุฏุชู‡ ููŠ ุงู„ calculus ุญุชู‰ ู†ูŠุฌูŠ ุงู„ุขู†ู„ุฃ
644
00:52:41,910 --> 00:52:45,650
ุงู„ู„ูŠ ู‡ูˆ ุจุฑุถู‡ ู…ูู‡ูˆู… ุงุฎุฏุชู‡ ููŠ ุงู„ูƒุงุฑูƒูˆู„ุงุณ if f ู…ู† I
645
00:52:45,650 --> 00:52:49,750
ู„ุนู†ุฏ R small is integrable ู„ูˆ ูุฑุถู†ุง ู‡ุฐูŠ integrable
646
00:52:49,750 --> 00:52:53,950
ูˆ ุฌูŠู†ุง ุนุฑูู†ุง
647
00:52:53,950 --> 00:52:56,910
ุงุฏุงู„ุฉ ู…ู† A ู„ุนู†ุฏ X F of X DX ู‚ุจู„ ุดูˆูŠุฉ ู‚ูˆู„ู†ุง ู‡ุฐุง
648
00:52:56,910 --> 00:53:00,290
ุฃูƒูŠุฏ ู…ุนุฑูุฉ ู…ุซู„ุง ููŠ integrable ูˆู…ุด ู…ุนุฑูุฉ ุงู„
649
00:53:00,290 --> 00:53:04,110
function F of X ู‡ุชุทู„ุน continuous ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„
650
00:53:04,110 --> 00:53:09,930
function ุฃูˆ ู‡ุฐุง ู‡ูˆ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ ุงู„ุชูƒุงู…ู„ ุงู„ู…ุญุฏูˆุฏู‡ุฐู‡
651
00:53:09,930 --> 00:53:15,110
ุจู†ุณู…ูŠู‡ุง ุงู„ู€ Indefinite Integral of F ูŠุนู†ูŠ ู‡ุฐุง
652
00:53:15,110 --> 00:53:17,790
ุจู†ุณู…ูŠู‡ Indefinite Integral of F ุฃูˆ ู‡ุฐู‡ ุงู„ุฏู„ุฉ
653
00:53:17,790 --> 00:53:23,030
ุจู†ุณู…ูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ The Indefinite Integral of F on I
654
00:53:23,030 --> 00:53:28,230
ุจุฑุถู‡ ู‡ุฐุง ุจุฑุถู‡ ุดุบู„ุงุช ุงู„ู„ูŠ ู‡ูˆ ุฃุฎุฏุชูˆู‡ุง ุณุงุจู‚ุง ููŠ ุงู„ู„ูŠ
655
00:53:28,230 --> 00:53:33,780
ู‡ูˆ ุงู„ calculus ู†ูŠุฌูŠ ุจุนุถ ุงู„ู…ู„ุงุญุธุงุช ุจุณุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ
656
00:53:33,780 --> 00:53:42,820
ุงู„ู„ูŠ ุจุชุนู„ู‚ ุจู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ูุงู‡ูŠู… ู†ุดูˆูู‡ุง ูˆู‡ูŠ ุทุจุนุง
657
00:53:42,820 --> 00:53:48,760
ู‡ุฐู‡ ุงู„ู…ูุงู‡ูŠู… ููŠ ุนู„ูŠู‡ุง counter examples ุงู„ุชู…ูŠูŠุฒ
658
00:53:48,760 --> 00:53:56,400
ุจูŠู†ู‡ุง ู†ุดูˆู ุงู„ู…ุญุจุฉ ู‡ุฐู‡ ูŠุง ุดุจุงุจ ุทูŠุจ ุฃุตู„ูŠ ุนู„ู‰ ุงู„ู†ุจูŠ
659
00:53:56,400 --> 00:54:03,640
ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…ุงู„ุงู† ุนู†ุฏูŠ ุณุคุงู„ ุณุจุนุฉ ุชู„ุงุชุฉ ุงุชู†ูŠู†
660
00:54:03,640 --> 00:54:06,400
ูŠุนู†ูŠ ููŠ ุณุจุนุฉ ุชู„ุงุชุฉ ุณุคุงู„ ุงุชู†ูŠู† ุงูˆ ุณุจุนุฉ ุชู„ุงุชุฉ ุณุคุงู„
661
00:54:06,400 --> 00:54:10,660
ุฎู…ุณุฉ ุทุจุนุง ูƒู„ู‡ ููŠ ุงู„ุทุจุน ุงู„ุชุงู†ูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ an
662
00:54:10,660 --> 00:54:13,540
integrable function may not have an antiderivative
663
00:54:13,540 --> 00:54:17,220
ูŠุนู†ูŠ ู‡ู†ู„ุงู‚ูŠ ููŠ ุงู„ุณุคุงู„ ู‡ุฐุง integrable function
664
00:54:17,220 --> 00:54:24,080
ูˆู…ุงู„ู‡ุงุด .. ูˆู…ุงู„ู‡ุงุด antiderivative ูŠุนู†ูŠ ู‡ู†ู„ุงู‚ูŠ
665
00:54:24,080 --> 00:54:30,660
function Fุฅู†ู‡ุง ุชูƒูˆู† integrable ู„ูƒู† ู…ุงู„ู†ุงุฌูŠุด
666
00:54:30,660 --> 00:54:34,540
function F ุงู„ู„ูŠ ุงู„ derivative ุชุจุนูŠ ุชุงุด ุจุชุณุงูˆูŠ
667
00:54:34,540 --> 00:54:39,860
ุจุชุณุงูˆูŠ F ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจุชุดูˆููˆู‡ ููŠ ุงู„ู€ 7 3 2 ูˆ 7 3 5
668
00:54:39,860 --> 00:54:43,340
ุงู„ุฃู…ุซู„ุฉ ุฃูˆ ุงู„ counter examples ุงู„ู„ูŠ ูˆุฌูˆุฏุฉ ู‡ู†ุง ุทูŠุจ
669
00:54:43,340 --> 00:54:47,710
ุงู„ู…ู„ุงุญุธุฉ ุงู„ุชุงู†ูŠุฉุงู„ู€ function may have an
670
00:54:47,710 --> 00:54:52,830
antiderivative ูŠุนู†ูŠ ุนู†ุฏูŠ F ูˆ ุจุชุญู‚ู‚ F ูˆ ููŠ ุนู†ุฏูŠ F
671
00:54:52,830 --> 00:54:57,310
ูƒุงุจุชุงู„ ูƒู…ุงู† ูˆ F ุจุฑุงูŠู… ุฅูŠุด ุจุชุณุงูˆูŠ ุจุณูˆุก F but ุงู„ู„ูŠ
672
00:54:57,310 --> 00:55:02,210
ู‡ูŠ ุงู„ integration ู„ู„ F ุฅูŠุด ู…ุงู„ู‡ does not exist ู„ูƒู†
673
00:55:02,210 --> 00:55:07,370
but not integrable ูˆู‡ุฐุง ุจุชุฌุงูˆุจ ุนู„ูŠู‡ ุจุฑุถู‡ ุณุจุนุฉ
674
00:55:07,370 --> 00:55:12,580
ุชู„ุงุชุฉ ุฎู…ุณุฉ ูŠุนู†ูŠ ููŠ function FููŠ ุฅู„ู‡ุง F' ุจุณุงูˆุฉ F
675
00:55:12,580 --> 00:55:17,640
ู„ูƒู† ุงู„ integration ู„ู„ู€ F ุฅุดู…ุงู„ู‡ does not exist
676
00:55:17,640 --> 00:55:24,900
ุชู„ุงุชุฉ ุนู†ุฏูŠ ุงู„ู…ู„ุงุญุธุฉ ุงู„ุซุงู„ุซุฉ a continuous function
677
00:55:24,900 --> 00:55:27,800
always have antiderivative ุทุจุนุง ุงู„ continuous
678
00:55:27,800 --> 00:55:35,290
function ุฃุตู„ุง ู…ู† ุงู„ู‚ูˆุฉ ุจู…ูƒุงู† ุฅู†ู‡ุงุชุฎู„ู‘ูŠ ุนู†ุฏู‡ุง ูŠูƒูˆู†
679
00:55:35,290 --> 00:55:39,490
ู„ู‡ุง ุงู„ู€ mean antiderivative ุงู„ุงู† a continuous
680
00:55:39,490 --> 00:55:44,190
function always have antiderivative ูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ
681
00:55:44,190 --> 00:55:51,910
ู…ุจุงุดุฑุฉ ู…ู† ุงู„ corollary 7 3 4 ุงู„ู„ูŠ ูƒุงู†ุช F
682
00:55:51,910 --> 00:55:56,770
continuous ู…ุฏุงู… F continuous ุฅุฐุง ุงู„ integration ู…ู†
683
00:55:56,770 --> 00:56:07,120
ุงู„ X ู…ู† A ู„ุนู†ุฏ ุงู„ XA of T DT ุจุณุงูˆุฉ F of X ุงู„ู„ูŠ ู‡ูŠ
684
00:56:07,120 --> 00:56:10,900
is differentiable ูˆู…ุด differentiable ูƒู…ุงู† ูˆ F
685
00:56:10,900 --> 00:56:14,860
prime of X ุจุชุณุงูˆูŠ F small of X ูŠุนู†ูŠ ู…ุฏุงู… ุฃู
686
00:56:14,860 --> 00:56:17,880
continuous ุฅุฐุง ุตุงุฑ ู„ู‡ุง antiderivative ุตุงุฑุช ุงู„ F
687
00:56:17,880 --> 00:56:20,580
ุงู„ู„ูŠ ู‡ูŠ ุงู„ derivative ู„ู‡ุง ุจุณุงูˆุฉ F of X ุฅุฐุง ุตุงุฑุช
688
00:56:20,580 --> 00:56:24,620
ุฅูŠุด antiderivativeู‡ุฏ ู…ูŠู† ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€
689
00:56:24,620 --> 00:56:28,980
Corollary 7 3 4 ู…ุฏุงู… ุฃู† F continuous ุฅุฐุง ู‡ุฐู‡
690
00:56:28,980 --> 00:56:33,360
ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุณู…ูŠุชู‡ุง F of X is differentiable ูˆู…ุด ู‡ูŠ
691
00:56:33,360 --> 00:56:35,540
ูƒู…ุงู† ู‡ุฐุง ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ fundamental theorem of
692
00:56:35,540 --> 00:56:39,200
calculus ูˆ ุงู„ F prime of X ุฅูŠุด ุจูŠุณุงูˆูŠ F of X ูŠุนู†ูŠ
693
00:56:39,200 --> 00:56:44,280
ุงู„ F capital is an antiderivative of the F small
694
00:56:44,280 --> 00:56:50,760
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ู‚ุทุฉ ุงู„ุฑุงุจุนุฉ the indefinite integralmay
695
00:56:50,760 --> 00:56:57,520
not be an antiderivative of mean of F ุงู„ุขู† ุงู„ู€
696
00:56:57,520 --> 00:57:02,400
indefinite integral ุงู„ู„ูŠ
697
00:57:02,400 --> 00:57:12,000
ู‡ูˆ ู…ู† A ู„ุนู†ุฏ X F of T DT ู„ูˆ ุณู…ูŠู†ุงู‡ F of X ู‡ุฐุงู‡ุฐุง
698
00:57:12,000 --> 00:57:15,480
the indefinite integral ู‡ุฐุง ู…ู…ูƒู† ูŠูƒูˆู† ู‡ุฐุง ูŠุนู†ูŠ ุฅูŠุด
699
00:57:15,480 --> 00:57:18,480
ุจู…ุนู†ู‰ ุขุฎุฑุŸ ูŠุนู†ูŠ ุจุฏู†ุง ู†ูุชุฑุถ ุฅู† ุงู„ integration ู…ู† A
700
00:57:18,480 --> 00:57:22,580
ู„ X F of T DT ู…ูˆุฌูˆุฏ ุทุจุนุง ุงู„ู„ูŠ ุจู‚ูˆู„ ุนู†ู‡ ู…ูˆุฌูˆุฏ ุจุณ
701
00:57:22,580 --> 00:57:25,040
ุชูƒูˆู† F of T is integrable ู…ุงุญุงุฌูŠู†ุงุด ุนู„ู‰ control U
702
00:57:25,040 --> 00:57:29,000
of T ุงู„ F of T is integrable ุฅุฐุง ุงู„ A ู„ุนู†ุฏูŠ ุงู„ X F
703
00:57:29,000 --> 00:57:35,100
of T DT ู„ูˆ ู…ู…ูƒู† ูŠูƒูˆู† ู‡ุฐุง ู…ูˆุฌูˆุฏ ูˆ ุจู†ุณู…ูŠ F of X
704
00:57:35,100 --> 00:57:39,830
ุจู‚ูˆู„ู„ูŠ the indefinite integral ู‡ุฐุงmay not have
705
00:57:39,830 --> 00:57:44,490
antiderivative of F ูŠุนู†ูŠ ู…ู…ูƒู† ู…ุงูŠูƒูˆู†ุด ู‡ุฐุง ุจุงู„ุฑุบู…
706
00:57:44,490 --> 00:57:48,610
ุงู†ู‡ ู‡ุฐุง ู…ูˆุฌูˆุฏ ู…ุงูŠูƒูˆู†ุด ุงู„ F capital ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง
707
00:57:48,610 --> 00:57:53,530
ู…ุงูŠูƒูˆู†ุด antiderivative ู„ู…ูŠู† ู„ู„ F small ูŠุนู†ูŠ ุฑุบู…
708
00:57:53,530 --> 00:57:58,670
ุงู†ู‡ ู‡ุฐุง ู…ูˆุฌูˆุฏ ู„ูŠุณ ุดุฑุทุง ุงู†ู‡ ูŠูƒูˆู† ูŠุชูุงุถู„ ูˆู„ู…ู‘ุง
709
00:57:58,670 --> 00:58:03,290
ูŠุชูุงุถู„ ูŠุทู„ุน ุงู„ู„ูŠ ุฌูˆุง ูŠุนู†ูŠ ู…ุด ุดุฑุท ุงู†ู‡ุง ุชูƒูˆู† ุงู„ F
710
00:58:03,890 --> 00:58:07,170
ุงู„ู„ูŠ ู‡ูŠ antiderivative ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† ู‡ูˆ ุงู„ู€
711
00:58:07,170 --> 00:58:10,110
indefinite integral ู‡ูŠูƒ ุจุชู‚ูˆู„ ุงู„ู…ูˆุงุญุฏุฉ ุทุจ ุฅูŠุด
712
00:58:10,110 --> 00:58:14,150
ุฏู„ูŠู„ูƒู… ุฏู„ูŠู„ู†ุง ู‡ุงูŠ ููŠ counter examples ู‡ุงูŠ ุณุจุนุฉ
713
00:58:14,150 --> 00:58:19,390
ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ูˆู‡ุฐุง ู†ุงุชุจ ู†ุงุฌู… ู†ุงุฌู… ุนุฏู… ุชุญู‚ู‚ ู‡ุฐู‡ ุฃูˆ
714
00:58:19,390 --> 00:58:23,910
ุนุฏู… ุชุญู‚ู‚ ุงู„ antiderivative ุฃู†ู‡ it may fail to be
715
00:58:23,910 --> 00:58:28,050
differentiable at points at the interval ู…ู…ูƒู† ุฃุตู„ุง
716
00:58:28,050 --> 00:58:35,440
ุฃู† ุงู„ F prime ุชูƒูˆู†ุด ู…ูˆุฌูˆุฏุฉ ุจุงู„ู…ุฑุฉุนู†ุฏ ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ูˆ
717
00:58:35,440 --> 00:58:39,620
ููŠ ุฏุงุฎู„ ุงู„ู€ interval ู…ู† a ุฅู„ู‰ x ู…ุฒุงู… ู‡ุฐูŠ is not
718
00:58:39,620 --> 00:58:42,720
differentiable ูƒูŠู ุจุฏู†ุง ู†ู„ุงู‚ูŠ f prime ุจุชุณุงูˆูŠ f
719
00:58:42,720 --> 00:58:48,640
small ุฅุฐุง ู‚ุฏ ูŠู†ุดุฃ ุนุฏู… ูˆุฌูˆุฏ ุงู„ู€ antiderivative ู…ู†ู‡
720
00:58:48,640 --> 00:58:52,640
ุฅู†ู‡ ู‡ุฐูŠ ู…ุง ุชูƒูˆู†ุด differentiable ุนู†ุฏ ู†ู‚ุทุฉ ุจูŠู† ุงู„ a
721
00:58:52,640 --> 00:58:59,090
ูˆ ุงู„ x ู‡ุงูŠ ุฃูˆู„ุงู„ู„ูŠ ู‡ูˆ ุณุจุจ ู…ู…ูƒู† ูŠุคุฏูŠ ุฅู„ู‰ ุนุฏู… ุชุญู‚ู‚
722
00:58:59,090 --> 00:59:03,150
ุฅู†ู‡ ูŠูƒูˆู† ุงู„ู€ Indefinite Integral ู„ูŠุณ Anti
723
00:59:03,150 --> 00:59:09,650
-derivative ู„ู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุฅุญู†ุง ุจู†ูƒู…ู„ู‡ุง Or ุงู„ู€
724
00:59:09,650 --> 00:59:12,850
Derivative of Indefinite Integral ู…ู…ูƒู† ูŠูƒูˆู† ู…ูˆุฌูˆุฏ
725
00:59:13,450 --> 00:59:18,310
ู„ูƒู† ูŠุฎุชู„ู ุนู† ู…ูŠู† but different from the value of F
726
00:59:18,310 --> 00:59:22,410
at any point of the interval ูˆู‡ุฐุง ุจูŠุฌูŠุจูˆุง ุณุจุนุฉ
727
00:59:22,410 --> 00:59:26,990
ุชู„ุงุชุฉ ุชู…ุงู†ูŠุฉ ูŠุนู†ูŠ ุจู‚ูˆู„ูƒ ู…ู…ูƒู† ุชูƒูˆู† ูŠุง ู…ุญู„ุงู‡ุง ูˆ ุชุฌูŠุจ
728
00:59:26,990 --> 00:59:32,990
ุงู„ู„ูŠ ู‡ูˆ ุงู„ F prime of X ู„ูƒู† ู…ุง ุชุทู„ุน ุดุงุดุฉ ุชุณุงูˆูŠ F
729
00:59:32,990 --> 00:59:38,780
of XูููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจูŠูƒูˆู† ุงู„ู€ Indefinite Integral
730
00:59:38,780 --> 00:59:46,320
ู„ูŠุณ ุงู„ู„ูŠ ู‡ูˆ ุฅูŠู‡ ุดู…ุงู„ู‡ ู„ู‡ Antiderivative ุนุงุฑูุด
731
00:59:46,320 --> 00:59:55,080
ู„ุญุงู„ู‡ ูˆ ู‡ุงูŠ ููŠ ู…ุซุงู„ ุทุจุนุง ู†ุฃุชูŠ
732
00:59:55,080 --> 01:00:01,300
ุงู„ุขู† ูˆ ู†ุจุฏุฃ ุญุฏูŠุซุนู† ุงู„ู‡ูˆ evaluation of integrals
733
01:00:01,300 --> 01:00:07,780
evaluation of integrals ู‡ู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ
734
01:00:07,780 --> 01:00:12,660
ูƒู†ุง ู†ู‚ูˆู„ ุนู†ู‡ุง ุงู„ู„ูŠ ู‡ูˆ integration by parts ุงู„ู„ูŠ
735
01:00:12,660 --> 01:00:17,380
ูƒู†ุง ู†ู‚ูˆู„ ุนู†ู‡ integration by parts ู†ุดูˆู ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ
736
01:00:17,380 --> 01:00:21,360
ุงู„ุจุฑู‡ู† ุงู„ุฃูˆู„ ูˆุงุญุฏุฉ ูŠุนู†ูŠ ู‡ู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ
737
01:00:21,360 --> 01:00:28,430
ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ููŠ ู…ู† ุถู…ู† ุงู„ู„ูŠ ู‡ูŠูƒูŠู ูŠู…ูƒู† ุฃู† ู†ุฌุฏ
738
01:00:28,430 --> 01:00:33,770
ุทุฑู‚ ู„ุฅูŠุฌุงุฏ ุงู„ุชูƒุงู…ู„ุŸ evaluation of integrals ุฃูˆู„
739
01:00:33,770 --> 01:00:39,730
ุดูŠุก ู†ุญูƒูŠ ุนู†ู‡ ู‡ูˆ integral by parts ุงู„ุชูƒุงู…ู„ ุจุงู„ุชุฌุฒูŠู…
740
01:00:41,640 --> 01:00:48,040
ู†ุถุน ุงู„ุฃุณุณ ุงู„ู†ุธุฑูŠุฉ ู„ู„ุชูƒุงู…ู„ ุจุงู„ุชุฌุฒุฆุฉ ุฃูˆ ู†ุดุฑุน ุงู„ุชูƒุงู…ู„
741
01:00:48,040 --> 01:00:50,920
ุจุงู„ุชุฌุฒุฆุฉ ู…ู† ุฎู„ุงู„ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุฃู…ุงู…ู†ุงุŒ ุฃูŠุด ุจุชู‚ูˆู„
742
01:00:50,920 --> 01:00:54,720
ู„ูŠู‡ุŸ ุฅุฐุง ูƒุงู†ุช f ูˆ g ู…ู† a ูˆ bุŒ f small ูˆ g small
743
01:00:54,720 --> 01:00:58,520
ุทุจุนุงุŒ ู„ุนู†ุฏ RุŒ R integrable on a ูˆ bุŒ ู†ูุชุฑุถ ุฅู†
744
01:00:58,520 --> 01:01:02,040
ุงู„ุชู†ุชูŠู† ุฅู…ุง ุงู„ู„ูŠ ู‡ูŠู† integrable ูˆุจุฏู†ุง ู†ูุชุฑุถ ุฅู†ู‡
745
01:01:02,040 --> 01:01:06,510
ู„ู‡ูŠู† antiderivativesุงู„ุงู† ุจุฏุฃ ุงูุฑุถ ุงู† F ู„ู‡ุง
746
01:01:06,510 --> 01:01:09,430
antiderivative ุงุณู…ู‡ุง F capital ูˆ G ู„ู‡ุง
747
01:01:09,430 --> 01:01:13,910
antiderivative ุงุณู…ู‡ุง G capital on A ูˆ B ุงุฐุง ุงู„ุงู†
748
01:01:13,910 --> 01:01:22,050
ู†ุธุฑูŠุชู†ุง ุชุฑุชูƒุฒ ููŠ ู…ุนุทูŠุงุชู‡ุง ุนู„ู‰ ุงู† ุงู„ F small ู„ F ูˆ
749
01:01:22,050 --> 01:01:24,210
G integrable ู‡ูŠ ูˆุงุญุฏ
750
01:01:36,840 --> 01:01:45,420
ุซู… ุนุฑุถ ุนู„ูŠู†ุง ุงู„ุขู† ู†ุนู…ู„ integration ุซู… ุจู†ูŠุฌูŠ ุจู‚ูˆู„
751
01:01:45,420 --> 01:01:52,610
ู„ูŠู‡ุงู„ู€ Integration ู„ุญุงุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† F of X ููŠ G of
752
01:01:52,610 --> 01:01:58,890
X DX ู…ู† A ู„ุนูŠู† Bู„ุฃู† ุทูŠุจ ู‡ุฐู‡ Integrable ุนุงุฑููŠู† ุทุจ F
753
01:01:58,890 --> 01:02:01,090
capital Integrable ุงู‡ Integrable ู„ุฅู†ู‡ุง
754
01:02:01,090 --> 01:02:03,930
differentiable ู„ุฅู†ู‡ุง differentiable ูŠุนู†ูŠ
755
01:02:03,930 --> 01:02:07,370
continuous ุฃูƒุชุฑ ู…ู† continuous ูŠุนู†ูŠ ูŠุนู†ูŠ ุฃูƒูŠุฏ ุฅูŠุด
756
01:02:07,370 --> 01:02:11,250
ู…ุง ู„ู‡ุง Integrable ุฅุฐุง ู…ุนู‚ูˆู„ ูƒู„ุงู…ู‡ ู…ู† A ู„ุนู†ุฏ B F of
757
01:02:11,250 --> 01:02:15,590
X G of X DX ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุจู‚ูˆู„ูŠ ุนุจุงุฑุฉ ุนู† F capital
758
01:02:15,590 --> 01:02:21,750
of B G capital of B ู†ู‚ุต F capital of A G capital
759
01:02:21,750 --> 01:02:31,040
of A ู‡ุฐุงู†ุงู‚ุต ุงู„ู€ integration F small of X G
760
01:02:31,040 --> 01:02:37,520
capital of X dx ู…ู† A ู„ุนู†ุฏูŠ ู‡ุฐูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„
761
01:02:37,520 --> 01:02:41,240
integration by parts ุงู„ู„ูŠ ุนุงู…ุฉ ุงู„ู„ูŠ ุจุชุฏุฎู„ุชู‡ ุฃูˆ
762
01:02:41,240 --> 01:02:45,960
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุชู‚ูˆู„ ุนู†ู‡ ุงู„ู†ุธุฑูŠุฉุฅุฐุง if f ูˆ g ู…ู† a
763
01:02:45,960 --> 01:02:49,260
ู„ุนู† ุจูŠ are integrable on a ูˆ b and have
764
01:02:49,260 --> 01:02:52,140
antiderivatives f capital and g capital on a ูˆ b
765
01:02:52,140 --> 01:02:56,580
then ุงู„ integration ู…ู† a ู„ุนู† ุจูŠ f of x g x dx
766
01:02:56,580 --> 01:03:00,080
ุจูŠุณูˆู‘ู„ f of b g of b ู†ู‚ุต f of a g of a ุทุจุนุงู‹
767
01:03:00,080 --> 01:03:06,360
ู„ู„capitals ู†ู‚ุต ุงู„ integration ู…ู† a ู„b f small g
768
01:03:06,360 --> 01:03:12,200
capital dx ู…ุงุดูŠ ุงู„ุญุงู„ ุจุฏู†ุง ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุจุฑู‡ู†
769
01:03:12,200 --> 01:03:17,750
ุงู„ู†ุธุฑูŠ ุงู„ุจุฑู‡ู† ุฃุณู‡ู„ ูŠุง ุฌู…ุงุนุฉู‡ูˆ ุจุฑู‡ุงู†ุฉ ูŠุนุชู…ุฏ ุนู„ู‰
770
01:03:17,750 --> 01:03:22,970
ุชูุงุถู„ ุงู„ู„ูŠ ู‡ูˆ ุญุงุตู„ ุถุฑุจ ุฏู„ุชูŠู† ูˆูŠู…ูƒู† ุงุญู†ุง ูƒู†ุง ุงุตู„ุง
771
01:03:22,970 --> 01:03:27,110
ููŠ ุงุชู†ุงุก ุงูˆู„ ู…ุง ุจู†ุจุฏุฃ ููŠ ุงู„ integration by bars
772
01:03:27,110 --> 01:03:31,870
ุณู†ุฉ ุนุงุฑูู‡ ู„ู„ุทู„ุงุจ ููŠ ุงู„ calculus ููŠ ุงู„ูˆุงู‚ุน ููŠ ูƒู„
773
01:03:31,870 --> 01:03:36,490
ุณุคุงู„ ููŠ ุงู„ุฃูˆู„ ูŠุนู†ูŠ ูˆ ูƒุฃู†ู†ุง ุจู†ุจุฑู‡ู† ุงู„ู†ุธุฑูŠุฉ ูˆ ุจุนุฏ
774
01:03:36,490 --> 01:03:40,170
ุฐู„ูƒ ุจู†ุณูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุญุงูุธู†ุง ุงู„ุทุฑูŠู‚ุฉ ูˆ ู†ุนู…ู„ู‡ุง ุจุดูƒู„
775
01:03:40,170 --> 01:03:48,220
ุณุฑูŠุน ุทูŠุจ ู†ุดูˆู ูƒูŠูุณู…ู‘ูŠู„ูŠ ุงู„ู„ูŠ ู‡ูˆ F capital of X G
776
01:03:48,220 --> 01:03:52,060
of capital of X ุงูŠุด ุจุชุณุงูˆูŠ H of X ุทุจุนุงู‹ F is
777
01:03:52,060 --> 01:03:53,840
differentiable ูˆ G is differentiable ุฒูŠ ู…ุง ูƒู†ุง
778
01:03:53,840 --> 01:03:56,600
ูƒุงุชุจูŠู† ู‡ุฐู‡ ู„ุฅู†ู‡ F antiderivative ูˆ G
779
01:03:56,600 --> 01:03:59,860
antiderivative ูŠุนู†ูŠ F prime ู„ู‡ุง F small ูˆ G prime
780
01:03:59,860 --> 01:04:03,700
ู„ู‡ุง G small ูŠุนู†ูŠ ุฅุฐุง ุตุงุฑุช ุงู„ู€H ุนุจุงุฑุฉ ุนู†
781
01:04:03,700 --> 01:04:07,160
differentiable ูˆ ู…ุฏุงู… differentiable ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู€H
782
01:04:07,160 --> 01:04:12,340
ุดู…ุงู„ู‡ุง continuous ุนู„ู‰ ุงู„ูุชุฑุฉ A ูˆ B ู…ุงุดูŠ ุงู„ุญุงู„ ูˆ ู…ุด
783
01:04:12,340 --> 01:04:18,630
ู‡ูŠูƒ ูƒู…ุงู†ูˆุจู†ู‚ุฏุฑ ู†ูุถู„ู‡ุง ุดูˆููˆุง ูƒูŠู
784
01:04:22,920 --> 01:04:26,280
ูˆุงุถุญุฉ ูƒู„ู‡ุง .. ุงู‡ ูˆุงุถุญุฉ ูƒู„ู‡ุง .. ู…ุงุดูŠ ุฒูŠ ู…ุง ู‚ู„ู†ุง ูŠุง
785
01:04:26,280 --> 01:04:29,440
ุฌู…ุงุนุฉ ุณู…ูŠู†ุง F capital of X ููŠ G capital of X
786
01:04:29,440 --> 01:04:32,240
ุจุงู„ุณุงูˆูŠุฉ H of X F differentiable ูˆ G
787
01:04:32,240 --> 01:04:35,440
differentiable ุซู… H differentiable ูˆู…ู† ุซู… ุงูƒูŠุฏ
788
01:04:35,440 --> 01:04:39,780
continuous ูุถูˆู„ูŠ H prime of X ู„ูˆ ุญุงุตู„ ุถุฑุจ ุฏุงู„ุชูŠู†
789
01:04:39,780 --> 01:04:44,740
ุงู„ุชูุงุถู„ ุงู„ุฃูˆู„ ููŠ ุงู„ุชุงู†ูŠ ุฒูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุงู†ูŠ ุงู„ุฃูˆู„ ููŠ
790
01:04:44,740 --> 01:04:49,840
ุงู„ุชูุงุถู„ ุงู„ุชุงู†ูŠ ูˆูŠุณุงูˆูŠุชูุงุถู„ ุงู„ู€ F' ุงู„ู„ูŠ ู‡ูŠ F small
791
01:04:49,840 --> 01:04:54,440
ูˆู‡ุฐู‡ ุชู†ุฒู„ ุฒูŠ ู…ุง ู‡ูŠ ูˆุชูุงุถู„ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ G small ู„ุฐุง
792
01:04:54,440 --> 01:04:59,020
ุตุงุฑุช ุงู„ู€ H' ุจุงู„ุณุงูˆูŠุฉ ู‡ู†ุง ูŠุนู†ูŠ ูˆูƒุฃู†ู‡ ุตุงุฑ ุนู†ุฏู‡ ุงู„ู„ูŠ
793
01:04:59,020 --> 01:05:04,360
ู‡ูŠ ุงู„ู€H ู‡ุฐู‡ ุจุฏูˆู† ุงู„ู€Prime antiderivative ู„ู…ู†ุŸ ู„ู‡ุฐู‡
794
01:05:04,360 --> 01:05:09,520
ุตุงุฑุช ูŠุนู†ูŠ ุงู„ู€H capital is an antiderivative of FG
795
01:05:09,520 --> 01:05:17,320
ุฒูŠ ู…ูŠู† ุฒูŠ FGุงู„ุงู† ูƒู„ ุดูŠุก ู†ูŠุญ F ูˆG Integrable ูˆ F
796
01:05:17,320 --> 01:05:21,560
capital ูˆG continuous ุงุฐุง ุงู„ู„ูŠ ู‡ูŠ ุงูƒูŠุฏ F capital
797
01:05:21,560 --> 01:05:25,520
ูˆG capital Integrable ูˆู…ู† ุซู… ู‡ูŠุทู„ุน ูƒู„ ู‡ุฐุง ุงุดู…ุงู„ู‡
798
01:05:25,520 --> 01:05:31,920
is integrable ู…ุงุดูŠ ูƒู…ุงู† ู…ุฑุฉ F
799
01:05:33,190 --> 01:05:36,910
Integrable ูˆ G-Integrable ูˆ G-Capital ูˆ F-Capital
800
01:05:36,910 --> 01:05:40,450
continuous ุฅุฐุง ุตุงุฑ ุงู„ู€ Integrable ุฅุฐุง ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰
801
01:05:40,450 --> 01:05:44,830
ุจุนุถ ุฅูŠุด ู…ุงู„ู‡ ุตุงุฑ Integrable ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู„ูŠ
802
01:05:44,830 --> 01:05:49,550
ู‡ูŠ ูƒู„ ุงู„ุดุฑูˆุท ู…ุชุญู‚ู‚ุฉ ุฅุฐุง ู…ู† ุณุจุนุฉ ุชู„ุงุชุฉ ู…ุฏุงู…ุฉ ุงู„ H
803
01:05:50,390 --> 01:05:53,570
ุงู„ู€ H ูˆูŠู†ู‡ุง ุงู„ู€ H ุŸ ู‡ูŠ ุงู„ู€ Antiderivative ู„ู‡ุฐู‡
804
01:05:53,570 --> 01:05:57,470
ูˆู‡ุฐู‡ Integrable ูุจุตูŠุฑ ุนู†ุฏู‰ ุงู„ุงู† ุงู„ integration ู…ู†
805
01:05:57,470 --> 01:06:01,770
ู‡ู†ุง ุจ F ููŠ G ุฒุงูŠุฏ F capital ููŠ G DX ุจุชุณุงูˆูŠ H of B
806
01:06:01,770 --> 01:06:11,650
ู†ุงู‚ุต ู…ูŠู† ู†ุงู‚ุต H of A ุทูŠุจ ุตุงุฑ ุนู†ุฏู‰ ุงู„ุงู† ุงู„ุฃู…ูˆุฑ ูˆุถุญุช
807
01:06:11,650 --> 01:06:20,490
ูˆุทู„ุนุช ุงู„ู†ุชูŠุฌุฉ H of B ุงุชุทู„ุน ุนู„ูŠู‡ุง ูˆูŠู† H of BุŸ ู‡ูŠู‡ุงH
808
01:06:20,490 --> 01:06:26,610
of B ุจูŠุณุงูˆูŠ F capital of B ููŠ G
809
01:06:26,610 --> 01:06:30,930
of B ู‡ุงูŠู‡ุง ู…ุงุดูŠ F of B ููŠ G of B ุนุงุฏู„ุฉ ู„ูˆ ุงู†ุชูˆุง
810
01:06:30,930 --> 01:06:36,070
ู…ูˆุฌูˆุฏูŠู† ู„ุฃ ุนู„ู‰ ุทูˆู„ ู‚ู„ุชูˆู„ูŠ ู‡ุงูŠู‡ุง ุงู„ุงู† H of A ุจูŠุณุงูˆูŠ
811
01:06:36,070 --> 01:06:41,980
F of A ููŠ G of A ู‡ุงูŠู‡ุง G of A ู…ุงุดูŠ ุฅุฐุง ุฅูŠุฏูŠู†ุงู‡ุฐุง
812
01:06:41,980 --> 01:06:46,060
ุงู„ู…ู‚ุฏุงุฑ ุฃุนูˆุถู†ุง ุนู† H of B ู‡ูŠู‡ุง ูˆุนูˆุถู†ุง ุนู† H ุฏูŠ ู‡ุง
813
01:06:46,060 --> 01:06:49,960
ูˆูŠู‡ุง ูˆุฅูŠุด ุฌูŠู†ุง ูˆู‡ุฐู‡ ูุตู„ู†ุงู‡ุง ู„ุฅู†ู‡ Integrable ุฅุฐุง
814
01:06:49,960 --> 01:06:52,940
ูุตู„ู†ุงู‡ุง ุจู†ุฌูŠุจ ูˆุงุญุฏุฉ ุนู„ู‰ ุงู„ุฌู‡ุฉ ุฏูŠ ูˆูˆุงุญุฏุฉ ุนู„ู‰ ุงู„ุฌู‡ุฉ
815
01:06:52,940 --> 01:06:57,940
ุฏูŠ ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุงุนู…ู„ูƒู… ุฅูŠุงู‡ุง ุทูŠุจ ุงู„ integration ู…ู†
816
01:06:57,940 --> 01:07:01,780
A ู„ B integration
817
01:07:01,780 --> 01:07:10,680
ู…ู† A ู„ B FG capital ุฒุงุฆุฏ F capital ููŠ G ุจุณุงูˆูŠ
818
01:07:11,790 --> 01:07:24,730
H of B ู‡ูŠ H of B H of B ุณูˆู‰ F of B G of B ู†ู‚ุต H of
819
01:07:24,730 --> 01:07:31,770
A ู‡ูŠ F of AG of A ู…ู† ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ุจูŠุณูˆูŠ ุงู„
820
01:07:31,770 --> 01:07:35,890
integration F ููŠ G capital ุฒุงุฏ ุงู„ integration F
821
01:07:35,890 --> 01:07:41,070
capital ููŠ G small ู…ู† A ู„ุนู†ุฏ B ู…ู† A ู„ุนู†ุฏ B ู„ุฃู† ุฅู†
822
01:07:41,070 --> 01:07:44,490
ู‚ู„ูˆู„ูŠ ู‡ุฐุง ุนู„ู‰ ุงู„ุฌู‡ุฉ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ integration
823
01:07:44,490 --> 01:07:51,350
ุงู„ู…ุทู„ูˆุจ ู‡ุฐุงุฃูƒูŠุฏ ูู‡ู…ุชู… ุงู„ุฃุตู„ ู…ู† a ู„ุนู† ุจูŠู‡ ุจุณุงูˆูŠ ุงู„
824
01:07:51,350 --> 01:07:55,570
integration f ููŠ g capital ุฒูŠ f capital ููŠ g small
825
01:07:55,570 --> 01:08:06,170
ู„ุฃ ุฎู„ุตู†ุง ู…ู†ู‡ ุจุณุงูˆูŠ f of b ููŠ f of a ููŠ g of a ููŠ b
826
01:08:06,170 --> 01:08:16,030
ู†ู‚ุต f of a ููŠ g of a ูƒู„ ู‡ุฐุงู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ integration
827
01:08:16,030 --> 01:08:27,230
of capital ููŠ G ู…ู† A ู„ู€ B ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ูˆ ู‡ูŠูƒ ุงุญู†ุง
828
01:08:28,050 --> 01:08:32,490
ุจู†ูƒูˆู† ุงู„ูŠูˆู… ุงู† ุดุงุก ุงู„ู„ู‡ ูˆุตู„ู†ุง ู„ุนู†ุฏ ุงู„ first
829
01:08:32,490 --> 01:08:36,250
substitution theorem ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡
830
01:08:36,250 --> 01:08:45,010
ุจู†ูƒู…ู„ ุงู„ู…ุญุงุถุฑุฉ ุงูˆ ุจู†ูƒู…ู„ ุงู„ู…ุงุฏุฉ ูˆ ุจู†ูƒู…ู„ ู‡ุฐุง ุงู„
831
01:08:45,010 --> 01:08:49,330
section ููŠ ู…ุญุงุถุฑุฉ ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ูˆ ุฅู„ู‰ ู„ู‚ุงุฆู†ุง