|
1 |
|
00:00:04,910 --> 00:00:11,030 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูู
ุญุงุถุฑุฉ ุงูุฑุงุจุนุฉ ุจุนุฏ ุญุงูุฉ |
|
|
|
2 |
|
00:00:11,030 --> 00:00:19,410 |
|
ุงูุทูุงุฑุฆูู ู
ุงุฏุฉ ุงู ู
ุณุงู ุชุญููู ูุฑูุงุถู 2 ุงู ุชุญููู |
|
|
|
3 |
|
00:00:19,410 --> 00:00:23,970 |
|
ุญูููู 2 ูุทูุจุฉ ู ุทุงูุจุงุช ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉ ูููุฉ |
|
|
|
4 |
|
00:00:23,970 --> 00:00:30,110 |
|
ุงูุนููู
ูุณู
ุงูุฑูุงุถูุงุช ููู ุงูู
ุญุงุถุฑุฉ ุฑูู
14 ูู ุงูู
ุงุฏุฉ |
|
|
|
5 |
|
00:00:30,110 --> 00:00:35,970 |
|
ุงู ูู ุงูู
ุณุงู ุนููุงู ุงูู
ุญุงุถุฑุฉ ุงูููู
ุงููู ูู |
|
|
|
6 |
|
00:00:35,970 --> 00:00:43,260 |
|
fundamental theorem ofof calculus ุจุดูููุง ุดู ุชูุงุถู |
|
|
|
7 |
|
00:00:43,260 --> 00:00:50,640 |
|
ุงูุชูุงู
ู ูุดู ุชูุงู
ู ุงูุชูุงุถู roughly ูุจุฏุฃ ุงููู ูู ูู |
|
|
|
8 |
|
00:00:50,640 --> 00:00:54,960 |
|
ุงููุธุฑูุฉ ุงูุฃููุฉ ุฃู ุงูุฌุฒุก ุงูุฃูู ู
ู ุงููุธุฑูุฉ ุงููู ูู |
|
|
|
9 |
|
00:00:54,960 --> 00:00:58,760 |
|
ุงู first form ุงู fundamental theorem of calculus |
|
|
|
10 |
|
00:00:58,760 --> 00:01:04,870 |
|
ุงููู ูู ุงูุฌุฒุก ุงูุฃูู ุจุชููู ู
ุง ูููlet f from a ู b |
|
|
|
11 |
|
00:01:04,870 --> 00:01:08,430 |
|
ูุนูุฏ R be an integrable function on a ู b ูุนูู |
|
|
|
12 |
|
00:01:08,430 --> 00:01:12,070 |
|
ูุฑุถูุง ุฃู ุงูู function f ุนุจุงุฑุฉ ุนู ุฏุงูุฉ ูุงุจูุฉ |
|
|
|
13 |
|
00:01:12,070 --> 00:01:17,190 |
|
ููุชูุงู
ู ุนูู ุงููุชุฑุฉ ุงูู
ุบููุฉ a ู b and let f capital |
|
|
|
14 |
|
00:01:17,190 --> 00:01:22,190 |
|
ู
ู a ู b ูุนูุฏ R ุชุญูู ุงูุดุฑูุท ุงูุชุงููุฉุชุญูู ุฃูู ุดูุก |
|
|
|
15 |
|
00:01:22,190 --> 00:01:25,110 |
|
ุฃููุง ุชููู ุงูุงู ูุงุจุชูุงู ูุงุฏู continuous ุนูู ุงููุชุฑุฉ |
|
|
|
16 |
|
00:01:25,110 --> 00:01:30,530 |
|
a ู b ุงูุดุฑุท ุงูุซุงูู f prime exists and f prime of x |
|
|
|
17 |
|
00:01:30,530 --> 00:01:34,130 |
|
ุจุณุงูู ุงูุงู small ุงููู ุจุฏุฃูุง ูููุง ุฏู ุงููุฑุถ ู
ููุง |
|
|
|
18 |
|
00:01:34,130 --> 00:01:39,880 |
|
integrable ููู x element in a ู bุจูููู ุงูู |
|
|
|
19 |
|
00:01:39,880 --> 00:01:44,900 |
|
integration ู
ู A ูB ููู F ุจุณุงูู F of B ูุงูุต F of A |
|
|
|
20 |
|
00:01:44,900 --> 00:01:50,400 |
|
ุฅุฐุง ุงูุขู ู ูุฅูู ุจููู ููุชุฑุถ ุฃูู ุงูู F small |
|
|
|
21 |
|
00:01:50,400 --> 00:01:56,100 |
|
integrable ู ููุชุฑุถ F continuous ุนูู closed bounded |
|
|
|
22 |
|
00:01:56,100 --> 00:02:01,160 |
|
interval A ู B ู F ููุณูุง differentiable ุนูู ุงูู |
|
|
|
23 |
|
00:02:01,160 --> 00:02:05,260 |
|
open ุงููู ูู interval A ู B ุจุดุฑุท ุฃูู ุงูู F prime |
|
|
|
24 |
|
00:02:05,260 --> 00:02:07,940 |
|
ุงู derivative ููุง ุงูู F capital ุทุจุนุง ุจุณุงูู ุงูู F |
|
|
|
25 |
|
00:02:07,940 --> 00:02:13,240 |
|
small of Xูุจูุงุก ุนูู ูู ุงูู
ุนุทูุงุช ุงููู ุญูููุงูุง ุจูููู |
|
|
|
26 |
|
00:02:13,240 --> 00:02:17,120 |
|
ุงู integration ู
ู a ูb ูู f small ูู ุนุจุงุฑุฉ ุนู fb |
|
|
|
27 |
|
00:02:17,120 --> 00:02:21,760 |
|
ูุงูุต f of a ุงู ุงุฎุชุตุงุฑุง ูุงุณููู ููุญูุธ ุงู integration |
|
|
|
28 |
|
00:02:21,760 --> 00:02:29,670 |
|
ู
ู a ูb ูู f prime of x dx ูู ุนุจุงุฑุฉ ุนูููุฃูู |
|
|
|
29 |
|
00:02:29,670 --> 00:02:36,250 |
|
ุงูุชูุงู
ู ุจูุบ ุงูุชูุงุถู ุจูุตูุฑ ุงููู ูู f of b ูุงูุต f of |
|
|
|
30 |
|
00:02:36,250 --> 00:02:40,610 |
|
a ูุฐุง ูุถูุก mean ูุนูู ูุงู ูุงุฏุฉ ุจุงุฎุชุตุงุฑ ููู ูุถูุก |
|
|
|
31 |
|
00:02:40,610 --> 00:02:44,710 |
|
mean ุฃู f prime of x ุชููู ู
ูุฌูุฏุฉ ุนูู ุงููุชุฑุฉ ู
ู a ู |
|
|
|
32 |
|
00:02:44,710 --> 00:02:51,370 |
|
b ู ุฃูุถุง ุจุชููู ุงููุงุด integrable ููุณูุง integrable ู |
|
|
|
33 |
|
00:02:51,370 --> 00:02:56,110 |
|
ุชููู ุงู f ููุณูุง continuous ุนูู close ู
ู a ู ุนูุฏ b |
|
|
|
34 |
|
00:02:56,390 --> 00:03:00,270 |
|
ูุฐู ูู ุงููุธุฑูุฉ ุฅุฐุง ุงููู ุจุฏูุง ูุซุจุชู ุงูุขู ุฃูู ููู
ุฉ |
|
|
|
35 |
|
00:03:00,270 --> 00:03:04,470 |
|
ุงู integration ูุฐุง ุจุณุงูู ุงููู ูู ุงููู ุฃู
ุงู
ูุง ุงููู |
|
|
|
36 |
|
00:03:04,470 --> 00:03:09,590 |
|
ูู f of b ูุงูุต ู
ู ูุงูุต f of a ุฎูููุง ูุดูู ุฅูุด |
|
|
|
37 |
|
00:03:09,590 --> 00:03:15,030 |
|
ุงูุจูุงุก ูู ุงูุจุญุฑุงู ูุง ุฌู
ุงุนุฉุงูุงู ุงููู ูุงุถุญ ุงูู ุงูุง |
|
|
|
38 |
|
00:03:15,030 --> 00:03:18,530 |
|
ุจุฏู ุงุซุจุช ุงูู ุงู integration ูู ุนุจุงุฑุฉ ุนู f of b |
|
|
|
39 |
|
00:03:18,530 --> 00:03:24,990 |
|
ูุงูุต f of a ุดูู ุงูุง ููู ุจุฏู ุงูุตูู ุงููู ูู ุงู |
|
|
|
40 |
|
00:03:24,990 --> 00:03:28,670 |
|
integration ูู
ูููุฉ ุงู b ูู f ุจุณุงูู f of b ูุงูุต f |
|
|
|
41 |
|
00:03:28,670 --> 00:03:32,010 |
|
of a ุงูุง ุจุนุฑู ุงูู ุญุงุฌุฉ ูู ู
ุนุทููู ุงู f small ูุฐู |
|
|
|
42 |
|
00:03:32,010 --> 00:03:35,290 |
|
ุงููู ูู ุงู f prime ุงููู ูู ุงู f small ุณู
ูุชูุง ูุฐู |
|
|
|
43 |
|
00:03:35,290 --> 00:03:39,240 |
|
ู
ุนุทููููุง integrallyMadame Integrable ุฅุฐู ุจูุงุณุทุฉ |
|
|
|
44 |
|
00:03:39,240 --> 00:03:44,160 |
|
ุงููู ูู .. ุฅุฐุง ุจุชุชุฐูุฑูุง Integrable criterion ููู |
|
|
|
45 |
|
00:03:44,160 --> 00:03:46,900 |
|
ุงููู ุจูุณุชุฎุฏู
ูุง ูุซูุฑ ุงุญูุง ูุฅููุง .. ูุนูู ุฎููููู ุฃููู |
|
|
|
46 |
|
00:03:46,900 --> 00:03:51,400 |
|
ุตูุบุฉ ู
ูู
ุฉ ูู ุฅุซุจุงุช ุงููุธุฑูุงุช ุงููู ูู ุจู
ุง ุฅูู ุฃู |
|
|
|
47 |
|
00:03:51,400 --> 00:03:56,380 |
|
Integrable ุฅุฐู ููู Y ุฃูุจุฑ ู
ู 0 ููุฌุฏ there exists a |
|
|
|
48 |
|
00:03:56,380 --> 00:04:00,600 |
|
partition B ุงููู ูู X0 X1 ุนูุฏ X ู .. ุนูุฏ .. |
|
|
|
49 |
|
00:04:00,600 --> 00:04:03,280 |
|
partition ูู
ูู ุทุจุนุงู ูููุชุฑุฉ ุงููู ุฃูุชูุง ุนุงุฑููููุง |
|
|
|
50 |
|
00:04:03,280 --> 00:04:06,800 |
|
ุงููู ุงุญูุง ุจูุดุชุบู ุนูููุง ุงููุชุฑุฉ ู
ู A ูุนูุฏ ู
ูู ูุนูุฏ B |
|
|
|
51 |
|
00:04:06,960 --> 00:04:12,920 |
|
There exists a partition B X0 X1 XN of A ู B such |
|
|
|
52 |
|
00:04:12,920 --> 00:04:20,280 |
|
that ุงู other sum B F'-LB F' ุฃุตุบุฑ ู
ู ุฅุจุณููู F' ู
ู |
|
|
|
53 |
|
00:04:20,280 --> 00:04:24,000 |
|
ููุง ู
ู ูู ูุง ุฌู
ุงุนุฉุ ูู ุงู F ูุฃููุง ู
ูุชุฑุถูู ุงู F |
|
|
|
54 |
|
00:04:24,000 --> 00:04:29,940 |
|
small ุฃู ุงู F' is integrable ุฅุฐุง ุจูุงุณุทุฉ ุงูุฑู
ุงุก ุงู |
|
|
|
55 |
|
00:04:29,940 --> 00:04:34,760 |
|
integrable criterion ุญุตููุง ุนูู ูุงุญุฏ ุงููู ุนูุฏู |
|
|
|
56 |
|
00:04:34,760 --> 00:04:40,880 |
|
ุฅูุญุงุฉุฃุญูู ุนููุง ุงูุขู ุฃู ุฃุณุชุฎุฏู
ูุง ูููุตูู ููุฏูู ุทูุจ |
|
|
|
57 |
|
00:04:40,880 --> 00:04:44,040 |
|
because ุทุจุนุง F prime ุงููู ูู meme ุฒู ู
ุง ูููุง F of |
|
|
|
58 |
|
00:04:44,040 --> 00:04:48,820 |
|
X is integrable on A ุฃู B ุงูุขู ูู ุดุบูุฉ ุชุงููุฉ ุงุญูุง |
|
|
|
59 |
|
00:04:48,820 --> 00:04:55,880 |
|
ุจุฏุฃ ุงูุขู ุฃุณุชุฎุฏู
ุงููู ูู ุฃู
ุฑ ุขุฎุฑ ุฎูููุง ููุชุจ ุงูุขู |
|
|
|
60 |
|
00:04:55,880 --> 00:05:00,920 |
|
ุฃูู ุดุบูุฉ ุญุตููุงูุง ุนุดุงู ุชุนุฑู ุฃูู ุฃูุง ุฑุงูุญ ุงููู ูู |
|
|
|
61 |
|
00:05:00,920 --> 00:05:06,550 |
|
ูููุง F is integrableF ุงูุชู ุจูุณู
ู F' Integrable ุฃูุด |
|
|
|
62 |
|
00:05:06,550 --> 00:05:12,270 |
|
ุฃุนุทุชูุง ูุง ุฌู
ุงุนุฉุ ุฃุนุทุชูุง ุฃู ููุงู ุจุงุฑุชูุดู B ููุงู B |
|
|
|
63 |
|
00:05:12,270 --> 00:05:15,830 |
|
ุทุจุนุง for every epsilon ุฃูุจุฑ ู
ู ุณูุฑ ููุงู ุจุงุฑุชูุดู B |
|
|
|
64 |
|
00:05:15,830 --> 00:05:23,390 |
|
such that U, B ู F ุงููู ูู ุงูู F' ุทุจุนุง ุงูู F ูู
ูู |
|
|
|
65 |
|
00:05:23,390 --> 00:05:29,530 |
|
ุงูู F' ูุงูุต ุงูู B ู F ูู ุฃุตุบุฑ ู
ู Y ููุฐุง ุณู
ูุงูุง |
|
|
|
66 |
|
00:05:29,530 --> 00:05:34,710 |
|
ุฅูุดุ ุณู
ูุงูุง 1ูุฃู ู
ู ุฌูุฉ ุฃุฎุฑู ูุง ุฌู
ุงุนุฉ ุจุฏู ุฃุณุชุบู |
|
|
|
67 |
|
00:05:34,710 --> 00:05:37,810 |
|
ุงููู ูู ุงููู ู
ุนุทูููู ุฃู ุงูุฃููุงุฑ ุจุชูููุง continuous |
|
|
|
68 |
|
00:05:37,810 --> 00:05:41,490 |
|
ุฃูุง ุงูุขู ุฒู ู
ุง ูููุง ุฌุฒุงููุง ุงููู ูู ุงููุชุฑุฉ A ู B |
|
|
|
69 |
|
00:05:41,490 --> 00:05:52,230 |
|
ุฅููุงููู ูู X0 X1 X2 ูุชุฑุฉ ูู
ูุฐุฌูุฉ Xk-1 ูุนูุฏ Xk ูุนูุฏ |
|
|
|
70 |
|
00:05:52,230 --> 00:05:56,010 |
|
ู
ูู ูุนูุฏ Xn ุงููู ูู ู
ูู ุงูู B ูุฐุง ุงู partition |
|
|
|
71 |
|
00:05:56,010 --> 00:05:59,930 |
|
ุงููู ูุฌูุชู ุฃูุง ุงูุขู ุฃูุง ุจุนุฑู ุฃู ุงู F capital |
|
|
|
72 |
|
00:05:59,930 --> 00:06:03,330 |
|
continuous ุนูู ุงู closed interval ูููุง ู
ู A ูุนูุฏ B |
|
|
|
73 |
|
00:06:03,330 --> 00:06:06,870 |
|
ุฅุฐุง ุงูุฃููุฏ continuous ุนูู ูู sub interval ู
ูุฌูุฏุฉ |
|
|
|
74 |
|
00:06:06,870 --> 00:06:12,540 |
|
ูุนูู ุตุงุฑุช ุงููู ุนูุฏู ุงู F capital continuouson a |
|
|
|
75 |
|
00:06:12,540 --> 00:06:18,560 |
|
ุงูุชู ูู xk-1 ูุนูุฏ xk ูุฐู ูู ุงู sub interval ุงููู |
|
|
|
76 |
|
00:06:18,560 --> 00:06:24,080 |
|
ุงู function f continuous ุนูููุง ูุฅุญูุง ู
ูุชุฑุถูู ุฃูุถุง |
|
|
|
77 |
|
00:06:24,080 --> 00:06:29,220 |
|
ุฃู ุงู f prime exist ุนูู ุงู open interval ูููุง ุฅุฐุง |
|
|
|
78 |
|
00:06:29,220 --> 00:06:33,860 |
|
ุฃููุฏ ุงู fis differentiable ูุฃู f' exist ุนูู ุงู |
|
|
|
79 |
|
00:06:33,860 --> 00:06:37,360 |
|
open interval ู
ู a ูุนูุฏ b ุฅุฐุง ุฃููุฏ f is |
|
|
|
80 |
|
00:06:37,360 --> 00:06:41,980 |
|
differentiable ุนูู ุงููุชุฑุฉ xk minus ูุงุญุฏ ูุนูุฏ ู
ูู |
|
|
|
81 |
|
00:06:41,980 --> 00:06:45,140 |
|
ูุนูุฏ ุงู xk ูุนูู ูุง ุฌู
ุงุนุฉ ุดุฑูุท ุงู mean value |
|
|
|
82 |
|
00:06:45,140 --> 00:06:50,020 |
|
theorem ู
ุญููุฉ ุฅุฐุง ุฃููุฏ there existthere exist ุจู
ุง |
|
|
|
83 |
|
00:06:50,020 --> 00:06:54,540 |
|
ุงูู ุงููู ูู ุดุฑูุท ุงู mean value ู
ุญููุฉ ุงุฐุง there |
|
|
|
84 |
|
00:06:54,540 --> 00:06:59,620 |
|
exist ุจุณู
ููุง ุงููู ูู bk ุงู tk there exist tk ูู |
|
|
|
85 |
|
00:06:59,620 --> 00:07:06,440 |
|
ุงููุชุฑุฉ xk minus ูุงุญุฏ ุนูุฏ ุงู xk such that ุงููู ูู F |
|
|
|
86 |
|
00:07:06,440 --> 00:07:11,520 |
|
ูู ุงูุฏูู ุงููู ุจุทุจู ุนูููุง ุงู mean value theorem ูุง |
|
|
|
87 |
|
00:07:11,520 --> 00:07:19,320 |
|
ุฌู
ุงุนุฉ F of xk ูุงูุต F of xk minus ูุงุญุฏุงููู ูู |
|
|
|
88 |
|
00:07:19,320 --> 00:07:24,560 |
|
ุจุชุณุงูู ุงููู ูู xk ูุงูุต xk ู
ุงูููุณ ูุงุญุฏ ุทุจุนุง ุงุญูุง |
|
|
|
89 |
|
00:07:24,560 --> 00:07:29,280 |
|
ุจููุณุจ ุนูููุง ุงููู ูู ุงูุด ุจุชุณุงูู ุงููู ูู ุงู F prime |
|
|
|
90 |
|
00:07:30,370 --> 00:07:35,630 |
|
of ุงููู main TK ูุฐู ุงููู ูู ุงูู Main Value Theorem |
|
|
|
91 |
|
00:07:35,630 --> 00:07:39,710 |
|
ูุชุฌุชูุง ู
ุทุจู ุนูู ู
ูู ูุง ุฌู
ุงุนุฉ ุนูู ุงููุชุฑุฉ ุงููู ูู XK |
|
|
|
92 |
|
00:07:39,710 --> 00:07:43,770 |
|
minus ูุงุญุฏ ูุนูุฏ XK ุทุจุนุง ูุฐุง ุงูููุงู
ููู K ูุฃูู ููู |
|
|
|
93 |
|
00:07:43,770 --> 00:07:48,170 |
|
ู
ูู ููู ุงู sub intervals ุจุชุชุญูู ููุณ ุงูุดุฑูุท ุจูุงุก |
|
|
|
94 |
|
00:07:48,170 --> 00:07:55,010 |
|
ุนููู ุงุญูุง ุจูุนุฑู ูุจู ููู ุฎูููู ุฃุจุฏุฃ ุฃุดุชุบููุง ุนูุฏ ุงู |
|
|
|
95 |
|
00:07:55,010 --> 00:08:04,450 |
|
MK ุฅุจุฑุงููู
ุงููู ูู ุฃููุฏ ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู Fุงููู ูู |
|
|
|
96 |
|
00:08:04,450 --> 00:08:11,370 |
|
ุงู F ุนูุฏู ุงู mk' ุงูุด ูุฐุงูุฑูู
ูููุง ุงูุด ูู ุงู mk' ุงู |
|
|
|
97 |
|
00:08:11,370 --> 00:08:15,190 |
|
mk' ูู ู
ูุชูุจุฉ ูููุชุจูุง ูู
ุงู ู
ุฑุฉ ุงู mk' ูู ู
ูู ุงู |
|
|
|
98 |
|
00:08:15,190 --> 00:08:19,610 |
|
infimum ูู F' F of X X element of X K minus ูุงุญุฏ X |
|
|
|
99 |
|
00:08:19,610 --> 00:08:24,950 |
|
K ุงู F' ู
ูู ูุฐู ุงู F small ู
ุงุดู ุงูุญุงู ุทูุจ ุงู F ุงู |
|
|
|
100 |
|
00:08:24,950 --> 00:08:30,590 |
|
ุงู mk' ูู ุนุจุงุฑุฉ ุนู ุงู infimum ูู
ูู ูู F' ุนูู ุงู |
|
|
|
101 |
|
00:08:30,590 --> 00:08:37,110 |
|
sub interval ูุฐู ุงุฐุง ุงููุฏุฃุตุบุฑ ุฃู ูุณุงูู ุงูู F of ุฃู |
|
|
|
102 |
|
00:08:37,110 --> 00:08:41,630 |
|
ู
ูุทููู ู
ูุฌูุฏุฉ ูู ุงูู sub-interval ูุงูู TK ูุฏููู |
|
|
|
103 |
|
00:08:41,630 --> 00:08:46,410 |
|
ู
ูุฌูุฏุฉ ูู ูุฐุง ุงูู sub-interval ุฅุฐู ุฃููุฏ F of TK |
|
|
|
104 |
|
00:08:46,410 --> 00:08:50,670 |
|
ุฃุตุบุฑ ู
ู ุงูู MK' ูุฃู ุงูู MK' ูู ุนุจุงุฑุฉ ุนู ุงูู |
|
|
|
105 |
|
00:08:50,670 --> 00:08:57,290 |
|
infimum ูููู
ุฉ ุงูุฏุงูุฉ F' of TK ุนุงูู
ูุงู ุนูู ุงููุชุฑุฉ |
|
|
|
106 |
|
00:08:57,290 --> 00:09:01,440 |
|
ุงููู ูู ุงู sub-interval ุงููู ุจูุญูู ุนููุง ูููููุฐู |
|
|
|
107 |
|
00:09:01,440 --> 00:09:06,040 |
|
ุฃููุฏ ุฃุตุบุฑ ุฃู ูุณุงูู ู
ู ุงูู MK Ibrahim ู
ูู ุงูู MK |
|
|
|
108 |
|
00:09:06,040 --> 00:09:11,060 |
|
Ibrahim ูุฐูุ ูู ุนุจุงุฑุฉ ุนู ุงูู Supremum ูู
ููุ ูููู
ุฉ |
|
|
|
109 |
|
00:09:11,060 --> 00:09:16,990 |
|
ุงููู ูู ุงูุฏุงูุฉ ูุฐู ุนูู ุงููุชุฑุฉ ุงููู ุนูุฏูู
ุงุดู ุงูุญุงู |
|
|
|
110 |
|
00:09:16,990 --> 00:09:23,110 |
|
ุฅุฐุง ูุฐู ุฏุงุฆู
ุง ุตุญูุญุฉ ุทุจ ูู ุถุฑุจุช ุฌูุชู ูู ุงูุฃุทุฑุงู ูู |
|
|
|
111 |
|
00:09:23,110 --> 00:09:27,650 |
|
ุทูู ุงููุชุฑุฉ ุงููู ูู xk minus xk minus ูุงุญุฏ ุทุจุนุง |
|
|
|
112 |
|
00:09:27,650 --> 00:09:31,510 |
|
ุฃููุฏ ูุฐู xk ูุงูุต xk minus ูุงุญุฏ ูู
ูุฉ ู
ูุฌุจุฉ ุฅุฐุง ูู
ุง |
|
|
|
113 |
|
00:09:31,510 --> 00:09:35,010 |
|
ุฃุถุฑุจูุง ูู ุงูุฃุทุฑุงู ูููุง ุจุชุธููุง ุงู inequality ุตุญูุญุฉ |
|
|
|
114 |
|
00:09:35,010 --> 00:09:40,610 |
|
ูุฒู ู
ุง ูู ูู xk ูุงูุต xk minus ูุงุญุฏ ูููุง ูู xk ูุงูุต |
|
|
|
115 |
|
00:09:40,610 --> 00:09:46,280 |
|
xk minus ูุงุญุฏ ู
ุธุจูุท ูุฐุง ุงูููุงู
ุฃููุฏ ุตุญุทูุจ ููู ูุฐุง |
|
|
|
116 |
|
00:09:46,280 --> 00:09:52,220 |
|
ุงูู
ูุฏุงุฑ ูู ูุฐุง ุฅุฐุง ุจุงุฌู ุจุญุท ูุฐู ูุงู ู
ุนุงูุง ุฌู
ุงุนุฉ |
|
|
|
117 |
|
00:09:52,220 --> 00:09:57,000 |
|
ุจุญุท ูุฐู ูู ุงูู
ูุทูุฉ ูุฐู ุงูู
ูุงู ุงูููู
ุฉ ูุฐู ุงููู ูู |
|
|
|
118 |
|
00:09:57,000 --> 00:10:05,190 |
|
ูุฐู ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุฃู Fof xk ูุงูุต f of xk minus 1 |
|
|
|
119 |
|
00:10:05,190 --> 00:10:12,070 |
|
ุฃูุจุฑ ุฃู ูุณุงูู ุงู Mk' ูู ุงู xk minus xk minus 1 |
|
|
|
120 |
|
00:10:12,070 --> 00:10:18,490 |
|
ููุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู ุงู Mk' ูู ุงู xk minus xk minus |
|
|
|
121 |
|
00:10:18,490 --> 00:10:24,290 |
|
1ุฅุฐุง ูุงุถุญ ุฅู ุฃูุง ุญุตูุช ุนูู ูุฐู ููุฐู ุตุญูุญุฉ ููู ู
ูู |
|
|
|
122 |
|
00:10:24,290 --> 00:10:28,150 |
|
ููู ููู ูุฅูู ุฃุฎุฏุช ุฃูุง ูุฐู ูุชุฑุฉ ุนุดูุงุฆูุฉ ูุนูู ููู |
|
|
|
123 |
|
00:10:28,150 --> 00:10:33,790 |
|
ุจุชุณุงูู ุงููู ูู ูุงุญุฏ ูุงุชููู ูุนูุฏ ู
ูู ูุนูุฏ ุงูุงู ุจูุงุก |
|
|
|
124 |
|
00:10:33,790 --> 00:10:38,250 |
|
ุนููู ุฃูุง ูุตูุช ุงูุขู ุฅูู ู
ุง ูููู ูุตูุช ุฅูู ูุฐู |
|
|
|
125 |
|
00:10:38,250 --> 00:10:43,670 |
|
ุงููุชูุฌุฉ ุดุงูููู ูุง ุฌู
ุงุนุฉ ูุตูุช ุฅูู ูุฐู ุงููุชูุฌุฉ ุงููู |
|
|
|
126 |
|
00:10:43,670 --> 00:10:48,860 |
|
ุฃูุง ูุถุญุชููู
ุฅูุงูุง ููู ุฅุฌุชุงูุงู ู ุงู mk prime ุฒู ู
ุง |
|
|
|
127 |
|
00:10:48,860 --> 00:10:55,280 |
|
ูููุง ุงูุด ูู ู ุงู mk capital prime ูููุง ุงู
ุงู
ูู
ููุฌู |
|
|
|
128 |
|
00:10:55,280 --> 00:10:59,720 |
|
ุงูุงู ุงูุด ุงููู ุจุฏู ุญุตูู ุดูู ุงู K ุงูุด ุจุฏู ุญุตู ุงูุง |
|
|
|
129 |
|
00:10:59,720 --> 00:11:03,020 |
|
ุนู
ุงู ุจููู ุงูู ุตุญูุญ ุนูู ูู K ุงุฐุง ูู ุฃุฎุฏุช ุงู |
|
|
|
130 |
|
00:11:03,020 --> 00:11:05,900 |
|
summation ููุง ู ุฃุฎุฏุช ุงู summation ููุง ู ุฃุฎุฏุช ุงู |
|
|
|
131 |
|
00:11:05,900 --> 00:11:10,440 |
|
summation ููุง ุจุธู ุงููู ูู ุงู inequality ุตุญูุญุฉ ุฎุฏ |
|
|
|
132 |
|
00:11:10,440 --> 00:11:16,050 |
|
ุงูุขู ุงู summationุนูู ุงููุชุฑุฉ ุงูู summation ุนูู |
|
|
|
133 |
|
00:11:16,050 --> 00:11:19,530 |
|
ุงูinquality ุงููู ุญูููุง ุนููุง ูููุง ุจูุตูุฑ ุงู |
|
|
|
134 |
|
00:11:19,530 --> 00:11:23,630 |
|
summation ูู M K ุจุฑุงูู
ูู X K X K minus ูุงุญุฏ K ู
ู |
|
|
|
135 |
|
00:11:23,630 --> 00:11:26,630 |
|
ุนูุฏ ูุงุญุฏ ูุนูุฏ M ูููุง ููููู ุฃุตุบุฑ ุฃู ุณุงูู ุงู |
|
|
|
136 |
|
00:11:26,630 --> 00:11:31,090 |
|
summation ูู F of X K ูุงูุต F of X K minus ูุงุญุฏ |
|
|
|
137 |
|
00:11:31,090 --> 00:11:36,190 |
|
ุงููู ูู ุงุญูุง ููุง ุญุตููุงูุง ูุงู ููุฐู ุงู summation |
|
|
|
138 |
|
00:11:36,190 --> 00:11:39,490 |
|
ุนูููุง ููุฐู ุงู summation ุนูููุง ูู ุงู summation ูุฐุง |
|
|
|
139 |
|
00:11:39,850 --> 00:11:43,210 |
|
ุทูุจ ูุง ุฌู
ุงุนุฉ ุฃููุฏ ุฃูุชู
ุงุฐูุฑูู ูุฐุง ุงู summation ูู |
|
|
|
140 |
|
00:11:43,210 --> 00:11:47,770 |
|
ุนุจุงุฑุฉ ุนู ู
ูู ูุง ุฌู
ุงุนุฉ ูู ุนุจุงุฑุฉ ุนู ุงู lower sum ูู |
|
|
|
141 |
|
00:11:47,770 --> 00:11:52,370 |
|
partition ุจู ุนูู ู
ูู ุนูู ุงูุฏุงูุฉ ุงููู ุจูุนู
ู ุนูููุง |
|
|
|
142 |
|
00:11:52,370 --> 00:11:56,330 |
|
ุงููู ูู ุงู F' ุงููู ุงุดุชุบููุง ุนูููุง ุงููู ุฃุฎุฏูุง ุงู F' |
|
|
|
143 |
|
00:11:57,150 --> 00:12:01,270 |
|
ุงู MK' ูู ุงู infimum ูู F' ุนูู ุงู sub interval |
|
|
|
144 |
|
00:12:02,160 --> 00:12:07,220 |
|
ูุงูุงู ูุฐู ูุดุจู ูุง ุฌู
ุงุนุฉ ูู ุงู upper sum ูุนูู ุจู
ุนูู |
|
|
|
145 |
|
00:12:07,220 --> 00:12:12,960 |
|
ุขุฎุฑ ุตุงุฑ ุนูุฏู ุงูุขู ุงูู
ูุฏุงุฑ ูุฐุง ูู ุงูู
ูุฏุงุฑ ูุฐุง ุงููู |
|
|
|
146 |
|
00:12:12,960 --> 00:12:17,680 |
|
ู
ุญุงุท ุจุงูุฃุฒุฑู ูุฐุง ุงูู
ูุฏุงุฑ ู ุจุงูุฃุญู
ุฑ ุตุงุฑ ุจูู ุงููู ูู |
|
|
|
147 |
|
00:12:17,680 --> 00:12:22,120 |
|
ุงู lower sum ู ุจูู ุงู upper sum ููู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
148 |
|
00:12:22,120 --> 00:12:25,860 |
|
ุงูุตู
ุดู ุงููู ุงุญูุง ุนู
ููุงู ูุจู ุฐูู ูุชูุฑ ูู ูุฑุถูุงู |
|
|
|
149 |
|
00:12:25,860 --> 00:12:33,860 |
|
ููููู ุนุจุงุฑุฉ ุนู F of X ูุงุญุฏูุงูุต F of X Note ุฒุงุฆุฏ F |
|
|
|
150 |
|
00:12:33,860 --> 00:12:40,360 |
|
of X 2 ูุงูุต F of X 1 ุฒุงุฆุฏ F of X 3 ูุงูุต F of X 2 |
|
|
|
151 |
|
00:12:40,360 --> 00:12:45,460 |
|
ุฒุงุฆุฏ ูู
ุง ุฃุตู ูุขุฎุฑ ุฅุดู F of X N ูุงูุต F of X N ูุงูุต |
|
|
|
152 |
|
00:12:45,460 --> 00:12:50,520 |
|
1 ุญูุงุฌู ููู ุจุฑูุญ ู ุจุธู ุนูุฏู ูู ูุฐุง ุจุฑูุญ ู ุจุธู ุนูุฏู |
|
|
|
153 |
|
00:12:50,520 --> 00:12:54,860 |
|
ุจุณ F of X ูุงูุต F of X N ูุงูุต ู
ูู F of X Note ูู |
|
|
|
154 |
|
00:12:54,860 --> 00:13:00,340 |
|
term ุจ cancel ุงููู ูุจูู ู ูุณุงููF of Xn ุงููู ูู |
|
|
|
155 |
|
00:13:00,340 --> 00:13:07,420 |
|
ู
ููุ F of B F of Xnot ุงููู ูู ู
ููุ F of A ุฅุฐุง ุตุงุฑ |
|
|
|
156 |
|
00:13:07,420 --> 00:13:10,920 |
|
ุนูุฏู ุงูุขู ุงููSummation ูุฐุง ุงููู ูู ุจูุณูู F of B |
|
|
|
157 |
|
00:13:10,920 --> 00:13:16,440 |
|
ููุต ู
ููุ ููุต F of A ูุนูู ุจู
ุนูู ุขุฎุฑ ุจูุดูู ูุฐุง ู |
|
|
|
158 |
|
00:13:16,440 --> 00:13:20,580 |
|
ุจูุญุท ู
ูุงูู ููู
ุชู ุงููู ูู F of B ููุต F of A ุจูุตูุฑ F |
|
|
|
159 |
|
00:13:20,580 --> 00:13:25,320 |
|
of B minus F of A ุจูู ุงููู ูู L of B ู F' ู ุจูู |
|
|
|
160 |
|
00:13:25,320 --> 00:13:34,230 |
|
ุงูุฃุจูู ุงููU of B ู F'ุทูุจ ุงุทูุน ุนูู ููู ุดููุฉ ุฎูููู |
|
|
|
161 |
|
00:13:34,230 --> 00:13:39,830 |
|
ุงูุถุญูู ูุฐู ุงูููุทุฉ ุงููู ูุชูุตูู ููู ุจุฏููุง ุงูุง ุงูุด |
|
|
|
162 |
|
00:13:39,830 --> 00:13:44,170 |
|
ุจุฏู ุงุซุจุช ุงูุง ุจุฏู ุงุซุจุช ุงู ุงู integration ุฎูููู ุจุณ |
|
|
|
163 |
|
00:13:44,170 --> 00:13:51,710 |
|
ุงุดูู ูุฐุง ุจุนุฏ ุงุฐููู
ุงูุง |
|
|
|
164 |
|
00:13:51,710 --> 00:13:58,260 |
|
ุจุฏู ุงุซุจุช ุงู ุงู integration ูู F prime of x dxุฃู |
|
|
|
165 |
|
00:13:58,260 --> 00:14:06,320 |
|
ุงูู F of X DX ุจุณุงูู F of B ูุงูุต F of A ู
ู A ูุนูุฏ |
|
|
|
166 |
|
00:14:06,320 --> 00:14:12,870 |
|
ู
ููุ ูุนูุฏ Bุ ููุงุ ุจุฏู ุฃุณููุดูู ุงูุงู ููู ุงูุง ูู |
|
|
|
167 |
|
00:14:12,870 --> 00:14:17,590 |
|
ุงููุงูุน ุจุชูุตููู
ูุฐุง ููุต ูุฐุง ูููู ุงูุจุฑ ุงู ูุณุงูู ุณูุฑ |
|
|
|
168 |
|
00:14:17,590 --> 00:14:20,990 |
|
ู ุงุตุบุฑ ู
ู epsilon ูุฃู ุงุตุบุฑ ูุณุงูู epsilon ููู |
|
|
|
169 |
|
00:14:20,990 --> 00:14:24,110 |
|
epsilon ูู ุงูุฏููุง ู ู
ู ุซู
ููุณุงูู ุณูุฑ ูุนูู ูุชุญุฏุซ |
|
|
|
170 |
|
00:14:24,110 --> 00:14:29,090 |
|
ู
ูู ุงูู
ุณุงูุงุฉ ุงููู ู
ุงููู
ุด ุนูููุง ูู ุงูุงู ูุฌูุฉ ุชูุตูู |
|
|
|
171 |
|
00:14:29,090 --> 00:14:39,060 |
|
ุงุชูุฌูุง ุงุญูุง ุงูู ุงุญูุง ุญุตููุง ุนูู ุงููู ููุงูู F of D โ |
|
|
|
172 |
|
00:14:39,060 --> 00:14:44,520 |
|
F of A ุจูู ุงูู U ู ุจูู ุงูู L ููู ุงุญูุง ุจูููู ุงูู F |
|
|
|
173 |
|
00:14:44,520 --> 00:14:49,420 |
|
ููุณูุง ูุง ุฌู
ุงุนุฉ ุงูู F' ูุฐู is integrable ู
ุฒุงู
|
|
|
|
174 |
|
00:14:49,420 --> 00:14:55,380 |
|
Integrable ู
ู A ูุนูุฏ Bุฃุฐู ุงูู U of F ู ุงูู L of F |
|
|
|
175 |
|
00:14:55,380 --> 00:14:58,560 |
|
ุงููู ูู ุงูู Upper Integral ู ุงูู Lower Integral |
|
|
|
176 |
|
00:14:58,560 --> 00:15:01,960 |
|
ุงููู ูู ููุณุงูู ููู
ุฉ ุงูู Integration ุนุงุฑููููุง ูุฐุง |
|
|
|
177 |
|
00:15:01,960 --> 00:15:05,760 |
|
ุงูููุงู
ุงุญูุง ุจูุชุนุฑู ุดู ู
ุนูุงุชู Integrable ุงูู U of F |
|
|
|
178 |
|
00:15:05,760 --> 00:15:11,640 |
|
ูู ุนุจุงุฑุฉ ุนู ู
ููุ ุนู ุงูู infimum ูู
ููุ ูููุจุงุฑ ุงููู |
|
|
|
179 |
|
00:15:11,640 --> 00:15:19,640 |
|
ูู U L ุฃู U P ู Fููุฐุง ุนุจุงุฑุฉ ุนู ุงูู Supremum ูููุฉ |
|
|
|
180 |
|
00:15:19,640 --> 00:15:28,200 |
|
ููู L, B ู F ูุนูู ุจูุตูุฑ ุนูุฏู ุงููู ูู ูุฐุง ุนุจุงุฑุฉ ุนู |
|
|
|
181 |
|
00:15:28,200 --> 00:15:32,420 |
|
ุงู U of F ู
ู ุฌูุฉ ููุฐุง ุนุจุงุฑุฉ ุนู ุงู L of F ู
ู ุฌูุฉ |
|
|
|
182 |
|
00:15:32,420 --> 00:15:35,900 |
|
ุฃุฎุฑู ูุฐุง ุงู integration ูููุฉ ุจูู ุงู F' ููุดุ ูุฃู ุงู |
|
|
|
183 |
|
00:15:35,900 --> 00:15:40,630 |
|
F' is integrable ุฒู ู
ุง ูููุงูุทูุจุ ุฅูุด ุนูุงูุฉ ุงูู L ู |
|
|
|
184 |
|
00:15:40,630 --> 00:15:44,130 |
|
F ุจูุฐูุ L ู F ุนุจุงุฑุฉ ุนู ุงูู Supremum ููู ูุฐููุ ุฅุฐุง |
|
|
|
185 |
|
00:15:44,130 --> 00:15:47,450 |
|
ุฃููุฏ ุงูู L ู F ุฃูุจุฑ ุฃู ูุณุงูู ูุฐูุ ุฅุฐุง ุตุงุฑ ุงู |
|
|
|
186 |
|
00:15:47,450 --> 00:15:51,610 |
|
integration ูุฐุง ุงููู ุนูุฏู ุฃูุจุฑ ุฃู ูุณุงูู ุงูู L ู Fุ |
|
|
|
187 |
|
00:15:51,610 --> 00:15:56,070 |
|
ุฎูุตูุง ู
ู ูุฐูุ ูุฃู ู
ู ุฌูุฉ ุซุงููุฉ ุงู integration ูู F |
|
|
|
188 |
|
00:15:56,070 --> 00:15:58,510 |
|
ุจุฑุงูู ูู ุงูู U of Fุ ูุฃู ุงูู F is integrable ุฒู ู
ุง |
|
|
|
189 |
|
00:15:58,510 --> 00:16:04,770 |
|
ูููุงุ ู ุงูู U of F ู
ูู ููุูู ุนุจุงุฑุฉ ุนู ุงูู infimum |
|
|
|
190 |
|
00:16:04,770 --> 00:16:08,810 |
|
ููุง ุฏูู ุฅุฐุง ุงูู U of F ุฃุตุบุฑ ุฃู ูุดูููุง ู
ุฒุงู
ุฃุตุบุฑ ุฃู |
|
|
|
191 |
|
00:16:08,810 --> 00:16:12,210 |
|
ูุดูููุง ูุนูู ุตุงุฑ ุงู integration ุฃุตุบุฑ ุฃู ูุดูููุง ูุนูู |
|
|
|
192 |
|
00:16:12,210 --> 00:16:18,050 |
|
ุจู
ุนูู ุขุฎุฑ ุงุญูุง ูุตููุง ุงู ุงู integration ุชุจุนูุงุงูู |
|
|
|
193 |
|
00:16:18,050 --> 00:16:23,450 |
|
integration ุงููู ูู ู
ู A ูุนูุฏ A ุจู ูู F ุจุฑุงูู
ุจูู |
|
|
|
194 |
|
00:16:23,450 --> 00:16:29,530 |
|
ุงู L ู ุจูู ู
ูู ู ุจูู ุงู U ู
ุงุดู ุงูุญุงูุฉ ุงูุขู ู ูุฐุง |
|
|
|
195 |
|
00:16:29,530 --> 00:16:35,390 |
|
ุจุฑุถู ุจูู ุงู L ู ุจูู ู
ูู ุงู U ุงุถุฑุจูู ุงูุขู ุงููู ุชุญุช |
|
|
|
196 |
|
00:16:35,390 --> 00:16:41,820 |
|
ุงููู ูู ุจุณุงูุจุจุชูุนูุณ ุงู inequality ูุจุนุฏูู ุงุฌู
ุนู |
|
|
|
197 |
|
00:16:41,820 --> 00:16:46,320 |
|
ุงูุฌูุชูู ู
ุงุดู ุงูุญุงู ูุฐู ุจูุตูุฑ ุณุงูุจ ููุฐู ุจูุตูุฑ ุฃูุจุฑ |
|
|
|
198 |
|
00:16:46,320 --> 00:16:51,220 |
|
ุฃู ูุณุงูู ุณุงูุจ ููุฐู ุจูุตูุฑ ุฃูุจุฑ ุฃู ูุณุงูู ุณุงูุจ ุงุฌู
ุนู |
|
|
|
199 |
|
00:16:51,220 --> 00:16:56,980 |
|
ุงูุฌูุชูู ุจูุตูุฑ ุนูุฏ ุงู integrationุฃู ุงูุนูุณ ุงุถุฑุจ ุงููู |
|
|
|
200 |
|
00:16:56,980 --> 00:16:59,720 |
|
ููู ุจุงูุณุงูุจ ุนุณุงุณ ุงู ุงุนู
ู ุฒู ู
ุง ุนุงู
ู ูู ูุงู ุงุถุฑุจ |
|
|
|
201 |
|
00:16:59,720 --> 00:17:02,000 |
|
ุงุณู ุงููู ูู ุงุถุฑุจ ู
ูู ุงููู ููู ุจุงูุณุงูุจ ูุตูุฑ ูุฐุง |
|
|
|
202 |
|
00:17:02,000 --> 00:17:07,640 |
|
ูุงูุต ููุฐุง ููู ูุงูุต ููุฐุง ุนุจุงุฑุฉ ุนู ูุงูุต ููุฐุง ุงูุจุฑ ุงู |
|
|
|
203 |
|
00:17:07,640 --> 00:17:12,760 |
|
ูุณุงูู ููุฐุง ุงูุจุฑ ุงู ูุณุงูู ูุงุฌู
ุญ ูุจุนุถ ุงู ุจูุบุฉ ุงุฎุฑู |
|
|
|
204 |
|
00:17:13,150 --> 00:17:16,790 |
|
ููู ุงููู .. ุงููู .. ุงููู .. ุงููู ุชุญุช ูุงูุต ุงููู ููู |
|
|
|
205 |
|
00:17:16,790 --> 00:17:20,130 |
|
ุจุทูุน ุนูุฏู ุงู integration ูู F prime ู
ู A ู ุนูุฏ B |
|
|
|
206 |
|
00:17:20,130 --> 00:17:24,730 |
|
ูุงูุต ุงููู ูู F of B minus F of A ุฃุตุบุฑ ูุณุงูู ุงู U |
|
|
|
207 |
|
00:17:24,730 --> 00:17:30,770 |
|
ูุงูุต ุงู L ู ุฃูุจุฑ ุฃูู ูุณุงูู ุงู L ูุงูุต ุงู U ูุงุถุญ ุฃูู |
|
|
|
208 |
|
00:17:30,770 --> 00:17:36,480 |
|
ูุฐูุนุจุงุฑุฉ ุนู ูุงูุต ูุฐู ููุฐู ูู
ูุฉ ู
ูุฌุจุฉ ุฅุฐุง ุตุงุฑ ุนูุฏ |
|
|
|
209 |
|
00:17:36,480 --> 00:17:41,000 |
|
ุงู absolute value ููููู
ุฉ ูุฐู ุฃุตุบุฑ ุฃู ูุณุงูู ุงู U |
|
|
|
210 |
|
00:17:41,000 --> 00:17:49,300 |
|
ูุงูุต ู
ูู ุงู L ูู
ุงู ู
ุฑุฉ ูุฐู ุณุงูุจ ูุฐูููุฐู ู
ูุฌุจุฉ ุฅุฐุงู |
|
|
|
211 |
|
00:17:49,300 --> 00:17:53,540 |
|
ูุฐู ุงูู Inquality ุตุงุฑุช ูู ุนุจุงุฑุฉ ุนู ู
ูููู ุงูู |
|
|
|
212 |
|
00:17:53,540 --> 00:17:57,440 |
|
absolute value ููู F prime ุงู integration ูุงูุต |
|
|
|
213 |
|
00:17:57,440 --> 00:18:01,840 |
|
ุงูู
ูุฏุงุฑ ูุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง ุงูููู
ุฉ ููุฐุง ุงูููู
ุฉ |
|
|
|
214 |
|
00:18:01,840 --> 00:18:05,700 |
|
ูุณู ู
ุง ุณุญููุงุด ุงุญูุง ุฅูุด ูููุง ุนููุง ุฃุตุบุฑ ู
ู ู
ู ุฅุจุณูุงู |
|
|
|
215 |
|
00:18:05,700 --> 00:18:09,280 |
|
ูุงูุง ูุงุนุฏ ุจุงุดุชุบู ุนูู ุงู partition ุงููู ูุฌูุชู ุฃุนูู |
|
|
|
216 |
|
00:18:09,280 --> 00:18:15,390 |
|
ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ุงููู ูุตูุชููุนุจุงุฑุฉ ุนู ุงููู ูู ุงู |
|
|
|
217 |
|
00:18:15,390 --> 00:18:20,150 |
|
absolute value ูุฐุง ุฃุตุบุฑ ู
ู ุฅุจุณููู ูุทุจุนุง ุฃูุจุฑ ุฃูู |
|
|
|
218 |
|
00:18:20,150 --> 00:18:24,790 |
|
ุณุงูู ุณูุฑ ูุงูุฅุจุณููู ูุงุฒ ุฅูู ุดู
ุงููุง arbitrary ูุนูู |
|
|
|
219 |
|
00:18:24,790 --> 00:18:29,430 |
|
ุงูู
ูุฏุงุฑ ูุฐุง ูุฃู ุฅุจุณููู ูู ุงูุฏููุง ูุฃู ุฅุจุณููู ูู |
|
|
|
220 |
|
00:18:29,430 --> 00:18:33,770 |
|
ุงูุฏููุง ูุฐุง ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุงูุฅุจุณููู ูู ุฃูุจุฑ ุฃูู ุณูุฑ |
|
|
|
221 |
|
00:18:33,970 --> 00:18:38,510 |
|
ุฅุฐุงู ูุงุฒู
ูููู ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู ุนุจุงุฑุฉ ุนู ุณูุฑ |
|
|
|
222 |
|
00:18:38,510 --> 00:18:42,530 |
|
ูุนูู ุจู
ุนูู ุขุฎุฑ ุงู integration ุจุณุงูู ุงููู ูู F of B |
|
|
|
223 |
|
00:18:42,530 --> 00:18:47,050 |
|
ููุต F of A ู ููู ู ูููู ุญุตููุง ุนูู ุงูู
ุทููุจ ู ุฃุซุจุชูุง |
|
|
|
224 |
|
00:18:47,050 --> 00:18:51,470 |
|
ุงููุธุฑูุฉ ุทูุจ |
|
|
|
225 |
|
00:18:51,470 --> 00:18:57,850 |
|
ุงูุฌู
ุงุนุฉ ุงูุงู ูุฐุง ุงููู ูู ุงูุฌุฒุก ุงูุฃููุงูุฌุฒุก ุงูุฃูู ู
ู |
|
|
|
226 |
|
00:18:57,850 --> 00:19:00,890 |
|
ุงููู ูู ุงูู Fundamental Theorem of Calculus ุงููู |
|
|
|
227 |
|
00:19:00,890 --> 00:19:05,750 |
|
ูู ุนุจุงุฑุฉ ุนู ุชูุงู
ู ุงูุชูุงุถู ุงููู ูู ุนู
ููุฉ ุงูุชูุงู
ู |
|
|
|
228 |
|
00:19:05,750 --> 00:19:10,470 |
|
ูุชูุบู ุนู
ููุฉ ุงูุชูุงุถู ุฒู ู
ุง ุดููุง ุงููู ูู ูุจู ุจุดููุฉ |
|
|
|
229 |
|
00:19:10,470 --> 00:19:15,130 |
|
ูุดููุง ุฅูู ุงููู ุฌุงูุชู ุงูู Fundamental Theorem ุทุจุนุง |
|
|
|
230 |
|
00:19:15,130 --> 00:19:20,270 |
|
ูุฐุง ุงูููุงู
ุชุญุช ุงูุดุฑูุท ุงูู
ุฐููุฑุฉุงูุขู ุจููู ูู .. ูู
ูู |
|
|
|
231 |
|
00:19:20,270 --> 00:19:24,810 |
|
ุญููุช ูุงุฏู ุญุชู ุจููู ูู corollary ุจููู ุงูุง ุฃุญูุงูุง |
|
|
|
232 |
|
00:19:24,810 --> 00:19:29,530 |
|
ุจุญุจ ุฃุฑูุญ ุญุงูู ู ูููู ุฎูููุง ูุงุฎุฏ .. ุนุดุงู ูุณุชุฐูุฑ ุงู |
|
|
|
233 |
|
00:19:29,530 --> 00:19:32,790 |
|
.. ุงู .. ุงู .. ุงู fundamental theorem ุงูุฌุฒุก ุงูุฃูู |
|
|
|
234 |
|
00:19:32,790 --> 00:19:37,950 |
|
ุจุดูู ุณุฑูุน ุจุณ ุดููู ุนูุฏูุง ูุนู
ู .. ูู ุงูุดุฑูุท ุงู ูู ูู |
|
|
|
235 |
|
00:19:37,950 --> 00:19:41,630 |
|
ู
ู a ู b ูุนูุฏ R satisfy the conditionsุงููู ูู F' |
|
|
|
236 |
|
00:19:42,150 --> 00:19:45,790 |
|
exists on A ูBุ ู
ุงุจุชุฏุด ุฃุฌูุจ ุณูุฑุฉ ู
ูู ุงูู F Smallุ |
|
|
|
237 |
|
00:19:45,790 --> 00:19:49,250 |
|
ู
ุงุจุชุฏุด ุฃุดุบู ู
ููุ ุนูู ุงูู F Capital ูู ูุฑุถูุง ุฅู ุงูู |
|
|
|
238 |
|
00:19:49,250 --> 00:19:54,010 |
|
F ูุฐู ู
ู A ูB ูุนูุฏ R ุฅููุง ุงูู F' ุงููู ูู ุงูุดู
ุงููุง |
|
|
|
239 |
|
00:19:54,010 --> 00:19:57,890 |
|
exist ุนูู ุงูู A ูB ูุนูู ูุฑุถ ุฅููุงุ ุจุณ ููุง ุฒุงุฏ ุดููุฉ |
|
|
|
240 |
|
00:19:57,890 --> 00:20:01,130 |
|
ุนูู ุงูุดุฑูุท ุงููู ุฌุงุจู ุจุดููุฉ ุฅู F is differentiable |
|
|
|
241 |
|
00:20:01,130 --> 00:20:03,790 |
|
ุนูู ุงูู closed interval ููุง ูุฑุถูููุง ุฅููุง F |
|
|
|
242 |
|
00:20:03,790 --> 00:20:06,740 |
|
differentiable ุนูู ุงูู Openููุฑุถูู ุฅููุง continuous |
|
|
|
243 |
|
00:20:06,740 --> 00:20:10,760 |
|
ุนูู ุงููู ูู ุงูู Closed ู
ุฏุงู
ุงูุขู ุฅุฐุง ูููุง ุฏู ุณูุฉ |
|
|
|
244 |
|
00:20:10,760 --> 00:20:16,680 |
|
ุฒูุงุฏุฉ ู
ู ุงู .. ู
ู ุงููู ูู ุงูุดุฑูุท F' exists ุนูู ุงูู |
|
|
|
245 |
|
00:20:16,680 --> 00:20:19,820 |
|
A ู ุงูู B ูุนูู continuous ู differentiable ุนูู ุงูู |
|
|
|
246 |
|
00:20:19,820 --> 00:20:24,350 |
|
closed open .. ุนูู ุงู closed interval A ู Bุงูุงู ูู |
|
|
|
247 |
|
00:20:24,350 --> 00:20:29,550 |
|
ุงูุดุฑุท ูุงูุดุฑุท ุงูุซุงูู ูุฑุถ ุงู ุงู F' ู
ุด ู
ูุฌูุฏุฉ ู ุจุณ ุงู |
|
|
|
248 |
|
00:20:29,550 --> 00:20:33,030 |
|
F' ุงูุชุฌุฑ ุจุงูุนูู ุงู A ู ุงู B ุฅุฐุง ุงูุชุฌูุช ุดุฑูุท ุงู |
|
|
|
249 |
|
00:20:33,030 --> 00:20:36,210 |
|
fundamental theorem ุฅุฐุง ุญุณุจ ุงู fundamental theorem |
|
|
|
250 |
|
00:20:36,210 --> 00:20:39,410 |
|
ุงููู ูุจูู ุดููุฉ ุจููู ุนูุฏู ุงู integration ู
ู A ูB |
|
|
|
251 |
|
00:20:39,410 --> 00:20:44,190 |
|
ูู
ูู ุงูุขูููู f prime ุงููู ููุง ูุณู
ูู ูู ุงูุฌุจู f |
|
|
|
252 |
|
00:20:44,190 --> 00:20:49,310 |
|
small ุจุชุณุงูู f of b ูุงูุต f of a ุฅุฐุง ูุนูุง ูู |
|
|
|
253 |
|
00:20:49,310 --> 00:20:53,130 |
|
automatic ุญููุช ุดุฑูุท ุงู fundamental theorem ูุฒูุงุฏุฉ |
|
|
|
254 |
|
00:20:53,130 --> 00:20:59,850 |
|
ุณูุฉ ุฅุฐุง ุฃููุฏ ุงููุชูุฌุฉ ุจุชููู ุตุญูุญุฉ ูุนููุชูุงู
ู ุงูุฏุงูุฉ |
|
|
|
255 |
|
00:20:59,850 --> 00:21:05,210 |
|
ุงูู
ุชูุงุถูุฉ ุจุณุงูุก ุฃุตู ุงูุฏุงูุฉ ุงููู ูู ุฃุตู ุงูุฏุงูุฉ ุนูุฏู |
|
|
|
256 |
|
00:21:05,210 --> 00:21:09,070 |
|
ุงูููุทุฉ ุงูุฃููู ููุต ุงูููุทุฉ ู
ูู ุจูุญูู ุงูููุทุฉ ุงูุซุงููุฉ |
|
|
|
257 |
|
00:21:09,070 --> 00:21:13,950 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู integration F of B ููุต ู
ูู F of A |
|
|
|
258 |
|
00:21:13,950 --> 00:21:19,210 |
|
ุทุจ ูู ูุงูุช X ู
ุชุบูุฑ ูุนูู ูู ุฃุฎุฐูุง ุฃู X ุจูู ุงููุชุฑุชูู |
|
|
|
259 |
|
00:21:19,210 --> 00:21:23,550 |
|
ูุทุจูุฌูุง ูุธุฑูุฉ ุนูู ุงููA ุงููู ุนูุฏ ุงููXูุจุตูุฑ ุงู |
|
|
|
260 |
|
00:21:23,550 --> 00:21:27,130 |
|
integration ู
ู ุฅูู ุฅูู ุนูุฏ ุงู X ุฃู ุจุฑุงูู ุจุณุงูู ุฃู |
|
|
|
261 |
|
00:21:27,130 --> 00:21:32,490 |
|
of X ูุงูุต ุฃู of A X ูุฐู ูุชุตุจุญ ู
ุชุบูุฑุฉ ูุงูุฃู of A |
|
|
|
262 |
|
00:21:32,490 --> 00:21:39,190 |
|
ุซุงุจุชุฉ ููุฐุง ุจูุฐูุฑูุง ุงูู ุงุญูุง ููู
ุฉ ุงูุชูุงู
ู ูุฏุงูุฉ |
|
|
|
263 |
|
00:21:39,190 --> 00:21:43,790 |
|
ุจุณุงูู ุงููู ูู ุนุจุงุฑุฉ ุนู ุงููู ูู ุงูุฅุฌุงุจุฉ ุงููู ูู |
|
|
|
264 |
|
00:21:43,790 --> 00:21:47,630 |
|
ุงูุฏุงูุฉ ุงููู ุจุชุทูุน ุฒุงุฆุฏ some constant C ุงููู ูู ุงู |
|
|
|
265 |
|
00:21:47,630 --> 00:21:53,660 |
|
constant ุทุจุนุง ูุงููู ููุทุจูุนุฉ ุงูุฏูุงูู ููุฏุงุด ุจูุทูุนููุง |
|
|
|
266 |
|
00:21:53,660 --> 00:21:56,420 |
|
ุงููู ูู ุงู initial conditions ุจูุณูุฑููุง ุฅูุงู ุงู |
|
|
|
267 |
|
00:21:56,420 --> 00:21:59,620 |
|
constant ุฃู ุจูุนุทููุง ุฅูุงู ุฎู
ุณุฉ ุฃุฑุจุนุฉ ุณุชุฉ ุฃู ุจูุธููุง |
|
|
|
268 |
|
00:21:59,620 --> 00:22:03,720 |
|
ุจุตูุฑุฉ ุนุงู
ุฉ Constancy ุทูุจ ุดูููุง ุตููุง ุนูู ุงููุจู ุนููู |
|
|
|
269 |
|
00:22:03,720 --> 00:22:08,090 |
|
ุงูุตูุงุฉ ูุงูุณูุงู
ุงูุขู ุจุฏูุง ููุฌู ููุฌุฒุก ุงูุซุงูู ู
ู ุงูู |
|
|
|
270 |
|
00:22:08,090 --> 00:22:11,470 |
|
Fundamental theorem ุฎูุตูุง ุฌุฒุก ุงููู ูู ุชูุงู
ู |
|
|
|
271 |
|
00:22:11,470 --> 00:22:16,870 |
|
ุงูุชูุงุถูุ ุงูุขู ุจูุชููุน ุฅูู ุงููุงุถู ุงูุชูุงู
ูุ ุงููุงุถู |
|
|
|
272 |
|
00:22:16,870 --> 00:22:20,530 |
|
ุงูุชูุงู
ูุ ุชุญุช ุดุฑูุทุ ุจูุดูู ุงููู ูู ุงู Fundamental |
|
|
|
273 |
|
00:22:20,530 --> 00:22:24,650 |
|
theorem of calculus second form ุฃู ุงููู ูู ุงูุฌุฒุก |
|
|
|
274 |
|
00:22:24,650 --> 00:22:27,850 |
|
ุงูุซุงูู ู
ู ุงู Fundamental theoremุ ุฅูุด ุงููู ุจูููููุ |
|
|
|
275 |
|
00:22:27,850 --> 00:22:33,540 |
|
ุงููู ุจูููู ู
ุนุงูุง ูููุ ููุชุฑุถ ุฅู F smallู
ู a ู b |
|
|
|
276 |
|
00:22:33,540 --> 00:22:38,060 |
|
ูุนูุฏ r ุงููู ูู is integrable in a ู b ุฅุฐุง ุงููุฑุถูุงู |
|
|
|
277 |
|
00:22:38,060 --> 00:22:41,460 |
|
ุงูู integrable ูููุฑุถ ุฃู f of x ูู ุจูุณุงูู ุงู |
|
|
|
278 |
|
00:22:41,460 --> 00:22:46,160 |
|
integration ู
ู a ู x f for all x element in a ู b |
|
|
|
279 |
|
00:22:46,160 --> 00:22:52,200 |
|
ุจุณ ูุงู ููุฌู ูููุชูุฌุฉ thenููุทูุน ูุฐุง ุนุจุงุฑุฉ ุนู |
|
|
|
280 |
|
00:22:52,200 --> 00:22:55,360 |
|
continuous function ูู ุงู .. ูู ุงู .. ุงููู ูู main |
|
|
|
281 |
|
00:22:55,360 --> 00:23:02,700 |
|
ูู ุงููู ูู ุนูู ุงููุชุฑุฉ a ุฃู b ูู
ุด ูู ูู
ุงู ููู ูุงู |
|
|
|
282 |
|
00:23:02,700 --> 00:23:09,830 |
|
ุงู Fsmall continuous ุนูุฏ ููุทุฉ C ูู ุงููุชุฑุฉ ู
ู A |
|
|
|
283 |
|
00:23:09,830 --> 00:23:14,050 |
|
ูุนูุฏ B ุฃู ู
ู A ูุนูุฏ X ูุชููู ุงู F ูุฐู ููุณูุง |
|
|
|
284 |
|
00:23:14,050 --> 00:23:16,950 |
|
differentiable ู ุงู derivative ุงููู ูู ุฅูุด ุจุณุงูู |
|
|
|
285 |
|
00:23:16,950 --> 00:23:22,590 |
|
ุจุณุงูู ููู
ุฉ ุงููู ูู ุงู F ุงููู ุฌูุง ูุนูู ุจุงุฎุชุตุงุฑ ูุง |
|
|
|
286 |
|
00:23:22,590 --> 00:23:29,450 |
|
ุฌู
ุงุนุฉ ุจุชุชูุฑุฑูุง ุณูู ุจูููู ู
ูุชุฑุถ FIntegrable ู
ุงุดู |
|
|
|
287 |
|
00:23:29,450 --> 00:23:34,690 |
|
ุงูุญุงู ูุงู ุจุณ ุงูุงู ุจููู ูู ุฌูุช ุงุฎุฏุช ู
ู A ู X on |
|
|
|
288 |
|
00:23:34,690 --> 00:23:44,670 |
|
ุทุจุนุง A ู B ูู ุงุฎุฏุช ุงูุงู A ู X F small of T DT ูุงู |
|
|
|
289 |
|
00:23:44,670 --> 00:23:51,510 |
|
ุฏู ุทุจุนุง ุงูุงู ุตุงุฑุช ูููุง ุชุนุชู
ุฏ ุนูู ู
ูู ุนูู X ุจูููู |
|
|
|
290 |
|
00:23:51,510 --> 00:23:55,370 |
|
ูุฐููุฐู ุงููู ุทูุน ุงููู ูู ุงูู integration ููู |
|
|
|
291 |
|
00:23:55,370 --> 00:24:01,130 |
|
integrable function ู
ู A ู X F of T DT ูุชุทูุน ูู |
|
|
|
292 |
|
00:24:01,130 --> 00:24:05,210 |
|
continuous function ูู ุณู
ูุชูุง F capital ุฒู ู
ุง ูู |
|
|
|
293 |
|
00:24:05,210 --> 00:24:08,730 |
|
ู
ุณู
ููุง F of X ุจุชููู ุงูู F ุนูุฏูุง ุดู
ุงููุง is |
|
|
|
294 |
|
00:24:08,730 --> 00:24:16,430 |
|
continuous ุงูุขู ุจูููู ูู ุงุฌูุช ู ููุช ุงู Fis |
|
|
|
295 |
|
00:24:16,430 --> 00:24:21,390 |
|
continuous ุงูู F ุงููู ุฌูุง ูุฐู at C element in A ูB |
|
|
|
296 |
|
00:24:21,390 --> 00:24:25,650 |
|
ูู ูุงูุช F is continuous at C element in A ูB |
|
|
|
297 |
|
00:24:25,650 --> 00:24:31,730 |
|
ููุทูุนูู ุจูููู ุฅุฐุง ุงูู F capital ูุฐู F prime of C |
|
|
|
298 |
|
00:24:31,730 --> 00:24:39,870 |
|
existsู ู
ุด exist ุจุณ ู ุงู F prime of C ูุชุณุงูู ุงู F |
|
|
|
299 |
|
00:24:39,870 --> 00:24:46,030 |
|
small of ุฅูุดุ of C ูุนูู ู ูุฃูู ุจูููู ูู
ุง ูุชูุงุถู |
|
|
|
300 |
|
00:24:46,030 --> 00:24:50,210 |
|
ูุฐู F prime of C ุงููู ูู ู
ู ุฅูู ุงููู ุนูุฏ C ูุนูู |
|
|
|
301 |
|
00:24:50,210 --> 00:24:57,370 |
|
ุชููู F prime of C ุจุณุงูู ุชูุงุถู ุฑููุฉ by DXุนูุฏู |
|
|
|
302 |
|
00:24:57,370 --> 00:25:02,630 |
|
ุงูููุทุฉ C ูู integration ู
ู A ู X F of T DT |
|
|
|
303 |
|
00:25:27,580 --> 00:25:33,180 |
|
C ู
ุซูุงู ุจุชุณุงูู F of C ุงููู ูู F small of C ูู ููู |
|
|
|
304 |
|
00:25:33,180 --> 00:25:36,540 |
|
ุงู F ุงููู ุฌูุง continuous ุนูุฏู ุงูููุทุฉ ุงููู ุจูุญูู |
|
|
|
305 |
|
00:25:36,540 --> 00:25:39,940 |
|
ุนููุง ุทุจ ูู ูุงูุช F ุงููู ุฌูุง ูุงุฏู continuous ููู |
|
|
|
306 |
|
00:25:39,940 --> 00:25:43,620 |
|
ู
ุงูุงู ุนูู ุงููุชุฑุฉ ูุงุฏู ุจุตูุฑ ุฎูุงุต ูุงูุช ู
ุบู
ุถ ุนูุงู |
|
|
|
307 |
|
00:25:43,620 --> 00:25:47,980 |
|
ุจุชูุฌู ุจุชููู ุชูุงุถู ูุงุฏู ุจุชุดูู ุงูุชูุงู
ู ู ุจุชุญุทู ุงููู |
|
|
|
308 |
|
00:25:47,980 --> 00:25:53,540 |
|
ุฌูุง ุจุฏูุงูุฉ ุงููู ูู ุงู X ุงูู
ุชุบูุฑูุงุถุญ ุงูู
ูุฑูุถ ุทูุจ |
|
|
|
309 |
|
00:25:53,540 --> 00:25:59,660 |
|
ููุฌู ุงูุขู ูุซุจุช ุงููู ูู ุงููุธุฑูุฉ ูุซุจุช ุดุบูุชูู ุฃู ุงู F |
|
|
|
310 |
|
00:25:59,660 --> 00:26:02,580 |
|
ูุงุจุชูุงู continuous ุนุดุงู ุฃุซุจุชูู continuous ูุซุจุชูู |
|
|
|
311 |
|
00:26:02,580 --> 00:26:05,940 |
|
ุฃูุซุฑ ู
ู continuous ูุซุจุชูู uniform ู continuous ูุฃ |
|
|
|
312 |
|
00:26:05,940 --> 00:26:09,780 |
|
ุฃูููู ูุซุจุชูู ุฃูุซุฑ ู
ู uniform ู continuous ูุซุจุชูู |
|
|
|
313 |
|
00:26:09,780 --> 00:26:12,920 |
|
ุฃู ุงู F is Lipschitz function ู
ุซูุง ู
ู Lipschitz |
|
|
|
314 |
|
00:26:12,920 --> 00:26:15,400 |
|
function ุฅุฐุง ุนูู ุทูู uniform ู continuous ูู
ู ุซู
|
|
|
|
315 |
|
00:26:15,400 --> 00:26:18,460 |
|
ุนูู ุทูู ุฅูุด ู
ุง ููุง continuous ุฅูุด Lipschitz |
|
|
|
316 |
|
00:26:18,460 --> 00:26:25,240 |
|
function ูุนูู ูุซุจุชูู ุฃู Fof x-f of y absolute |
|
|
|
317 |
|
00:26:25,240 --> 00:26:30,720 |
|
value ุฃุตุบุฑ ุฃู ุณุงูู k ูู x-y had there exist k ุจุญูุซ |
|
|
|
318 |
|
00:26:30,720 --> 00:26:35,260 |
|
ุฃู f of x-f of y ุฃุตุบุฑ ู
ู k ูู xy ููู x ู y element |
|
|
|
319 |
|
00:26:35,260 --> 00:26:40,020 |
|
in a ู b ูุซุจุช ูู f ุจุชุญูู ูุฐุง ุงูุดุฑุท ูุซุจุชูุง ู
ุง ุฏู |
|
|
|
320 |
|
00:26:40,020 --> 00:26:42,540 |
|
ูุซุจุชูุง ู
ุง ุฏู ูุชุญูู ูุฐุง ุงูุดุฑุท ุฅุฐุง ู
ุง ุนูู ุทูู ุงููู |
|
|
|
321 |
|
00:26:42,540 --> 00:26:45,680 |
|
ูู ูุชููู lipschitz ูุนูู ุจู
ุนูู ุขุฎุฑ ูุชููู is |
|
|
|
322 |
|
00:26:45,680 --> 00:26:49,480 |
|
continuous ูุฐุง ุงูุฌุฒุก ุงูุฃูู ุงูุฌุฒุก ุงูุซุงูู ูุง ุดุจุงุจ ู |
|
|
|
323 |
|
00:26:49,480 --> 00:26:55,760 |
|
ูุง ุจูุงุชูุฃู if F is continuous at C ููุซุจุช ุฃู F is |
|
|
|
324 |
|
00:26:55,760 --> 00:26:59,320 |
|
differentiable ุนูุฏ C ูุนูู ุจุฏุฃ ุฃุซุจุชูู F is |
|
|
|
325 |
|
00:26:59,320 --> 00:27:03,460 |
|
differentiable ุนูุฏ C ูุนูู ุงูุด F is differentiable |
|
|
|
326 |
|
00:27:03,460 --> 00:27:14,660 |
|
ูุนูู ุจุฏุฃ ุฃุซุจุชูู ุฃู limit F of X ุฒู ุฏุงุชุด ู
ุซูุง ุงู F |
|
|
|
327 |
|
00:27:14,660 --> 00:27:21,440 |
|
of C ุฒู ุฏุงุชุด ูุงูุต F of Cุนูู H ุงุฐุง H ุจุชุฑูุญ ููุตูุฑ |
|
|
|
328 |
|
00:27:21,440 --> 00:27:27,380 |
|
ุจุชุซุจุช ูู ุงูู ุงูุด ุจูุณุงูู F capital ุทุจุนุง ุจูุณุงูู F |
|
|
|
329 |
|
00:27:27,380 --> 00:27:33,660 |
|
small of Cุจุฏู ุฃุซุจุชูู ูุนูู ุฃู ุจู
ุนูู ุขุฎุฑ ูุฃุซุจุชูู ููู |
|
|
|
330 |
|
00:27:33,660 --> 00:27:37,000 |
|
Y ุฃูุจุฑ ู
ู 0 ุฏุงุฑููุฒูุฒ ุฏููุชุง ุจุญูุซ ุฃูู absolute value |
|
|
|
331 |
|
00:27:37,000 --> 00:27:41,320 |
|
ุฃุตุบุฑ ู
ู Delta L ุนูู H ุฃุตุบุฑ ู
ู Delta ูุคุฏู ุฅูู F of |
|
|
|
332 |
|
00:27:41,320 --> 00:27:48,260 |
|
C ุฒุงุฆุฏ H ูุงูุต F of C ุนูู H ูุงูุต F of C ุจุฏู ุฃุซุจุชูู |
|
|
|
333 |
|
00:27:48,260 --> 00:27:53,180 |
|
ูู ุฃุตุบุฑ ู
ู 200 ู
ู Epsilonุจููู ุงุซุจุชุช ูุนูุง ุงูู ูุฐู |
|
|
|
334 |
|
00:27:53,180 --> 00:27:56,540 |
|
ุงู limit ุจุงูุณุงููุฉ ูุฐู ู
ุนูุงุชู ูุฐู ุงู limit ุทุจุนุง ุงูุด |
|
|
|
335 |
|
00:27:56,540 --> 00:28:01,000 |
|
ุจุชุนูู ุงู F prime F capital prime of C exist ู |
|
|
|
336 |
|
00:28:01,000 --> 00:28:06,480 |
|
ุจุชุณุงููุฉ F of C ุงููู ูู ุงููู ูู ุทุงูุจู ุงูู ูู
ุง ุชููู |
|
|
|
337 |
|
00:28:06,480 --> 00:28:09,280 |
|
F continuous ุนูุฏ ุงู C ุจุชููู F capital |
|
|
|
338 |
|
00:28:09,280 --> 00:28:12,040 |
|
differentiable ุนูุฏ ุงู C ู ุงู derivative ูู F |
|
|
|
339 |
|
00:28:12,040 --> 00:28:15,700 |
|
capital ุจุชุณุงููุฉ ุงู F ุงุณู
ู ููุดูู |
|
|
|
340 |
|
00:28:17,960 --> 00:28:21,380 |
|
Media ูุซุจุช ุงูู Continuity ุฃู ูุซุจุช ุงูู Lipschitz |
|
|
|
341 |
|
00:28:21,380 --> 00:28:27,450 |
|
function ูุนูู ุงูุฃู
ุฑ ุณููุฃุญูุง ู
ูุชุฑุถูู ูุง ุฌู
ุงุนุฉ ุฃู |
|
|
|
342 |
|
00:28:27,450 --> 00:28:31,490 |
|
ุงููF small ูุฐู is integrable ู
ุฒุงู
is integrable |
|
|
|
343 |
|
00:28:31,490 --> 00:28:37,650 |
|
ุฅุฐุง is bounded S ูุนูู ุฃูู ููู .. ููุฏุฑ ููุงูู K ุฃูุจุฑ |
|
|
|
344 |
|
00:28:37,650 --> 00:28:41,830 |
|
ู
ู 0 ุจุญูุซ ุฃู ุงู absolute value ู F of X small ุฃุตุบุฑ |
|
|
|
345 |
|
00:28:41,830 --> 00:28:48,070 |
|
ุณูู K ููู X ู
ูุฌูุฏุฉ ุงู A ู ุงู B ุณุจุจ ูุฐู ุฃู F ููุณูุง |
|
|
|
346 |
|
00:28:48,070 --> 00:28:52,350 |
|
is integrable ุทูุจุ ุจุฏุฃ ุงุนุชู
ุฏ ุนูู ูุฐู ูููุตูู ุฅููุง |
|
|
|
347 |
|
00:28:52,350 --> 00:28:58,620 |
|
ูุจุดุชุงูุงู ุฎุฏ ุงู x ู y ูู ุงู a ู ุงู b ูุงุณู
ุญููู ุงุฎุฏ x |
|
|
|
348 |
|
00:28:58,620 --> 00:29:01,760 |
|
ุงูู ู
ู y without loss of generality ู
ุด ุนุงุฏ ุจุงุฎุฏ y |
|
|
|
349 |
|
00:29:01,760 --> 00:29:06,100 |
|
ุงูุจุฑ ู
ู .. ุงุตุบุฑ ู
ู x ุงูุงู ุญุงูุฉ ุงู x ุจุชุณุงูู |
|
|
|
350 |
|
00:29:06,100 --> 00:29:09,660 |
|
ูุชูุงูููุง automatic ุจุชุชุญูู ููู ุจุฏููุง ูุดูู ุงูุด ุงููู |
|
|
|
351 |
|
00:29:09,660 --> 00:29:13,790 |
|
ุจุฏููุงุงูุงู ุฎุฏ x ู y ูู ุงู a ู ุงู b ู ููุชุฑุถ ุงู x |
|
|
|
352 |
|
00:29:13,790 --> 00:29:16,610 |
|
ุฃุฒุฑุงุฑ ู
ู y without most of generality ุฒู ู
ุง ูููุง |
|
|
|
353 |
|
00:29:16,610 --> 00:29:22,890 |
|
ุงูุงู ุงุญุณุจูู f of x f of y ููุต ู
ูู f of x ุงููุจูุฑุฉ y |
|
|
|
354 |
|
00:29:22,890 --> 00:29:26,630 |
|
ู ุงููุจูุฑุฉ x ุงุญุณุจ f of y ููุต f of x ุงูุด ููุณุงูู ุงู |
|
|
|
355 |
|
00:29:26,630 --> 00:29:29,470 |
|
integration ุญุณุจ ุงูุชุนุฑูู f of x ุจุชุณุงูู ุงู |
|
|
|
356 |
|
00:29:29,470 --> 00:29:33,390 |
|
integration ู
ู ุงู x ู ุงู f smallุงูุฃู f of y ูู |
|
|
|
357 |
|
00:29:33,390 --> 00:29:36,930 |
|
ุนุจุงุฑุฉ ุนู ุงู integration ู
ู a ู yุ f smallุ ูุงูุตุ f |
|
|
|
358 |
|
00:29:36,930 --> 00:29:40,210 |
|
of x ุฅูุด ุจุชุณุงููุ ุงู integration ู
ู a ู x ู ู
ููุ ูู |
|
|
|
359 |
|
00:29:40,210 --> 00:29:47,290 |
|
Fุ ุฅุฐุง ูุฐุง ูุงูุต ูุฐุงุ ุงูุขู ุจุฏู ุฃุญูู ูุฐูุ ุฃุฌูุจูุงุ |
|
|
|
360 |
|
00:29:47,290 --> 00:29:52,670 |
|
ุจูุตูุฑ ุฒุงุฆุฏ ุงู integration ู
ู x ูุนูุฏ ู
ููุ ูุนูุฏ ุงู |
|
|
|
361 |
|
00:29:52,670 --> 00:29:57,640 |
|
aุ ูู Fุตุงุฑ ุนูุฏู ุงูุขู ุงู integration ู
ู X ูุนูุฏ ุงู A |
|
|
|
362 |
|
00:29:57,640 --> 00:30:00,520 |
|
ู ู
ู A ูุนูุฏ ุงู Y ุฅุฐุง ุญูุตูุฑ ูุฐุง ุนุจุงุฑุฉ ุนู ุงู |
|
|
|
363 |
|
00:30:00,520 --> 00:30:05,940 |
|
integration ู
ู X ูู
ูู ู
ู X ูุนูุฏ ุงู Y ุนุงุฑููู ูุฐู |
|
|
|
364 |
|
00:30:05,940 --> 00:30:09,960 |
|
ุงูุฎุงุตูุฉ ุฅุฐุง ุตุงุฑ ุนูุฏ ุงู F of X F of Y ูุงูุต F of X |
|
|
|
365 |
|
00:30:09,960 --> 00:30:15,760 |
|
ุจุณูุก ุงู integration ู
ู X ู Y ูู
ูู ูู F ุดูู ุงูุขู |
|
|
|
366 |
|
00:30:15,760 --> 00:30:20,100 |
|
ุฅูุด ุจุฏู ุฃุตูุ ุจุฏู ุฃุตู ุฅูู absolute value F of Y |
|
|
|
367 |
|
00:30:20,100 --> 00:30:24,830 |
|
ูุงูุต F of Xุฃุตุบุฑ ุฃู ุณูู K ูู ุงูู absolute value X |
|
|
|
368 |
|
00:30:24,830 --> 00:30:31,450 |
|
ู
ุงูุณ Y ูุนูู ุตุงุฑุช ูุจุดุช ููุดูู ููู ูุตููุง ูุฃููุฏ ุจุนุถูู
|
|
|
|
369 |
|
00:30:31,450 --> 00:30:36,450 |
|
ููู
ุงู ุงุชููุน ููู ุจุชุณูู ูุฃู ุตุงุฑ ุงู absolute value |
|
|
|
370 |
|
00:30:36,450 --> 00:30:40,250 |
|
ููุฐู ุจุณูู ุงู absolute value ููุฐู ูููุง ูุฃู ุงู |
|
|
|
371 |
|
00:30:40,250 --> 00:30:43,010 |
|
absolute value ุงู integration ุจุฎุงุตูุฉ ุงุญูุง ุนุงุฑููููุง |
|
|
|
372 |
|
00:30:43,010 --> 00:30:46,770 |
|
ุฃุตุบุฑ ุฃู ุณูู ุงู integration ูู absolute valueูุงูู |
|
|
|
373 |
|
00:30:46,770 --> 00:30:50,990 |
|
absolute value ููู F ูู ุงููุชุฑุฉ X ูY ุฃุดู
ููุง .. ูู |
|
|
|
374 |
|
00:30:50,990 --> 00:30:53,570 |
|
ู
ุด ูู ุงููุชุฑุฉ X ูY ุจุณ ุงูู absolute value ููู F ุงูู |
|
|
|
375 |
|
00:30:53,570 --> 00:30:56,170 |
|
absolute value ููู F ุฃุตุบุฑ ุฃู ุณูู K ุนูู ูู ุงููุชุฑุฉ |
|
|
|
376 |
|
00:30:56,170 --> 00:31:01,030 |
|
ุงููุจูุฑุฉ ุงููู ูู A ูB ูุฃููุฏ ุจุฑุถู ูุชููู ุฃุตุบุฑ ุฃู ุณูู |
|
|
|
377 |
|
00:31:01,030 --> 00:31:05,670 |
|
K ุนูู ุงููุชุฑุฉ ุงูุตุบูุฑุฉ ูุตุงุฑ ุนูุฏู ุฃุตุบุฑ ุฃู ุณูู K ูู |
|
|
|
378 |
|
00:31:05,670 --> 00:31:07,890 |
|
ู
ููุ ูู ุงู integration ู
ู X ูุนูุฏ Y ุงู integration |
|
|
|
379 |
|
00:31:07,890 --> 00:31:13,080 |
|
ู
ู X ูุนูุฏ Y ูู ุฅูุด ุจุณุงููุ ุงููู ูู Y minus Xุงูู |
|
|
|
380 |
|
00:31:13,080 --> 00:31:19,400 |
|
integration ูุนูู ุงู integration ูู DT ู
ู X ูู DT |
|
|
|
381 |
|
00:31:19,400 --> 00:31:28,660 |
|
ุงู integration ูู DT ู
ู X ุนูุฏ Y ุงูุด ุจูุณุงูู Y minus |
|
|
|
382 |
|
00:31:28,660 --> 00:31:36,240 |
|
X Y minus X ููุฐุง ุตุงุฑ Y minus X ู ุงููู ุฌูุง ุฃุตุบุฑ |
|
|
|
383 |
|
00:31:36,240 --> 00:31:40,790 |
|
ุจูุณุงูู Kุงูุงู ูุฐุง ุนูู ุฎุทูุชูู ุณููุงุช ุจุชุตูุฑ ุงู ุงูุชูุง |
|
|
|
384 |
|
00:31:40,790 --> 00:31:44,370 |
|
ูุงูู
ููุด ุจุญูู ู
ู X ูุนูุฏ Y ุงู integration ูู F ูุฏู |
|
|
|
385 |
|
00:31:44,370 --> 00:31:47,850 |
|
ุฃุตุบุฑ ุฃู ุณุงูู ุงููู ูู ุงู integration ู
ู X ูุนูุฏ Y |
|
|
|
386 |
|
00:31:47,850 --> 00:31:55,370 |
|
ูุฐู ุจุฏูุฉ K ููู DT ููุฐุง ุจุณุงูู K ุจุฑุฉ ูู Y minus X |
|
|
|
387 |
|
00:31:55,370 --> 00:31:59,230 |
|
ุงููู ูู ุฃููุฏ ุญูุตูุฑ ุนูุฏ ุงู absolute value ูุฐู ุฃุตุบุฑ |
|
|
|
388 |
|
00:31:59,230 --> 00:32:03,770 |
|
ุฃู ุณุงูู K ูู ุงู absolute value Y minus Xุงูุงู ูุฐู |
|
|
|
389 |
|
00:32:03,770 --> 00:32:07,570 |
|
ุงู Xุงุช ุงูุฃุตุบุฑ ู
ู ู
ููุ ู
ู Y ููู ุฒู ู
ุง ุงูุชูุง ุนุงุฑููู |
|
|
|
390 |
|
00:32:07,570 --> 00:32:11,150 |
|
ุญุงูุฉ ุงู X ุจุชุณุงูู Y is trivial ูุฃู ูู
ุง ุชููู X |
|
|
|
391 |
|
00:32:11,150 --> 00:32:14,450 |
|
ุจุชุณุงูู Y ูุฐุง ุณูุฑ ู ูู
ุง ุชููู X ุจุชุณุงูู Y ูุฐุง ุณูุฑ ุฅุฐุง |
|
|
|
392 |
|
00:32:14,450 --> 00:32:18,610 |
|
ุงู inequality ูุฐู ุตุญูุญุฉ ุฏุงุฆู
ุง ุฅุฐุง ุงูุฃู ุตุงุฑ ุนูุฏู |
|
|
|
393 |
|
00:32:18,610 --> 00:32:25,590 |
|
ูุฐู ุงู inequality staris true for all x ู y |
|
|
|
394 |
|
00:32:25,590 --> 00:32:30,390 |
|
limiting a ู b ูุฃูู ูููุง ุงู x ุฃุตุบุฑ ู
ู y ุงู y ุฃุตุบุฑ |
|
|
|
395 |
|
00:32:30,390 --> 00:32:33,990 |
|
ู
ู x ุฃููุฏ similarly ู ุจููุณ ุงูุฃุณููุจ ุฃู ุญุชู without |
|
|
|
396 |
|
00:32:33,990 --> 00:32:38,170 |
|
loss of generality ูุนูู ุจุฏูู ู
ุง ูููุฏ ุฃู ุฅุดู ู
ู |
|
|
|
397 |
|
00:32:38,170 --> 00:32:44,530 |
|
ุงูุชุนู
ูู
ุจููุชุฑุถ ุฃู x ุฃุตุบุฑ ู
ู y ุตุงุฑ |
|
|
|
398 |
|
00:32:44,530 --> 00:32:53,230 |
|
ุนูุฏู ูุง ุฌู
ุงุนุฉุงูุงู F ู
ุณุชู
ุฑ ุนูู A ูB ูุฃู F ุจูุตุจุญ |
|
|
|
399 |
|
00:32:53,230 --> 00:33:02,750 |
|
ุนู
ููุฉ Lipschitz ุงููู ูู ุงูุขู ุถุงู ุนูู ุฃุซุจุช ุฃู ุงูู F |
|
|
|
400 |
|
00:33:02,750 --> 00:33:11,100 |
|
ู
ุณุชุฎุฏู
ูุฒู ู
ุง ููุช ุจุฏุฃ ุฃุซุจุช ุฃู ุงูู Limitููู F of C |
|
|
|
401 |
|
00:33:11,100 --> 00:33:17,800 |
|
ุฒุงุฆุฏ H ููุต F of C ุนูู H ูู
ุง H ุชุฑูุญ ููุตูุฑ ุจุณุงูุฉ F |
|
|
|
402 |
|
00:33:17,800 --> 00:33:23,480 |
|
small of C ุฃู ุฃุซุจุช ููู
ุงููุฑู ุจูู ูุฐููุชูู ุฃุตุบุฑ ู
ู |
|
|
|
403 |
|
00:33:23,480 --> 00:33:28,880 |
|
ุฅุจุณููู ููุฐุง ุฒู ู
ุง ูููุง ูู ุงููู ููู
ุซู F' of C ุฏู |
|
|
|
404 |
|
00:33:28,880 --> 00:33:34,160 |
|
ูุดูู ููู ุทูุจ ุงูุตูุงุฉ ุนูู ุงููุจู ุตูุงุฉ ูุงูุณูุงู
ุนููู |
|
|
|
405 |
|
00:33:37,390 --> 00:33:42,130 |
|
ุฎููููุง ูุฌู ุนูุฏ .. ุฃููุฉ ููุฌู ุงูุขู ุงูุจุฑูุงู ูุชูุงููู |
|
|
|
406 |
|
00:33:42,130 --> 00:33:49,730 |
|
ุจุฑุถู ุณูู ูููุฑุชู ุณููุฉ ุดูููุง ููู ุนูุฏู ููุชุฑุถ ุงูุขู |
|
|
|
407 |
|
00:33:49,730 --> 00:33:53,550 |
|
suppose that f is continuous at c limiting a ูb |
|
|
|
408 |
|
00:33:53,550 --> 00:33:58,790 |
|
ู
ุฏุงู
continuous ุฅุฐู limit |
|
|
|
409 |
|
00:34:01,700 --> 00:34:08,460 |
|
F of X as X ุจุชุฑูุญ ููู C ุจุณุงูู F of C ู
ุธุจูุท ููุง ูุฃุ |
|
|
|
410 |
|
00:34:08,460 --> 00:34:12,300 |
|
ุฃููุฏ ู
ุธุจูุท ูุจูู ู
ู ุฌูุฉ ุฃุฎุฑู ุฎูููุง ููุชุจูุง ุจุตูุฑุฉ |
|
|
|
411 |
|
00:34:12,300 --> 00:34:18,660 |
|
ุซุงููุฉ X ูุงูุต C ุจุชุฑูุญ ููุณูุฑ if and only if ุงููู ูู |
|
|
|
412 |
|
00:34:18,660 --> 00:34:23,960 |
|
X ุจุชุฑูุญ ูู
ูู ููู C ุณู
ููู ูุฐู X minus C ุฅูุด ุงุณู
ูุง H |
|
|
|
413 |
|
00:34:23,960 --> 00:34:31,410 |
|
ุจุตูุฑ ูุฐู ุงููู ููู ู
ูู ูู limitF of ุงูู X minus C |
|
|
|
414 |
|
00:34:31,410 --> 00:34:36,490 |
|
ุจุชุณุงูู ุงูู H ูุนูู ุงูู X ุจุชุณุงูู H ุฒุงุฆุฏ C ุฃู C ุฒุงุฆุฏ |
|
|
|
415 |
|
00:34:36,490 --> 00:34:41,190 |
|
Hูุฃู x ุจุชุฑูุญ ููู c ุชูุงูุฆ ุฃูู .. ุงููู ูู x minus c |
|
|
|
416 |
|
00:34:41,190 --> 00:34:44,610 |
|
ุชุฑูุญ ููุตูุฑุ ูุนูู ุจุชูุงูุฆ H ุชุฑูุญ ูู
ูู ููุตูุฑุ ุฅูุด ุญูุซ |
|
|
|
417 |
|
00:34:44,610 --> 00:34:49,650 |
|
ูู ูุฐุงุ F of Cุ ุฅุฐุง ูุฐู ูู ุชุนุจูุฑ ุขุฎุฑ ุนู ุงู |
|
|
|
418 |
|
00:34:49,650 --> 00:34:56,250 |
|
continuity ูู F ูู
ุง ุงููู ูู ุงููู ูู ุงู F ุนูุฏ ู
ููุ |
|
|
|
419 |
|
00:34:56,250 --> 00:34:59,210 |
|
ุนูุฏ ุงู Cุ ูุนูู ูุฐู ุชุนุจูุฑ ุขุฎุฑุ ุงู continuity ูู |
|
|
|
420 |
|
00:34:59,210 --> 00:35:05,900 |
|
function ูู
ุง ุนูุฏ ุงูููุทุฉ ุงููู ูู Cูุฐู ุงูุขู ุดู ุจุฏู |
|
|
|
421 |
|
00:35:05,900 --> 00:35:09,520 |
|
ุงุณุชุฎุฏู
ูุง ูููุตูู ุงููู ุจุฏููุง ูุฃู ู
ุงุฏุงู
F is |
|
|
|
422 |
|
00:35:09,520 --> 00:35:12,600 |
|
continuous ุฏู ูุฐู ู
ุชุญููุฉ ูููุง ู
ุงุฏุงู
F is |
|
|
|
423 |
|
00:35:12,600 --> 00:35:15,480 |
|
continuous ุนู C ุฏู ูุฐู ู
ุชุญููุฉ ูู
ุงุฏุงู
ูุฐู ู
ุชุญููุฉ |
|
|
|
424 |
|
00:35:15,480 --> 00:35:18,720 |
|
ุงุฐุง by epsilon delta definition for every epsilon |
|
|
|
425 |
|
00:35:18,720 --> 00:35:22,880 |
|
ุฃูุจุฑ ู
ู 0 there exists delta ุฃูุจุฑ ู
ู 0 such that |
|
|
|
426 |
|
00:35:22,880 --> 00:35:28,950 |
|
ูู
ุง ูููู ุงู absolute value ูู H ุฃุตุบุฑ ู
ู Deltaู |
|
|
|
427 |
|
00:35:28,950 --> 00:35:32,230 |
|
ุทุจุนุง ุงูุง ููู ุจุดุชุบู ูู ุงูู
ูุทูุฉ ุงููุง ุชููู C ุฒุงุฆุฏ H |
|
|
|
428 |
|
00:35:32,230 --> 00:35:36,370 |
|
ููู ู
ุง ูุฃ ูู ุงููุชุฑุฉ ุชุจุนุช ู
ู A ูุนูุฏ ู
ูู ูุนูุฏ B ูุนูู |
|
|
|
429 |
|
00:35:36,370 --> 00:35:41,230 |
|
ุงุฎุชุฑุช ุงู H ุตุบูุฑุฉ ููุงูุฉ ุจุญูุซ ุงูู C ุฒุงุฆุฏ H ุงุถูู ููู |
|
|
|
430 |
|
00:35:41,230 --> 00:35:45,090 |
|
ุฌุงุนุฏ ูู ุงููุชุฑุฉ ู
ู A ู B ูุนูุฏู ูุฅู ูุงู ุงููุชุฑุฉ A ููู |
|
|
|
431 |
|
00:35:45,090 --> 00:35:49,330 |
|
Bูุงููุชุฑุฉ ูุฐู ุงููู ูู I C ุนูุฏู ู
ุซูุง ูู ุฏุงุฎููุง ุงููู |
|
|
|
432 |
|
00:35:49,330 --> 00:35:55,690 |
|
ูู ุจุชุฎุชุงุฑ H ุฏูุชุชูุง ุตุบูุฑุฉ ููุงูุฉ ุฃูู ุถุงู C ุฒุงุฆุฏ H |
|
|
|
433 |
|
00:35:55,690 --> 00:36:01,050 |
|
ู
ูุฌูุฏุฉ ูู ุงููุชุฑุฉ ู
ู A ูุนูุฏ B ุนุดุงู ุชุตูุฑ ู
ุนุฑูุฉ ูุฅู |
|
|
|
434 |
|
00:36:01,050 --> 00:36:05,330 |
|
ุฏุงูุชู ุฃูุง ุนุดุงู ุชููู ู
ุนุฑูุฉ ุนูุฏ C ุฒุงุฆุฏ H ูุงุฒู
ุชููู C |
|
|
|
435 |
|
00:36:05,330 --> 00:36:08,490 |
|
ุฒุงุฆุฏ H ูู ุฏุงุฎู ุงูู
ูุทูุฉ ูุฐู ูุฅู ุฏุงูุชู ู
ุนุฑูุฉ ุนูู |
|
|
|
436 |
|
00:36:08,490 --> 00:36:11,770 |
|
ุงููุชุฑุฉ ู
ู A ูุนูุฏ B ุนุดุงู ููู ุฃููููุง C ุฒุงุฆุฏ H ูุงุฒู
|
|
|
|
437 |
|
00:36:11,770 --> 00:36:16,630 |
|
ุชููู ูู ุงููุชุฑุฉ ุฒุงุฆุฏ Bุฅุฐู ุงุฎุชูุงุฑ ุงูู Delta ูุนุชู
ุฏ |
|
|
|
438 |
|
00:36:16,630 --> 00:36:20,210 |
|
ุนูู ุงู limit ููุนุชู
ุฏ ุนูู ุงูู ุฃุถู
ู ุงู C ุฒู ุฏุงุดุฑ ุถุงู |
|
|
|
439 |
|
00:36:20,210 --> 00:36:24,510 |
|
ูููู ูู ุงููุชุฑุฉ A ูB ุฅุฐุง ุชุนุฑูู ุงู continuity ุจูููู |
|
|
|
440 |
|
00:36:25,950 --> 00:36:27,530 |
|
ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
|
|
|
|
441 |
|
00:36:27,530 --> 00:36:28,970 |
|
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ |
|
|
|
442 |
|
00:36:28,970 --> 00:36:29,950 |
|
ููุฌุฏ ุฏูุชุง ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y |
|
|
|
443 |
|
00:36:29,950 --> 00:36:30,650 |
|
ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
|
|
|
|
444 |
|
00:36:30,650 --> 00:36:32,710 |
|
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง |
|
|
|
445 |
|
00:36:32,710 --> 00:36:35,050 |
|
ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
|
|
|
|
446 |
|
00:36:35,050 --> 00:36:41,110 |
|
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง |
|
|
|
447 |
|
00:36:41,110 --> 00:36:49,400 |
|
ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃุทูุจุ ุงูุขู |
|
|
|
448 |
|
00:36:49,400 --> 00:36:54,020 |
|
ููู ุฃูุง ุจุฏุฃ ุฃุฑูุญุ ุจุฏุฃ ุฃุซุจุช ููู
ุฅูู ูุฐุง ูุงูุต ูุฐุง |
|
|
|
449 |
|
00:36:54,020 --> 00:36:58,240 |
|
ุฃุตุบุฑ ู
ู epsilon ุนุดุงู ุฐูู ุฏุนูุง ูุญุณุจ F of C ุฒุงุฏ H |
|
|
|
450 |
|
00:36:58,240 --> 00:37:03,060 |
|
ูุงูุต F of C ุนูู H ูุงูุต ู
ูู ูุง ุฌู
ุงุนุฉุ F of C ููุณุงูู |
|
|
|
451 |
|
00:37:03,060 --> 00:37:13,170 |
|
ุงูุขู F of C ุฒุงุฏ H ูุงูุต F of Cุฎุฏ ุงูุขู ุงููู ูู ุงูู H |
|
|
|
452 |
|
00:37:13,170 --> 00:37:16,850 |
|
ูุฏุนู
ุงูู
ุดุชุฑู ุจุงูู C ุงููุงุญุฏุฉ ููู H ู
ุงุดู F of C ุฒู |
|
|
|
453 |
|
00:37:16,850 --> 00:37:21,910 |
|
ุฏุชุด ุชุนุฑูููุง ู
ู A ูุนูุฏ C ุฒู ุฏุชุด ูู F of X DX ูููุงูุง |
|
|
|
454 |
|
00:37:21,910 --> 00:37:26,090 |
|
ูุฐู ุงููู ู
ุงุนุทููุงูุง ู
ู ุฑุฃุณ ุงูุฏูุฑ ูุงูุต ู
ุงุดู ุชุนุฑูู F |
|
|
|
455 |
|
00:37:26,090 --> 00:37:30,230 |
|
of C Capital of C ูู ุงู integration ู
ู A ูุนูุฏ C ุฒู |
|
|
|
456 |
|
00:37:30,230 --> 00:37:35,630 |
|
ุฏุชุด ุงูุขู ุฏู ู
ุด C ุฒู ุฏุชุด ู
ู A ูุนูุฏ ู
ูู ูุนูุฏ ุงูู C |
|
|
|
457 |
|
00:37:35,630 --> 00:37:40,110 |
|
ูุงุญุฏุฉ ููู H ู
ู A ูุนูุฏ ุงูู C ุงููู ูู F of C ุฒู ุฏุชุด |
|
|
|
458 |
|
00:37:40,110 --> 00:37:46,360 |
|
ูููุงููู ุงููุงุญุฏุฉ ุงูู H ุงููู ุจุฑุง ุงู F of C ูููุง ู
ู A |
|
|
|
459 |
|
00:37:46,360 --> 00:37:51,780 |
|
ู C ูุงุญุฏุฉ ุงูู H ูุงูุต ู
ูู F of C ูุฐุง ู
ู ุงูุชุนุฑูู |
|
|
|
460 |
|
00:37:51,780 --> 00:37:55,460 |
|
ู
ุจุงุดุฑุฉ ูุฅูู ุงุญูุง ุนุฑููุง ุงู F capital of X ูู ุนุจุงุฑุฉ |
|
|
|
461 |
|
00:37:55,460 --> 00:38:01,820 |
|
ุนู integration ู
ู A ูุนูุฏ X F of T DT ูุฃู ูู
ุง ูููู |
|
|
|
462 |
|
00:38:01,820 --> 00:38:06,120 |
|
F of C ุฒู ุฏุชุด ุจูุญุทูุง ุฏู C ุฒู ุฏุชุด C ุจูุญุทูุง ุฏู ุนูุงุด |
|
|
|
463 |
|
00:38:06,120 --> 00:38:13,460 |
|
C ููู C ุฒู ุฏุชุด ููู ุงูู C ููู ุณุงููุฉุงูุงู ูุฐู ู
ู .. |
|
|
|
464 |
|
00:38:13,460 --> 00:38:18,780 |
|
ู
ู .. ู
ู ุนูุฏ A ูู C ุฒู ุฏู ุงุชุด ููุฐู ู
ู A ูุนูุฏ B |
|
|
|
465 |
|
00:38:18,780 --> 00:38:23,980 |
|
ูุนูุฏ C ูุฏููุฉ ู
ุน ุจุนุถ ูุงู ูุฏููุฉ ุงูุชูุชูู ุจุฏู ุงุญุณุจูุง |
|
|
|
466 |
|
00:38:23,980 --> 00:38:28,120 |
|
ู
ุน ุจุนุถ ุญุณุจูุง ุฒููู ูุจู ู ุดููุฉ ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุนูู |
|
|
|
467 |
|
00:38:28,120 --> 00:38:32,400 |
|
ุงุชุด ุฎุฏูุง ุนุงู
ู ู
ุดุชุฑู ุฎุฏูุง ูุงุญุฏ ุนูู ุงุชุด ุนุงู
ู ู
ุดุชุฑู |
|
|
|
468 |
|
00:38:32,400 --> 00:38:37,340 |
|
ุจูู ุงูุฌูุชูู ุชุตุจุญ ูุงุญุฏ ุนูู ุงุชุด ุงูุชุญ ุฌูุณ ุงู |
|
|
|
469 |
|
00:38:37,340 --> 00:38:41,660 |
|
integration ู
ู A ูุนูุฏ C ุฒู ุฏู ุงุชุดูุฃู ุจุฏู ุงููุงูุต |
|
|
|
470 |
|
00:38:41,660 --> 00:38:46,020 |
|
ุจูุตูุฑ H ุงูุชุจ ุฒุงุฆุฏ ุจุฏู ูุฐุง ุงููุงูุต ุจููุชุจ ุฒุงุฆุฏ ูุฃู |
|
|
|
471 |
|
00:38:46,020 --> 00:38:52,460 |
|
ูุชูููุจ ู
ูู ุงูุขู ู
ู C ูุนูุฏ ุงู A ูุธุจุท ุงููู ูู ูููุณูุง |
|
|
|
472 |
|
00:38:52,460 --> 00:38:58,020 |
|
F F ูุฐู ุงูุขู ู
ู C ูุนูุฏ ุงู A ูู
ู A ูุนูุฏ ุงู C ุฒุงุฏ H |
|
|
|
473 |
|
00:38:58,020 --> 00:39:02,000 |
|
ุฅุฐุง ุฃููุฏ ูุฐู ูููุง ุนูู ุจุนุถ ูุตูุฑ ุงู integration ู
ู C |
|
|
|
474 |
|
00:39:02,000 --> 00:39:08,930 |
|
ู C ุฒุงุฏ H ูู F ูู ูุงุญุฏ ุนูู H ุฅุฐุง ูุฐู ูููุงุจุณ |
|
|
|
475 |
|
00:39:08,930 --> 00:39:11,350 |
|
ุงุจุฏูุชูุง ุจููู
ุชูุง ุงููู ูููุง ุนููุง ุงููู ูู ุงู |
|
|
|
476 |
|
00:39:11,350 --> 00:39:15,810 |
|
integration ู
ู C ู C ุฒู H ุงููู ุงูุฌุฏุชู ุจุฏู ูุฐุง ููู |
|
|
|
477 |
|
00:39:15,810 --> 00:39:23,190 |
|
ู
ู ูุงุญุฏ ุงู H ู F of X DX ูุงูุต ุงูุงู ูุฐุง ูุฐุง ุงููู ูู |
|
|
|
478 |
|
00:39:23,190 --> 00:39:28,090 |
|
F of C ุดูู ููู ุจุฏู ุงุนู
ููุง ุนูู ุฌูุฉ ุชุนุงูู ุงุญุณุจ ุงู |
|
|
|
479 |
|
00:39:28,090 --> 00:39:33,660 |
|
integrationุงูู integration ู
ู C ูู C ุฒุงุฆุฏ H ููู |
|
|
|
480 |
|
00:39:33,660 --> 00:39:38,180 |
|
constant ูุงุญุฏ ุจุนุฏ ุฃุฐููู
DX ุฅูุด ููุณุงูู ุงู |
|
|
|
481 |
|
00:39:38,180 --> 00:39:44,140 |
|
integration ูุฏุง ุนุจุงุฑุฉ ุนู C ุฒุงุฆุฏ H ูุงูุต C ูููุณุงูู |
|
|
|
482 |
|
00:39:44,140 --> 00:39:48,760 |
|
ูุฏุงุด H ูุนูู ุจู
ุนูู ุขุฎุฑ ูู ุฌูุชูุง ุงูุฌุฏ ุชุนุฑููุง ููุด |
|
|
|
483 |
|
00:39:48,760 --> 00:39:52,640 |
|
ุจุนู
ู ููู ูุงุญุฏ ุนูู H ูู ุงู integration ู
ู C ูู C |
|
|
|
484 |
|
00:39:52,640 --> 00:39:58,720 |
|
ุฒุงูุฏ H ุงููู ูู ุงููุงุญุฏ ููุณุงูู ุฅูุดุ ูุงุญุฏุ ู
ุธุจูุท ููุง |
|
|
|
485 |
|
00:39:58,720 --> 00:40:03,450 |
|
ูุฃุุฃููุฏ ู
ุธุจูุท ู
ุงุดู ูุงูู
ู ูุงุฏู ูุณู
ุช ุงูุฏููุง ุชุงูู |
|
|
|
486 |
|
00:40:03,450 --> 00:40:10,570 |
|
ุนูุดุงู ุชุทูุน ุญุฏ ูุงุญุฏ ุงูุงู ุตุงุฑ ุนูุฏู ูู ุถุฑุจุช ูุงุฏู |
|
|
|
487 |
|
00:40:11,920 --> 00:40:18,320 |
|
ุงูุฌูุชูู ูู F of C ูู F of C ุจูุณุงูู ุงูุดุ F of C ุตุงุฑ |
|
|
|
488 |
|
00:40:18,320 --> 00:40:21,260 |
|
ุงูุงู F of C ุจูุณุงูู ูุฐู ุจุฏู ุฃุดูู F of C ุชุจุนุชู ู ุฃุญุท |
|
|
|
489 |
|
00:40:21,260 --> 00:40:25,360 |
|
ู
ูุงููุง ูุฐู ุงูุตูุฑุฉ ููุด ุญุทูุชูุงุ ุนุดุงู ูุฐู ุฃูุฏุฑ ุฃุชุญู
ู |
|
|
|
490 |
|
00:40:25,360 --> 00:40:30,380 |
|
ู
ุญุง ู
ุญุง ุฏู ุงููู ู
ูุฌูุฏุฉ ู
ู ุงูุฃุตู ุดูู ููู ุงูุงู ุดููุช |
|
|
|
491 |
|
00:40:30,380 --> 00:40:33,320 |
|
ุงู F of C ู ุญุทูุช ููู
ุชูุง ุงููู ุฃูุฌุฏูุงูุง ุงููู ูู |
|
|
|
492 |
|
00:40:33,320 --> 00:40:37,660 |
|
ุนุจุงุฑุฉ ุนู F of C ุนูู H ูู ุงู integration ู
ู C ูC ุฒู |
|
|
|
493 |
|
00:40:37,660 --> 00:40:42,480 |
|
H ูู
ูุ ูููุงุญุฏู
ุงุดู ูุงู ุตุงุฑ ูุฐุง ุงู integration ู ูุฐุง |
|
|
|
494 |
|
00:40:42,480 --> 00:40:45,920 |
|
ุงู integration ููุณ ุงูุงุดู ูุงุญุฏ ู F of X ู ูุงุญุฏ ู |
|
|
|
495 |
|
00:40:45,920 --> 00:40:50,380 |
|
ูุงุญุฏ ูุนูู ุจูุฏุฑ ุงุดุชุบู ูููู
ุจูุตูุฑ ุนูุฏู ุฎุฏ ุงู ูุงุญุฏ ุงู |
|
|
|
496 |
|
00:40:50,380 --> 00:40:53,960 |
|
H ุจุฑุง ุนู ุงูู
ุดุชุฑู ุฎุงูุต ุจูุธู ุนูุฏู ุงู integration ู
ู |
|
|
|
497 |
|
00:40:53,960 --> 00:40:58,720 |
|
C ู C ุฒุงุฏ H ูุฐุง ู
ูู ุงูุด ุงุณู
ู F of X ู ูุฐุง F of C |
|
|
|
498 |
|
00:40:58,720 --> 00:41:01,580 |
|
ุฏุฎูุชูุง ุฌูุง ู ู
ุถุฑุจุชูุง ุจุงููุงุญุฏ ุตุงุฑุช ู
ูู ุจูุฏุฑ ุงุนูู ู |
|
|
|
499 |
|
00:41:01,580 --> 00:41:06,520 |
|
ุซุงุจุช ุงููู ูู ูุงูุต F of C ููู ุงุด ู
ุงูู DX ูุฐุง ุงูููุงู
|
|
|
|
500 |
|
00:41:06,520 --> 00:41:14,340 |
|
ููู ู
ู C ู C ุฒุงุฏ Hุตุงุฑ ุนูุฏู ุงูุขู ุงูุตูุฑุฉ ูุฐู ูููุง ุงู |
|
|
|
501 |
|
00:41:14,340 --> 00:41:20,840 |
|
ู ูุฐู ุงูุตูุฑุฉ ุงุตูุง ุงูุง ุจุฏูุงูุง ุงูุงู ูุงุญุฏ ุนูู H ุฃุฒุฑุน |
|
|
|
502 |
|
00:41:20,840 --> 00:41:23,760 |
|
ุฃู ุณุงูู ููููุง absolute value of integration ุฃุฒุฑุน |
|
|
|
503 |
|
00:41:23,760 --> 00:41:28,740 |
|
ุฃู ุณุงูู ุงู integration ูู absolute value DX ุงูุงู |
|
|
|
504 |
|
00:41:28,740 --> 00:41:35,320 |
|
ูุฐุง ุงูู
ูุฏุงุฑ F of X ูุงูุต F of Cูููุง ุนููุง ู
ู ุฑุงุณ |
|
|
|
505 |
|
00:41:35,320 --> 00:41:40,420 |
|
ุงูุฏูุฑ ุฃู F of X ูุงูุต F of C ุงููู ูู ุฃุตุบุฑ ู
ู |
|
|
|
506 |
|
00:41:40,420 --> 00:41:44,420 |
|
Epsilon ูุฃู limit F of X ูู
ุง X ุชุฑูุญ ูููC ุฃุดูุฑ |
|
|
|
507 |
|
00:41:44,420 --> 00:41:50,240 |
|
ู
ุณุงูู F of C ูุฃู X ุงููN ูุฐู ูู ุงููุชุฑุฉ ู
ู C ููC |
|
|
|
508 |
|
00:41:50,240 --> 00:41:56,100 |
|
ุฒุงุฆุฏุงุชุด ูุนูู ุจุชุณู
ุญ ูู ุฃู ุฃููู limit F of X as X |
|
|
|
509 |
|
00:41:56,100 --> 00:42:01,220 |
|
ุจุชุฑูุญ ูููC ุจุชุณุงูู F of C ูู
ุง X ุจุชุฑูุญ ูููC ุงููู ูู |
|
|
|
510 |
|
00:42:01,220 --> 00:42:05,980 |
|
ุฃุฏุด ุจุชุฑูุญ ูู
ููููุณูุฑ ู
ุถู ูู ููุณ ุงูู
ูุทูุฉ ูุฃู ูููุง |
|
|
|
511 |
|
00:42:05,980 --> 00:42:10,300 |
|
ูุจู ุดููุฉ x minus c ุจุชุฑูุญ ููุณูุฑ ุฅุฐุง ูููุท ุฅุฐุง ุงููู |
|
|
|
512 |
|
00:42:10,300 --> 00:42:13,880 |
|
ูู ุงู H ุงููู ุจุชุฑูุญ ููุณูุฑ ุงููู ูู ุนุจุงุฑุฉ ุนู x minus |
|
|
|
513 |
|
00:42:13,880 --> 00:42:18,260 |
|
c ูุนูู ูุฐุง ุงูู
ูุฏุงุฑ ุจุงู continuity ูู F ุนูุฏ ุงู C |
|
|
|
514 |
|
00:42:18,260 --> 00:42:21,980 |
|
ุจุฑุถู ุจููู ุฃุตุบุฑ ู
ู ุฅุจุณููู ุนูู ุงู absolute value |
|
|
|
515 |
|
00:42:21,980 --> 00:42:25,160 |
|
ูู
ูู ูู H ูู ุงู integration ู
ู C ูC ุฒุงุฏ H |
|
|
|
516 |
|
00:42:27,990 --> 00:42:33,050 |
|
ูุงุถุญุฉ ุงูุ ุงููุฏ ูุฐุง ุงูุงู ุงูุด ููู
ุชูุ C ุฒู ุฏุงุด ูุงูุต C |
|
|
|
517 |
|
00:42:33,050 --> 00:42:36,050 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู H ูุจุตูุฑ Y ุนุจุงุฑุฉ ุนู absolute value |
|
|
|
518 |
|
00:42:36,050 --> 00:42:42,430 |
|
of H ูู mean ููู ุงููู ูู ุงููH ุงููH ุงููู ูู ุงููH |
|
|
|
519 |
|
00:42:42,430 --> 00:42:42,470 |
|
ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููH ุงููู ูู ุงููH ุงููู |
|
|
|
520 |
|
00:42:42,470 --> 00:42:42,490 |
|
ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH |
|
|
|
521 |
|
00:42:42,490 --> 00:42:42,490 |
|
ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู |
|
|
|
522 |
|
00:42:42,490 --> 00:42:42,570 |
|
ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู |
|
|
|
523 |
|
00:42:42,570 --> 00:42:42,710 |
|
ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH |
|
|
|
524 |
|
00:42:42,710 --> 00:42:42,710 |
|
ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู |
|
|
|
525 |
|
00:42:42,710 --> 00:42:46,490 |
|
ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH |
|
|
|
526 |
|
00:42:46,490 --> 00:42:52,450 |
|
ุงููู ูู ุงููุทูุจ .. ุจูุตูุฑ ุนูุฏูุง .. ุจูุตูุฑ ุฃูุจุฑ ู
ู 0 |
|
|
|
527 |
|
00:42:52,450 --> 00:42:55,790 |
|
ุฃุณู ูุฐู ุจุญุงุฌุฉ ุฏู ุจุชุทูุน ุฃูุด ุจุชุณุงูู .. ุจูุณุงูู ุจุณุงูู |
|
|
|
528 |
|
00:42:55,790 --> 00:42:58,150 |
|
.. ุจูุฏุฑ ุฃุฎุชุงุฑ H positiveุ ุฃู ุจูุฏุฑ ุฃุฎุชุงุฑ H positive |
|
|
|
529 |
|
00:42:58,150 --> 00:43:03,130 |
|
ุทูุจ ู ูู ุญุชู ุงู H negative ุจุชููู similarly ุจุณ |
|
|
|
530 |
|
00:43:03,130 --> 00:43:06,950 |
|
ุจุชููู .. ูู ุงูุจุฑูุงู
ุจูุตูุฑ .. ุจุชุฑุชุจ ุนูู ุฃูู ุงููู ูู |
|
|
|
531 |
|
00:43:06,950 --> 00:43:12,890 |
|
ุงู .. ุงู C ุฒุงุฆุฏ H ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุงู C without loss |
|
|
|
532 |
|
00:43:12,890 --> 00:43:17,250 |
|
of generality ุงู H ุฃูุจุฑ ู
ู 0ุจุตูุฑ ุนูุฏู ูุงู ูุฐุง |
|
|
|
533 |
|
00:43:17,250 --> 00:43:24,750 |
|
ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุฅุจุณููู ุฅูุด ูุนูู ุงููู ุนู
ููุง |
|
|
|
534 |
|
00:43:24,750 --> 00:43:28,290 |
|
ุงููู ุนู
ููุง ููู ุฅุจุณููู ุฃูุจุฑ ู
ู Zero ูุงุฌุฆูุง Delta |
|
|
|
535 |
|
00:43:28,290 --> 00:43:33,350 |
|
ุจุญูุซ ุฃูู ูู
ุง H absolute value ุฃุตุบุฑ ู
ู Deltaูุนุทููู |
|
|
|
536 |
|
00:43:33,350 --> 00:43:39,330 |
|
ุฃู ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู ู
ููุ ู
ู ุฅุจุณููู ูุนูู ุตุงุฑ |
|
|
|
537 |
|
00:43:39,330 --> 00:43:43,450 |
|
ุนูุฏู limit ูุฐุง ุงูู
ูุฏุงุฑ ุจุณูุก f of c ู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
538 |
|
00:43:43,450 --> 00:43:46,290 |
|
ุงููู ูู f prime of c ูุนูู ุงุนุชุจุชูุง f prime of c |
|
|
|
539 |
|
00:43:46,290 --> 00:43:56,410 |
|
ุจุณูุก f small of c ููู ุงูู
ุทููุจ ุทูุจ ููุฌู ุงูุขู ูุงููู |
|
|
|
540 |
|
00:43:56,410 --> 00:44:02,210 |
|
ูู ุงู corollaryุจุฑุถู ุงูู ุงููุธุฑูุฉ ุงููู ุฌุงู
ูุฉ ุจุดููุฉ |
|
|
|
541 |
|
00:44:02,210 --> 00:44:10,790 |
|
ุงู ุฎููููู ูููู ุชูุฎูุตูุง ุณุฑูุน ูุงุณุชุฐูุฑูุง ุณุฑูุนูุง ุงููู |
|
|
|
542 |
|
00:44:10,790 --> 00:44:17,830 |
|
ูู ุงูุฃููู ูุงูุช ุชูุงู
ู ูุงูุชูุงุถู ูุฐู ุชูุงุถู ุงูุชูุงู
ู |
|
|
|
543 |
|
00:44:17,830 --> 00:44:23,470 |
|
ุทุจุนุง ูู ูุงุญุฏุฉ ุชุญุช ุดุฑูุทูุง ุงูู
ุฐููุฑุฉ ูู ูุธุฑูุชูุง |
|
|
|
544 |
|
00:44:25,860 --> 00:44:30,340 |
|
ูุฌู ูุดูู ูุง ุฌู
ุงุนุฉ ุงู corollary let f ู
ู a ู b ูุนูุฏ |
|
|
|
545 |
|
00:44:30,340 --> 00:44:34,940 |
|
r ุจู continuous on a ู b and let f of x ุจู ุณูู ุงู |
|
|
|
546 |
|
00:44:34,940 --> 00:44:37,720 |
|
integration ู
ู ุงู a ู ุงู x ู ุงู f ุฅุฐุง ูุฑุถ f |
|
|
|
547 |
|
00:44:37,720 --> 00:44:40,160 |
|
continuous ุงู f ุงุณู
ู ุงู continuous ุนูู ูู ุงููุชุฑุฉ |
|
|
|
548 |
|
00:44:40,160 --> 00:44:44,980 |
|
ุฑูุญ ุญุงูู ุทุจุนุง ุฃุนุทู ุฅุดู ุฃูุจุฑ ู
ู ุงููุธุฑูุฉ ุงููู ูุงุชุช |
|
|
|
549 |
|
00:44:44,980 --> 00:44:47,640 |
|
ูุนูู ูุฑุถ ุงู continuity ุนูู ุงู a ู ุงู b ู
ุง ุฒู
|
|
|
|
550 |
|
00:44:47,640 --> 00:44:49,840 |
|
continuous ุฅุฐุง ู
ุง ุจุชุฒู
ุด ุชููู integrable ูุฅู ู ุฃูุง |
|
|
|
551 |
|
00:44:49,840 --> 00:44:52,340 |
|
continuous function ุฒู ู
ุง ูููุง ุฅูุด ู
ุง ููุง is |
|
|
|
552 |
|
00:44:52,340 --> 00:44:58,190 |
|
integrable ุฅุฐุง ู
ุฏุงู
ุฉ f continuousุงูุงู ุจูุตูุฑ ูุฐู ุงู |
|
|
|
553 |
|
00:44:58,190 --> 00:45:01,810 |
|
integration ุงููู ูู ู
ู a ูุนูุฏ ุงู x ููุณูุง |
|
|
|
554 |
|
00:45:01,810 --> 00:45:06,030 |
|
continuous ูุฃ ู
ุด continuous ุจุณ is differentiable |
|
|
|
555 |
|
00:45:06,030 --> 00:45:09,270 |
|
ูุนูู ุฃุฌู
ุงู continuous ูุนูู ูุชููู ุนูุฏู ุงู f is |
|
|
|
556 |
|
00:45:09,270 --> 00:45:13,670 |
|
differentiable ู ุงู f ุจุฑุงู
ู ูู
ูู ูู ุงู f then f is |
|
|
|
557 |
|
00:45:13,670 --> 00:45:17,730 |
|
differentiable ู
ู a ู b ุนูุฏ f ุจุฑุงู
ู ุจูุณุงูู ูุฏู ุฅุฐู |
|
|
|
558 |
|
00:45:17,730 --> 00:45:25,000 |
|
ุจุงุฎุชุตุงุฑ ู
ู a ู x ุงููู ูู fof t dt ูู ูุฑุถูุง ูุฐู |
|
|
|
559 |
|
00:45:25,000 --> 00:45:33,060 |
|
continuous ุนูู ุงู a ู ุงู b ุฅุฐุง ููู x element in a |
|
|
|
560 |
|
00:45:33,060 --> 00:45:38,080 |
|
ู ุงู b ุจูุตูุฑ f of x ุจุงูุณุงูู ูุฐุง is differentiable |
|
|
|
561 |
|
00:45:38,080 --> 00:45:45,500 |
|
ู ุงู f prime of x ูุชุณุงูู f of ุงููู ูู x ูุนูู ุจู
ุนูู |
|
|
|
562 |
|
00:45:45,500 --> 00:45:52,590 |
|
ุขุฎุฑ ุงููู ููุงููุถู ูุฐุง ุงูุชูุงู
ู ู ูุฒูู ุงูุชูุงุถู ู ูุญุท |
|
|
|
563 |
|
00:45:52,590 --> 00:46:00,830 |
|
ุงูู L ุฌูุง ูุนูู ุจู
ุนูู ุขุฎุฑ D by DX ููู integration |
|
|
|
564 |
|
00:46:00,830 --> 00:46:08,530 |
|
ู
ู A ูุนูุฏ X F of D DT ูู
ุง ุชููู F continuous ูุฐุง |
|
|
|
565 |
|
00:46:08,530 --> 00:46:14,610 |
|
ุจููู ุจ cancel ูุฐุง ุฃู ุนู
ููุฉ ุนูุณูุฉ ูููุจุชุธูููุง F of X |
|
|
|
566 |
|
00:46:14,610 --> 00:46:19,070 |
|
ูุนุฏู ุงูุฃุญูุงููุง ุฃู F of T ูุงูู T ูู ุงูู
ุชุบูุฑ ุฃู ุงูู |
|
|
|
567 |
|
00:46:19,070 --> 00:46:23,370 |
|
X ูู ุงูู
ุชุบูุฑ ูุฐู ุงููู ูู ุงูููุฑูุฉ ุงูุขู ุจุฏูุง ููู
ููุง |
|
|
|
568 |
|
00:46:23,370 --> 00:46:26,610 |
|
ุงููุธุฑูุชูู ุงููู ูุจู ุจุดููุฉ ูู ูุธุฑูุฉ ูุงุญุฏุฉ ููุฎุตู ูู |
|
|
|
569 |
|
00:46:26,610 --> 00:46:30,910 |
|
ูุธุฑูุฉ ูุงุญุฏุฉ ูุดูู ููู ุจุฏูุง ููุฎุตู ูู ูุธุฑูุฉ ูุงุญุฏุฉ |
|
|
|
570 |
|
00:46:30,910 --> 00:46:40,630 |
|
ูุนูู ุจุฏูุง ูุนูุฏ ุจุณ ุงููู ูู ุตูุงุบุฉ ุงููุธุฑูุชูู ุตููุง |
|
|
|
571 |
|
00:46:40,630 --> 00:46:44,540 |
|
ุนูู ุงููุจู ุนููู ุงูุตูุงุฉ ูุงูุณูุงู
ุงูุงู fundamental |
|
|
|
572 |
|
00:46:44,540 --> 00:46:48,580 |
|
theorem of calculus combined form ูุนูู ุงูุชูุชูู |
|
|
|
573 |
|
00:46:48,580 --> 00:46:53,790 |
|
ุงูุงู ู
ูุฌูุฏุงุช ูู ููุณ ุงููุธุฑูุฉ ุดูู ุงูุด ุจููููlet |
|
|
|
574 |
|
00:46:53,790 --> 00:46:57,610 |
|
Fcapital and Fsmall be continuous on a and b ูุฑุถ |
|
|
|
575 |
|
00:46:57,610 --> 00:47:00,710 |
|
ุฃู Fcapital ู Fsmall ุฃุดู
ุงููู
ุฅุชู ุชุงู continuous |
|
|
|
576 |
|
00:47:00,710 --> 00:47:04,670 |
|
ุนูู ุงููุชุฑุฉ a ู b ู ูุฑุถู ุฃู F of a ุจุณุงูุฉ ุณูุฑ ูุนูู |
|
|
|
577 |
|
00:47:04,670 --> 00:47:07,610 |
|
ุจุฏู ุฃุญุท ุงู initial condition F of a ุจุณุงูุฉ ุณูุฑ ุนุณู |
|
|
|
578 |
|
00:47:07,610 --> 00:47:11,070 |
|
ุฃู ูุฌู
ูู ุงูุตูุฑุฉ ู
ุงุญุทู ุนุดุงู ุณูุฑ ุจุชุทูุน F of a ูู |
|
|
|
579 |
|
00:47:11,070 --> 00:47:14,290 |
|
ุงูุฌูุงุจ then the following statements are |
|
|
|
580 |
|
00:47:14,290 --> 00:47:18,380 |
|
equivalentูุนูู ูู
ุง ุชููู ูุฐุง ุตุญูุญุฉ ูุฐุง ุตุญูุญุฉ ู ูู
ุง |
|
|
|
581 |
|
00:47:18,380 --> 00:47:22,640 |
|
ุชููู ูุฐุง ุตุญูุญุฉ ูุฐุง ุตุญูุญุฉ ููุฌู ููุฌุฒุก ุงูุฃูู ูู ูุฑุถูุง |
|
|
|
582 |
|
00:47:22,640 --> 00:47:29,160 |
|
ุฃู F prime of X ุจูุณุงูู F of X ุฅุฐุง ุญูุตูุฑ ุนูุฏู ุงู F |
|
|
|
583 |
|
00:47:29,160 --> 00:47:33,460 |
|
ูุฐู is differential ุงูู
ุงุดู ููู ู
ูุชุฑุถ ุฃู F prime of |
|
|
|
584 |
|
00:47:33,460 --> 00:47:38,620 |
|
X ุจูุณุงูู F of X ุจููู ุฅุฐุงุฅุฐุงู ูุฐู ุตุญูุญุฉุ ุฅูุด ูุนูู |
|
|
|
585 |
|
00:47:38,620 --> 00:47:43,260 |
|
ูุฐู ุตุญูุญุฉุ ูุนูู ุงู integration ู
ู ุงู AX ูู F of |
|
|
|
586 |
|
00:47:43,260 --> 00:47:48,400 |
|
ุงูุชู ูู T DTุ ูุฐู DT ูุง ุฌู
ุงุนุฉุ ุจุณ .. ุจุณ ูุฎูู ุนู |
|
|
|
587 |
|
00:47:48,400 --> 00:47:58,200 |
|
ูุฐูุ F of T DTุ ูุฐุง ููุณุงูู ู
ููุ ููุณุงูู F of Xุ |
|
|
|
588 |
|
00:47:58,200 --> 00:48:03,070 |
|
ูุงุดูุุงูุงู then the following statements are |
|
|
|
589 |
|
00:48:03,070 --> 00:48:06,950 |
|
equivalent ูุนูู ูู
ุง ุชููู ูุฐู ุตุญูุญุฉ ุจุชุนุทููุง ุฏู ุงู |
|
|
|
590 |
|
00:48:06,950 --> 00:48:11,350 |
|
ูุฑุถูุง ุงู f prime of x ุจูุณุงูู f of x ุงุฐุง ุญูููู ุนูุฏ |
|
|
|
591 |
|
00:48:11,350 --> 00:48:14,290 |
|
ุงู integration ู
ู a ู x f of t dt ุจูุณุงูู ุงูุด |
|
|
|
592 |
|
00:48:14,290 --> 00:48:20,630 |
|
ุจุงูุธุจุทุ f of x ููู ุฏู ุชุจุชูุงุ ุงูุงู ูุฑุถูุง ูุฐุง ุตุญูุญ |
|
|
|
593 |
|
00:48:20,630 --> 00:48:24,710 |
|
ุงุฐุง ุงู integration ู
ู a ู ุนูุฏ ุงู x f of t ุงููู ูู |
|
|
|
594 |
|
00:48:24,710 --> 00:48:33,010 |
|
ู
ูู ูุชุตูุฑุ f prime of tDT ูุฐู ูุจู ุจุดููุฉ ู
ู ูุธุฑูุฉ |
|
|
|
595 |
|
00:48:33,010 --> 00:48:36,470 |
|
ุงูุฃููู ูููุง ูุงู
ู ุงูุชูุงูุถ ู ููุด ุจุชุทูุน ุนูุฏู ุฌูุงุจ F |
|
|
|
596 |
|
00:48:36,470 --> 00:48:42,210 |
|
of X ูุงูุต ู
ูู F of A ูุฅู ูู ุงูุดุฑูุท ู
ุชุญููุฉ ู
ุงุดู |
|
|
|
597 |
|
00:48:42,210 --> 00:48:48,110 |
|
ุงูุขู ูุงู ูู
ุงู ู
ุฑุฉ ูุง ุฌู
ุงุนุฉ ูุฑุถูุง ุฅู ูุฐุง ู
ุชุญูู ุจุฏู |
|
|
|
598 |
|
00:48:48,110 --> 00:48:51,250 |
|
ุฃุญุณุจ ูุฐู ุฃุชุจุชูุง ุจุงูุณุงููุฉ ูุฐู ุฎุฏ ุงู integration ู
ู |
|
|
|
599 |
|
00:48:51,250 --> 00:48:55,510 |
|
X F of T DTูู ู
ุงุนุทููู ุงูู F small ูุฏ ู
ูู ูู ุงูู F |
|
|
|
600 |
|
00:48:55,510 --> 00:48:58,830 |
|
ุจุฑุงูู ุดูุช .. ุดููุช ุงูู F small ุฅูุด ุญุทูุช ู
ูุงููุงุ F |
|
|
|
601 |
|
00:48:58,830 --> 00:49:03,510 |
|
ุจุฑุงูู ุงูุขู ูุฐู ูุจู ุจุดููุฉ ูู ุงูู Corollary ูุธููุง .. |
|
|
|
602 |
|
00:49:03,510 --> 00:49:07,490 |
|
ูู
ููุง ุงูุชูุงุถู ููู ูู
ููุง ุงูุชูุงุถูุ ุฅูู ููููุง ุดูู |
|
|
|
603 |
|
00:49:07,490 --> 00:49:11,230 |
|
ุงูุชูุงุถู .. ุดูู ุงูุชูุงู
ู .. ุดูู ุงูุชูุงุถู ุจุชุตูุฑ ุนุจุงุฑุฉ |
|
|
|
604 |
|
00:49:11,230 --> 00:49:15,270 |
|
ุนู F ุงููู ููู ุงููู ูุงูุช B ูุงูุต F ุงููู ุชุญุช ุงููู ูู |
|
|
|
605 |
|
00:49:15,270 --> 00:49:19,390 |
|
A ููุณุงููุฃู of X ููุต ุฃู of A ุฃู of A ู
ุงุนุทููููุง ู
ู |
|
|
|
606 |
|
00:49:19,390 --> 00:49:24,350 |
|
ุฑุฃุณ ุงูุฏูุงุฑ ุตูุฑ ุฅุฐุง ุฅูุด ูุชุณุงูู ุฃู of X ุฅุฐุง ูุฐู ุงููู |
|
|
|
607 |
|
00:49:24,350 --> 00:49:28,290 |
|
ุจุฏูููุง ุญุณุงุจุงุชูุง ุจุชุณุงูู ูุฐู ุทูุนุช ุฅูุด ุจุชุณุงูู ุฃู of X |
|
|
|
608 |
|
00:49:28,290 --> 00:49:32,830 |
|
ูุนูู ุฃู of X ุจุชุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ููู ุงูู
ุทููุจ ุทูุจ |
|
|
|
609 |
|
00:49:32,830 --> 00:49:36,730 |
|
ูุฐุง ุงูุฌุฒุก ุงูุฃูู ู
ู ุงููุธุฑูุฉ ุงููู ูู ููุฌู ููุฌุฒุก |
|
|
|
610 |
|
00:49:36,730 --> 00:49:42,240 |
|
ุงูุซุงูู ููุชุฑุถ ุงูุขู ุฅู ูุฐู ุตุญูุญุฉ ูุฏู ุชุนุทููุงุงูุงู ุจุฑุถู |
|
|
|
611 |
|
00:49:42,240 --> 00:49:44,760 |
|
ุงูุดุฑูุท ูููุง ู
ุชุญููุฉ ูุฃู ุงูู F ูู ุงุณู
ู ููุด ู
ุงููุง |
|
|
|
612 |
|
00:49:44,760 --> 00:49:47,340 |
|
continuous ูุณู ุงู ุงูุง ู
ุง .. ู
ุง .. ู
ุง ู
ูุงุญุชูุด ุงูุง |
|
|
|
613 |
|
00:49:47,340 --> 00:49:52,080 |
|
ูุฐุง ุงูู ุนูุฏู F continuous ู
ุฏุงู
F continuous ุงู |
|
|
|
614 |
|
00:49:52,080 --> 00:49:57,720 |
|
integration ู
ู ุงุนูู ุนูุฏ ุงู X ูุฐุง ูููุงููู ูู ุงุณู
ู F |
|
|
|
615 |
|
00:49:57,720 --> 00:50:01,320 |
|
of X ููููู differentiable ุญุณุจ ุงููุธุฑูุฉ ู
ุฒุงู
|
|
|
|
616 |
|
00:50:01,320 --> 00:50:04,780 |
|
differentiable ุญุณุจ ูุฐู ุงููุธุฑูุฉ ุฅุฐุง F prime of X |
|
|
|
617 |
|
00:50:04,780 --> 00:50:11,100 |
|
ุฅูุด ูุชุณุงููุ F of X ูุนูู ุญูููุง ู
ููุ ุงููู ูู I ูุนูู |
|
|
|
618 |
|
00:50:11,100 --> 00:50:20,070 |
|
ูุฐุง ูุคุฏู ุฅูู ูุฐุงูุฌู ุงูุขู ุจุนุถ ุงูุชุนุฑููุงุช ุงููู |
|
|
|
619 |
|
00:50:20,070 --> 00:50:26,890 |
|
ููุชูุฑูุง ููู
ูุงูุชูุง ูุชููููุง ุงููู ูู ุงุชุงุจุนูุง ุงูุฃู
ุซูุฉ |
|
|
|
620 |
|
00:50:26,890 --> 00:50:32,130 |
|
ู
ู ุฎูุงู ุงู homework ุงููู ู
ุนุงูู
ููุนุทู ุงููู ูู ุชุนุฑูู |
|
|
|
621 |
|
00:50:32,130 --> 00:50:36,830 |
|
ู
ู
ูู ุงูุชูุง ุญุชู ู
ุฑ ุนูููู
ูู ุงู calculus ูู
ู ุซู
ุงููู |
|
|
|
622 |
|
00:50:36,830 --> 00:50:41,710 |
|
ูููุนุทู ุจุนุถ ุงู counter examples ุงููู ูู ููุฑุฌุนูู
|
|
|
|
623 |
|
00:50:41,710 --> 00:50:47,370 |
|
ูููุง ููู ูู ุงูุฃุณุฆูุฉ ุงููู ูู ุงููุชุงุจ ุชุดูููุง ูุตูุตูุง |
|
|
|
624 |
|
00:50:47,370 --> 00:50:53,530 |
|
ุนูู ุงูุฃูู ู ุงููู ู
ุทููุจ ุชุญูููุง ุงูู ุชุญูููุง ู ุงููู ู
ุง |
|
|
|
625 |
|
00:50:53,530 --> 00:50:56,910 |
|
ุจุชุญููู ูุนุฑูุด ุชุญูููุงูู ุนูุฏูุง ุงููู ูู ูู ุงู homework |
|
|
|
626 |
|
00:50:56,910 --> 00:51:01,230 |
|
ุงูุญููู ุงูู
ูุฌูุฏุฉ ุจุชุฏุฑุณููุง ูุญุงููู
ู
ุงุฏุฑุณุชููุง ุจุฑุถู |
|
|
|
627 |
|
00:51:01,230 --> 00:51:04,310 |
|
ู
ุงููู
ุชููุงุด ุงุญูุง ุจูุนู
ู ูููุง discussion ููู ุนู
ููุงูุง |
|
|
|
628 |
|
00:51:04,310 --> 00:51:07,930 |
|
ุญุชู ุจุดูู ุตูุชู ุนูู ุฃุณุงุณ ุงููู ูู ุงุญูุง ูู
ูู ู
ุงููุฏุฑุด |
|
|
|
629 |
|
00:51:07,930 --> 00:51:12,110 |
|
ูุตูุฑ ุจุดูู ูุงู
ู ุงููู ูู ุงู discussions ุนุจุฑ ุงููู ูู |
|
|
|
630 |
|
00:51:12,110 --> 00:51:16,270 |
|
ุงูุชุตููุฑ ุงููู ุงุญูุง ุงูุญุงูู ุจูุตูุฑู ุนุจุฑ ุงู power point |
|
|
|
631 |
|
00:51:16,270 --> 00:51:22,710 |
|
ู
ู ุงูุจูุช ุงู ุดุงุก ุงููู ุทูุจ definitionlet I ุจุชุณุงูู A |
|
|
|
632 |
|
00:51:22,710 --> 00:51:27,630 |
|
ูB subset ู
ู ู
ููุ ู
ู R ุฅุฐุง ูุงูุช F small ู
ู I ูR |
|
|
|
633 |
|
00:51:30,720 --> 00:51:35,400 |
|
then ูุฑุถูุง ุฃูู ูู ุฏุงูุฉ ุงุณู
F ู
ู I ูุนูุฏ R then the |
|
|
|
634 |
|
00:51:35,400 --> 00:51:42,280 |
|
antiderivative of F ูุนูู ููุฃููุง ุนูุณ ุนู
ููุฉ ุนูุณ |
|
|
|
635 |
|
00:51:42,280 --> 00:51:45,920 |
|
ุงูุฏุงูุฉ ุงููู ุจููุถููุง roughly antiderivative of F on |
|
|
|
636 |
|
00:51:45,920 --> 00:51:50,620 |
|
I is a function F ู
ู I ูุนูุฏ R such that F prime of |
|
|
|
637 |
|
00:51:50,620 --> 00:51:59,830 |
|
X ุณูู F of X ูุนูู ุนูุฏูุง ุฏุงูุฉ Fู
ู ุนูุฏ I ูุนูุฏ R ูู |
|
|
|
638 |
|
00:51:59,830 --> 00:52:05,310 |
|
ุฌููุง ูุฌููุง F ุชุงููุฉ ู
ู ุนูุฏ I ูุนูุฏ R ู ูุฌููุง F prime |
|
|
|
639 |
|
00:52:05,310 --> 00:52:10,450 |
|
of X ููู ุงููู ูู ุงูู I ุจุชุณุงูู mean ูู F small of X |
|
|
|
640 |
|
00:52:11,290 --> 00:52:15,490 |
|
ูู ูุฐู ุงูุญุงูุฉ ุจูุณู
ู ุงู F capital ูุฐู ุนุจุงุฑุฉ ุนู |
|
|
|
641 |
|
00:52:15,490 --> 00:52:19,850 |
|
antiderivative ูู F ูุนูู ุจู
ุนูู ุฃุฎุฑ ูู ูุถููุงูุง ูุฐู |
|
|
|
642 |
|
00:52:19,850 --> 00:52:25,130 |
|
ุงู antiderivative ูุชุทูุน ู
ููุ ุงู F ุงูุฃุตููุฉ ูุนูู |
|
|
|
643 |
|
00:52:25,130 --> 00:52:30,890 |
|
ุจุชููู ุนูุฏู ุงููู ูู ุงู F capital ูู ุงู |
|
|
|
644 |
|
00:52:30,890 --> 00:52:35,210 |
|
antiderivative ูู F ูุงู F small ูู ุงู derivative |
|
|
|
645 |
|
00:52:35,210 --> 00:52:41,910 |
|
ูู F ูุงุถุญ ุฃุฎุฏุชู ูู ุงู calculus ุญุชู ููุฌู ุงูุขููุฃ |
|
|
|
646 |
|
00:52:41,910 --> 00:52:45,650 |
|
ุงููู ูู ุจุฑุถู ู
ูููู
ุงุฎุฏุชู ูู ุงููุงุฑูููุงุณ if f ู
ู I |
|
|
|
647 |
|
00:52:45,650 --> 00:52:49,750 |
|
ูุนูุฏ R small is integrable ูู ูุฑุถูุง ูุฐู integrable |
|
|
|
648 |
|
00:52:49,750 --> 00:52:53,950 |
|
ู ุฌููุง ุนุฑููุง |
|
|
|
649 |
|
00:52:53,950 --> 00:52:56,910 |
|
ุงุฏุงูุฉ ู
ู A ูุนูุฏ X F of X DX ูุจู ุดููุฉ ููููุง ูุฐุง |
|
|
|
650 |
|
00:52:56,910 --> 00:53:00,290 |
|
ุฃููุฏ ู
ุนุฑูุฉ ู
ุซูุง ูู integrable ูู
ุด ู
ุนุฑูุฉ ุงู |
|
|
|
651 |
|
00:53:00,290 --> 00:53:04,110 |
|
function F of X ูุชุทูุน continuous ูุฐู ุงููู ูู ุงู |
|
|
|
652 |
|
00:53:04,110 --> 00:53:09,930 |
|
function ุฃู ูุฐุง ูู ุงููู ุจูุณู
ูู ุงูุชูุงู
ู ุงูู
ุญุฏูุฏูุฐู |
|
|
|
653 |
|
00:53:09,930 --> 00:53:15,110 |
|
ุจูุณู
ููุง ุงูู Indefinite Integral of F ูุนูู ูุฐุง |
|
|
|
654 |
|
00:53:15,110 --> 00:53:17,790 |
|
ุจูุณู
ูู Indefinite Integral of F ุฃู ูุฐู ุงูุฏูุฉ |
|
|
|
655 |
|
00:53:17,790 --> 00:53:23,030 |
|
ุจูุณู
ููุง ุงููู ูู The Indefinite Integral of F on I |
|
|
|
656 |
|
00:53:23,030 --> 00:53:28,230 |
|
ุจุฑุถู ูุฐุง ุจุฑุถู ุดุบูุงุช ุงููู ูู ุฃุฎุฏุชููุง ุณุงุจูุง ูู ุงููู |
|
|
|
657 |
|
00:53:28,230 --> 00:53:33,780 |
|
ูู ุงู calculus ููุฌู ุจุนุถ ุงูู
ูุงุญุธุงุช ุจุณุนูู ุงููู ูู |
|
|
|
658 |
|
00:53:33,780 --> 00:53:42,820 |
|
ุงููู ุจุชุนูู ุจูุฐู ุงููู ูู ุงูู
ูุงููู
ูุดูููุง ููู ุทุจุนุง |
|
|
|
659 |
|
00:53:42,820 --> 00:53:48,760 |
|
ูุฐู ุงูู
ูุงููู
ูู ุนูููุง counter examples ุงูุชู
ููุฒ |
|
|
|
660 |
|
00:53:48,760 --> 00:53:56,400 |
|
ุจูููุง ูุดูู ุงูู
ุญุจุฉ ูุฐู ูุง ุดุจุงุจ ุทูุจ ุฃุตูู ุนูู ุงููุจู |
|
|
|
661 |
|
00:53:56,400 --> 00:54:03,640 |
|
ุนููู ุงูุตูุงุฉ ูุงูุณูุงู
ุงูุงู ุนูุฏู ุณุคุงู ุณุจุนุฉ ุชูุงุชุฉ ุงุชููู |
|
|
|
662 |
|
00:54:03,640 --> 00:54:06,400 |
|
ูุนูู ูู ุณุจุนุฉ ุชูุงุชุฉ ุณุคุงู ุงุชููู ุงู ุณุจุนุฉ ุชูุงุชุฉ ุณุคุงู |
|
|
|
663 |
|
00:54:06,400 --> 00:54:10,660 |
|
ุฎู
ุณุฉ ุทุจุนุง ููู ูู ุงูุทุจุน ุงูุชุงูู ูุฐุง ุงููู ูู ุนูุฏู an |
|
|
|
664 |
|
00:54:10,660 --> 00:54:13,540 |
|
integrable function may not have an antiderivative |
|
|
|
665 |
|
00:54:13,540 --> 00:54:17,220 |
|
ูุนูู ูููุงูู ูู ุงูุณุคุงู ูุฐุง integrable function |
|
|
|
666 |
|
00:54:17,220 --> 00:54:24,080 |
|
ูู
ุงููุงุด .. ูู
ุงููุงุด antiderivative ูุนูู ูููุงูู |
|
|
|
667 |
|
00:54:24,080 --> 00:54:30,660 |
|
function Fุฅููุง ุชููู integrable ููู ู
ุงููุงุฌูุด |
|
|
|
668 |
|
00:54:30,660 --> 00:54:34,540 |
|
function F ุงููู ุงู derivative ุชุจุนู ุชุงุด ุจุชุณุงูู |
|
|
|
669 |
|
00:54:34,540 --> 00:54:39,860 |
|
ุจุชุณุงูู F ูุฐุง ุงููู ูู ุจุชุดูููู ูู ุงูู 7 3 2 ู 7 3 5 |
|
|
|
670 |
|
00:54:39,860 --> 00:54:43,340 |
|
ุงูุฃู
ุซูุฉ ุฃู ุงู counter examples ุงููู ูุฌูุฏุฉ ููุง ุทูุจ |
|
|
|
671 |
|
00:54:43,340 --> 00:54:47,710 |
|
ุงูู
ูุงุญุธุฉ ุงูุชุงููุฉุงูู function may have an |
|
|
|
672 |
|
00:54:47,710 --> 00:54:52,830 |
|
antiderivative ูุนูู ุนูุฏู F ู ุจุชุญูู F ู ูู ุนูุฏู F |
|
|
|
673 |
|
00:54:52,830 --> 00:54:57,310 |
|
ูุงุจุชุงู ูู
ุงู ู F ุจุฑุงูู
ุฅูุด ุจุชุณุงูู ุจุณูุก F but ุงููู |
|
|
|
674 |
|
00:54:57,310 --> 00:55:02,210 |
|
ูู ุงู integration ูู F ุฅูุด ู
ุงูู does not exist ููู |
|
|
|
675 |
|
00:55:02,210 --> 00:55:07,370 |
|
but not integrable ููุฐุง ุจุชุฌุงูุจ ุนููู ุจุฑุถู ุณุจุนุฉ |
|
|
|
676 |
|
00:55:07,370 --> 00:55:12,580 |
|
ุชูุงุชุฉ ุฎู
ุณุฉ ูุนูู ูู function Fูู ุฅููุง F' ุจุณุงูุฉ F |
|
|
|
677 |
|
00:55:12,580 --> 00:55:17,640 |
|
ููู ุงู integration ููู F ุฅุดู
ุงูู does not exist |
|
|
|
678 |
|
00:55:17,640 --> 00:55:24,900 |
|
ุชูุงุชุฉ ุนูุฏู ุงูู
ูุงุญุธุฉ ุงูุซุงูุซุฉ a continuous function |
|
|
|
679 |
|
00:55:24,900 --> 00:55:27,800 |
|
always have antiderivative ุทุจุนุง ุงู continuous |
|
|
|
680 |
|
00:55:27,800 --> 00:55:35,290 |
|
function ุฃุตูุง ู
ู ุงูููุฉ ุจู
ูุงู ุฅููุงุชุฎููู ุนูุฏูุง ูููู |
|
|
|
681 |
|
00:55:35,290 --> 00:55:39,490 |
|
ููุง ุงูู mean antiderivative ุงูุงู a continuous |
|
|
|
682 |
|
00:55:39,490 --> 00:55:44,190 |
|
function always have antiderivative ููุฐุง ุงููู ูู |
|
|
|
683 |
|
00:55:44,190 --> 00:55:51,910 |
|
ู
ุจุงุดุฑุฉ ู
ู ุงู corollary 7 3 4 ุงููู ูุงูุช F |
|
|
|
684 |
|
00:55:51,910 --> 00:55:56,770 |
|
continuous ู
ุฏุงู
F continuous ุฅุฐุง ุงู integration ู
ู |
|
|
|
685 |
|
00:55:56,770 --> 00:56:07,120 |
|
ุงู X ู
ู A ูุนูุฏ ุงู XA of T DT ุจุณุงูุฉ F of X ุงููู ูู |
|
|
|
686 |
|
00:56:07,120 --> 00:56:10,900 |
|
is differentiable ูู
ุด differentiable ูู
ุงู ู F |
|
|
|
687 |
|
00:56:10,900 --> 00:56:14,860 |
|
prime of X ุจุชุณุงูู F small of X ูุนูู ู
ุฏุงู
ุฃู |
|
|
|
688 |
|
00:56:14,860 --> 00:56:17,880 |
|
continuous ุฅุฐุง ุตุงุฑ ููุง antiderivative ุตุงุฑุช ุงู F |
|
|
|
689 |
|
00:56:17,880 --> 00:56:20,580 |
|
ุงููู ูู ุงู derivative ููุง ุจุณุงูุฉ F of X ุฅุฐุง ุตุงุฑุช |
|
|
|
690 |
|
00:56:20,580 --> 00:56:24,620 |
|
ุฅูุด antiderivativeูุฏ ู
ูู ูุฐุง ุงููู ูู ุนุจุงุฑุฉ ุนู ุงูู |
|
|
|
691 |
|
00:56:24,620 --> 00:56:28,980 |
|
Corollary 7 3 4 ู
ุฏุงู
ุฃู F continuous ุฅุฐุง ูุฐู |
|
|
|
692 |
|
00:56:28,980 --> 00:56:33,360 |
|
ุงูุฏุงูุฉ ุงููู ุณู
ูุชูุง F of X is differentiable ูู
ุด ูู |
|
|
|
693 |
|
00:56:33,360 --> 00:56:35,540 |
|
ูู
ุงู ูุฐุง ุงูุฌุฒุก ุงูุซุงูู ู
ู ุงู fundamental theorem of |
|
|
|
694 |
|
00:56:35,540 --> 00:56:39,200 |
|
calculus ู ุงู F prime of X ุฅูุด ุจูุณุงูู F of X ูุนูู |
|
|
|
695 |
|
00:56:39,200 --> 00:56:44,280 |
|
ุงู F capital is an antiderivative of the F small |
|
|
|
696 |
|
00:56:44,280 --> 00:56:50,760 |
|
ุงููู ูู ุงูููุทุฉ ุงูุฑุงุจุนุฉ the indefinite integralmay |
|
|
|
697 |
|
00:56:50,760 --> 00:56:57,520 |
|
not be an antiderivative of mean of F ุงูุขู ุงูู |
|
|
|
698 |
|
00:56:57,520 --> 00:57:02,400 |
|
indefinite integral ุงููู |
|
|
|
699 |
|
00:57:02,400 --> 00:57:12,000 |
|
ูู ู
ู A ูุนูุฏ X F of T DT ูู ุณู
ููุงู F of X ูุฐุงูุฐุง |
|
|
|
700 |
|
00:57:12,000 --> 00:57:15,480 |
|
the indefinite integral ูุฐุง ู
ู
ูู ูููู ูุฐุง ูุนูู ุฅูุด |
|
|
|
701 |
|
00:57:15,480 --> 00:57:18,480 |
|
ุจู
ุนูู ุขุฎุฑุ ูุนูู ุจุฏูุง ููุชุฑุถ ุฅู ุงู integration ู
ู A |
|
|
|
702 |
|
00:57:18,480 --> 00:57:22,580 |
|
ู X F of T DT ู
ูุฌูุฏ ุทุจุนุง ุงููู ุจููู ุนูู ู
ูุฌูุฏ ุจุณ |
|
|
|
703 |
|
00:57:22,580 --> 00:57:25,040 |
|
ุชููู F of T is integrable ู
ุงุญุงุฌููุงุด ุนูู control U |
|
|
|
704 |
|
00:57:25,040 --> 00:57:29,000 |
|
of T ุงู F of T is integrable ุฅุฐุง ุงู A ูุนูุฏู ุงู X F |
|
|
|
705 |
|
00:57:29,000 --> 00:57:35,100 |
|
of T DT ูู ู
ู
ูู ูููู ูุฐุง ู
ูุฌูุฏ ู ุจูุณู
ู F of X |
|
|
|
706 |
|
00:57:35,100 --> 00:57:39,830 |
|
ุจููููู the indefinite integral ูุฐุงmay not have |
|
|
|
707 |
|
00:57:39,830 --> 00:57:44,490 |
|
antiderivative of F ูุนูู ู
ู
ูู ู
ุงููููุด ูุฐุง ุจุงูุฑุบู
|
|
|
|
708 |
|
00:57:44,490 --> 00:57:48,610 |
|
ุงูู ูุฐุง ู
ูุฌูุฏ ู
ุงููููุด ุงู F capital ุงููู ูู ูุฐุง |
|
|
|
709 |
|
00:57:48,610 --> 00:57:53,530 |
|
ู
ุงููููุด antiderivative ูู
ูู ูู F small ูุนูู ุฑุบู
|
|
|
|
710 |
|
00:57:53,530 --> 00:57:58,670 |
|
ุงูู ูุฐุง ู
ูุฌูุฏ ููุณ ุดุฑุทุง ุงูู ูููู ูุชูุงุถู ููู
ูุง |
|
|
|
711 |
|
00:57:58,670 --> 00:58:03,290 |
|
ูุชูุงุถู ูุทูุน ุงููู ุฌูุง ูุนูู ู
ุด ุดุฑุท ุงููุง ุชููู ุงู F |
|
|
|
712 |
|
00:58:03,890 --> 00:58:07,170 |
|
ุงููู ูู antiderivative ุงููู ูู ู
ูู ูู ุงูู |
|
|
|
713 |
|
00:58:07,170 --> 00:58:10,110 |
|
indefinite integral ููู ุจุชููู ุงูู
ูุงุญุฏุฉ ุทุจ ุฅูุด |
|
|
|
714 |
|
00:58:10,110 --> 00:58:14,150 |
|
ุฏููููู
ุฏููููุง ูุงู ูู counter examples ูุงู ุณุจุนุฉ |
|
|
|
715 |
|
00:58:14,150 --> 00:58:19,390 |
|
ุชูุงุชุฉ ุฃุฑุจุนุฉ ููุฐุง ูุงุชุจ ูุงุฌู
ูุงุฌู
ุนุฏู
ุชุญูู ูุฐู ุฃู |
|
|
|
716 |
|
00:58:19,390 --> 00:58:23,910 |
|
ุนุฏู
ุชุญูู ุงู antiderivative ุฃูู it may fail to be |
|
|
|
717 |
|
00:58:23,910 --> 00:58:28,050 |
|
differentiable at points at the interval ู
ู
ูู ุฃุตูุง |
|
|
|
718 |
|
00:58:28,050 --> 00:58:35,440 |
|
ุฃู ุงู F prime ุชูููุด ู
ูุฌูุฏุฉ ุจุงูู
ุฑุฉุนูุฏ ููุทุฉ ุงููู ูู |
|
|
|
719 |
|
00:58:35,440 --> 00:58:39,620 |
|
ูู ุฏุงุฎู ุงูู interval ู
ู a ุฅูู x ู
ุฒุงู
ูุฐู is not |
|
|
|
720 |
|
00:58:39,620 --> 00:58:42,720 |
|
differentiable ููู ุจุฏูุง ููุงูู f prime ุจุชุณุงูู f |
|
|
|
721 |
|
00:58:42,720 --> 00:58:48,640 |
|
small ุฅุฐุง ูุฏ ููุดุฃ ุนุฏู
ูุฌูุฏ ุงูู antiderivative ู
ูู |
|
|
|
722 |
|
00:58:48,640 --> 00:58:52,640 |
|
ุฅูู ูุฐู ู
ุง ุชูููุด differentiable ุนูุฏ ููุทุฉ ุจูู ุงู a |
|
|
|
723 |
|
00:58:52,640 --> 00:58:59,090 |
|
ู ุงู x ูุงู ุฃููุงููู ูู ุณุจุจ ู
ู
ูู ูุคุฏู ุฅูู ุนุฏู
ุชุญูู |
|
|
|
724 |
|
00:58:59,090 --> 00:59:03,150 |
|
ุฅูู ูููู ุงูู Indefinite Integral ููุณ Anti |
|
|
|
725 |
|
00:59:03,150 --> 00:59:09,650 |
|
-derivative ููุฏุงูุฉ ุงููู ุฅุญูุง ุจููู
ููุง Or ุงูู |
|
|
|
726 |
|
00:59:09,650 --> 00:59:12,850 |
|
Derivative of Indefinite Integral ู
ู
ูู ูููู ู
ูุฌูุฏ |
|
|
|
727 |
|
00:59:13,450 --> 00:59:18,310 |
|
ููู ูุฎุชูู ุนู ู
ูู but different from the value of F |
|
|
|
728 |
|
00:59:18,310 --> 00:59:22,410 |
|
at any point of the interval ููุฐุง ุจูุฌูุจูุง ุณุจุนุฉ |
|
|
|
729 |
|
00:59:22,410 --> 00:59:26,990 |
|
ุชูุงุชุฉ ุชู
ุงููุฉ ูุนูู ุจูููู ู
ู
ูู ุชููู ูุง ู
ุญูุงูุง ู ุชุฌูุจ |
|
|
|
730 |
|
00:59:26,990 --> 00:59:32,990 |
|
ุงููู ูู ุงู F prime of X ููู ู
ุง ุชุทูุน ุดุงุดุฉ ุชุณุงูู F |
|
|
|
731 |
|
00:59:32,990 --> 00:59:38,780 |
|
of Xููู ูุฐู ุงูุญุงูุฉ ุจูููู ุงูู Indefinite Integral |
|
|
|
732 |
|
00:59:38,780 --> 00:59:46,320 |
|
ููุณ ุงููู ูู ุฅูู ุดู
ุงูู ูู Antiderivative ุนุงุฑูุด |
|
|
|
733 |
|
00:59:46,320 --> 00:59:55,080 |
|
ูุญุงูู ู ูุงู ูู ู
ุซุงู ุทุจุนุง ูุฃุชู |
|
|
|
734 |
|
00:59:55,080 --> 01:00:01,300 |
|
ุงูุขู ู ูุจุฏุฃ ุญุฏูุซุนู ุงููู evaluation of integrals |
|
|
|
735 |
|
01:00:01,300 --> 01:00:07,780 |
|
evaluation of integrals ููุงุฎุฏ ุงููู ูู ุงููู ูู ุงููู |
|
|
|
736 |
|
01:00:07,780 --> 01:00:12,660 |
|
ููุง ูููู ุนููุง ุงููู ูู integration by parts ุงููู |
|
|
|
737 |
|
01:00:12,660 --> 01:00:17,380 |
|
ููุง ูููู ุนูู integration by parts ูุดูู ููู ุงููู ูู |
|
|
|
738 |
|
01:00:17,380 --> 01:00:21,360 |
|
ุงูุจุฑูู ุงูุฃูู ูุงุญุฏุฉ ูุนูู ููุงุฎุฏ ุงููู ูู ุงููุธุฑูุฉ |
|
|
|
739 |
|
01:00:21,360 --> 01:00:28,430 |
|
ุงูุฃููู ุงููู ูู ูู ู
ู ุถู
ู ุงููู ููููู ูู
ูู ุฃู ูุฌุฏ |
|
|
|
740 |
|
01:00:28,430 --> 01:00:33,770 |
|
ุทุฑู ูุฅูุฌุงุฏ ุงูุชูุงู
ูุ evaluation of integrals ุฃูู |
|
|
|
741 |
|
01:00:33,770 --> 01:00:39,730 |
|
ุดูุก ูุญูู ุนูู ูู integral by parts ุงูุชูุงู
ู ุจุงูุชุฌุฒูู
|
|
|
|
742 |
|
01:00:41,640 --> 01:00:48,040 |
|
ูุถุน ุงูุฃุณุณ ุงููุธุฑูุฉ ููุชูุงู
ู ุจุงูุชุฌุฒุฆุฉ ุฃู ูุดุฑุน ุงูุชูุงู
ู |
|
|
|
743 |
|
01:00:48,040 --> 01:00:50,920 |
|
ุจุงูุชุฌุฒุฆุฉ ู
ู ุฎูุงู ุงููุธุฑูุฉ ุงููู ุฃู
ุงู
ูุงุ ุฃูุด ุจุชููู |
|
|
|
744 |
|
01:00:50,920 --> 01:00:54,720 |
|
ูููุ ุฅุฐุง ูุงูุช f ู g ู
ู a ู bุ f small ู g small |
|
|
|
745 |
|
01:00:54,720 --> 01:00:58,520 |
|
ุทุจุนุงุ ูุนูุฏ Rุ R integrable on a ู bุ ููุชุฑุถ ุฅู |
|
|
|
746 |
|
01:00:58,520 --> 01:01:02,040 |
|
ุงูุชูุชูู ุฅู
ุง ุงููู ููู integrable ูุจุฏูุง ููุชุฑุถ ุฅูู |
|
|
|
747 |
|
01:01:02,040 --> 01:01:06,510 |
|
ูููู antiderivativesุงูุงู ุจุฏุฃ ุงูุฑุถ ุงู F ููุง |
|
|
|
748 |
|
01:01:06,510 --> 01:01:09,430 |
|
antiderivative ุงุณู
ูุง F capital ู G ููุง |
|
|
|
749 |
|
01:01:09,430 --> 01:01:13,910 |
|
antiderivative ุงุณู
ูุง G capital on A ู B ุงุฐุง ุงูุงู |
|
|
|
750 |
|
01:01:13,910 --> 01:01:22,050 |
|
ูุธุฑูุชูุง ุชุฑุชูุฒ ูู ู
ุนุทูุงุชูุง ุนูู ุงู ุงู F small ู F ู |
|
|
|
751 |
|
01:01:22,050 --> 01:01:24,210 |
|
G integrable ูู ูุงุญุฏ |
|
|
|
752 |
|
01:01:36,840 --> 01:01:45,420 |
|
ุซู
ุนุฑุถ ุนูููุง ุงูุขู ูุนู
ู integration ุซู
ุจููุฌู ุจููู |
|
|
|
753 |
|
01:01:45,420 --> 01:01:52,610 |
|
ูููุงูู Integration ูุญุงุตู ุถุฑุจ ุฏุงูุชูู F of X ูู G of |
|
|
|
754 |
|
01:01:52,610 --> 01:01:58,890 |
|
X DX ู
ู A ูุนูู Bูุฃู ุทูุจ ูุฐู Integrable ุนุงุฑููู ุทุจ F |
|
|
|
755 |
|
01:01:58,890 --> 01:02:01,090 |
|
capital Integrable ุงู Integrable ูุฅููุง |
|
|
|
756 |
|
01:02:01,090 --> 01:02:03,930 |
|
differentiable ูุฅููุง differentiable ูุนูู |
|
|
|
757 |
|
01:02:03,930 --> 01:02:07,370 |
|
continuous ุฃูุชุฑ ู
ู continuous ูุนูู ูุนูู ุฃููุฏ ุฅูุด |
|
|
|
758 |
|
01:02:07,370 --> 01:02:11,250 |
|
ู
ุง ููุง Integrable ุฅุฐุง ู
ุนููู ููุงู
ู ู
ู A ูุนูุฏ B F of |
|
|
|
759 |
|
01:02:11,250 --> 01:02:15,590 |
|
X G of X DX ุฅูุด ุจุชุณุงููุ ุจูููู ุนุจุงุฑุฉ ุนู F capital |
|
|
|
760 |
|
01:02:15,590 --> 01:02:21,750 |
|
of B G capital of B ููุต F capital of A G capital |
|
|
|
761 |
|
01:02:21,750 --> 01:02:31,040 |
|
of A ูุฐุงูุงูุต ุงูู integration F small of X G |
|
|
|
762 |
|
01:02:31,040 --> 01:02:37,520 |
|
capital of X dx ู
ู A ูุนูุฏู ูุฐู ุงููู ูู ุงู |
|
|
|
763 |
|
01:02:37,520 --> 01:02:41,240 |
|
integration by parts ุงููู ุนุงู
ุฉ ุงููู ุจุชุฏุฎูุชู ุฃู |
|
|
|
764 |
|
01:02:41,240 --> 01:02:45,960 |
|
ุงููู ูู ุงููู ุจุชููู ุนูู ุงููุธุฑูุฉุฅุฐุง if f ู g ู
ู a |
|
|
|
765 |
|
01:02:45,960 --> 01:02:49,260 |
|
ูุนู ุจู are integrable on a ู b and have |
|
|
|
766 |
|
01:02:49,260 --> 01:02:52,140 |
|
antiderivatives f capital and g capital on a ู b |
|
|
|
767 |
|
01:02:52,140 --> 01:02:56,580 |
|
then ุงู integration ู
ู a ูุนู ุจู f of x g x dx |
|
|
|
768 |
|
01:02:56,580 --> 01:03:00,080 |
|
ุจูุณููู f of b g of b ููุต f of a g of a ุทุจุนุงู |
|
|
|
769 |
|
01:03:00,080 --> 01:03:06,360 |
|
ููcapitals ููุต ุงู integration ู
ู a ูb f small g |
|
|
|
770 |
|
01:03:06,360 --> 01:03:12,200 |
|
capital dx ู
ุงุดู ุงูุญุงู ุจุฏูุง ุงูุขู ุงููู ูู ุงูุจุฑูู |
|
|
|
771 |
|
01:03:12,200 --> 01:03:17,750 |
|
ุงููุธุฑู ุงูุจุฑูู ุฃุณูู ูุง ุฌู
ุงุนุฉูู ุจุฑูุงูุฉ ูุนุชู
ุฏ ุนูู |
|
|
|
772 |
|
01:03:17,750 --> 01:03:22,970 |
|
ุชูุงุถู ุงููู ูู ุญุงุตู ุถุฑุจ ุฏูุชูู ููู
ูู ุงุญูุง ููุง ุงุตูุง |
|
|
|
773 |
|
01:03:22,970 --> 01:03:27,110 |
|
ูู ุงุชูุงุก ุงูู ู
ุง ุจูุจุฏุฃ ูู ุงู integration by bars |
|
|
|
774 |
|
01:03:27,110 --> 01:03:31,870 |
|
ุณูุฉ ุนุงุฑูู ููุทูุงุจ ูู ุงู calculus ูู ุงููุงูุน ูู ูู |
|
|
|
775 |
|
01:03:31,870 --> 01:03:36,490 |
|
ุณุคุงู ูู ุงูุฃูู ูุนูู ู ูุฃููุง ุจูุจุฑูู ุงููุธุฑูุฉ ู ุจุนุฏ |
|
|
|
776 |
|
01:03:36,490 --> 01:03:40,170 |
|
ุฐูู ุจูุณูุฑ ุงููู ูู ุญุงูุธูุง ุงูุทุฑููุฉ ู ูุนู
ููุง ุจุดูู |
|
|
|
777 |
|
01:03:40,170 --> 01:03:48,220 |
|
ุณุฑูุน ุทูุจ ูุดูู ูููุณู
ูููู ุงููู ูู F capital of X G |
|
|
|
778 |
|
01:03:48,220 --> 01:03:52,060 |
|
of capital of X ุงูุด ุจุชุณุงูู H of X ุทุจุนุงู F is |
|
|
|
779 |
|
01:03:52,060 --> 01:03:53,840 |
|
differentiable ู G is differentiable ุฒู ู
ุง ููุง |
|
|
|
780 |
|
01:03:53,840 --> 01:03:56,600 |
|
ูุงุชุจูู ูุฐู ูุฅูู F antiderivative ู G |
|
|
|
781 |
|
01:03:56,600 --> 01:03:59,860 |
|
antiderivative ูุนูู F prime ููุง F small ู G prime |
|
|
|
782 |
|
01:03:59,860 --> 01:04:03,700 |
|
ููุง G small ูุนูู ุฅุฐุง ุตุงุฑุช ุงููH ุนุจุงุฑุฉ ุนู |
|
|
|
783 |
|
01:04:03,700 --> 01:04:07,160 |
|
differentiable ู ู
ุฏุงู
differentiable ุฅุฐุง ุฃููุฏ ุงููH |
|
|
|
784 |
|
01:04:07,160 --> 01:04:12,340 |
|
ุดู
ุงููุง continuous ุนูู ุงููุชุฑุฉ A ู B ู
ุงุดู ุงูุญุงู ู ู
ุด |
|
|
|
785 |
|
01:04:12,340 --> 01:04:18,630 |
|
ููู ูู
ุงููุจููุฏุฑ ููุถููุง ุดูููุง ููู |
|
|
|
786 |
|
01:04:22,920 --> 01:04:26,280 |
|
ูุงุถุญุฉ ูููุง .. ุงู ูุงุถุญุฉ ูููุง .. ู
ุงุดู ุฒู ู
ุง ูููุง ูุง |
|
|
|
787 |
|
01:04:26,280 --> 01:04:29,440 |
|
ุฌู
ุงุนุฉ ุณู
ููุง F capital of X ูู G capital of X |
|
|
|
788 |
|
01:04:29,440 --> 01:04:32,240 |
|
ุจุงูุณุงููุฉ H of X F differentiable ู G |
|
|
|
789 |
|
01:04:32,240 --> 01:04:35,440 |
|
differentiable ุซู
H differentiable ูู
ู ุซู
ุงููุฏ |
|
|
|
790 |
|
01:04:35,440 --> 01:04:39,780 |
|
continuous ูุถููู H prime of X ูู ุญุงุตู ุถุฑุจ ุฏุงูุชูู |
|
|
|
791 |
|
01:04:39,780 --> 01:04:44,740 |
|
ุงูุชูุงุถู ุงูุฃูู ูู ุงูุชุงูู ุฒู ุงููู ูู ุงูุชุงูู ุงูุฃูู ูู |
|
|
|
792 |
|
01:04:44,740 --> 01:04:49,840 |
|
ุงูุชูุงุถู ุงูุชุงูู ููุณุงููุชูุงุถู ุงูู F' ุงููู ูู F small |
|
|
|
793 |
|
01:04:49,840 --> 01:04:54,440 |
|
ููุฐู ุชูุฒู ุฒู ู
ุง ูู ูุชูุงุถู ูุฐู ุงููู ูู G small ูุฐุง |
|
|
|
794 |
|
01:04:54,440 --> 01:04:59,020 |
|
ุตุงุฑุช ุงูู H' ุจุงูุณุงููุฉ ููุง ูุนูู ููุฃูู ุตุงุฑ ุนูุฏู ุงููู |
|
|
|
795 |
|
01:04:59,020 --> 01:05:04,360 |
|
ูู ุงููH ูุฐู ุจุฏูู ุงููPrime antiderivative ูู
ูุ ููุฐู |
|
|
|
796 |
|
01:05:04,360 --> 01:05:09,520 |
|
ุตุงุฑุช ูุนูู ุงููH capital is an antiderivative of FG |
|
|
|
797 |
|
01:05:09,520 --> 01:05:17,320 |
|
ุฒู ู
ูู ุฒู FGุงูุงู ูู ุดูุก ููุญ F ูG Integrable ู F |
|
|
|
798 |
|
01:05:17,320 --> 01:05:21,560 |
|
capital ูG continuous ุงุฐุง ุงููู ูู ุงููุฏ F capital |
|
|
|
799 |
|
01:05:21,560 --> 01:05:25,520 |
|
ูG capital Integrable ูู
ู ุซู
ููุทูุน ูู ูุฐุง ุงุดู
ุงูู |
|
|
|
800 |
|
01:05:25,520 --> 01:05:31,920 |
|
is integrable ู
ุงุดู ูู
ุงู ู
ุฑุฉ F |
|
|
|
801 |
|
01:05:33,190 --> 01:05:36,910 |
|
Integrable ู G-Integrable ู G-Capital ู F-Capital |
|
|
|
802 |
|
01:05:36,910 --> 01:05:40,450 |
|
continuous ุฅุฐุง ุตุงุฑ ุงูู Integrable ุฅุฐุง ูุฐุง ููู ุนูู |
|
|
|
803 |
|
01:05:40,450 --> 01:05:44,830 |
|
ุจุนุถ ุฅูุด ู
ุงูู ุตุงุฑ Integrable ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ุงููู |
|
|
|
804 |
|
01:05:44,830 --> 01:05:49,550 |
|
ูู ูู ุงูุดุฑูุท ู
ุชุญููุฉ ุฅุฐุง ู
ู ุณุจุนุฉ ุชูุงุชุฉ ู
ุฏุงู
ุฉ ุงู H |
|
|
|
805 |
|
01:05:50,390 --> 01:05:53,570 |
|
ุงูู H ููููุง ุงูู H ุ ูู ุงูู Antiderivative ููุฐู |
|
|
|
806 |
|
01:05:53,570 --> 01:05:57,470 |
|
ููุฐู Integrable ูุจุตูุฑ ุนูุฏู ุงูุงู ุงู integration ู
ู |
|
|
|
807 |
|
01:05:57,470 --> 01:06:01,770 |
|
ููุง ุจ F ูู G ุฒุงูุฏ F capital ูู G DX ุจุชุณุงูู H of B |
|
|
|
808 |
|
01:06:01,770 --> 01:06:11,650 |
|
ูุงูุต ู
ูู ูุงูุต H of A ุทูุจ ุตุงุฑ ุนูุฏู ุงูุงู ุงูุฃู
ูุฑ ูุถุญุช |
|
|
|
809 |
|
01:06:11,650 --> 01:06:20,490 |
|
ูุทูุนุช ุงููุชูุฌุฉ H of B ุงุชุทูุน ุนูููุง ููู H of Bุ ูููุงH |
|
|
|
810 |
|
01:06:20,490 --> 01:06:26,610 |
|
of B ุจูุณุงูู F capital of B ูู G |
|
|
|
811 |
|
01:06:26,610 --> 01:06:30,930 |
|
of B ูุงููุง ู
ุงุดู F of B ูู G of B ุนุงุฏูุฉ ูู ุงูุชูุง |
|
|
|
812 |
|
01:06:30,930 --> 01:06:36,070 |
|
ู
ูุฌูุฏูู ูุฃ ุนูู ุทูู ููุชููู ูุงููุง ุงูุงู H of A ุจูุณุงูู |
|
|
|
813 |
|
01:06:36,070 --> 01:06:41,980 |
|
F of A ูู G of A ูุงููุง G of A ู
ุงุดู ุฅุฐุง ุฅูุฏููุงูุฐุง |
|
|
|
814 |
|
01:06:41,980 --> 01:06:46,060 |
|
ุงูู
ูุฏุงุฑ ุฃุนูุถูุง ุนู H of B ูููุง ูุนูุถูุง ุนู H ุฏู ูุง |
|
|
|
815 |
|
01:06:46,060 --> 01:06:49,960 |
|
ูููุง ูุฅูุด ุฌููุง ููุฐู ูุตููุงูุง ูุฅูู Integrable ุฅุฐุง |
|
|
|
816 |
|
01:06:49,960 --> 01:06:52,940 |
|
ูุตููุงูุง ุจูุฌูุจ ูุงุญุฏุฉ ุนูู ุงูุฌูุฉ ุฏู ููุงุญุฏุฉ ุนูู ุงูุฌูุฉ |
|
|
|
817 |
|
01:06:52,940 --> 01:06:57,940 |
|
ุฏู ููู ุงูู
ุทููุจ ุงุนู
ููู
ุฅูุงูุง ุทูุจ ุงู integration ู
ู |
|
|
|
818 |
|
01:06:57,940 --> 01:07:01,780 |
|
A ู B integration |
|
|
|
819 |
|
01:07:01,780 --> 01:07:10,680 |
|
ู
ู A ู B FG capital ุฒุงุฆุฏ F capital ูู G ุจุณุงูู |
|
|
|
820 |
|
01:07:11,790 --> 01:07:24,730 |
|
H of B ูู H of B H of B ุณูู F of B G of B ููุต H of |
|
|
|
821 |
|
01:07:24,730 --> 01:07:31,770 |
|
A ูู F of AG of A ู
ู ุงูุฌูุฉ ุงูุซุงููุฉ ุจูุณูู ุงู |
|
|
|
822 |
|
01:07:31,770 --> 01:07:35,890 |
|
integration F ูู G capital ุฒุงุฏ ุงู integration F |
|
|
|
823 |
|
01:07:35,890 --> 01:07:41,070 |
|
capital ูู G small ู
ู A ูุนูุฏ B ู
ู A ูุนูุฏ B ูุฃู ุฅู |
|
|
|
824 |
|
01:07:41,070 --> 01:07:44,490 |
|
ููููู ูุฐุง ุนูู ุงูุฌูุฉ ูุฐู ุจูุตูุฑ ุนูุฏ ุงู integration |
|
|
|
825 |
|
01:07:44,490 --> 01:07:51,350 |
|
ุงูู
ุทููุจ ูุฐุงุฃููุฏ ููู
ุชู
ุงูุฃุตู ู
ู a ูุนู ุจูู ุจุณุงูู ุงู |
|
|
|
826 |
|
01:07:51,350 --> 01:07:55,570 |
|
integration f ูู g capital ุฒู f capital ูู g small |
|
|
|
827 |
|
01:07:55,570 --> 01:08:06,170 |
|
ูุฃ ุฎูุตูุง ู
ูู ุจุณุงูู f of b ูู f of a ูู g of a ูู b |
|
|
|
828 |
|
01:08:06,170 --> 01:08:16,030 |
|
ููุต f of a ูู g of a ูู ูุฐุงูุฐุง ุงูู
ูุฏุงุฑ integration |
|
|
|
829 |
|
01:08:16,030 --> 01:08:27,230 |
|
of capital ูู G ู
ู A ูู B ููู ุงูู
ุทููุจ ู ููู ุงุญูุง |
|
|
|
830 |
|
01:08:28,050 --> 01:08:32,490 |
|
ุจูููู ุงูููู
ุงู ุดุงุก ุงููู ูุตููุง ูุนูุฏ ุงู first |
|
|
|
831 |
|
01:08:32,490 --> 01:08:36,250 |
|
substitution theorem ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุงู ุดุงุก ุงููู |
|
|
|
832 |
|
01:08:36,250 --> 01:08:45,010 |
|
ุจููู
ู ุงูู
ุญุงุถุฑุฉ ุงู ุจููู
ู ุงูู
ุงุฏุฉ ู ุจููู
ู ูุฐุง ุงู |
|
|
|
833 |
|
01:08:45,010 --> 01:08:49,330 |
|
section ูู ู
ุญุงุถุฑุฉ ูุงุฏู
ุฉ ุงู ุดุงุก ุงููู ู ุฅูู ููุงุฆูุง |
|
|
|
|