abdullah's picture
Add files using upload-large-folder tool
6d205e9 verified
raw
history blame
62.6 kB
1
00:00:05,040 --> 00:00:12,800
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุจุนุฉ ู…ุณุงู‚ ุชุญู„ูŠู„
2
00:00:12,800 --> 00:00:18,640
ุญู‚ูŠู‚ูŠ 2 ุงู„ู„ูŠ ุทู„ุจุช ูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ุจุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ
3
00:00:18,640 --> 00:00:23,800
ู‚ุณู… ุงู„ุฑูŠุงุถูŠุงุช ุงู„ูŠูˆู…
4
00:00:23,800 --> 00:00:29,720
ู‡ูŠูƒูˆู† ุนู†ุฏู†ุง ุงุณุชูƒู…ุงู„ ู„ .. ุงู„ู„ูŠ ู‡ูŠ ู‚ูˆุงุนุฏ ุฃูˆ ู‚ุงุนุฏุฉ
5
00:00:29,720 --> 00:00:36,330
Lobitalุงุชุญุฏุซู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุนู† ุงู„ุญุงู„ุฉ ุงู„ู„ู‰ ุจุชุญุฏุซ
6
00:00:36,330 --> 00:00:41,170
ุณูุฑ ุนู„ู‰ ุณูุฑ ูˆูƒูŠู ุงู†ุนู„ุฌู‡ุง ูˆุชู… ุงู„ู„ู‰ ู‡ูˆ ุจุฑู‡ุงู†
7
00:00:41,170 --> 00:00:47,910
ุงู„ู†ุธุฑูŠุงุช ุงู„ู…ุนู†ูŠุฉ ููŠ ุฐู„ูƒุงู„ุขู† ุจุฏู†ุง ู†ุชุญุฏุซ ุนู„ู‰ ุงู„ุญุงู„ุฉ
8
00:00:47,910 --> 00:00:57,110
ุงู„ู„ูŠ ุจุชุญุฏุซ ุนู†ุฏู†ุง ุฃูŠุถู‹ุง 0 ุนู„ู‰ 0 ูˆู„ูƒู† ุงู„ limit ุงู„ X
9
00:00:57,110 --> 00:01:00,830
ุจุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุฃูˆ ุณุงู„ุจ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ูˆู‚ู„ู†ุง ุนู†ู‡ุง
10
00:01:00,830 --> 00:01:05,790
ุตุญูŠุญุฉ ุจุฑุถู‡ ูˆุจุนุฏ ุฐู„ูƒ ู‡ู†ุชุญุฏุซ ุนู† ุงู„ุญุงู„ุฉ infinity ุนู„ู‰
11
00:01:05,790 --> 00:01:10,510
infinity ู†ูŠุฌูŠ ุงู„ุขู† ู„ู†ุธุฑูŠุชู†ุง ุงู„ู„ูŠ ูˆุตู„ู†ุง ุนู†ุฏู‡ุง
12
00:01:10,510 --> 00:01:11,990
suppose that
13
00:01:16,220 --> 00:01:20,260
F and D are continuous and differentiable ุนู„ู‰
14
00:01:20,260 --> 00:01:24,600
ุงู„ูุชุฑุฉ ู…ู† A ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู†ูุชุฑุถ ุฃู†ู‡ limit ู„ู„ F
15
00:01:24,600 --> 00:01:27,540
of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู‡ูŠ ู†ูุณ limit D of
16
00:01:27,540 --> 00:01:31,200
X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุชุณุงูˆูŠ ุฅูŠู‡ุงุด ุตูุฑ ูŠุนู†ูŠ
17
00:01:31,200 --> 00:01:36,080
ู‡ุฐู‡ ู‡ุชุฎู„ู‚ู„ูŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ ุตูุฑ ุนู„ู‰ ุตูุฑ ูˆู…ู† ุซู… ู†ุดูˆู
18
00:01:36,080 --> 00:01:40,230
ูƒูŠู ุงู†ุนู„ูŠุฌู‡ุงุงู„ุนู†ูˆุงู† D of X ุฐุงุชู‡ ุณุงูˆุฉ ุณูุฑ ู†ูุชุฑุถ ูˆD
19
00:01:40,230 --> 00:01:44,830
prime of X ุฐุงุชู‡ ุณุงูˆุฉ ุณูุฑ ู„ูƒู„ X ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ู„ูŠ
20
00:01:44,830 --> 00:01:48,290
ู‡ูˆ ุงู„ู…ู‚ุตูˆุฏ ู‡ู†ุง ุจูŠู‡ ุงู„ู„ูŠ ู‡ูŠ ุฃูŠุด A ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
21
00:01:48,290 --> 00:01:52,970
ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ู‚ุตูˆุฏ ุฃู†ู‡ AุŒ ูŠุง ู…ุง ู†ุฎู„ูŠ ู‡ุฐู‡ AุŒ ูŠุง ู…ุง
22
00:01:52,970 --> 00:01:58,330
ู‡ุฐู‡ Athen limit f of x ุนู„ู‰ g of x ู„ู…ุง x ุชุฑูˆุญ ู„ู…ุง
23
00:01:58,330 --> 00:02:01,930
ุงู„ู†ู‡ุงูŠุฉ ู‡ุชูƒูˆู† ุจุงู„ุธุจุท ุงูŠุด ุจุชุณุงูˆูŠ limit f prime ุนู„ู‰
24
00:02:01,930 --> 00:02:06,050
g prime of x as x goes to infinity provided that
25
00:02:06,050 --> 00:02:09,590
ู‡ุฐุง ุงู„ limit ุจุชุณุงูˆูŠ ู‚ูŠู…ุฉ ู…ุนูŠู†ุฉ ุฃูˆ ุชุณุงูˆูŠ infinity
26
00:02:09,590 --> 00:02:15,730
ุงูˆ ุณุงู„ู… infinity ุงู„ุงู† ุงุญู†ุง ููŠ ุงู„ูˆุงู‚ุน ุงู„ู„ูŠ ู‡ู†ุณูˆูŠ
27
00:02:16,910 --> 00:02:21,910
ูˆูƒุฃู†ู‡ ูŠุนู†ูŠ ุนู…ู„ูŠุฉ ุชุญูˆูŠู„ ุงู„ู„ูŠ ู†ุฎู„ู‘ูŠ ุจุฏู„ X ุชุฑูˆุญ ุฅู„ู‰
28
00:02:21,910 --> 00:02:26,950
ู…ู„ุฃ ู†ู‡ุงูŠุฉ ู†ุฎู„ู‘ูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ุชุบูŠุฑ ูˆุฑูˆุญ ู„ุณูุฑ ูŠุนู†ูŠ ุจุฏู†ุง
29
00:02:26,950 --> 00:02:31,490
ู†ุนูŠุฏ ุชุนุฑูŠู ุงู„ุฏุงู„ุฉ ุจุญูŠุซ ุฃู†ู‡ ูŠุฑูˆุญ ู‡ุฐุง ุงู„ู…ุชุบูŠุฑ ูŠุนู†ูŠ
30
00:02:31,490 --> 00:02:34,610
ูˆูƒุฃู†ู‡ ู†ู‚ูˆู„ ูˆุงุญุฏ ุนู„ู‰ T ูˆูŠุฑูˆุญ ุนู„ู‰ .. ุงู‡ ูˆุงุญุฏ ุนู„ู‰ X
31
00:02:34,610 --> 00:02:37,950
ูŠุฑูˆุญ ู„ุณูุฑ ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ู„ุฃ ู†ู‡ุงูŠุฉ ูˆู…ู† ุซู… ู†ุทุจู‚
32
00:02:37,950 --> 00:02:41,030
ุงู„ู†ุธุฑูŠุงุช ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฏุนูˆู†ุง ู†ุดูˆู ุฅูŠุด
33
00:02:41,030 --> 00:02:47,050
ุงู„ู„ูŠ ุจู†ุญูƒูŠู‡ ุงู„ุขู† ุนู†ุฏ ..ุงู„ู€ ุงู„ู€ function F ูˆ G F ูˆ
34
00:02:47,050 --> 00:02:54,430
G ู…ุนุฑูุงุช ู…ู† A ูˆ ู…ุงู„ู‡ ู†ู‡ุงูŠุฉ ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ R ุงู„ุขู†
35
00:02:54,430 --> 00:02:57,970
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ุฃุนุฑู ุงู„ู„ูŠ ู‡ูˆ ุนุดุงู† ุฃู‚ุฏุฑ ุฃุณุชุฎุฏู…
36
00:02:57,970 --> 00:03:01,610
ู†ุธุฑูŠุฉ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจุฏู‡ ุฃุนุฑู
37
00:03:01,610 --> 00:03:08,030
ุฏุงู„ุชูŠู† F capital ูˆ G capital ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ู…ู†
38
00:03:08,030 --> 00:03:15,560
Zero ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุนู„ู‰ Aู„ุนู†ุฏ ุงู„ู‡ูˆ asr ูˆุงุถุญุฉ
39
00:03:15,560 --> 00:03:28,640
ุงู„ุตูˆุฑุฉ ุชู‚ุฑูŠุจุง ุงูƒูŠุฏ ู‡ู†ู‚ูˆู„ define f o g as f of ุงู„ู„ูŠ
40
00:03:28,640 --> 00:03:36,960
ู†ุณู…ูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ T ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ Gุฃูˆ F of 1 ุนู„ู‰ T
41
00:03:36,960 --> 00:03:42,460
ู„ู…ุง T ุงู„ู„ูŠ ู‡ูŠ ู„ุง ุชุณุงูˆูŠ ุณูุฑ ูˆ ุทุจุนุง T ุฃู†ุง ู…ุนุฑูู‡ุง
42
00:03:42,460 --> 00:03:47,140
ุงู„ู„ูŠ ู‡ูŠ ููŠ ุงู„ูุชุฑุฉ ู…ู† Zero ู„ุนู†ุฏ ูˆุงุญุฏ ุนู„ู‰ A ูˆ ุฏู‡
43
00:03:47,140 --> 00:03:51,560
ุจูŠุฏุนุฑู ุนู†ุฏ Zero ุจู‚ูˆู„ Zero ุฅุฐุง ูƒุงู† T ุฅูŠุด ุจุฏู‡ุง ุชุณุงูˆูŠ
44
00:03:51,560 --> 00:03:59,760
ุจุชุณุงูˆูŠ ุณูุฑ ุงู„ุขู† ุงู„ .. ุงู„ G of TุจุชุณุงูˆูŠ ู†ูุณ ุงู„ุฃุณู„ูˆุจ
45
00:03:59,760 --> 00:04:06,240
G of 1 ุนู„ู‰ T ู„ู…ุง T ู„ุง ุชุณุงูˆูŠ 0 ูˆ 0 ุฅุฐุง ูƒุงู†ุช T
46
00:04:06,240 --> 00:04:13,350
ุฃุดู…ุงู„ู‡ุง ุจุชุณุงูˆูŠ 0ุงู„ุขู† ูˆุงุถุญ ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ุฏู„ุชูŠู† ุงู„ู„ูŠ
47
00:04:13,350 --> 00:04:19,510
ู‡ูˆ F ูˆ F ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ ุฃุณุงุณ ุฃู†ูŠ ุฃุญูˆู„ ุงู„ limit
48
00:04:19,510 --> 00:04:25,650
ุงู„ู…ุนุทุงุน ุนู†ุฏูŠ limit F of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ู„ุง ู†ู‡ุงูŠุฉ
49
00:04:25,650 --> 00:04:30,450
ุชุตูŠุฑ ุนู†ุฏูŠ ุงู„ limit ุจุงู„ู†ุณุจุฉ ู„ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ 1 ุนู„ู‰ X
50
00:04:30,450 --> 00:04:35,320
ุชุจุนุชู†ุง ู‡ุชุฑูˆุญ ู„ู…ูŠู† ููŠ ู‡ุฐุง ุงู„ุญุงู„ุฉ ู„ู„ุฒูุฑูˆุจุณุชุฎุฏู… ูˆู…ู†
51
00:04:35,320 --> 00:04:40,600
ุซู… ุจู†ูƒูˆู† ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู…ุชุบูŠุฑ ู„ุฅู† ุฃู†ุง T ุจุฑูˆุญ ู„ู„ุตูุฑ as
52
00:04:40,600 --> 00:04:44,740
X ุจุชุฑูˆุญ ุฅู„ูŠู†ุง ู„ู†ู‡ุงูŠุฉ ูˆู…ู† ุซู… ุจู†ุณุชุฎุฏู… ุงู„ู†ุธุฑูŠุงุช ุงู„ู„ูŠ
53
00:04:44,740 --> 00:04:49,940
ุฃุซุจุชู†ุง ุตุญุชู‡ุง ููŠ ุญุงู„ุฉ T ุจุชุฑูˆุญ ุฅู„ู‰ A ู…ู† ุงู„ูŠู…ูŠู† ู„ุฅู†
54
00:04:49,940 --> 00:04:53,060
ุงุญู†ุง ู‡ู†ุฑูˆุญ ู„ Zero ู…ู† ุงู„ูŠู…ูŠู† ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎุทุฉ ุงู„ู„ูŠ
55
00:04:53,060 --> 00:04:58,480
ู‡ู†ู…ุดูŠ ุนู„ูŠู‡ุง ุจู†ุดูˆู ุฃูˆู„ ุฅุดูŠ ูˆุงุถุญ ุฃู† ุงู„ F ูˆ ุงู„ G ุงู„ F
56
00:04:59,090 --> 00:05:03,930
ูˆุงู„ู€ G are differentiable ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู†
57
00:05:03,930 --> 00:05:10,550
ุณูุฑ ู„ุนู†ุฏ ูˆุงุญุฏ ุนู„ูŠู‡ ู‡ุงูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ูˆู…ุฏุงู…
58
00:05:10,550 --> 00:05:13,810
differentiable ุฏู‡ ู† continuous ุนู„ูŠู‡ุง ูˆู…ุด ู‡ูŠูƒ ูƒู…ุงู†
59
00:05:13,810 --> 00:05:19,230
ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุงู†ุช ู‡ุฐู‡ ุจุชุญุณุจู‡ุง ู„ุญุงู„ูƒ limit F of T as
60
00:05:19,230 --> 00:05:27,640
T ุจุชุฑูˆุญ ู„ู„ุณูุฑ ุงู„ู„ูŠ ู‡ูŠ ุจุชุณุงูˆูŠ limitf of 1 ุนู„ู‰ t as
61
00:05:27,640 --> 00:05:32,340
t ุจุชุฑูˆุญ ู„ู„ุตูุฑ ูˆ ู‡ุชู„ุงู‚ูŠู‡ุง ุฅูŠุด ู‡ุชุณุงูˆูŠุŒ ู‡ุชุณุงูˆูŠ ุตูุฑ
62
00:05:32,340 --> 00:05:36,760
ูุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ F ุงู„ capital is continuous ุนู„ู‰
63
00:05:36,760 --> 00:05:43,490
ุงู„ูุชุฑุฉ ู…ู† 0 ู„ุนู†ุฏ 1 ุนู„ู‰ a similarly limit g of tู„ู…ุง
64
00:05:43,490 --> 00:05:47,650
T ุชุฑูˆุญ ู„ู„ู€ Zero ุทุจุนุง ูƒู„ ุงู„ู€ Zero ู…ู† ูˆูŠู† ุทุจูŠุนูŠ ู…ู†
65
00:05:47,650 --> 00:05:50,950
ุงู„ูŠู…ูŠู† ู„ุฃู†ู‡ ุฃุญู†ุง ุนุงู„ู…ู†ุง ุงู„ู„ูŠ ุจู†ุดุชุบู„ ุนู„ูŠู‡ ุงู„ู„ูŠ ู‡ูŠ
66
00:05:50,950 --> 00:05:53,730
ู…ู† ุนู†ุฏ Zero ู„ุนู†ุฏ ูˆุงุญุฏ ุนู„ู‰ ุฃูŠ ู…ู† ุงู„ู…ู†ุทู‚ุฉ ุงู„ู…ูˆุฏุฉ ุจู‚ู‰
67
00:05:53,730 --> 00:05:58,750
ุฅุฐู† ู‡ุฑูˆุญ ู„ู„ู€ Zero ู…ู† ุฌู‡ุงุช ุงู„ูŠู…ูŠู† ู‡ูŠุณุงูˆูŠ ู†ูุณ ุงู„ุฃุดูŠ
68
00:05:58,750 --> 00:06:03,290
limit F of ูˆุงุญุฏ ุนู„ู‰ T ู„ู…ุง T ุชุฑูˆุญ ู„ู„ู€ Zero ู…ู†
69
00:06:03,290 --> 00:06:07,590
ุงู„ูŠู…ูŠู† ูˆูŠุณุงูˆูŠ ุงู„ู„ูŠ ุฌูŠู‡ุง ุจุฑุถู‡ ุฃุดู…ุงู„ู‡ุง ุจุชุณุงูˆูŠ ุตูุฑ
70
00:06:08,590 --> 00:06:12,970
ุงู„ุงู† ุตุงุฑุช ุงู„ุงู† ุงู„ุงู ูˆ ุงู„ุฌูŠ ุงุดู…ุงู„ูŠู† are continuous
71
00:06:12,970 --> 00:06:17,390
ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆ differentiable ุนู„ู‰ ุงู„ูุชุฑุฉ
72
00:06:17,390 --> 00:06:20,510
ุงู„ open ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
73
00:06:20,510 --> 00:06:20,590
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
74
00:06:20,590 --> 00:06:20,790
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
75
00:06:20,790 --> 00:06:21,070
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
76
00:06:21,070 --> 00:06:21,290
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
77
00:06:21,290 --> 00:06:23,330
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
78
00:06:23,330 --> 00:06:23,350
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
79
00:06:23,350 --> 00:06:23,650
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
80
00:06:23,650 --> 00:06:23,650
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
81
00:06:23,650 --> 00:06:29,210
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..
82
00:06:37,480 --> 00:06:43,680
ุจู†ุฌูŠ ุจู†ุญุตู„ ุนู„ู‰ ู…ุง ูŠู„ูŠ ุฎู„ูŠู†ูŠ ุจุณ ุงุณู…ุญูˆู„ูŠ ุฃู…ุณุญ ู‡ุฐู‡
83
00:06:43,680 --> 00:06:49,760
ุฏู„ุช ููŠ ุงู„ุฐุงูƒุฑุฉ ุนู†ุฏูŠ ุจุฏูŠ ุฃุญุณุจ ุฃู†ุง ุบุงูŠุฉ ุฃู† ุฃูˆุฌุฏ ู…ูŠู†
84
00:06:49,760 --> 00:06:53,380
ูŠุง ุฌู…ุงุนุฉ limit ุงู„ู„ูŠ ู‡ูˆ f of x ุนู„ู‰ g of x ู„ู…ุง x
85
00:06:53,380 --> 00:07:00,780
ุชุฑูˆุญ ุฅู„ู‰ ูˆูŠู† ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ู„ุฃู† limit f of x ุนู„ู‰ g
86
00:07:00,780 --> 00:07:07,720
of x ู„ู…ุง x ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ุจุชุณุงูˆูŠุนุจุงุฑุฉ ุนู† ุงู„ุงู†
87
00:07:07,720 --> 00:07:12,180
ุงู„ X ุจุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ F and ูˆุงู„ F ุงู„ูˆุงุญุฏ ุนู„ู‰ X
88
00:07:12,180 --> 00:07:20,660
ูˆูŠู† ุจุชุฑูˆุญ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณูุฑ ุจุชุณุงูˆูŠ limit F of ูˆุงุญุฏ ุนู„ู‰
89
00:07:20,660 --> 00:07:26,040
T ุฎู„ูŠู†ุง ู†ุณู…ูŠู‡ุง ุนู„ู‰ G of ูˆุงุญุฏ ุนู„ู‰ T ู„ู…ุง T ุชุฑูˆุญ ุฅู„ู‰
90
00:07:26,040 --> 00:07:32,420
ู…ูŠู† ุฅู„ู‰ ุงู„ุณูุฑ ู…ู† ุงู„ูŠู…ูŠู†ุฃูˆ ุฅุฐุง ูƒุงู† ุนู†ุฏูƒ ุงุชุตุงุฑ
91
00:07:32,420 --> 00:07:38,640
confusion ุฅุดูŠ ูˆุงู„ุชูƒู† X ู…ุงููŠ ู…ุดูƒู„ุฉ X ู„ู…ุง X ุชุฑูˆุญ ู„ 0
92
00:07:38,640 --> 00:07:43,660
ู…ู† ุงู„ูŠู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุจุชุณูŠุฑ ุนู†ุฏ ุฃุณู ุงู„ูˆุงุญุฏ ุนู„ู‰ X ุจุชุฑูˆุญ
93
00:07:43,660 --> 00:07:47,860
ู„ 0 ู…ู† ุงู„ูŠู…ูŠู† if and only if ุงู„ X ุจุชุฑูˆุญ ู„ู…ูŠู† ุฅู„ู‰
94
00:07:47,860 --> 00:07:51,520
ู…ุง ู„ู†ู‡ุงูŠุฉ ูˆู…ู† ุซู… ุจูุฎุทูˆุฉ ุชุงู†ูŠุฉ ุจุชุฑุฌุญู‡ุง ู„ู„ูŠ ูƒุชุจุชู‡
95
00:07:51,520 --> 00:07:57,980
ู‚ุจู„ ุจุดูˆูŠุฉ limit ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† F of Tุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ
96
00:07:57,980 --> 00:08:04,420
G of T ู„ู…ุง T ุชุฑูˆุญ ู„ู€ 0 ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ุจุงุดูŠ
97
00:08:04,420 --> 00:08:08,120
ุงู„ุญุงู„ ุฃู†ุง ุงู„ุฃู† ุจุฏูŠ ุฃูุถู„ ููŠ ุงู„ูˆุงู‚ุน ุจุงู„ู†ุณุจุฉ ู„ู…ู†ุŸ
98
00:08:08,120 --> 00:08:14,040
ุจุงู„ู†ุณุจุฉ ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ X ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ูˆุฏูŠุช ูˆุงุญุฏุฉ
99
00:08:14,040 --> 00:08:19,880
ุงู„ู€ X ู…ู† ุงู„ูŠู…ูŠู† ูˆุตุงุฑุช ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ู…ูƒุงู† ู„ุฃ ู„ุฃ ูŠุง
100
00:08:19,880 --> 00:08:26,200
ุฌู…ุงุนุฉ ู‡ุงุฏ ู†ุฒุงู… ู‡ูŠ ุจุชุถู„ู‡ุง ุขุณู ุฃู‡ุŸX X ูˆู‡ู†ุง ุจุชุตูŠุฑ
101
00:08:26,200 --> 00:08:30,900
ุฃู†ู†ุง ู…ูŠู† ูˆุงุญุฏ ุนู„ู‰ T ูˆู‡ู†ุง ูˆุงุญุฏ ุนู„ู‰ T ูˆุงุถุญ ู„ูŠุด
102
00:08:30,900 --> 00:08:36,540
ุงุณุชุจุฏู„ู†ุง ู‡ู†ุง ุงุญู†ุง ุงู„ูˆุงุญุฏ ุนู„ู‰ X ูƒู„ู‡ ุจ T ูุตุงุฑุช ู‡ุฐู‡
103
00:08:36,540 --> 00:08:41,320
ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุนู„ู‰ T ูˆู‡ุฐู‡ ูˆุงุญุฏ ุนู„ู‰ T ุงู„ุขู† ุตุงุฑุช
104
00:08:41,320 --> 00:08:44,780
ุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ู…ุทุจู‚ุฉ ู„ุฃู† ุงู„ T ุจุชุฑูˆุญ ู„ู…ูŠู† ู„ Zero
105
00:08:44,780 --> 00:08:49,780
ู…ู† ู„ู…ูŠู† ู„ุฃู† ู‡ุฏู ุงู„ูˆุงู‚ุน ู…ูŠู† ู‡ูŠ ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡ุง ุฃุดูŠ
106
00:08:49,780 --> 00:08:57,850
ู‡ุฐู‡ ุจุชุณุงูˆูŠ limit ofof T ุนู„ู‰ G of T ู„ู…ุง T ุชุฑูˆุญ ุฅู„ู‰
107
00:08:57,850 --> 00:09:01,310
Zero ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ูˆู‡ุฐุง ู…ุชุทุจู‚ ู„ุฃู† ู‡ุฐุง Zero
108
00:09:01,310 --> 00:09:05,490
ูˆู‡ุฐุง Zero ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุฅุฐุง ุตุงุฑ ุฅูŠุด ุจูŠุณุงูˆูŠ
109
00:09:05,490 --> 00:09:10,990
ุชูุงุถู„ ุงู„ุฃูˆู„ ุนู„ู‰ ุชูุงุถู„ ุงู„ุชุงู†ูŠ ููŠ 100 ุจุงู„ู†ุณุจุฉ ู„ุนู†
110
00:09:10,990 --> 00:09:17,220
ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ุฅุฐุง ุจูŠุตูŠุฑ limitุงู„ุชูŠ ู‡ูŠ ุงู„ุชูุงุถู„ ู‡ุงุฏูŠ
111
00:09:17,220 --> 00:09:21,060
ู…ู† ู‡ู†ุง F prime of T ุฃูŠุด ุจูŠุณุงูˆูŠ ูŠุง ุดุจุงุจุŸ ุชูุงุถู„
112
00:09:21,060 --> 00:09:24,960
ู‡ุงุฏูŠุŒ ุนู† T ุจุชุฑูˆุญ ู„ู„ู€0ุŒ ุฅุฐู† ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต 1 ุนู„ู‰
113
00:09:24,960 --> 00:09:34,000
T ุชุฑุจูŠุน ููŠ F prime of 1 ุนู„ู‰ T ุชูุงุถู„ F of TุŒ F of T
114
00:09:34,000 --> 00:09:38,930
ู‡ูŠู‡ุงูŠุนู†ูŠ T ู„ุง ุชุณุงูˆูŠ ุณูุฑ ุชูุงุถู„ู‡ุง F prime ุจุณุงูˆูŠ ู†ุงู‚ุต
115
00:09:38,930 --> 00:09:42,710
ุงู„ู„ูŠ ู‡ูˆ F prime ุงู„ูˆุงุญุฏ ุนู„ู‰ T ูุชูุงุถู„ ุงู„ู„ูŠ ุฌูˆุง ุงู„ู„ูŠ
116
00:09:42,710 --> 00:09:47,450
ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฅูŠุด ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ T ุชุฑุจูŠุน ูˆุงุถุญ ุนู„ู‰
117
00:09:47,450 --> 00:09:53,430
similarly ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ T ุชุฑุจูŠุน ููŠ G prime of ูˆุงุญุฏ
118
00:09:53,430 --> 00:10:00,200
ุนู„ู‰ T ู„ู…ุง ุงู„ู€T ุชุฑูˆุญ ู„ู…ูŠู† ุฅู„ู‰ ุงู„ู€0 ู…ู† ุงู„ูŠู…ูŠู†ุงู„ู†ู‚ุต 1
119
00:10:00,200 --> 00:10:03,160
ุฏู„ุช ุงู„ T ุชุฑุจูŠุน ุงู„ ู†ู‚ุต 1 ุฏู„ุช T ุชุฑุจูŠุน ุจุฑูˆุญู† ู…ุน ุจุนุถ
120
00:10:03,160 --> 00:10:09,780
ู†ุฑุฌุน ู„ุฃุตู„ู†ุง ุจูŠุตูŠุฑ limit F prime ุจุฏู‡ ุงุณุชุจุฏู„ ุงู„ุขู† ุงู„
121
00:10:09,780 --> 00:10:17,800
1 ุนู„ู‰ T ุจุงู„ X ุนู„ู‰ G prime ุจุฑุถู‡ ู†ูุณ ุงู„ุดูŠ ุนู„ู‰ X ูˆ ุงู„
122
00:10:17,800 --> 00:10:22,540
T ุชุณุชุจุฏู„ ุจู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† 1 ุนู„ู‰ X ุจุฏู‡ ุชุฑูˆุญ ู„ู„
123
00:10:22,540 --> 00:10:29,270
0 ู…ู† ุงู„ูŠู…ูŠู† ูŠุนู†ูŠ ุงู„ X ุจุฏู‡ ุชุฑูˆุญ ู„ู…ูŠู† ุฅู„ู‰ ู…ุงู„ูƒุจุตูŠุฑ
124
00:10:29,270 --> 00:10:35,510
ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ูˆ limit f of x ุนู„ู‰ g of x ุจุณุงูˆู‰ limit f
125
00:10:35,510 --> 00:10:40,350
prime of x ุนู„ู‰ g prime y ุนู„ู‰ x ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู†ูŠุฌู‰
126
00:10:40,350 --> 00:10:44,690
ู„ู„ู†ุธุฑูŠุฉ ุงู„ุจุนุฏู‡ุง ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ู‰ ุจุฏู‡ุง ุดุบู„ ุฎู„ูŠู†ุง ู†ุดูˆู
127
00:10:44,690 --> 00:10:53,110
ุงู„ู†ุธุฑูŠุฉ ุงุทู„ุน ู„ููˆู‚ ูˆู†ุฑูƒุฒ ู†ุดูˆู ุงูŠุด ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ุจุชุญูƒูŠ
128
00:10:53,110 --> 00:10:57,270
ูˆู…ู† ุซู… ู†ุฐู‡ุจ ุงู„ู‰ ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ
129
00:11:04,010 --> 00:11:11,750
ุนุดุงู† ู…ุณุงุญุฉ ุงู„ู„ูˆุญุฉ ุดูˆูŠุฉ ุฎู„ู‘ูŠู†ุง ู†ุชุจุน ุนู„ู‰ ุงู„ุชู„ุฎูŠุต ูˆู…ู†
130
00:11:11,750 --> 00:11:19,110
ุซู… ุจู†ุจุฑู‡ู† theorem 636 ุงู„ู„ูŠ ู‡ูŠ ุจุงุฎุชุตุงุฑ ู‡ูŠ ุญุงู„ุฉ ู…ุงู„ุฉ
131
00:11:19,110 --> 00:11:22,570
ู†ู‡ุงูŠุฉ ุนู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู†ูุชุฑุถ ุฃู† ุงู„ู€F ูˆ ุงู„ู€G are
132
00:11:22,570 --> 00:11:26,470
differentiable ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† A ูˆ B ูŠุนู†ูŠ ุฅุญู†ุง ุดุบู„ู†ุง
133
00:11:26,470 --> 00:11:34,230
ุงู„ุขู† ุนู„ู‰ ุงู„ูุชุฑุฉ ุฃูŠ ุฅู† ูƒุงู†ุช ู‡ุฐู‡ ุงู„ูุชุฑุฉ ู…ู† ุนู†ุฏ Aู„ุนู†ุฏ
134
00:11:34,230 --> 00:11:41,250
ู…ูŠ ุงู† ู„ุนู†ุฏ ุจูŠ ู„ุฃู†ู†ุง ู…ูุชุฑุถูŠู† ุฃู† ุงู„ F ูˆ ุงู„ G ุงู„ู„ูŠ ู‡ูˆ
135
00:11:41,250 --> 00:11:46,250
ู‚ุงุจู„ ู„ู„ุงุดุชู‚ุงู‚ ุนู„ู‰ ุงู„ูุชุฑุฉ A ูˆ B ูˆ limit F of X ู„ู…ุง
136
00:11:46,250 --> 00:11:48,890
X ุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงุฆูŠุฉ .. ุฅู„ู‰ Zero ู…ู† ุงู„ูŠู…ูŠู† ..
137
00:11:48,890 --> 00:11:53,230
ุฅู„ู‰ A ู…ู† ุงู„ูŠู…ูŠู† ุฅูŠุด ุจูŠุณุงูˆูŠ Infinity ูˆ limit G of X
138
00:11:53,230 --> 00:11:56,090
ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ุงู„ A ู…ู† ุงู„ูŠู…ูŠู† ุจุฑุถู‡ ุฅูŠุด ู…ุงู„ู‡ุง
139
00:11:56,090 --> 00:12:01,370
Infinity ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุตุงุฑ ู„ู…ุง ุนุฑุถุช ุนู„ูŠู†ุง limit F
140
00:12:01,370 --> 00:12:06,980
of Xุนู„ู‰ G of X ู„ู…ุง X ุฑุงุญุช ุฅู„ู‰ ุงู„ู€ A ู…ู† ุงู„ูŠู…ูŠู†
141
00:12:06,980 --> 00:12:10,660
ูˆุฌุฏู†ุง limit ุงู„ู„ูŠ ููˆู‚ ู…ู„ุง ู†ู‡ุงูŠุฉ ูˆ limit ุงู„ู„ูŠ ุชุญุช
142
00:12:10,660 --> 00:12:14,260
ู…ู„ุง ู†ู‡ุงูŠุฉ ูŠุนู†ูŠ ุญุตู„ู†ุง ุนู„ู‰ ุงู„ูƒู…ูŠุฉ ุงู„ุบูŠุฑ ู…ุนูŠู†ุฉ
143
00:12:14,260 --> 00:12:18,220
Infinity ุนู„ู‰ Infinity ุฅุฐุง ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุณุชุนุงู„ุฌ ู‡ุฐู‡
144
00:12:18,220 --> 00:12:23,060
ุงู„ุญุงู„ุฉ ุทุจุนุง ุงู„ุงู† ุงู„ู„ูŠ ู‡ูŠ ุจุทุฑูŠู‚ุฉ ู…ุดุงุจู‡ุฉ ู„ู„ุณุงุจู‚ุฉ
145
00:12:23,060 --> 00:12:29,080
ูˆุงู„ุงู† ุงุญู†ุง ุทุจุนุง ู‡ู†ู‚ูˆู… ุจุจุฑู‡ุงู† ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ู†ูƒู…ู„ ุงู„ู†ุต
146
00:12:29,820 --> 00:12:35,900
ุงู„ุขู† ูุฑุถู†ุง ุฃูŠุถู‹ุง ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ g of x ู„ุง ุชุณุงูˆูŠ
147
00:12:35,900 --> 00:12:40,160
ุณูุฑ ูˆุงู„ู€ g prime of x ู„ุง ุชุณุงูˆูŠ ุณูุฑ ู„ูƒู„ x ูˆ ุฅู…ุง ู„ู‡ุง
148
00:12:40,160 --> 00:12:44,920
ููŠ ุงู„ูุชุฑุฉ a ูˆ b ูŠุนู†ูŠ ู…ูุชุฑุถ ุฃู† ุงู„ู€ g of x ู„ุง ุชุณุงูˆูŠ
149
00:12:44,920 --> 00:12:52,860
ุณูุฑ ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ a ูˆ bู†ุฃุชูŠ ุฅู„ู‰ ุงู„ุฌุฒุฆูŠุฉ ุงู„ุฃูˆู„ู‰ ู…ู†
150
00:12:52,860 --> 00:12:57,380
ุงู„ู†ุธุฑูŠุฉ if limit f' ุนู„ู‰ g' ุจุณุงูˆูŠ L element in R
151
00:12:57,380 --> 00:13:02,040
ุฅุฐุง ูlimit f ุนู„ู‰ g ุจุฑุถู‡ ุฃูŠุถุง ุฃูŠุด ู‡ุชุณุงูˆูŠ L ุงู„ู„ูŠ ู‡ูŠ
152
00:13:02,040 --> 00:13:05,280
ู†ุธุฑูŠุงุช ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ุจู†ูุณ .. ุจู†ูุณ .. ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„
153
00:13:05,280 --> 00:13:10,160
ุจู†ูุณ ุงู„ู…ู†ุทู‚ ูˆู†ูุณ ุงู„ู†ุตูˆุต ุจุณ ู…ุจุฏู„ 0 ุนู„ู‰ 0 ุนู…ุงู„ุฉ
154
00:13:10,160 --> 00:13:13,560
ู†ู‡ุงูŠุฉูู„ุงู† limit f prime ุนู„ู‰ g prime ุตุงุฑุช ู…ุงู„ุฉ
155
00:13:13,560 --> 00:13:17,700
ู†ู‡ุงูŠุฉ ุฃูˆ ุณุงู„ุจ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉุŒ ุจุฑุถู‡ ุงู„ู†ุธุฑูŠุฉ ุจุชุธุจุทุŒ ุณูŠุฑ
156
00:13:17,700 --> 00:13:23,310
limit ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงู‡ูˆ ุจุงู„ุธุจุท limit ุงู„ู€ F ุนู„ู‰ G as
157
00:13:23,310 --> 00:13:26,170
X ูˆุชุฑูˆุญู†ุง ุงู„ู€ M ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ Infinity ูˆุณุงู„ุจ
158
00:13:26,170 --> 00:13:30,550
Infinity ูŠุนู†ูŠ ููŠ ุงู„ู†ู‡ุงูŠุฉ ุงู„ู„ูŠ ุจุจุญุซ ุนู†ู‡ ู‡ุฐุง ู‡ูˆ ููŠ
159
00:13:30,550 --> 00:13:34,650
ุงู„ุญุงู„ุฉ ู‡ุฐู‡ ุฃูˆ ููŠ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ููˆู‚ ุจุณุงูˆูŠ limit ู…ูŠู†
160
00:13:34,650 --> 00:13:37,750
ุงู„ู€ F prime ุนู„ู‰ G prime ุงู„ู„ูŠ ู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู…ุญูˆุฏุฉ
161
00:13:37,750 --> 00:13:40,330
ุจู†ูุถู„ ุงู„ู„ูŠ ููˆู‚ ูˆ ุจู†ูุถู„ ุงู„ู„ูŠ ุชุญุช ูˆ ุจู†ูˆุฌุฏ limit ู‡ูŠู†
162
00:13:40,330 --> 00:13:44,670
ุจูŠูƒูˆู†ูŠู† ู‡ูŠู† limit ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุตู„ ุงู„ู„ูŠ ุงุญู†ุง ุจุฏู†ุงูŠุง
163
00:13:45,410 --> 00:13:49,590
ุงู„ุงู† ู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ in Berlin ุงู„ู„ูŠ ู‡ูˆ a ูˆ b ุทุจุนุง
164
00:13:49,590 --> 00:13:54,410
ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุงู„ุงู†
165
00:13:54,410 --> 00:14:02,790
ู‚ุจู„ ู…ุง ู†ุจุฏุฃ ุงุญู†ุง ู„ูˆ ุงุฌูŠู†ุง ูˆ ู‚ูˆู„ู†ุง limit f of x ู„ู…ุง
166
00:14:02,790 --> 00:14:06,610
x ุชุฑูˆุญ ู„ุฃูŠ ุงุดูŠ ู…ุซู„ุง a ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆุฉ L
167
00:14:11,700 --> 00:14:14,480
ูˆู‚ู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ for every epsilon ุชุนุฑูŠูู‡ุง for every
168
00:14:14,480 --> 00:14:16,660
epsilon ุฃูƒุจุฑ ู…ู† ุณูุฑ there exists a delta ุฃูƒุจุฑ ู…ู†
169
00:14:16,660 --> 00:14:21,300
ุณูุฑ such that if x element in A ุทุจุนุง ู…ู† ุงู„ูŠู…ูŠู†
170
00:14:21,300 --> 00:14:27,780
ู…ุนู†ุงุชู‡ A ูˆ A ุฒุงุฆุฏ ุฏู„ุชุง then ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ f
171
00:14:27,780 --> 00:14:35,230
of x ู†ุงู‚ุต ุงู„ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู…ู†ุงู„ุงู† ู„ูˆ ูƒุงู†ุช ุนู†ุฏูŠ
172
00:14:35,230 --> 00:14:39,330
ุงู„ epsilon ุฃุซุจุชุช ุงู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ epsilon ู„
173
00:14:39,330 --> 00:14:45,410
epsilon ู„ูˆ ุฃุซุจุชุช ู„ูƒู„ epsilon element in ู…ุซู„ุง in
174
00:14:45,410 --> 00:14:51,970
zero ูˆ ู†ุตุฃูˆ ู†ุฒูŠุฑู‡ ุฑุจุน ุฃูˆ ู†ุฒูŠุฑู‡ ุชู„ุช ู„ูˆ ุฃุซุจุชุช ุฃู†ู‡
175
00:14:51,970 --> 00:14:54,950
ู„ูƒู„ ุฅุจุณู„ูˆู† ู„ุฌู‡ุฉ ุฏู„ุชุฉ ุจุญูŠุซ ุฃู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃุตุบุฑ ู…ู†
176
00:14:54,950 --> 00:15:01,650
ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุจุฑุถู‡ ุจูŠูƒูˆู† ูŠุฌุฒุฆ ุนู† ุงู„ limit ู„ูŠุดุŸ ู„ุฃู†
177
00:15:01,650 --> 00:15:04,950
ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุจูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู†
178
00:15:04,950 --> 00:15:09,830
ุงู„ู†ุต ุฃูƒูŠุฏ ุจู†ูุน ู„ู…ูŠู† ุงู„ุฏู„ุชุฉ ุจู†ูุน ู„ู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุงู„
179
00:15:09,830 --> 00:15:15,450
ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ู†ุต ู„ุฃู†ู‡ ุฃุตู„ุง ุงู„ู„ูŠ ู‡ูŠ ู…ุดูƒู„ุฉ
180
00:15:15,450 --> 00:15:19,620
ุฃูˆ ุฎู„ูŠู†ุง ู†ู‚ูˆู„ ุงู„ limit ููŠ ุญุฏ ุฐุงุชู‡ุงุฅู†ู‡ ู„ู…ุง ุงู„ู€ A
181
00:15:19,620 --> 00:15:24,880
ุชุฑูˆุญุงู„ู€ X ุชุฑูˆุญ ุฅู„ู‰ ุงู„ู€ A ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุจุฏู†ุง ู†ุฌู…ุน ุฃู†
182
00:15:24,880 --> 00:15:27,720
ุงู„ู€ F of X ุชู‚ุชุฑุจ ู…ู† ู…ูŠู† ู…ู† ุงู„ุฃุนู„ู‰ุŒ ูŠุนู†ูŠ ุงู„ุชุนุฌูŠุฒ ูˆ
183
00:15:27,720 --> 00:15:31,100
ูƒุฃู†ู‡ ุจุนุฌุฒู†ูŠ ุฃู†ู‡ ูŠู‚ูˆู„ ู„ูŠ ุฅู†ูƒ ุงุชู„ุงู‚ู‰ ุงู„ู€ Delta ููŠ
184
00:15:31,100 --> 00:15:34,600
ุญุงู„ุฉ ุงู„ู€ Epsilon ุฃูƒุงุด ุงู„ู„ูŠ ุจูŠูƒูˆู† ุตุบูŠุฑุฉ ูุงู„ู€ Close
185
00:15:34,600 --> 00:15:38,960
ุงู„ู„ูŠ ู‡ูˆ ุชู…ูŠู† to ZeroุŒ ู„ุฅู†ู‡ ุฃุตู„ุง ุงู„ู…ูู‡ูˆู… ุงู„ู„ูŠ
186
00:15:38,960 --> 00:15:43,160
ุจุชู‚ูŠู„ู‡ ู‡ุฐุง ุงู„ู…ุณุงูุฉ ุชุถูŠู‚ุŒ ุชุถูŠู‚ุŒ ุชุถูŠู‚ุŒ ุจุญูŠุซ ุฃู† F of
187
00:15:43,160 --> 00:15:46,760
X ุชู‚ูˆู„ ุฅู„ู‰ ุงู„ู€ ู…ูŠู† ุงู„ู„ูŠ ุจุชุนุจุฑ ุนู†ู‡ุงุŸ ุงู„ู€ EpsilonุŒ
188
00:15:46,760 --> 00:15:51,190
ู„ุฃู† ุจุนุทูŠูƒ Epsilon ุตุบูŠุฑุฉ ุฌุฏุง ุฌุฏุงุจุฏูƒ ุชู„ุงู‚ูŠ ู„ูŠ Delta
189
00:15:51,190 --> 00:15:54,870
ุฃู†ุง ุงู„ุขู† ุงู„ู€ Epsilon ุจูŠู† Zero ูˆ ู†ุต ู„ู‚ูŠุชู„ูƒ ุงู„ู€
190
00:15:54,870 --> 00:15:59,070
Delta ุงู„ู„ูŠ ุทู„ุนุช ู‡ู†ุง ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ ู†ูุน ู„ู„ู€ Epsilon
191
00:15:59,070 --> 00:16:03,510
ุงู„ุตุบูŠุฑุฉ ุฃูƒูŠุฏ ุจูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ุฃูƒุจูŠุฑุฉ ุฅุฐุง ู‡ุฐุง
192
00:16:03,510 --> 00:16:09,250
ูŠุฌุฒุก ุจุณ ู‡ุฐุง ู‚ุจู„ ู…ุง ู†ุจุฏุฃ ู„ุฃู†ู‡ ู‡ุณุฃุฎุฏู… ุดุบู„ุฉ ุงู„ู„ูŠ ู‡ูˆ
193
00:16:09,250 --> 00:16:14,930
ููŠ ู‡ุฐุง ุงู„ุงุชุฌุงู‡ ู†ูŠุฌูŠ ุงู„ุขู† ุนู†ุฏูŠ ุฃูˆู„ ุฅุดูŠ ุงู„ู…ุนุทู‰
194
00:16:14,930 --> 00:16:23,550
ู…ุงุชูŠู†ูŠ LimitF prime of X ุนู„ู‰ G prime of X as X
195
00:16:23,550 --> 00:16:29,190
ุจุชุฑูˆุญ ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู† ุฃูŠุด ุจุณุงูˆูŠุŸ ุจุณุงูˆูŠ ุฃู‚ู„ ุชุนุฑูŠู
196
00:16:29,190 --> 00:16:32,850
ุงู„ู€ Limit for every Y ุฃูƒุจุฑ ู…ู† 0 ุงู„ู„ูŠ ู‡ุชุงุฎุฏ for
197
00:16:32,850 --> 00:16:39,190
every Y element in 0 ูˆู†ุต ุงู„ู„ูŠ ู‡ูŠ ู„ุฒูˆู… ุญุณุงุจุงุชุŒ ุจุนุฏ
198
00:16:39,190 --> 00:16:44,650
ุดูˆูŠุฉ ู‡ู†ุดูˆูู‡ุงุงู„ุขู† ู„ูƒู„ y ุชู†ุชู…ูŠ ุฅู„ู‰ 0.5 ูˆู‡ุฐุง ู…ุดุฑูˆุน
199
00:16:44,650 --> 00:16:49,270
ุญุณุจ ู…ุง ุญูƒูŠุช ู‚ุจู„ ุจุดูˆูŠุฉ there exist delta ุฃูƒุจุฑ ู…ู† 0
200
00:16:49,270 --> 00:16:57,650
such that ุงู„ู„ูŠ ู‡ูˆ if x element in a ูˆ a ุฒูŠุงุฏุฉ ุฏู„ุชุง
201
00:16:57,650 --> 00:17:04,230
ู„ุฅู† ุฑุงูŠุญ ู„ู„ a ู…ู† ูˆูŠู† ู…ู† ุงู„ูŠู…ูŠู† ู„ุฌูŠุช ุงู„ู„ูŠ ู‡ูˆ ุฏู„ุชุง
202
00:17:04,230 --> 00:17:11,420
ุจุญูŠุซ ุฃู†ู‡ ู„ูƒู„ x ููŠ ุงู„ูุชุฑุฉ ู…ู† a ู„ุนูŠุฏ a ุฒุงุฆุฏ ุฏู„ุชุงุจุตูŠุฑ
203
00:17:11,420 --> 00:17:16,780
ุนู†ุฏู‰ ู„ูƒู„ x ุงู„ู…ุชู†ูŠุฉ ุฒุงุฆุฏ ุฏู„ุชุง ุจุชุทู„ุน ุนู†ุฏู‰ then f
204
00:17:16,780 --> 00:17:23,420
prime of x ุนู„ู‰ g prime of x ู†ุงู‚ุต ุงู„ L ุฃุตุบุฑ ู…ู† ู…ูŠู†
205
00:17:23,420 --> 00:17:32,060
ู…ู† ุงู„ epsilon ุฅุฐุง ุงู„ุขู† ู…ู† ู‡ุฐู‡ ุงู„ limitุญุตู„ุช ุนู„ู‰ ุฃู†ู‡
206
00:17:32,060 --> 00:17:36,540
ู„ุฃูŠ ุฅุจุณู„ูˆู† ุจูŠู† ุงู„ู€ 0 ูˆ ู†ุต ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ Delta ุจุญูŠุซ
207
00:17:36,540 --> 00:17:40,540
ู„ูƒู„ ุงู„ุฅูƒุณุงุช ููŠ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ู‡ุฐู‡ ุงู„ู€ Inquality ุฅูŠุด
208
00:17:40,540 --> 00:17:44,880
ู…ุง ู„ู‡ุง ุชุชุญู‚ู‚ ุงู„ุขู† ุจุณ ุฎู„ู‘ูŠู†ูŠ ุฃูƒู…ู„ู‡ุง ุฏูŠ ุดูˆูŠู‡ ุนุดุงู†
209
00:17:44,880 --> 00:17:52,040
ุจุณุชุฎุฏู…ู‡ุง ู„ุดุบู„ุงุช ุฃุฎุฑู‰ ุนู†ุฏ A ุฒุงุฆุฏ Delta ู‡ุฐุง ุจุณ ู…ุฌุฑุฏ
210
00:17:52,040 --> 00:17:56,340
ุชุนุฑูŠู ุงู„ู€ Limit F' ุนู„ู‰ ุงู„ู€ G' ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ A ู…ู†
211
00:17:56,340 --> 00:17:59,120
ุงู„ูŠู…ูŠู† ุงู„ุขู†
212
00:18:01,110 --> 00:18:04,910
ุจุฏูŠ ุฃุฎุชุงุฑ .. ุจุฏูŠ ุฃุณู‡ู„ ุนู„ู‰ ุญุงู„ูŠ ุจุฏู„ ู…ู† ูƒู„ ู…ุฑุฉ ุฃู‚ูˆู„
213
00:18:04,910 --> 00:18:08,130
a ุฒูŠ ุงู„ู€ delta ูˆ ุจุนุฏ ุดูˆูŠุฉ ุฃู„ุงู‚ูŠ delta prime ูˆ ุฃุฎุฏ
214
00:18:08,130 --> 00:18:12,010
ุงู„ minimum ุจูŠู†ู‡ู… ุงู„ุงุฎุฑู‰ ุฃุฌุฏูู… ุนู„ูŠู‡ ุนุดุงู† ุงู„ู„ูŠ ุจุญูƒูŠู‡
215
00:18:12,010 --> 00:18:17,910
ุจุฏูŠ ุฃุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุฃู‚ูˆู„ choose c1 element in a ูˆ a ุฒูŠ
216
00:18:17,910 --> 00:18:24,630
ุงู„ู€ delta ุงู„ุขู† ุงุฎุชุงุฑู„ูŠ c1 ู…ู† ุงู„ a ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู„
217
00:18:24,630 --> 00:18:30,340
a ุฒูŠ ุงู„ delta ุณู…ูŠู‡ c1 ูŠุนู†ูŠู…ุฌุฑุฏ ุงุฎุชูŠุงุฑ ุงู†ุง ุงุฎุชุฑุชู‡
218
00:18:30,340 --> 00:18:38,260
ุงู„ุงู† choose .. choose C1 element in A ูˆ A ุฒุงุฆุฏ
219
00:18:38,260 --> 00:18:44,140
ุฏู„ุชุง ูŠุนู†ูŠ C1 ูˆูŠู† ู…ูˆุฌูˆุฏุŸ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู…ู†ุทู‚ุฉ ุงู„ุชูŠ
220
00:18:44,140 --> 00:18:50,140
ุชุชุญู‚ู‚ ููŠู‡ุง F' ุน G' ู†ู‚ุต ุฃุตุบุฑ ู…ู† ู…ูŠู„ ู…ู† ุฅุจุณู„ ุนุดุงู†
221
00:18:50,140 --> 00:18:56,080
ุชุณุชุฎุฏู…ู‡ุง ุจุนุฏ ุดูˆูŠุฉูˆุงุถุญ ุทูŠุจ ู‡ุฐู‡ ู…ู† ุฌู‡ุฉ ุงู„ุฃู† ู…ู† ุงู„ุฌู‡ุฉ
222
00:18:56,080 --> 00:19:03,100
ุงู„ุซุงู†ูŠุฉ ุนู†ุฏ limit f of x ู„ู…ุง x ุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ
223
00:19:03,100 --> 00:19:09,880
ุฃุณู ู„ู„ a ู…ู† ุงู„ูŠู…ูŠู† ุจุณูˆุก ุฃูŠุด ู‡ูˆ ู…ุนุทูŠู†ูŠุฉ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ
224
00:19:09,880 --> 00:19:13,540
ู‡ูŠ limit f of x ู„ู…ุง x ุชุฑูˆุญ ุฅู„ู‰ ุงู„ a ู…ู† ุงู„ูŠู…ูŠู† ุจุณูˆุก
225
00:19:13,540 --> 00:19:15,760
limit g of x ู„ู…ุง x ุชุฑูˆุญ ุฅู„ู‰ ุงู„ a ู…ู† ุงู„ูŠู…ูŠู† ุจุณูˆุก
226
00:19:15,760 --> 00:19:23,170
ุฃูŠุด ู…ุงู„ู‡ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู…ู† ุชุนุฑูŠูู‡ุง ู‡ุฐุง ุฅูŠุด ูŠุนู†ูŠู„ูƒู„ K
227
00:19:23,170 --> 00:19:29,270
ุงู„ู„ูŠ ู‡ูˆ element in R there exists Delta A' ุฃูƒุจุฑ ู…ู†
228
00:19:29,270 --> 00:19:36,590
0 such that ุงู„ู„ูŠ ู‡ูˆ F of X ุฃูƒุจุฑ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ K
229
00:19:36,590 --> 00:19:42,210
ู„ูƒู„ X ูˆ N ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ A ูˆ A ุฒุงุฆุฏ ู…ูŠู† Delta
230
00:19:42,210 --> 00:19:49,300
PrimeุŒ ู…ุธุจูˆุท ูˆู„ุง ู„ุงุŸ ู…ุงุดูŠ ุงู„ุญู„ุงู„ุขู† ู„ูƒู„ x element
231
00:19:49,300 --> 00:19:52,200
in A ูˆ A ุฒูŠ ุงู„ู€ delta prime ู‡ุฐู‡ ุงู„ F of X ุฃูƒุจุฑ ู…ู†
232
00:19:52,200 --> 00:20:02,420
ู…ูŠู†ุŸ ู…ู† K ุงู„ุขู† ู„ูˆ ูƒุงู†ุช ุงู„ A ูˆ ุงู„ A .. ุงู„ุขู† ุนู†ุฏูŠ
233
00:20:02,420 --> 00:20:07,540
ู„ูƒู„ subset ู…ู† ู‡ุฐู‡ .. ู„ูƒู„ subset .. ู„ูˆ ูƒุงู† ุนู†ุฏูŠ A ูˆ
234
00:20:07,540 --> 00:20:10,940
C2 ู…ุซู„ุง subset ู…ู† ุงู„ A ูˆ ุงู„ A ุฒูŠ ุงู„ delta prime
235
00:20:12,470 --> 00:20:17,070
ุจุฑุถู‡ ุงู„ F of X ุฃูƒุจุฑ ู…ู† ูƒุฏู‡ ุชุญู‚ู‚ู‡ุง ุชุญู‚ู‚ ุฅูŠุด ู„ูƒู„ X
236
00:20:17,070 --> 00:20:24,610
ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ C2 ุงู„ุขู† ู„ูˆ
237
00:20:24,610 --> 00:20:30,410
ูƒุงู†ุช ุงู„ Delta ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ุจุฑุง ูˆู„ุง ุฌูˆุง ุจู‚ุฏุฑ ุฃุฎุชุงุฑ
238
00:20:30,410 --> 00:20:36,990
ุฌูˆุง ุงู„ู„ูŠ ู‡ูˆ C2ุจุญูŠุซ ุฃู†ู‡ ู„ูˆ ุงู„ู€ C2 ู‡ุฐูŠ ู‡ูˆ ุงู„ู„ูŠ
239
00:20:36,990 --> 00:20:42,450
ุงุฎุชุฑุชู‡ุง ุฌูˆุงุช ู…ู† ุงู„ู€ A ูˆุงู„ู€ A ุฒุงุฆุฏ ุฏู„ุชุง ุจุชุธู„ ุงู„ู€ F
240
00:20:42,450 --> 00:20:47,470
of X A ุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู€ KุŒ ูˆุงุถุญุŸ ุฅุฐุง ู…ู†
241
00:20:47,470 --> 00:20:52,330
ู‡ุฐู‡ ุจุฏูŠ ุฃุณุชููŠุฏ ุดุบู„ุชูŠู† ุจุฏูŠ ุฃุทุจู‚ ุงู„ุชุนุฑูŠู ู‡ุฐุง ู„ู€ K
242
00:20:52,330 --> 00:20:56,730
ู…ุญุฏุฏุฉ ู…ูŠู† ุงู„ู€ K ุงู„ู„ูŠ ุจุฏูŠ ุฃุทุจู‚ู‡ุงุŸ ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† F
243
00:20:56,730 --> 00:21:02,560
ุนู†ุฏ ู…ูŠู†ุŸ ุนู†ุฏ C1ูˆุงุถุญุŸ ุฅุฐุง ุงู„ุฃู† ุจู…ุง ุฃู†ู‡ limit f of X
244
00:21:02,560 --> 00:21:05,680
ุซู… X ุชุฑูˆุญ ุฅู„ู‰ ุงู„ู€A ุจุงู„ูŠู…ูŠู† ูŠุณุชูˆู‰ Infinity ุฅุฐุง for
245
00:21:05,680 --> 00:21:13,720
K .. ุฅุฐุง for f of C1 there exists Delta Prime ุฃูŠ
246
00:21:13,720 --> 00:21:19,840
Delta Prime ู…ุนูŠู†ุฉ ุจุญูŠุซ ุฃู† f of X ุฃูƒุจุฑ ู…ู† 100 ู…ู† f
247
00:21:19,840 --> 00:21:27,060
of C1 ู„ูƒู„ X ู…ูˆุฌูˆุฏุฉ ุจูŠู† ุงู„ู€A ูˆุงู„ู€A ุฒุงุฆุฏ Delta Prime
248
00:21:27,680 --> 00:21:31,860
ุฃู†ุง ุจุฏูŠ ุฃุฎุชุงุฑ ููŠ ู…ูŠู† ู„ูƒู„ X ุงู„ู…ูˆุฌูˆุฏุฉ ุจูŠู† ุงู„ู€ A ูˆ
249
00:21:31,860 --> 00:21:37,940
ุงู„ู€ C2 ุญูŠุซ ุงู„ู€ C2 ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ูˆ ุจุฏูŠู‡ุง ู…ู†
250
00:21:37,940 --> 00:21:44,120
C1 ูˆ ู„ุฌุงูŠ ุงุฐุง ุนุดุงู† ู‡ูŠูƒ ุจู‚ุฏุฑ ุงู‚ูˆู„ then we can
251
00:21:44,120 --> 00:21:50,280
choose C2 ุจูŠู† A ูˆ C1ุงู„ู€ C2 ุจู‚ุฏุฑ ุงุฎุชุงุฑู‡ุง ูุนู„ุง
252
00:21:50,280 --> 00:21:55,640
ุจุฎุชุงุฑู‡ุง ุจุณ ุทุจุนุง ูˆูŠู† ุชุดุชุฑูŠ ุชุดุฑูŠุน ุงู„ู„ูŠ ุงุฎุชูŠุงุฑู‡ุง ุงู†ู‡ุง
253
00:21:55,640 --> 00:22:01,420
ุชูƒูˆู† ุจูŠู† ุงู„ูุชุฑุฉ A ูˆ A ุฒุงุฆุฏ Delta Prime ูˆ ุจุฏูŠุงู‡ุง
254
00:22:01,420 --> 00:22:06,900
ุชูŠุฌูŠ ููŠ ุฏุงุฎู„ ุงู„ู€ A ูˆ ุงู„ู€ C1 ุงุฐุง then we can choose
255
00:22:06,900 --> 00:22:13,200
C2 element A of C1 ุจุญูŠุซ ุงู† ุงู„ F of X ุฃูƒุจุฑ ู…ู† ู…ูŠู†
256
00:22:13,200 --> 00:22:22,810
ู…ู† F of C1 ู„ูƒู„ X ูˆูŠู†ููŠ ุงู„ูุชุฑุฉ ุจูŠู† A ูˆC ุงุชู†ูŠู† ุทูŠุจ
257
00:22:22,810 --> 00:22:28,050
ู‡ุฐู‡ ู…ุนู†ุงุชู‡ ุงู† ุงู„ F of X ู‡ุฐู‡ ู„ูƒู„ ุงู„ Xุงุช ุงู„ู„ูŠ ู‡ุงู† ุงู„
258
00:22:28,050 --> 00:22:34,290
F of X ุฃูƒูŠุฏ ุงูŠ ุดู…ุงู„ู‡ุง ู„ู‡ุง ุชุณุงูˆูŠ ุงูŠุด F of C ูˆุงุญุฏ ู‡ู„
259
00:22:34,290 --> 00:22:38,930
ุฌุฏ ุชุนุฑู ู„ูŠุด ุจุฏูŠู‡ุง ู‡ุฐู‡ ุนุดุงู† ู„ุฒูˆู… ุชุนุฑูŠู ุดุบู„ ู…ุนูŠู†ุฉ
260
00:22:38,930 --> 00:22:44,770
ุจู†ูุนุด ุชูƒูˆู† ุงู„ F of X ุงูŠุด ุจุชุณุงูˆูŠ F of C ูˆุงุญุฏ ุงู„ุขู†
261
00:22:44,770 --> 00:22:55,550
similarlySimilarly ุงู„ู„ูŠ ู‡ูˆ ุจู…ุง ุงู†ู‡ limit G of X
262
00:22:55,550 --> 00:23:00,690
ุจุณุงูˆูŠ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ as X ุจุชุฑูˆุญ ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู† ุฅุฐุง
263
00:23:00,690 --> 00:23:13,160
ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ C1 ุจุฑุงูŠู… ุจุญูŠุซ ุงู†ู‡ G of X ุฃูƒุจุฑุฃูˆ
264
00:23:13,160 --> 00:23:17,240
ู„ุง ุชุณุงูˆูŠ ุทุจุนุง ุฃูƒุจุฑ ุงู„ู€ thrifty ูŠุนู†ูŠ ู„ุง ุชุณุงูˆูŠ G of
265
00:23:17,240 --> 00:23:27,860
C1 ู„ูƒู„ X ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ A ูˆ C1 ุฅูŠุด ุฅุจุฑุงู‡ูŠู… ุงู‡ G C1
266
00:23:27,860 --> 00:23:34,680
ุฅุจุฑุงู‡ูŠู… ุงู‡ G C1 ุฅุจุฑุงู‡ูŠู… ุงู„ุขู†
267
00:23:34,680 --> 00:23:40,760
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ุจุงุฎุฏุงู„ู€ Minimum ุนุดุงู† ุทุจุนุง ู‡ุฐุง
268
00:23:40,760 --> 00:23:46,120
ุงู„ู„ูŠ ู„ุฌู‡ุฉ N C1' ู…ู…ูƒู† ุงู„ู„ูŠ ู‡ูŠ ู„ูƒู„ X ููŠ ุงู„ู€ A ูˆ C1'
269
00:23:46,620 --> 00:23:52,840
ูˆ ู„ูƒู„ X element in A ูˆ C2' ุจุท ู…ุงู†ุด .. ู…ุด ุนุงุฑู ู…ูŠู†
270
00:23:52,840 --> 00:23:58,670
ุงู„ุฃูƒุจุฑ ู…ู† ู‡ุฐูˆู„ ูุจุงุฎุฏ ุงู„ู€ Minimum ู…ู† ุงู„ุฌู‡ุชูŠู†ูˆ
271
00:23:58,670 --> 00:24:03,090
ุจุณู…ูŠู‡ุง C1 ู…ุซู„ุง ุงูˆ C2 ุงู„ minimum ู…ู† ุงู„ุชู†ุชูŠู† C2
272
00:24:03,090 --> 00:24:09,550
ูุจุชุตูŠุฑ ุนู†ุฏู‰ ู„ุงู† ู„ูƒู„ X ููŠ ุงู„ A ูˆ ุงู„ minimum ุจูŠู†ู‡ู†
273
00:24:09,550 --> 00:24:14,630
ู‡ุฏู‰ ุจุชุธุจุท ูˆ ู‡ุฏู‰ ุจุชุธุจุท ูŠุนู†ู‰ ุงู„ G of X ู„ุง ุชุณุงูˆูŠ F of
274
00:24:14,630 --> 00:24:20,670
C1 ูˆ ุงู„ F of X ู„ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ F of C1 ุฅุจุฑุงูŠู… ูˆ ู…ู†ู‡
275
00:24:20,670 --> 00:24:25,870
ุจุนุฑู ุงู„ู„ู‰ ุจุฏูŠู‡ ุงูˆ ุจุนู…ู„ ุฒู‰ ู…ุง ู‡ูˆ ุนุงู…ู„ ููŠ ุงู„ูƒุชุงุจ ุฅูŠุด
276
00:24:25,870 --> 00:24:29,280
ุงู„ู„ู‰ ุจู‚ูˆู„ู‡ุŸ ู†ุดูˆู ุงู„ู„ู‰ ุจุนุฏู‡ุงุฅุฐุง ุงู„ุฃู† ุงู„ู„ูŠ ุงุชูุฌู†ุง
277
00:24:29,280 --> 00:24:38,540
ุนู„ูŠู‡ ุฃู†ู‡ ููŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ A ุฒุงุฆุฏ Delta ู‡ุฐู‡
278
00:24:38,540 --> 00:24:45,480
ู…ุชุญู‚ู‚ุฉ ู‡ุงูŠ ูˆุงุญุฏ ูˆุงู„ู„ูŠ ุงุชูุฌู†ุง ุนู„ูŠู‡ ุฃู† F of X ู„ุง
279
00:24:45,480 --> 00:24:50,140
ุชุณุงูˆูŠ F of C ูˆุงุญุฏ ููŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ C ุชู†ูŠู†
280
00:24:50,140 --> 00:24:55,580
ุฃุดู…ุงู„ู‡ุง ู…ุชุญู‚ู‚ุฉูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ู€ Inquality ู‡ุฐู‡
281
00:24:55,580 --> 00:25:03,800
ูˆู‡ุฐู‡ ุงู„ุชู†ุชูŠู† ู…ุญู‚ู‚ุงุช ู…ู† ุฃูŠู†ุŸ ู…ู† A ู„ุนูŠู† C ุงู„ุงุชู†ูŠู†
282
00:25:03,800 --> 00:25:05,360
ูˆุงุถุญุŸ
283
00:25:11,650 --> 00:25:17,590
ุงู„ุงู† ุงุตู„ู†ุง ู„ู…ุฑุญู„ุฉ ุงู†ู‡ ู†ู‚ุฏุฑ ู†ุนุฑู ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุชุฏูŠู‡ุง
284
00:25:17,590 --> 00:25:23,890
ุงู„ู„ูŠ ู‡ูŠ F of X ุจุชุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต F of C ูˆุงุญุฏ ุนู„ู‰ F
285
00:25:23,890 --> 00:25:30,470
of X ูˆูˆุงุญุฏ ู†ุงู‚ุต G of C ูˆุงุญุฏ ุนู„ู‰ G of X ู„ูƒู„ X ูˆูŠู†
286
00:25:30,470 --> 00:25:37,330
ู…ูˆุฌูˆุฏุฉ ุจูŠู† A ูˆC ุชู†ูŠู† ูˆ F of C ูˆุงุญุฏ ู„ุง ุชุณุงูˆูŠ F of X
287
00:25:37,330 --> 00:25:43,340
ู…ุธุจูˆุทุŸ ู‡ูŠุง ุงุนู…ู„ู‡ุงุฃู‡ ู„ุฅู† ูˆูŠู† ุจุฏูŠ ุฃุนุฑู ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ F
288
00:25:43,340 --> 00:25:50,480
ู…ู† A ู„ุนู†ุฏ ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุจุชุชุญู‚ู‚ ุนู„ูŠู‡ุง ุฎุงุตูŠุฉ F of X ุฏู‡
289
00:25:50,480 --> 00:25:55,080
ุชุณูˆู‰ ู…ูŠู† F of C ูˆุงุญุฏ ูˆ ุจุชุชุญู‚ู‚ ุนู„ูŠู‡ุง ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ
290
00:25:55,080 --> 00:26:00,480
ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐู‡ ู„ุฅู† ูƒู„ู‡ ู‡ูŠู„ุฒู…ู†ูŠ ู‡ุฐุง ุฅุฐุง ุงู„ุฃู†
291
00:26:05,340 --> 00:26:09,980
ุงุชูุฌู†ุง ุนู„ูŠู‡ุง ุฏูŠ ุงู‡ ุนุดุงู† ุจุฏูŠ ุงู…ุณุญ ุงู†ู‡ ุนู†ุฏูŠ f prime
292
00:26:09,980 --> 00:26:13,800
ุน ุงู„ุฌูŠ ุจุฑุงูŠู… ู†ู‚ุตู‡ุง ุงู„ุฃุตุบุฑ ู…ู† ูŠุงุจุณูˆู„ูˆู† ู„ูƒู„ ุงู„ Xุงุช
293
00:26:13,800 --> 00:26:18,700
ู…ู† A ู„ุนู†ุฏ A ุฒุงุฆุฏ ุฏูŠู„ุชุง ู„ูƒู„ ุงู„ Xุงุช ุงู„ู„ูŠ ู‡ุงู†ุง
294
00:26:18,700 --> 00:26:22,040
ูˆุงุชูุฌู†ุง ุงู† F of X ู„ุง ุชุณุงูˆูŠ F of C one ุจุฑุถู‡ ููŠ
295
00:26:22,040 --> 00:26:27,350
ุงู„ูุฑู‚ ููŠ ุงู„ู…ู†ุทู‚ุฉ ู…ู† ุงูŠุด ู…ู† A ู„C2 ุงุชูุฌู†ุง ุนู„ูŠู‡ุงู„ุงู†
296
00:26:27,350 --> 00:26:33,510
ู†ูŠุฌูŠ ู†ุนุฑู ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ู‡ุชูˆุตู„ู†ูŠ ู„ู‡ุฏููŠ ุฎุฏ ุงู„ุงู† f of x
297
00:26:33,510 --> 00:26:42,670
ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ู†ุงู‚ุต f of c ูˆุงุญุฏ ุนู„ู‰ f of x
298
00:26:42,670 --> 00:26:52,450
ุนู„ู‰ ูˆุงุญุฏ ู†ุงู‚ุต g of c ูˆุงุญุฏ ุนู„ู‰ g of xุงู„ุขู† g of c
299
00:26:52,450 --> 00:26:55,810
ูˆุงุญุฏ ู…ุณุชุญูŠู„ ุชุณุงูˆูŠ g of x ู…ู† ุฃูŠ ุฃุณุจุงุจ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง
300
00:26:55,810 --> 00:27:01,710
ูˆู„ูŠุณ ุณุจุจ ุขุฎุฑ ุฃูŠุถุง ุงู„ู„ูŠ ู‡ูˆ ู„ูŠุด ุฃู†ู‡ ุนู†ุฏูŠ ุงู„ู€ g prime
301
00:27:01,710 --> 00:27:07,570
ุงู„ู€ g prime of x ุฏู‡ ูŠุณุงูˆูŠ ุณูุฑ ุฅุฐุง ุญุณุจ Rolle's
302
00:27:07,570 --> 00:27:13,570
theorem ู…ุณุชุญูŠู„ ุงู„ู€ g of c ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุชุณุงูˆูŠ g of
303
00:27:13,570 --> 00:27:20,530
x ู„ูŠุด ุนู†ุฏูŠ g continuous
304
00:27:21,550 --> 00:27:29,350
on a .. ุทุจุนุง ุงู„ู€ x ูˆุงู„ูŠ ู…ูˆุฌูˆุฏุฉ ุฌูˆู‡ุง ู…ู†ู‡ุง ุงู„ุงู† ู…ู† x
305
00:27:29,350 --> 00:27:37,110
ู„ุนู†ุฏ c ูˆุงุญุฏ ุตุญุŸ ูˆ g is differentiable on x ู„ุนู†ุฏ
306
00:27:37,110 --> 00:27:44,090
ุงู„ู„ูŠ ู‡ูŠ c ูˆุงุญุฏ open ูˆุงุถุญุฉุŸ
307
00:27:44,090 --> 00:27:48,670
ู„ุฃู†ู‡ ุฃุซุฑ ู‡ุฐุง continuous ูˆ differentiable ู…ู† a ู„ุนู†ุฏ
308
00:27:48,670 --> 00:27:52,550
bุงู„ุนู„ู…ูŠ ุฅุฐุง ููŠ ุงู„ุฌุฒูŠุฉ ู‡ุฐู‡ ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ู… ุชุชุญู‚ู‚
309
00:27:52,550 --> 00:28:01,270
ู‡ุฐู‡ ุงู„ุขู† ู„ูˆ ุฒูŠ ู…ุง ุจู†ู‚ูˆู„ ุงู† ุฌูŠ ุจุฑุง ู„ูˆ ู„ูˆ ุนู†ุฏูŠ ุจุฏูŠ
310
00:28:01,270 --> 00:28:09,250
ูŠูƒูˆู† g of x ุจุณูˆุก g of c ูˆุงุญุฏ ู…ุนู†ุงุชู‡ ุญุณุจ role
311
00:28:09,250 --> 00:28:16,360
theorem ู‡ูŠุนุทูŠู†ูŠ there existcx element in x ูˆ c1
312
00:28:16,360 --> 00:28:22,800
such that g prime of cx ู‡ูŠ ุณุงูˆู‰ ุณูุฑ ูˆู‡ุฐุง ู…ุณุชุญูŠู„
313
00:28:22,800 --> 00:28:27,320
ู„ุฅู† ู‡ูˆ ู…ุนุทูŠู†ูŠ ุงู„ู€ g prime of x ู„ุงุชุณุงูˆู‰ ุณูุฑ ู„ูƒู„ x
314
00:28:27,320 --> 00:28:34,630
element ู…ู† a ูˆb ู…ุนู†ุงุชู‡ ู…ุนู†ุงู‡ ุงู„ุญุฏูŠุซุฅู†ู‡ ุงู„ู€ G of C
315
00:28:34,630 --> 00:28:41,510
ูˆุงุญุฏ ูˆุงู„ู€ G of X ู…ุณุชุญูŠู„ ูŠูƒูˆู† ู…ุชุณุงูˆูŠุงุช ู„ูƒู„ ุงู„ุฅูƒุณุงุช
316
00:28:41,510 --> 00:28:47,230
ุงู„ู„ูŠ ููŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ C ุงุชู†ูŠู† ูˆุงุถุญ ุฅุฐุง
317
00:28:47,230 --> 00:28:50,730
ุงู„ู…ู‚ุงู… ู„ุง ูŠุณุงูˆูŠ ุณูุฑ ุฅุฐุง ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐูŠ is well
318
00:28:50,730 --> 00:29:00,950
defined ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ูุชุฑุฉ Aู…ุธุจูˆุท ูˆ C2 ุฎู„ู‘ูŠู‡ุง ููŠ
319
00:29:00,950 --> 00:29:05,070
ุงู„ุฐุงูƒุฑุฉ ุทูŠุจ ุงุทู„ุน ู„ููˆู‚ ูˆ ุญุณุจ ู„ู„ limit ุงู„ุขู† ู‡ุฐุง
320
00:29:05,070 --> 00:29:12,070
ุนุฑูู†ุงู‡ุง ุงุญูุธู†ุงู‡ุง ุจู†ุถุทุฑ ุงู† ุงู…ุณุญ ุงู„ุงู† ุงุญุณุจ ู„ู„ limit
321
00:29:12,070 --> 00:29:20,230
ู„ู„ูŠ ููˆู‚ limit F of X ู„ู…ุง X ุชุฑูˆุญ ุงู„ูŠ ูˆูŠู† ุงู„ูŠ ุงูŠู‡ ู…ู†
322
00:29:20,230 --> 00:29:23,390
ุงู„ูŠู…ูŠู† ุจุณุงูˆู‰ ูˆุงุญุฏ
323
00:29:24,530 --> 00:29:32,650
ู†ู‚ุต limit F of C1 ุนุฏุฏ ุนู„ู‰ F of X ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ A
324
00:29:32,650 --> 00:29:36,950
ู…ู† ุงู„ูŠู…ูŠู† ุนู„ู‰ ุงุชุฌุฑุฃุช ู„ุฃู†ู‡ ุนุงุฑู ุงู† ุงู„ limit ู…ูˆุฌูˆุฏุฉ
325
00:29:36,950 --> 00:29:42,290
ุนู„ู‰ ุงู„ุชูˆุฒูŠุน ุงุชุฌุฑุฃุช ุนู„ูŠู‡ ู„ุฃู†ู‡ ุนุงุฑู limit G of C1
326
00:29:42,290 --> 00:29:49,530
ุนู„ู‰ G of X ู„ู…ุง X ุชุฑูˆุญ ู„ูˆูŠู† ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู† ูˆุงุถุญุฉ
327
00:29:49,530 --> 00:29:56,130
ุฌุฏุด ู‡ุฐู‡ ุงู„ limit0 ู„ุฃู† ุงู„ F of X ูˆูŠู† ุจุชุฑูˆุญ ุงู„ู‰ ู…ุงู„ุฉ
328
00:29:56,130 --> 00:30:00,010
ู†ู‡ุงูŠุฉ ู‡ูŠ ุจุฏุงูŠุฉ ุงู„ู…ูˆุถูˆุน ู…ุด ุจุฏุงูŠุฉ ุงู„ู…ูˆุถูˆุน ูƒุงู† ุนู†ุฏู†ุง
329
00:30:00,010 --> 00:30:05,010
ุงู† ุงู„ limit F of X ุนู„ู‰ G of X ู„ู…ุง X ุชุฑูˆุญ ุงู„ู‰ A ู…ู†
330
00:30:05,010 --> 00:30:08,670
ุงู„ูŠุงู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุณุจุจุช ู„ูƒู„ ุงู„ู‚ุตุฉ ุงู† ู‡ุฐู‡ ุงู„ limit
331
00:30:08,670 --> 00:30:11,230
ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ูˆู‡ุฐู‡ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุตุงุฑุช ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู…ุงู„ุฉ
332
00:30:11,230 --> 00:30:15,710
ู†ู‡ุงูŠุฉ ูˆู‡ูŠ ุงู„ู„ูŠ ุฎู„ุชู†ูŠ ุงุฑูˆุญ ุจู‡ุฐุง ุงู„ุงุชุฌุงู‡ ุงุฐุง ู‡ุฐู‡
333
00:30:16,610 --> 00:30:19,750
ุจุชุฑูˆุญ ุฅู„ู‰ ู…ู„ุฃ ู†ู‡ุงูŠุฉ ุฅุฐุง ู‡ุฐู‡ ุจุชุฑูˆุญ ุฅู„ู‰ ุณูุฑ ูˆู‡ุฐู‡
334
00:30:19,750 --> 00:30:22,330
ุงู„ู…ู„ุฃ ู†ู‡ุงูŠุฉ ุจุชุฑูˆุญ ุฅู„ู‰ ุณูุฑ ุฅุฐุง ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุจุนุถ ุฅูŠุด
335
00:30:22,330 --> 00:30:30,170
ุจูŠุณุงูˆูŠุŸ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆุงุถุญ ุทูŠุจ ุงู„ุขู† for every
336
00:30:30,170 --> 00:30:34,570
epsilon ุฃูƒุจุฑ ู…ู† ุณูุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ููˆู‚ ุฎู„ุงุต ุจุฏู†ุง
337
00:30:34,570 --> 00:30:39,270
ููŠู‡ุง ุงู„ุขู† ุจูŠุจู‚ู‰ ุฅู† ุงู„ limit ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฅุฐุง there
338
00:30:39,270 --> 00:30:44,890
existsDelta ุฃูƒุจุฑ ู…ู† ุณูุฑ ุฃูŠ ุฅู† ูƒุงู†ุช ุงู„ู€ Delta ุฃูƒุจุฑ
339
00:30:44,890 --> 00:30:53,790
ู…ู† ุณูุฑ Such that F of X ู†ุงู‚ุต ูˆุงุญุฏ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
340
00:30:53,790 --> 00:30:59,190
ุงู„ู€ Epsilon Epsilon ุงู„ู„ูŠ ุจุฏู†ุง ููŠู‡ุง ู…ู† ุงู„ุฃูˆู„ ู‡ุฐุง ู„ูˆ
341
00:30:59,190 --> 00:31:04,830
ูŠุนู†ูŠ ู„ูƒู„ ุงู„ู€ Xุงู„ู„ูŠ ููŠ ุงู„ูุชุฑุฉ ู…ู† a ู„ a ุฒูŠ ุงู„ู€ delta
342
00:31:04,830 --> 00:31:07,910
ู‡ุฐู‡ ุงู„ู€ delta ุงู„ุฌุฏูŠุฏุฉ ู…ุด ุตุงุฑุช ุชูƒูˆู† ุงู„ุฃูˆู„ู‰ ูุฃู†ุง
343
00:31:07,910 --> 00:31:13,330
ุนุดุงู† ุฃุฑูŠุญ ุญุงู„ูŠ ุจุฏูŠ ุฃุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ delta ุจู„ุงุฌูŠู‡ุง
344
00:31:13,330 --> 00:31:17,910
ูˆ ุฃู‚ูˆู„ ุญุทู‡ุง ูƒู…ุงู† ุฌูˆุงู‡ุง ู‡ุงุฏูŠ ุญุฑ ุฃู†ุง ู…ุฏุงู… ุจุชู†ูุน ู„ุงู„ูŠ
345
00:31:17,910 --> 00:31:21,690
ูƒุจูŠุฑุฉ ุงูŠุถุง ูƒุฏู‡ ุจุชู†ูุน ู„ู…ู†ุŸ ู„ู„ุตุบูŠุฑุฉ ูุงู‡ู…ูŠู† ุฃู†ุง ุงูŠุด
346
00:31:21,690 --> 00:31:28,270
ุจู‚ูˆู„ุŸ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู†ุณู…ูŠู‡ุง C3 ู…ุนุงูŠุงุŸ ูุจุตูŠุฑ ุนู†ุฏู‰ ุงู„ุขู†
347
00:31:28,270 --> 00:31:39,200
F of Xู„ูƒู„ X element in A ู„ุนู†ุฏ ู…ูŠู†ุŸ C3 ุฃูŠ
348
00:31:39,200 --> 00:31:46,120
ุณุคุงู„ุŸ F of X ู†ุงู‚ุต ูˆุงุญุฏ ุฃุตุบุฑ ู…ู† Y ุฃูƒุจุฑ ู…ู† ุณุงู„ุจ Y
349
00:31:46,120 --> 00:31:49,960
ุชู„ุฒู…ู†ูŠ ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ุงู„ู„ูŠ ุฌุงูŠ ู„ุฃู† F of X ู‡ุฐู‡
350
00:31:49,960 --> 00:31:56,720
ูŠุนู†ูŠ F of X ูŠุนุทูŠู†ุง F of X ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ู†ุงู‚ุต Y
351
00:31:59,390 --> 00:32:03,370
ุจุงุถุญุฉุŸ ู„ุฃู† ู‡ุฐู‡ ุฌู„ุจู‡ุง .. ุงู„ู„ูŠ ู‡ุฐู‡ ุทุจุนุง ูˆุงุญุฏ ู†ุงู‚ุต
352
00:32:03,370 --> 00:32:07,850
ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ ุนู†ุฏู‡ ุงู„ .. ุงู„ .. ุงู„ ุฅุจุณู„ูˆู†
353
00:32:07,850 --> 00:32:12,650
ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ู†ุต ุงู„ูˆุงุญุฏ ู†ุงู‚ุต ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ
354
00:32:12,650 --> 00:32:20,670
ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ ุฃูƒุจุฑ ู…ู† ู†ุต ุจุงุถุญุฉุŸ ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ ูˆุงุญุฏ
355
00:32:20,670 --> 00:32:28,400
ุนู„ู‰ f of x ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸู‡ุฐุง ู„ู…ูŠู†ุŸ ู„ูƒู„
356
00:32:28,400 --> 00:32:32,760
ุงู„ุงูƒุณุงุช ุงู„ู„ูŠ ู…ู† A ู„ุนู†ุฏ ู…ูŠู† C3 ูˆุทุจูŠุนูŠ ุงู„
357
00:32:32,760 --> 00:32:36,880
inequalities ูƒู„ู‡ุง ุงู„ู„ูŠ ู‚ุจู„ ุชุชุญู‚ู‚ ู‡ู†ุง ู„ุฅู†ู‡ุง ุจุชุชุญู‚ู‚
358
00:32:36,880 --> 00:32:41,360
ู…ู† ู‡ู†ุง ู„ู‡ู†ุง ุจุนุถู‡ุง ูˆุจุนุถู‡ุง ุจุชุชุญู‚ู‚ ู…ู† ู‡ู†ุง ู„ู‡ู†ุง ูุฃูƒูŠุฏ
359
00:32:41,360 --> 00:32:47,040
ูƒู„ู‡ุง ู‡ุชุชุญู‚ู‚ ู„ู„ุฅูƒุณุงุช ุงู„ู„ูŠ ู…ูŠู† ููŠ ุงู„ A ูˆC3 ุฃุตู„ุง ุฃู†ุง
360
00:32:47,040 --> 00:32:52,620
ุฑุงูŠุญ ุจุงุชุฌุงู‡ ู…ูŠู†ุŸ ุฑุงูŠุญ ุจุงุชุฌุงู‡ ุฃุซุจุช ู„ูƒู… ุฃู†ู‡ limit of
361
00:32:53,680 --> 00:32:59,060
of x ุนู„ู‰ g of x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ a ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ
362
00:32:59,060 --> 00:33:04,880
limit f prime of x ุนู„ู‰ g prime of x as x ุชุฑูˆุญ ู„ู„ a
363
00:33:04,880 --> 00:33:10,080
ู…ู† ุงู„ูŠู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงูŠุด ู†ุณู…ูŠู‡ ุงุญู†ุง ู‚ุงู„ ุงุฐุง ุงู†ุง ุจู‡ู…ู†
364
00:33:10,080 --> 00:33:14,920
ู…ูŠู† ุงู„ุงูƒุณุงุช ุงู„ู„ูŠ ุฌู†ุจ ุงู„ a ู„ุฅู† ุงู†ุง ุฑุงูŠุญ ู„ู„ a ู…ู† ูˆูŠู†
365
00:33:14,920 --> 00:33:18,800
ู…ู† ุงู„ูŠู…ูŠู† ูุงู†ุง ุจู‡ู…ู† ุงู„ุฌูˆุงุฑ ุงู„ู‚ุฑูŠุจ ุฌุฏุง ู…ู† ุงู„ a ู„ุฅู†
366
00:33:18,800 --> 00:33:21,960
ุงู†ุง ุฑุงูŠุญู„ู‡ ุงุตู„ุง ู…ู† ู‡ู†ุงูุงู„ุฅูƒุณุงุช ุงู„ู„ูŠ ููŠู‡ุง ู‡ูŠ ุงู„ู„ูŠ
367
00:33:21,960 --> 00:33:27,760
ุจุชู„ุฒู…ู†ูŠ ุนุดุงู† ุฃุตู„ ู„ู„ูŠ ุจุฏูŠู‡ุง ุฎู„ู‘ูŠ ู‡ุฐู‡ ููŠ ุงู„ุฐุงูƒุฑุฉ
368
00:33:27,760 --> 00:33:34,560
ูุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุตุงุฑ
369
00:33:34,560 --> 00:33:38,800
ุนู†ุฏูŠ ู‡ุฐุง ูƒู„ู‡ ุญูƒูŠู†ุงู‡ ูˆุฎู„ุตู†ุง ู…ู†ู‡ ุงู„ุงู† ู†ูŠุฌูŠ ุจุฏู†ุง ู†ุตู„
370
00:33:38,800 --> 00:33:44,620
ู„ู„ูŠ ุจุฏู†ุงูŠุง ุจุชุชุฐูƒุฑูˆุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฃู†ุง ุฃุตู„ุง ุฌูŠุจุช
371
00:33:44,620 --> 00:33:56,350
ู‡ุฐู‡ุฌุจุช ู‡ุฐู‡ ุงุชุทู„ุน ููŠู‡ุง ูˆ ู‚ุงุฑู†ู„ูŠู‡ุง ู…ุน ุงู„ F of X ุนู„ู‰
372
00:33:56,350 --> 00:34:01,310
ุงู„ G of X ุงู„ู„ูŠ ุงู†ุง ุจุฏูŠู‡ุงู‡ุง ุงู„ F of X ุนู„ู‰ ุงู„ G of X
373
00:34:01,310 --> 00:34:08,170
ู„ูˆ ุฌูŠุช ู‚ุงุฑู†ุชู‡ุง F of X ุนู„ู‰ ุงู„ G of X ุงูŠุด ู‡ุชู„ุงู‚ูŠู‡ุงุŸ
374
00:34:08,170 --> 00:34:14,810
ู„ูˆ ุฌูŠุช ุถุฑุจุช ู‡ุฐู‡ ููŠ F of X ูˆู‡ุฐู‡ ููŠ G of X
375
00:34:17,460 --> 00:34:22,500
ุจู†ุฑุฌุน ู„ F of X ู†ุงู‚ุต F of C ูˆุงุญุฏ ูˆ G of X ู†ุงู‚ุต G of
376
00:34:22,500 --> 00:34:26,680
C ูˆุงุญุฏ ุทุจ ุงูŠุด ุฏุฎู„ู†ุง ููŠู‡ ู‡ุฐู‡ F of X ู†ุงู‚ุต F of C
377
00:34:26,680 --> 00:34:30,500
ูˆุงุญุฏ ูˆ G of X ู†ุงู‚ุต G of C ูˆุงุญุฏ ู‡ุฐู‡ ุงู„ู„ูŠ ุจุงู„ูƒูˆุดูŠ
378
00:34:30,500 --> 00:34:33,920
mean value theorem ุงู„ู„ูŠ ู‡ุชุฌูŠุจ ู„ู„ F prime ูˆ G prime
379
00:34:33,920 --> 00:34:38,340
ุงู„ู„ูŠ ุงู†ุง ุงุตู„ุง ู…ูˆุฌูˆุฏุงุช limited ูุจุญุตู„ ุน ุงู„ู„ูŠ ุจุฏูŠุง
380
00:34:40,230 --> 00:34:44,470
ุจุงู„ุธุจุท ุงู„ุดูŠ ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ุงู†ุช ูŠุนู†ูŠ ู„ูŠุด ู‡ูˆ ููƒุฑ ููŠ ู‡ุฐู‡
381
00:34:44,470 --> 00:34:50,470
ุจุงู„ุณุจุจ ุงู„ู„ูŠ ุญูƒูŠุชู‡ F of X ุนู„ู‰ D of X ุจุงู„ุณุงูˆูŠ F of X
382
00:34:50,470 --> 00:34:59,890
ุนู„ู‰ D of X ููŠ F of X ุนู„ู‰ D of X ุนู„ู‰ F of X ู…ุธุจูˆุทุŸ
383
00:34:59,890 --> 00:35:09,170
ู…ุงุนู…ู„ุด ุดูŠุก ุงู„ุขู† ุงุณุญุจู„ูŠ ู‡ุฐู‡ ุฎู„ูŠู‡ุงูˆุญุท ู„ูŠู‡ุง ู‡ุฐู‡ 1 ุนู„ู‰
384
00:35:09,170 --> 00:35:15,210
f of x ู…ุงู‡ูŠ ุงู„ุญุงู„ุฉ ู‡ุฐู‡ ู…ูŠู† ู‡ูŠ ููŠ ุงู„ูˆุงู‚ุน ู‡ูŠ ุงู„ู„ูŠ
385
00:35:15,210 --> 00:35:20,410
ููˆู‚ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงุถุฑุจ f of x ู‡ุฐู‡ ููŠ ู‡ุฐู‡ ุจุตูŠุฑ
386
00:35:20,410 --> 00:35:32,250
ูˆุงุญุฏ ูˆูŠุณุงูˆูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต f of c ุตุญุŸ f of x
387
00:35:32,250 --> 00:35:42,660
ู†ุงู‚ุต f of cุนู„ู‰ g of x ู†ู‚ุต g of c ู‡ุฐุง ู…ูŠู† ู‡ูŠ ุงู„ู„ูŠ
388
00:35:42,660 --> 00:35:46,700
ู‡ูŠ f of x ุนู„ู‰ g of x ููŠ f of x ุนูˆุถุช ู‡ุฐู‡ ูˆ ุญุทูŠุชู‡ุง ูˆ
389
00:35:46,700 --> 00:35:51,760
ุทู„ุน ุนู†ุฏูŠ ู‡ุฐุง ู…ุถุฑูˆุจ ููŠ ูƒู„ู‡ ููŠ ู…ูŠู† ููŠ ูˆุงุญุฏุฉ ุงู„ f of
390
00:35:51,760 --> 00:36:01,080
x ุงู„ุขู† ุนู†ุฏูŠ ุฎู„ูŠู†ูŠ ุฃุทุจู‚ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู€ Cauchy mean
391
00:36:01,080 --> 00:36:06,390
value theorem ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† a ู„ู…ูŠู† ู„ c ุชู„ุงุชุฉู…ุงุดูŠ
392
00:36:06,390 --> 00:36:11,130
ุงู„ู„ูŠ ู‡ูˆ there exist ุทุจุนุง ูƒู„ู‡ ู…ุชุญู‚ู‚ ุงู„ู„ูŠ ู‡ูˆ ุงู„ F ูˆ
393
00:36:11,130 --> 00:36:15,230
ุงู„ G continuous ูˆ differentiable ุนู„ู‰ ุงู„ A ูˆ ุงู„ C 3
394
00:36:15,230 --> 00:36:21,430
ุงุฐุง there exist ุงู„ู„ูŠ ู‡ูˆ ุงูŠู‡ ุงู„ู„ูŠ ุจุฏูƒูŠ ุงุณู…ูŠู‡ุง ุงู„ู„ูŠ
395
00:36:21,430 --> 00:36:25,690
ู‡ูŠ ู…ุซู„ุง there exist gamma ุงูˆ ุฒูŠ ู…ุง ู‡ูˆ ู…ุณู…ูŠู‡ุง ููŠ
396
00:36:25,690 --> 00:36:32,230
ุงู„ูƒุชุงุจ there exist exi element in A ูˆ C ุชู„ุงุชุฉ such
397
00:36:32,230 --> 00:36:41,500
thatf prime of xi ุนู„ู‰ g prime of xi ุจุณุงูˆูŠ ุจุณ ุงู†
398
00:36:41,500 --> 00:36:44,780
ุงู†ุง ุนุดุงู† ุจุชุทุจู‚ู‡ุง ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ูุชุฑุฉ f of x ู„ุนู†ุฏ
399
00:36:44,780 --> 00:36:48,800
ู…ูŠู† ุนุดุงู† ุชุทู„ุน ุนู†ุฏูŠ f of x of ู…ูŠู† ูˆ f of c ูˆุงุญุฏ
400
00:36:48,800 --> 00:36:53,120
ู…ุนุงูŠุง ู„ู„ูŠ ุงูƒุณุงุช ุงู„ู„ูŠ ูˆูŠู† ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู…ู† a ู„ุนู†ุฏ c
401
00:36:53,120 --> 00:36:58,060
ุชู„ุงุชุฉ ุจุนุฏ ุงุฐู†ูƒู… ุจุชุทุจู‚ู‡ุง ุงู„ูƒูˆุดูŠ mean value theorem
402
00:36:58,760 --> 00:37:01,840
ู…ุง ู‡ูŠ ุงุตู„ุง continuous ูˆ differentiable ุนู„ู‰ ุงู„ูุชุฑุฉ
403
00:37:01,840 --> 00:37:06,500
ุฏูŠ ูƒู„ู‡ุง ู…ู† ุถู…ู†ู‡ุง ู…ูŠู† ุงู„ูุชุฑุฉ A ูˆC ุซู„ุงุซุฉ ูˆู…ู† ุถู…ู†ู‡ุง
404
00:37:06,500 --> 00:37:11,040
ุงู„ูุชุฑุฉ A ูˆC ูˆุงุญุฏ ุงู„ู„ูŠ ุงู†ุง ุจุฏู‡ ุงุทุจู‚ ุนู„ูŠู‡ุง ุจุงู„ end
405
00:37:11,040 --> 00:37:15,900
point ู…ูŠู† ุงู„ end point C ูˆุงุญุฏ ู‡ูŠู‡ุง ูˆ ุงู„ end point
406
00:37:15,900 --> 00:37:21,890
ุงู„ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุจูŠู† A ูˆ B ู…ูŠู†ูˆ C3 ูˆุงุถุญ ูˆุงุถุญ ุงู„ู„ูŠ
407
00:37:21,890 --> 00:37:26,350
ุจุฏูŠ .. ุงุฐุง ุงู„ุงู† ุงู„ุงู† there exists x i ุงู„ุงู† ุจุงู„ุธุจุท
408
00:37:26,350 --> 00:37:30,630
ุจุฏูŠ ุงุทุจู‚ ุงู„ู…ูŠูƒูˆุดูŠ main value term ุน ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ
409
00:37:30,630 --> 00:37:37,790
X ูˆ C1 ุงู„ู„ูŠ ุงู„ F ูˆ ุงู„ G differentiable ุนู„ูŠู‡ุง ู…ู†
410
00:37:37,790 --> 00:37:40,530
ูˆูŠู† ุงู„ X ู‡ุฐู‡ ุงู„ X ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡ ุงู„ู„ูŠ ุจุดุชุบู„ ููŠู‡ุง
411
00:37:40,530 --> 00:37:45,890
ุงู„ู„ูŠ ู‡ูŠ ู…ู† A ู„ุนู† ู…ูŠู† ู„ุนู† C3ุฅุฐู† there exists xi
412
00:37:45,890 --> 00:37:50,750
element in x ูˆ c ูˆุงุญุฏ such that f prime of xi ุนู„ู‰
413
00:37:50,750 --> 00:37:58,770
g prime of xi ููŠ ุฅูŠุด ุจุชุณุงูˆูŠ f of c ูˆุงุญุฏ ุฃูˆ f of x
414
00:37:58,770 --> 00:38:05,390
ู†ุงู‚ุต f of c ูˆุงุญุฏ ูุงู‡ู…ูŠู† ุทุจุนุง ุนู„ู‰ g of x ู†ุงู‚ุต g of
415
00:38:05,390 --> 00:38:10,990
c ูˆุงุญุฏ ุจุณ ุถุฑุจุช ููŠ ู†ุงู‚ุต ููˆู‚ ูˆ ู†ุงู‚ุต ุตุญูŠุญ ุชุชุนุฏู‰ ุฒูŠ ู…ุง
416
00:38:10,990 --> 00:38:20,080
ู‡ูŠ ู„ุฃู† ู‡ุฐู‡ู‡ูŠ ู‡ุฐู‡ ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ F of X ุนู„ู‰ G of X
417
00:38:20,080 --> 00:38:26,000
ุจุณูˆุก F prime ุนู„ู‰ G prime ููŠ ูˆุงุญุฏ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ F of
418
00:38:26,000 --> 00:38:32,060
X ูˆู‡ูˆ ุงู„ู„ูŠ ุจุฏู‡ ูŠูˆุตู„ู†ุง ู„ู„ูŠ ุจุฏู†ุง ู‡ูŠ ู…ุงุนู„ูŠุด ุฃู…ุณุญ ุงู„ู„ูŠ
419
00:38:32,060 --> 00:38:35,280
ู‡ุงู† ุจูŠุตูŠุฑ ุนู†ุฏู‰
420
00:38:38,180 --> 00:38:45,160
ุจุตูŠุฑ ุนู†ุฏู‰ ุงู„ F of X ุนู„ู‰ ู…ูŠู† F of X ุนู„ู‰ G of X
421
00:38:45,160 --> 00:38:48,540
ุจุณุงูˆู‰
422
00:38:48,540 --> 00:38:54,120
ุงู„ู„ู‰ ู‡ูˆ ู‡ุฏู‰ ุดู„ู†ุงู‡ ูˆ ุญุทูŠู†ุง ู…ูƒุงู†ู‡ุง ู…ูŠู† ุจุณุงูˆู‰ F prime
423
00:38:54,120 --> 00:39:02,140
of X I ุนู„ู‰ G prime of X I ูู‰ ู…ูŠู† ูู‰ ูˆุงุญุฏ ุนู„ู‰ ุงูŠู‡
424
00:39:02,140 --> 00:39:03,500
ุงูŠุด ุนู„ู‰ F
425
00:39:09,880 --> 00:39:18,360
ูˆุงุถุญ ุฃู‡ุŸ ุงู„ุขู† ู†ู…ุญู‰ ู‡ู†ุง ู‡ุฏูˆู„ุฉ ุงู„ Xุงุช ุงู„ู„ูŠ ู‡ู†ุง ู‡ู…ุง
426
00:39:18,360 --> 00:39:23,380
ุงู„ Xุงุช ุงู„ู„ูŠ ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ุจูŠู† A ูˆC3 ู…ุงุดูŠ ุงู„ุญุงู„ ุจุฏูŠ
427
00:39:23,380 --> 00:39:29,120
ุงู„ุขู† ุบุงูŠุชูŠ ุฃู†ูŠ ุฃูˆุฌุฏ F of X ุนู„ู‰ G of X ู†ุงู‚ุต ู…ูŠู†ุŸ
428
00:39:29,120 --> 00:39:34,600
ู†ุงู‚ุต Lูˆุงุถุญุฉ ุฅุฐุง ู†ู„ุฎุต ูƒู„ ุงู„ู„ูŠ ุฎุฏู†ุงู‡ for every
429
00:39:34,600 --> 00:39:38,800
epsilon element in zero ู†ุต there exists delta ุฃูƒุจุฑ
430
00:39:38,800 --> 00:39:48,980
ู…ู† ุณูุฑ such that if ุงู„ู„ูŠ ู‡ูˆ x ุฃูƒุจุฑ ู…ู† a ุฃุตุบุฑ ู…ู† c3
431
00:39:48,980 --> 00:39:53,260
ุฃุตุบุฑ ู…ู† c2 ุฃุตุบุฑ ู…ู† c1 ุฃุตุบุฑ ู…ู† a ุฒูŠ ุงู„ delta ุงู„ู„ูŠ
432
00:39:53,260 --> 00:40:02,070
ู„ุฌู†ุงู‡ุง ูุงู‡ู…ูŠู† ุนู„ูŠู‡ุง ูˆูƒูˆู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‚ูŠู„ุฉุงู„ุนูˆู‘ุถ f
433
00:40:02,070 --> 00:40:08,110
of x ุนู„ู‰ g of x ู†ุงู‚ุต ุงู„ .. ุจุฏูŠ ุฃู‚ุจู„ ู„ูƒ ูŠู…ูŠู‡ุง ู‡ุฐุง
434
00:40:08,110 --> 00:40:12,510
ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† epsilon ููŠ something ู…ุด ู…ุดูƒู„ุฉ ูˆ
435
00:40:12,510 --> 00:40:15,810
epsilon is arbitral ุฃูŠุถุง ุจูŠุตูŠุฑ limit ุฒูŠ ู…ุง ุจุฏู†ุงูŠุง
436
00:40:15,810 --> 00:40:24,170
ูˆุงุถุญ ู‡ุฐุง ุงู„ุขู† ุจุงู„ุธุจุท ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนูˆุถ ุงู„ู„ูŠ ู‡ูˆ
437
00:40:24,170 --> 00:40:28,590
f of x ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ
438
00:40:32,680 --> 00:40:41,680
ุฃู ุจุฑุงูŠู… of x i ุนู„ู‰ ุฌูŠ ุจุฑุงูŠู… of x i ููŠ ูˆุงุญุฏ ุนู„ู‰ ุฃู
439
00:40:41,680 --> 00:40:48,180
of x ู†ุงู‚ุต ุงู„ู„ู‰
440
00:40:48,180 --> 00:40:54,460
ูˆุงุถุญ ู„ุญุชู‰ ุงู„ุงู† ู†ุงุฎุฏ ู‡ุฐู‡ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุฑุง ูŠุตุจุญ ูˆุงุญุฏ
441
00:40:54,460 --> 00:41:02,140
ุนู„ู‰ ุฃู of x ููŠ ุฃู ุจุฑุงูŠู… of x iุนู„ู‰ g prime of xi
442
00:41:02,140 --> 00:41:13,560
ู†ุงู‚ุต L ููŠ F of X ุตุญุŸ ุฃุฎุฏุช
443
00:41:13,560 --> 00:41:17,300
ุงู„ูˆุงุญุฏ ุนู„ู‰ F of X ุนุงู… ุงู„ู…ุดุชุฑูƒ positive ุฃู‡ positive
444
00:41:17,300 --> 00:41:21,080
ุงู„ู„ูŠ ู‡ูˆ F of X ู‡ูŠ ุฃูƒุจุฑ ู…ู† 2 ุทู„ุนุช ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุด ู…ุงู„ู‡
445
00:41:21,080 --> 00:41:27,260
ู‡ุฐุงุŸู‡ู†ุง ุฏู‡ ุจุฏูŠ ุฃุถูŠู term ูˆ ุฃุทุฑุญ term ุนุดุงู† ุฃุญุตู„ ุนู„ู‰
446
00:41:27,260 --> 00:41:31,780
ู‡ุฐู‡ ุงู„ู„ูŠ ุจุฏูŠุงู‡ุง ุฃุตู„ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฌุฏ ุชูู‡ู…ูˆู‡ ู…ุด ู…ู‚ุตูˆุฏุฉ
447
00:41:31,780 --> 00:41:38,900
1 ุนู„ู‰ f of x ููŠ f prime of xi ุนู„ู‰ g prime of xi
448
00:41:38,900 --> 00:41:50,130
ู†ุงู‚ุต L ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆL ู†ู‚ุต L F of X ุงูŠุด ุณูˆูŠุช ุงุณุชุฎุฏู…ุช
449
00:41:50,130 --> 00:41:56,170
ุงู„ triangle inequality ุจุงุถุงูุฉ L ูˆุทุฑุญุฉ L ู‡ุฐุง ูƒู„ู‡
450
00:41:56,170 --> 00:42:04,130
ู…ุถุฑูˆู 100 ููŠ 1 ุนู„ู‰ F of X ู‡ุฐุง ุงู„ุขู† ุงู„ F of X ุฃูƒุจุฑ
451
00:42:04,130 --> 00:42:12,690
ู…ู† 2 ุญุตู„ู†ุงู‡ุง ู…ุธุจูˆุท ุจุตูŠุฑ ุฃุตุบุฑ ู…ู† ู†ุต ูˆุงุถุญุฉ
452
00:42:13,760 --> 00:42:18,920
ุงู„ุขู† F' ุนู„ู‰ G' ู„ู€ XI ุงู„ู€ XI ูˆูŠู† ู„ุงุฌูŠู†ุงู‡ุงุŸ ููŠ
453
00:42:18,920 --> 00:42:24,940
ุงู„ูุชุฑุฉ ุจูŠู† A ูˆC1 ูŠู†ุทุจู‚ ุนู„ูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุฑุฃุณ ุงู„ุฏูˆุฑ
454
00:42:24,940 --> 00:42:34,580
ุงู„ู„ูŠ ู‡ูŠ F' ุนู„ู‰ G' of X ู†ุงู‚ุต
455
00:42:34,580 --> 00:42:41,200
L ุฃุตุบุฑ ู…ู† ุงู„ู€ Y ู…ู† ุฃูˆู„ ู…ุง ุจุฏูŠู†ุงูŠุนู†ูŠ ุฅู†ู‡ ู‡ุฐุง ุฃุตุบุฑ
456
00:42:41,200 --> 00:42:44,460
ู…ู† ุฅุจุณู„ูˆู† ู„ูƒู„ ุงู„ุฅูƒุณุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู…ู† A ู„ุนู†ุฏ ู…ูŠู†ุŸ
457
00:42:44,460 --> 00:42:48,080
ู„ุนู†ุฏ ุงู„ู€A ุฒุงุฏ ุฏู„ุชู‡ุง ู…ู† ุถู…ู†ู‡ู… ู…ูŠู†ุŸ ู„ูƒ ููŠุจุฑุงูŠู† ูƒู„ุงู…
458
00:42:48,080 --> 00:42:55,940
ุฏู‚ูŠู‚ ู‡ุฐู‡ ููŠ ุฅุจุณู„ูˆู† ุฒุงุฏ ุงู„ุขู† ู‡ุฐุง ุงู„ ุจุทู„ุญู‡ุง ุจุฑุง ุนู†
459
00:42:55,940 --> 00:43:01,760
ุงู„ู…ุดุชุฑูƒ ุงู„ ุงู„ู„ูŠ ู‡ูŠ ููŠ ู…ูŠู†ุŸ ููŠ ูˆุงุญุฏ ู†ุงู‚ุต F of X
460
00:43:01,760 --> 00:43:10,240
ูˆุงุญุฏ ู†ุงู‚ุต F of Xุงู„ุงู† ูˆู‡ุฐุง ุฃุตุบุฑ ู…ู† ู†ุต ููŠ ุฅุจุณู„ูˆู†
461
00:43:10,240 --> 00:43:15,440
ุฒุงุฆุฏ absolute value ู„ุฃู„ ูˆุงุญุฏ ู…ุงู‚ุต F of X ู‡ุฐู‡ ุงู„
462
00:43:15,440 --> 00:43:20,260
Xุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุจูŠู† A ูˆC ุชู„ุงุชุฉ ูˆู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู‚ุจู„
463
00:43:20,260 --> 00:43:26,150
ุจุดูˆูŠุฉ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุฅุจุณู„ูˆู†ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†
464
00:43:26,150 --> 00:43:30,030
ูˆุงุญุฏ ู†ุงู‚ุต F of X ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฅุจุณู„ูˆู† ู…ุด ู‡ุซุจุชู†ุง
465
00:43:30,030 --> 00:43:33,910
limit F of X ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ
466
00:43:33,910 --> 00:43:37,050
ู†ุงู‚ุต F of X ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู† ุฅูŠุงุด ู…ู† ุฅุจุณู„ูˆู† ููŠ
467
00:43:37,050 --> 00:43:42,850
ุฅุจุณู„ูˆู†ุตุงุฑ ุนู†ุฏูŠ ุงู„ุงู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุจุณุงูˆูŠ
468
00:43:42,850 --> 00:43:47,030
epsilon ุนู„ู‰ ุงุชู†ูŠู† ููŠ ูˆุงุญุฏ ุฒุงูŠุฏ absolute value
469
00:43:47,030 --> 00:43:52,810
ู„ู„ุงู„ู ู„ุงู† ุงู„ epsilon ู…ุถุฑูˆุจุฉ ููŠู‡ ุงุฐุง as ู„ุงู† ู‡ุฐุง ุงู„
470
00:43:52,810 --> 00:43:55,430
epsilon arbitrary ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ for every
471
00:43:55,430 --> 00:43:59,710
epsilon epsilon ุจูŠู† zero ูˆ ู†ุต ุงุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจู‚ุฏุฑ
472
00:43:59,710 --> 00:44:04,350
ุงุฒุบุฑู‡ ุฌุฏ ู…ุง ุจุฏูŠ ุจุชุตุบูŠุฑ epsilon ู„ุงู†ู‡ ู…ุถุฑูˆุจ ููŠู‡ ุถุฑุจ
473
00:44:04,350 --> 00:44:08,630
ุงุฐุง ุตุงุฑ ุนู†ุฏูŠ ู„ูƒู„ epsilon ุฃูƒุจุฑ ู…ู† zero ูˆ ู†ุตู„ู€ G ุงู„ู€
474
00:44:08,630 --> 00:44:12,650
Delta ุจุญูŠุซ ุฃู†ู‡ ุงู„ุฅูƒุณุงุช ุงู„ู„ูŠ ู‡ู†ุง ุจูŠู‚ุฏู‘ูŠ ู„ูŠ ุฃู† ู‡ุฐุง
475
00:44:12,650 --> 00:44:20,810
ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† ุฃูŠ ู‚ูŠู…ุฉ ุจุฏูŠู‘ู‡ุง ุฅุฐุง ู‡ุฐุง ู…ูู‡ูˆู… limit
476
00:44:20,810 --> 00:44:31,530
F of X ุนู„ู‰ G of X as X ุจุชุฑูˆุญ ู„ู†ูŠู†ุŸ ู„ู„ู€ A ู…ู† ุงู„ูŠู…ูŠู†
477
00:44:31,530 --> 00:44:38,920
ุจุณุงูˆูŠ ุงู„ู€ L ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจุงู„ุซูŠูˆุฑู… ุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู†ู‡ุง
478
00:44:38,920 --> 00:44:45,060
ุจุฑุถู‡ ุตุญูŠุญุฉ ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ the same .. under the
479
00:44:45,060 --> 00:44:50,160
same conditions for the calculation of limits as x
480
00:44:50,160 --> 00:44:55,540
goes to infinity or x as goes mean to ุณุงู„ุจinfinity
481
00:44:55,540 --> 00:44:59,140
ุจุณ ุจูˆุฑู‡ุงู† ูŠุนู†ูŠ ุจุฏูˆู† modification ุนู† ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
482
00:44:59,140 --> 00:45:03,140
ุจุชุตู„ู‰ ุงู„ู„ูŠ ุจุฏูƒูŠู‡ุง ู†ูŠุฌูŠ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุงู„ุฃู…ุซู„ุฉ ู‡ุฐู‡ ุทุจุนุง
483
00:45:03,140 --> 00:45:09,500
ุฃู…ุซู„ุฉ ุณู‡ู„ุฉ ูˆู…ุซู„ุฉ calculus ู†ู…ุฑ ุนู„ูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ ูˆู†ุดูˆู
484
00:45:09,500 --> 00:45:16,480
ูƒูŠู ู†ุทุจู‚ ู†ุธุฑูŠุชู†ุง ุฃูˆ ู†ุธุฑูŠุงุชู†ุง ูƒูŠู ู†ูˆุธูู‡ุง ุงู„ุญุณุงุจ ู‡ุฐู‡
485
00:45:16,480 --> 00:45:23,260
ุงู„ู†ู‡ุงูŠุงุช ุนู†ุฏู‰ ุดูˆููˆุง ุตู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…
486
00:45:24,800 --> 00:45:30,720
Find Limitlog sin x ุนู„ู‰ log x as x ุจุชุฑูˆุญ ู„ู„ู€ 0 ู…ู†
487
00:45:30,720 --> 00:45:35,480
ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ูˆ ุงุญู†ุง ุนุงุฑููŠู† .. ู…ุดุชุบู„ูŠู† ุนู„ู‰ ุงู„ูุชุฑุฉ
488
00:45:35,480 --> 00:45:40,460
0 or by ูŠุนู†ูŠ ูุชุฑุฉ ุจุฌูˆุงุฑ ู…ูŠู†ุŸ ุงู„ุตูุฑ ู…ู† ุงู„ูŠู…ูŠู† ูˆ
489
00:45:40,460 --> 00:45:43,540
ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ู‡ุฐุง ุทุจุนุง ู„ูˆ ุฌูŠู†ุง ุนูˆุถู†ุง
490
00:45:43,540 --> 00:45:48,080
ู‡ุชุทู„ุน ุงู„ู„ูŠ ู‡ูˆ sin 0 0 ูˆ ุฃู†ุง 0 ูุจุตูŠุฑ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุนู„ู‰
491
00:45:48,080 --> 00:45:53,580
ู…ูŠู†ุŸ ุนู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ูƒ limits ุงู„ุขู† ุตุงุฑุช ุนู†ุฏูŠ ู…ุงู„ุฉ
492
00:45:53,580 --> 00:45:57,880
ู†ู‡ุงูŠุฉ ุนู„ู‰ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุฅุฐุง ุฅูŠุด ุจุชู†ุณูˆู‡ุŸุฅูŠุด ู†ุณูˆูŠุŸ
493
00:45:57,880 --> 00:46:06,400
ุฑุงุญูŠู† ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุตูŠุฑ ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุจุงู„ูุงุถู„
494
00:46:06,400 --> 00:46:11,400
ู‡ุฐู‡ ูˆ ุจุงู„ูุงุถู„ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุชูุงุถู„ู‡ุง ู‡ุฐู‡ ูˆุงุถุญุฉ ูˆ ู‡ุฐู‡
495
00:46:11,400 --> 00:46:14,060
ุชูุงุถู„ู‡ุง ู‡ูŠูƒ ู…ุงููŠุด ุฏุงุนูŠ ู„ู†ุง ู†ุฏุฎู„ ููŠ ุงู„ุชูุงุตูŠู„ ู„ุฅู† ูƒู„
496
00:46:14,060 --> 00:46:20,320
ุจุนุฑูู‡ุง ุงู„ุขู† ุจู†ุจุณุท ุงู„ุฃู…ุฑ ุจูŠุตูŠุฑ X Cos X ุนู„ู‰ Sine X
497
00:46:20,930 --> 00:46:26,550
ุงู„ุงู† ู„ูˆ ุฌูŠุช ุงุชุทู„ุนุช ู„ู‡ุฐู‡ ุงู„ limit ูˆ ู„ู‡ุฐู‡ ุงู„ limit
498
00:46:26,550 --> 00:46:29,530
ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ูˆ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ู„ุฅู†ู‡ ุชุนูˆูŠุถ
499
00:46:29,530 --> 00:46:33,410
ู…ุจุงุดุฑ ูˆุงุญุฏ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ู„ุฅู†ู‡ ุจูŠุตูŠุฑ ุณูุฑ ุน ุณูุฑ ุจุชุนู…ู„ู‡ุง
500
00:46:33,410 --> 00:46:36,570
global rule ุจูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ cosine ุจุชุทู„ุน ูˆุงุญุฏ ุจุฑุถู‡
501
00:46:36,570 --> 00:46:40,590
ุฅุฐุง ุงู‚ุฏุฑุช ุงูˆุฒุน ู„ุฅู†ู‡ ุนุงุฑู ุงู„ู„ูŠู…ุชูŠู† ุงู„ู…ูˆุฌูˆุฏุฉ ูุจูŠุตูŠุฑ
502
00:46:40,590 --> 00:46:46,220
ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ููŠ ูˆุงุญุฏ ุจูŠุณุงูˆูŠ ุงูŠู‡ุŸ ูˆุงุญุฏุงู„ุงู† ุฎุฏ ุนู„ู‰
503
00:46:46,220 --> 00:46:49,900
ุงู„ูุชุฑุฉ ู…ู† Zero ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุจุงูŠ ุนู„ู‰ ุงุชู†ูŠู† limit
504
00:46:49,900 --> 00:46:53,300
ูˆุงุญุฏ ุนู„ู‰ X ู†ู‚ุต ูˆุงุญุฏ ุนู„ู‰ sign ุงู„ X ุซู… X ุชุฑูˆุญ ู„ Zero
505
00:46:53,300 --> 00:46:57,140
ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ูˆู‡ุฐู‡ ุทุจุนุง ุดุบู„ุงุช ุงู„ู„ูŠ ู‡ูˆ ุฏุฑุฌู†ุง
506
00:46:57,140 --> 00:47:01,120
ุนู„ูŠู‡ุง ููŠ ุงู„ calculus ุจู†ูˆุญุฏ ุงู„ู…ู‚ุงู…ุงุช ูˆุจุตูŠุฑ ู…ูƒุชูˆุจุฉ
507
00:47:01,120 --> 00:47:05,030
ุนู„ู‰ ุตูˆุฑุฉ sign ุงู„ X ู†ู‚ุต X ุนู„ู‰ X ููŠ sign ุงู„ Xู…ุงุดูŠ
508
00:47:05,030 --> 00:47:10,650
ุงู„ุญู„ ุจุฑุถู‡ 0 ุนู„ู‰ 0 ุจู†ูุถู„ู‡ุง ุจูŠุตูŠุฑ cos X ู†ุงู‚ุต 1 ุนู„ู‰
509
00:47:10,650 --> 00:47:15,470
ุงู„ู„ูŠ ู‡ูˆ sin X ุฒุงุฏ X ูcos X ู„ูˆ ุฌูŠู†ุง ุนูˆุถู†ุง ู‡ุชุทู„ุน
510
00:47:15,470 --> 00:47:21,250
ุจุฑุถู‡ 0 ุนู„ู‰ 0 ุจู†ุดุชู‚ ูƒู…ุงู† ู…ุฑุฉ ุจุชุทู„ุน ู†ุงู‚ุต sin X ุนู„ู‰
511
00:47:21,250 --> 00:47:26,150
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ู†ุง ุจุชุตูุฑ ูˆู‡ู†ุง ุจูŠุตูŠุฑ 2
512
00:47:26,150 --> 00:47:32,680
ูˆู‡ู†ุง 0 0 ุนู„ู‰ 2 ู…ุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ 0ู†ุฃุชูŠ ู„ู‡ุฐุง ู…ุซุงู„
513
00:47:32,680 --> 00:47:36,440
ู…ุนู‡ูˆุฏ ุงู„ู€ let I ุจูŠุณุงูˆูŠู† 1 ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ุงู„ู€
514
00:47:36,440 --> 00:47:39,760
interval ุงู„ู„ูŠ ุนู„ูŠู‡ุง ุจุฏู†ุง ู†ุดุชุบู„ ูˆ ุจุฏู†ุง ู†ุงุฎุฏ ุงู„
515
00:47:39,760 --> 00:47:43,600
limit ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ูˆูŠู† ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ุงู„ู…ู‚ุฏุงุฑ 1
516
00:47:43,600 --> 00:47:48,960
ุฒุงุฆุฏ 1 ุนู„ู‰ X ูˆ ุงู„ูƒู„ ุฃูุณ Xู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ุงู† ุจุฏูŠ
517
00:47:48,960 --> 00:47:53,460
ุงุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ูŠุญูˆู„ู‡ ู„ exponential to the len ู…ุง
518
00:47:53,460 --> 00:47:55,660
ุงุญู†ุง ุนุงุฑููŠู† ุงู„ exponential ูˆ ุงู„ len ุงู„ู„ูŠ ู‡ูˆ n
519
00:47:55,660 --> 00:47:59,860
versus ู„ุจุนุถ ูุจุตูŠุฑ ุนู†ุฏูŠ E to the X ู„ู† ุงู„ 1 ุฒุงุฆุฏ 1
520
00:47:59,860 --> 00:48:05,120
ุนู„ู‰ X ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุฏูŠ ุงุดุบู„ ุนู„ู‰ ู‡ุฐุงูƒุฎุทูˆุฉ ุฃูˆู„ู‰ ุจู‚ูˆู„
521
00:48:05,120 --> 00:48:09,260
limit ุงู„ X ู„ู…ุง ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰
522
00:48:09,260 --> 00:48:14,140
ู…ุงู„ ู†ู‡ุงูŠุฉ ุจูŠุตูŠุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ limit ู„ู…ุง ูˆุงุญุฏ ุฒุงุฆุฏ X
523
00:48:14,140 --> 00:48:18,160
ุนู„ู‰ ูˆุงุญุฏ ุนู„ู‰ X ู„ูŠุด ุนู…ู„ุช ู‡ูŠูƒ ู„ุฃู† ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„
524
00:48:18,160 --> 00:48:21,360
ู†ู‡ุงูŠุฉ ู‡ุฐุง ุณูุฑ ูˆ ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุงู„ ู†ู‡ุงูŠุฉ ู‡ุฐุง ุณูุฑ ูˆ
525
00:48:21,360 --> 00:48:25,340
ู‡ุฐุง ู„ู…ุง ูˆุงุญุฏ ูุจุตูŠุฑ ุณูุฑ ุนู„ู‰ ุณูุฑ ุจู‚ุฏุฑ ุงุณุชุฎุฏู… ุงู„ loop
526
00:48:25,340 --> 00:48:30,730
ุชุงู„ุฐุฑูˆู„ ุงู„ู„ูŠ ุงู†ุง ุจุฑู‡ู†ุชู‡ุงุจู‚ู‰ ูุงุถู„ ุงู„ู„ูŠ ููˆู‚ ูˆ ูุงุถู„
527
00:48:30,730 --> 00:48:33,850
ุงู„ู„ูŠ ุชุญุช .. ูุถู„ู†ุง ุงู„ู„ูŠ ููˆู‚ ู‡ูŠู‡ ูˆ ูุถู„ู†ุง ุงู„ู„ูŠ ุชุญุช
528
00:48:33,850 --> 00:48:37,590
ู‡ูŠู‡ .. ุจุฑูˆุญ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู…ุน ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ .. ุจุธู„
529
00:48:37,590 --> 00:48:42,800
limit1 ุฒูŠ 1 ุนู„ู‰ X ู…ู‚ุต 1 ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุฏุฉ ู†ู‡ุงูŠุฉ ุฏู‡
530
00:48:42,800 --> 00:48:47,940
ุจุฑูˆุญ ู„ุตูุฑ ุจุทู„ุน ุฌุฏุงุด 1 ู„ุฃู† 1 ุจู†ุฑุฏ ุจู†ุนูˆุถ ูˆูŠู†ู‡ุง ู„ุฃู†
531
00:48:47,940 --> 00:48:50,940
ุงู„ exponential is a continuous function ู„ุฐุง ู†ุตุญูŠ
532
00:48:50,940 --> 00:48:54,180
ุนู† ุนู†ุฏ limit ุงู„ 1 ุฒูŠ 1 ุนู„ู‰ X ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุฏุฉ ู†ู‡ุงูŠุฉ
533
00:48:54,180 --> 00:48:57,920
to the X ูˆุนุจุงุฑุฉ ุนู† E to the limit ู„ุฃู† ุงู„
534
00:48:57,920 --> 00:49:01,760
exponential ุนุจุงุฑุฉ ุนู† continuous function ูุจุตูŠุฑ E
535
00:49:01,760 --> 00:49:08,300
to the 1 ูˆูŠุณุงูˆูŠ Eู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ู‡ูŠูƒ ุงุญู†ุง ุงู†ู‡ูŠู†ุง
536
00:49:08,300 --> 00:49:16,240
ุงู„ู„ูŠ ู‡ูŠ lobitals rules ุฃูˆ ู‚ูˆุงุนุฏ lobital ุฃูˆ ุตุฑู†ุง
537
00:49:16,240 --> 00:49:20,360
ุงู„ุขู† ู†ุฏุฎู„
538
00:49:20,360 --> 00:49:28,120
ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ chapter ุงู„ section ุงู„ุฃุฎูŠุฑ ุงู„ู„ูŠ ู‡ูˆ
539
00:49:28,120 --> 00:49:32,120
ุงู„ section ุนุจุงุฑุฉ ุนู† ุณุชุฉ ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูˆ taylor's
540
00:49:32,120 --> 00:49:38,540
theoremุฃูˆ tailors ุงู„ู„ูŠ ู‡ูŠ .. ู‡ู†ุญูƒูŠ ุนู† tailors
541
00:49:38,540 --> 00:49:43,640
polynomial ุฃูˆ tailors ุฃูŠุถุง ุงู„ู„ูŠ ู‡ูˆ approximation
542
00:49:43,640 --> 00:49:49,820
ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ .. ุงู† ู…ุฑุฉ ุฌุงูŠุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ูƒูŠู ุจู†ู‚ุฑุจ
543
00:49:49,820 --> 00:49:54,840
ุจุนุถ ุงู„ุฏูˆุงู„ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุชุฑู…ุฉ ุงู„ู„ูŠ ุจุชูƒูˆู†
544
00:49:54,840 --> 00:49:58,220
differentiable first derivative ูˆ second
545
00:49:58,220 --> 00:50:00,400
derivative ูˆ third derivative ู„ุฃ ุนู†ุฏ ุงู„ derivative
546
00:50:00,400 --> 00:50:05,700
ุงู„ู„ูŠ ุจุฏู†ุง .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ู‡ูŠ ู…ุง ู‚ุจู„ ุงุดุชู‚ุงู‚ ุนู†ุฏู‡ุง
547
00:50:05,700 --> 00:50:11,760
ุจู†ู‚ุฑุจู‡ุง ุจ polynomial ูˆ ุทุจุนุง ุงู†ุชูˆุง ุนุงุฑููŠู† ุฌุฏุด ุงู„
548
00:50:11,760 --> 00:50:17,380
polynomial ู…ู† ุงู„ุฏูˆุงู„ ุงู„ุณู‡ู„ุฉุณู‡ู„ุฉ ุงู„ุชุนุงู…ู„ ุณูˆุงุก ููŠ
549
00:50:17,380 --> 00:50:21,500
ุชูุงุถู„ ุฃูˆ ููŠ ุชูƒุงู…ู„ ุฃูˆ ุญุชู‰ ู„ูˆ ุจุฏู†ุง ู†ุญู„ู‡ุง ูˆ ู†ุฌูŠุจ
550
00:50:21,500 --> 00:50:26,340
ุฌุฐูˆุฑู‡ุง ูˆ ู†ุฌูŠุจ ูƒุฐุง ููŠ ุดุบู„ ุนู„ูŠู‡ุง ูƒุซูŠุฑ ูุงู„ู†ุงุณ ุชุฑุบุจ ููŠ
551
00:50:26,340 --> 00:50:30,540
ุฅู†ู‡ุง ุชุฌูŠุจ ุจุนุถ ุงู„ุฏูˆุงู„ ุงู„ู„ูŠ ุจุชูƒูˆู† ุฃุญูŠุงู†ุง ู…ุนู‚ุฏุฉ ูˆ
552
00:50:30,540 --> 00:50:35,380
ุตุนุจุฉ ุงู„ุชูƒุงู…ู„ ุฃูˆ ุฎู„ู†ุง ู†ู‚ูˆู„ ุจุชุบู„ุจ ุดูˆูŠุฉ ููŠ ุงู„ุชูุงุถู„ ุฃูˆ
553
00:50:35,380 --> 00:50:40,040
ููŠ ูˆุฌูˆุฏ ุงู„ุฌุฐูˆุฑ ุฃูˆ ูƒุฏู‡ ูˆ ู†ุญูˆู„ู‡ุง ุฅู„ู‰ุงู„ู„ูŠ ู‡ูŠ
554
00:50:40,040 --> 00:50:44,020
polynomial ุตุจุนุง ููŠ ู…ู‚ุฏุงุฑ ุฎุทุฃ ุงู„ุฎุทุฃ ู‡ู† .. ุงู† ุดุงุก
555
00:50:44,020 --> 00:50:47,520
ุงู„ู„ู‡ ุงู„ Taylor's theorem ุจุชู‚ูˆู„ู†ุง ูƒูŠู ุงู† ู‡ูˆ ู†ูˆุฌุฏ
556
00:50:47,520 --> 00:50:51,320
ู‡ุฐุง ุงู„ุฎุทุฃ ุงูˆ ุงูŠุด ู‡ูˆ ุงู„ุฎุทุฃ ูˆ ุงูŠุถุง Taylor's theorem
557
00:50:51,320 --> 00:50:55,780
ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† ู‡ู†ูˆุถุญ ูƒูŠู ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุชุนู…ูŠู… ู„ู„
558
00:50:55,780 --> 00:51:00,340
main value theorem ู‡ูŠ ุชุนู…ูŠู… ู„ู„ main value theorem
559
00:51:00,340 --> 00:51:05,140
ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูŠ n ุจุชุณุงูˆูŠ ุณูุฑ ุจุชุทู„ุน ู‡ูŠ ุจุงู„ุธุจุท ุงู„
560
00:51:05,140 --> 00:51:09,100
main value theorem ูƒูŠูุŸ
561
00:51:10,860 --> 00:51:15,100
ุงู„ู€ Main Value Theorem ุนุจุงุฑุฉ ุงู„ู€ Taylor's Theorem
562
00:51:15,100 --> 00:51:19,900
ุนุจุงุฑุฉ ุนู† ุชุนู…ูŠู… ู„ู„ู€ Main Value Theorem ุฎุฏ ุงู„ุขู†
563
00:51:19,900 --> 00:51:25,020
ุจุชุณุงูˆูŠ ุณูุฑ ุจุชุทู„ุนู„ูƒ ุงู„ู€ Main Value Theorem ุจูŠุดุญู…ู‡ุง
564
00:51:25,020 --> 00:51:27,740
ูˆ ู„ุญู…ู‡ุง ูˆ ุฅู„ู‰ ู„ู‚ุงุก