abdullah's picture
Add files using upload-large-folder tool
9b50984 verified
raw
history blame
113 kB
1
00:00:04,890 --> 00:00:10,370
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 12 ููŠ ู…ุณุงู‚
2
00:00:10,370 --> 00:00:14,870
ุชุญู„ูŠู„ ุญู‚ูŠู‚ูŠ 2 ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ
3
00:00:14,870 --> 00:00:20,710
ูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ู‚ุณู… ุฑูŠุงุถูŠุงุช ูˆู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุซุงู†ูŠุฉ ุจุนุฏ
4
00:00:20,710 --> 00:00:25,150
ุงู„ุทูˆุงุฑุฆ ู„ู…ูˆุงุฌู‡ุฉ ููŠุฑูˆุณ ูƒูˆุฑูˆู†ุง
5
00:00:27,610 --> 00:00:31,150
ุงู„ุณูŠูƒุดู† ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ู„ูŠ ู‡ู†ุจุฏุฃ ููŠู‡ ุงู„ู„ูŠ ู‡ูˆ
6
00:00:31,150 --> 00:00:35,050
ุณูŠูƒุดู† ุณุจุนุฉ ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ Properties of
7
00:00:35,050 --> 00:00:38,290
the Riemann Integral ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุฎูˆุงุต ุงู„ู€
8
00:00:38,290 --> 00:00:43,310
ุฑูŠู…ุงู† ุงู†ุชูŠุฌุฑูˆู„ ู‡ู†ุจู†ูŠู‡ุง ุนู„ู‰ ุนุฏุฏ ู…ู† ุงู„ุฃุณุฆู„ุฉ ุงู„ูŠูˆู… ุฃู†ู‡
9
00:00:43,310 --> 00:00:47,190
ู„ูˆ ูƒุงู†ุช ุนู†ุฏูŠ ููŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ two functions f ูˆ g
10
00:00:47,190 --> 00:00:51,650
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† integrable functions ุนู„ู‰ some
11
00:00:51,650 --> 00:00:56,070
bounded closed interval I ู‡ู„ ู…ุฌู…ูˆุนู‡ู…ุง ู‡ูŠูƒูˆู†
12
00:00:56,070 --> 00:01:01,440
integrable ูˆู„ุง ู„ุฃุŸ ู‡ู„ ุญุงุตู„ ุถุฑุจ ุซุงุจุช ููŠ ุงู„ู€
13
00:01:01,440 --> 00:01:03,620
F ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ integrable function ู‡ูŠุทู„ุน ุงู„ู€
14
00:01:03,620 --> 00:01:09,340
KF is integrableุŸ ู‡ู„ ุญุงุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† F ูˆ G is
15
00:01:09,340 --> 00:01:13,700
integrableุŸ ู‡ู„ ู„ูˆ ุฃุฌูŠู†ุง ูƒุงู† ููŠ ุนู†ุฏูŠ two functions
16
00:01:13,700 --> 00:01:17,720
F ูˆ G integrableุŸ ูˆูƒุงู† ุงู„ู„ูŠ ู‡ูˆ ู…ุนุฑูุฉ ุนู„ู‰ ุฃุณุงุณ ุงู„ู€
17
00:01:17,720 --> 00:01:20,900
composition ุจูŠู†ู‡ู…ุง ูŠูƒูˆู† ู…ุนุฑูุŸ ูˆูƒุงู† ุงู„ุชู†ุชูŠู†
18
00:01:20,900 --> 00:01:24,560
integrableุŸ ู‡ู„ ุงู„ู€ F composite G integrable
19
00:01:24,560 --> 00:01:29,020
ูˆู„ุง ู„ุฃุŸ ุฃูŠุถู‹ุง ู„ูˆ ู…ุด integrable ุทุจ ุฅูŠุด ู†ุญุท condition
20
00:01:29,020 --> 00:01:32,640
ุนู„ู‰ ูˆุงุญุฏุฉ ู…ู†ู‡ ุนุดุงู† ูŠุตูŠุฑ integrableุŸ ู‡ุชุฌุงูˆุจ ุนู„ูŠู‡
21
00:01:32,640 --> 00:01:37,280
ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ู‡ู†ุญูƒูŠ ุนู†ู‡ุง ุฃู†ู‡ ู„ูˆ ูƒุงู†ุช ุฅุญุฏุงู‡ู…ุง ุงู„ู„ูŠ
22
00:01:37,280 --> 00:01:41,600
ู‡ูŠ continuous ูู‡ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุฃูˆ ุฅุฐุง ูƒุงู†ุช ุงู„ู€ F
23
00:01:41,600 --> 00:01:45,200
is continuous ูŠูƒูˆู† F composite G is integrable
24
00:01:45,200 --> 00:01:49,800
ูˆู‡ู†ุดูˆู ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู† ุดุงุก ุงู„ู„ู‡ ุฎู„ุงู„ ุงู„ู€
25
00:01:49,800 --> 00:01:54,180
section ูˆู‡ู†ูˆุธู ุงู„ู€ ู†ุธุฑูŠุฉ ุงู„ู€ composition ู‡ุฐู‡ ููŠ
26
00:01:54,180 --> 00:01:58,210
ุฅุซุจุงุช ุงู„ู„ูŠ ู‡ูˆ ุจุนุถ ุงู„ุฏูˆุงู„ ูƒูŠู ู‡ุชูƒูˆู† ุงู„ู€
27
00:01:58,210 --> 00:02:02,410
integrable ู†ุจุฏุฃ ุงู„ุขู† ููŠ ุงู„ู€ ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰
28
00:02:02,410 --> 00:02:06,650
ุงู„ู„ูŠ ู‡ุชุฌุงูˆุจ ู„ู†ุง ุนู„ู‰ ุงู„ู„ูŠ ุณุฃู„ู†ุงู‡ ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ ุฃู†ู‡ ู„ูˆ
29
00:02:06,650 --> 00:02:11,090
ูƒุงู†ุช ุนู†ุฏูŠ ุงู„ู€ theorem 711 ู„ูˆ ูƒุงู†ุช I ุนุจุงุฑุฉ ุนู†
30
00:02:11,090 --> 00:02:14,960
closed bounded interval A ูˆB ุงู„ู€ F ูˆุงู„ู€ G ุนุจุงุฑุฉ
31
00:02:14,960 --> 00:02:18,760
ุนู† two functions ู…ู† I ู„ุนู†ุฏ R ูˆูุฑุถู†ุง ุฅู† ุงู„ู€ two functions
32
00:02:18,760 --> 00:02:21,600
ุฅูŠู‡ ุดู…ุงู„ ู‡ู†ุงุŸ Are integrable ูŠุนู†ูŠ
33
00:02:21,600 --> 00:02:25,740
ู†ูุชุฑุถ let F and G be two integrable functions on I
34
00:02:25,740 --> 00:02:29,960
ุงู„ุขู† if K element in R ุนุจุงุฑุฉ ุนู† .. ุนุจุงุฑุฉ ุนู† ุซุงุจุช
35
00:02:29,960 --> 00:02:35,380
then the functions ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฅุฌุงุจุฉ ุงู„ุขู† K ููŠ F ูˆ K
36
00:02:35,380 --> 00:02:39,220
ููŠ G ูŠุนู†ูŠ ุญุงุตู„ ุถุฑุจ ุงู„ุซุงุจุช ููŠ ุงู„ู€ F ู‡ูŠุทู„ุน ุนู†ุฏ ุนุจุงุฑุฉ
37
00:02:39,220 --> 00:02:43,300
ุนู† integrable function ูˆู‡ูŠุทู„ุน f ุฒุงุฆุฏ g integrable
38
00:02:43,300 --> 00:02:47,700
function ูŠุนู†ูŠ ู‡ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุจุฏุฑ ุฏูˆู„ f ุฒุงุฆุฏ
39
00:02:47,700 --> 00:02:50,860
g is integrable ูˆุทุจุนู‹ุง ู„ูˆ ุฃุซุจุชู†ุง ู‡ุฐุง integrable
40
00:02:50,860 --> 00:02:54,000
ูˆู‡ุฐุง integrable ุนู„ู‰ ุทูˆู„ ุงู„ f ู†ุงู‚ุต g is integrable
41
00:02:54,000 --> 00:02:59,640
ู„ูŠุดุŸ ู„ุฃู† f is integrable ูˆ g is integrable ู‡ูŠุนุทูŠู†ูŠ
42
00:02:59,640 --> 00:03:05,720
ุงู„ู„ูŠ ู‡ูˆ f ุฒุงุฆุฏ f ูˆ K ููŠ g ุจุฑุถู‡ integrable ุญุณุจ ุงู„ู„ูŠ
43
00:03:05,720 --> 00:03:12,610
ู‡ูˆ ู…ูŠู† ุงู„ู„ูŠ ุญุงูƒูŠู†ุงู‡ุง ู‡ุฐุง ููŠ ุญุงู„ุฉ ุฅุซุจุงุชู‡ู… ุฏุงู… ุงุชูƒุงูู‰
44
00:03:12,610 --> 00:03:16,070
g is integrable ู„ูƒู„ K ุทุจุนู‹ุง element are ู…ู† ุถู…ู†ู‡ุง
45
00:03:16,070 --> 00:03:19,790
ู†ุงู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุงู ูˆู†ุงู‚ุต g integrable
46
00:03:19,790 --> 00:03:24,890
ูŠุนู†ูŠ ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุญุณุจ ุงู„ู€ F ุฒุงุฆุฏ g ุจุตูŠุฑ F ุฒุงุฆุฏ
47
00:03:24,890 --> 00:03:29,210
ู†ุงู‚ุต g is integrable ูŠุนู†ูŠ F ู†ุงู‚ุต g ุจุฑุถู‡ ู‡ูŠุทู„ุน ุฅูŠู‡
48
00:03:29,210 --> 00:03:33,790
ุดู…ุงู„ู‡ is integrable ู‡ุฐู‡ ู…ู„ุงุญุธุงุช ุณุฑูŠุนุฉ ุฃูŠุถู‹ุง ู‡ูŠุทู„ุน
49
00:03:33,790 --> 00:03:39,890
ุนู†ุฏูŠ ุญุณุจ ุงู„ู€ ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุฃู†ู‡ in general F ุฒุงุฆุฏ K
50
00:03:39,890 --> 00:03:43,330
ููŠ g ู‡ูŠูƒูˆู† integrable ูˆ ู„ูˆ ูƒุงู† ููŠ ุนู†ุฏูŠ constant
51
00:03:43,330 --> 00:03:47,130
ุซุงู†ูŠ K prime ู‡ูŠุทู„ุน ุงู„ู€ linear combination ุจูŠู†ู‡ู… K
52
00:03:47,130 --> 00:03:52,630
prime f ุฒุงุฆุฏ g ุจุฑุถู‡ is integrable ู‡ุฐุง ูƒู„ู‡ ููŠ ุญุงู„
53
00:03:52,630 --> 00:03:56,810
ุฃุซุจุชู†ุง ุฅู† ุงู„ู€ KF ูˆุงู„ู€ F ุฒุงุฆุฏ g is integrable ุนู†ุฏู…ุง
54
00:03:56,810 --> 00:04:00,330
ุชูƒูˆู† F ูˆ d is integrable ุฎู„ูŠู†ุง ู†ุจุฏุฃ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ
55
00:04:00,330 --> 00:04:05,330
ู†ุซุจุช ุงู„ู€ KF is integrable ู‚ุจู„ ู…ุง ู†ุซุจุช ุฎู„ูŠู†ูŠ ุฃุฐูƒุฑูƒู…
56
00:04:05,330 --> 00:04:10,700
ุจุจุนุถ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ ู‚ูˆุงู†ูŠู† ุฃูˆ ุงู„ู€
57
00:04:10,700 --> 00:04:14,180
definitions ุงู„ู„ูŠ ุงุญู†ุง ุญูƒูŠู†ุงู‡ุง ุณุงุจู‚ู‹ุง ุนุดุงู† ู‡ุณุชุฎุฏู…ู‡ุง
58
00:04:14,180 --> 00:04:20,420
ุงู„ูŠูˆู… ุงู„ู„ูŠ ู‡ูˆ lower sum ู„ู„ู€ partition P ูˆ G ุงู„ู€
59
00:04:20,420 --> 00:04:22,880
partition P ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ partition ู„ู„ู€ interval I
60
00:04:22,880 --> 00:04:26,700
ุงู„ู„ูŠ ู…ุนุฑู ุนู„ูŠู‡ุง G ู‡ูˆ ุนุจุงุฑุฉ ุนู† summation MK ููŠ XK
61
00:04:26,700 --> 00:04:30,440
ู†ุงู‚ุต XK ู†ุงู‚ุต 1 ูˆุงู„ู€ MK ุฒูŠ ู…ุง ุฃู†ุชู… ุนุงุฑููŠู† ู‡ูŠ ุนุจุงุฑุฉ
62
00:04:30,440 --> 00:04:34,050
ุนู† ุงู„ู€ infimum ู„ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
63
00:04:34,050 --> 00:04:39,430
Subinterval ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†ู‡ุง XK-1 ูˆ XK ูˆุงู„ู€ L of G
64
00:04:39,430 --> 00:04:43,890
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Lower Integral ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€
65
00:04:43,890 --> 00:04:49,330
Supremum ู„ูƒู„ ุงู„ู€ P ูˆ G ู„ูƒู„ P element in the set of
66
00:04:49,330 --> 00:04:54,720
all partition P of I ูˆุฃูŠุถู‹ุง ุงู„ู€ UPG ู‡ูŠ ุนุจุงุฑุฉ ุนู†
67
00:04:54,720 --> 00:04:57,380
summation ู†ูุณ ุงู„ู„ูŠ ููˆู‚ ุจุณ ุจุฏู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ infimum
68
00:04:57,380 --> 00:05:01,340
ุจู†ุญุท M ูƒุงุจูŠุชุงู„ K ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
69
00:05:01,340 --> 00:05:04,180
supremum ู„ู‚ูŠู…ุฉ ุงู„ุฏูˆุงู„ ุฒูŠ ู…ุง ุฃู†ุชู… ุนุงุฑููŠู† ุฃูˆ
70
00:05:04,180 --> 00:05:07,320
ุฒูŠ ู…ุง ุดุฑุญู†ุงู‡ุง ุณุงุจู‚ู‹ุง ูˆ ุงู„ู€ U of G ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
71
00:05:07,320 --> 00:05:11,740
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ upper integral ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€
72
00:05:11,740 --> 00:05:17,180
infimum ู„ู„ู‘ูŠ ู‡ูŠ ูƒู„ ุงู„ู€ upper sums ู„ู„ู€ partitions
73
00:05:17,180 --> 00:05:20,160
ุจูŠู‡ element in P of I ู‡ุฐุง ุฎู„ูŠู‡ ุนู„ู‰ ุฃุณุงุณ ุฃู†ู‡ ุจุฏุฃ
74
00:05:20,160 --> 00:05:26,510
ู†ุณุชุฎุฏู…ู‡ ุจุนุฏ ุดูˆูŠุฉ ููŠ ู‡ุฐุง ุงู„ุจุฑู‡ุงู† ู„ู„ู†ุธุฑูŠุฉ ุงู„ุขู† ุจุฏุฃ
75
00:05:26,510 --> 00:05:30,510
ุฃุจุฑู‡ู† ุงู„ู€ KF is integrable ุจุงู„ูˆุงุญุฏ ูˆุจุนุฏ ู‡ูŠูƒ ุจุฏุฃ
76
00:05:30,510 --> 00:05:33,530
ุฃุซุจุช ู„ูƒู… ุฅู† ุงู„ู€ integration ู„ู€ KFF ุจูŠุณุงูˆูŠ ูƒูŠู ุงู„ู€
77
00:05:33,530 --> 00:05:38,750
integration ู„ู…ูŠู† ู„ู€ LF ุงู„ุขู† ุจุฏุฃ ุฃุฎุฐ ุซู„ุงุซ ุญุงู„ุงุช ุจุฏุฃ
78
00:05:38,750 --> 00:05:42,290
ุฃุฎุฐ ุทุจุนู‹ุง ู‡ุฐุง ูƒู„ K ุฃู…ู„ุชู†ุง ุฃู„ู‡ุงุฑ ุจุฏุฃ ุฃุฎุฐ ุญุงู„ุฉ K ุจุชุณุงูˆูŠ
79
00:05:42,290 --> 00:05:47,050
ุตูุฑ ูˆุญุงู„ุฉ K ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุญุงู„ุฉ K ุฃูƒุจุฑ ู…ู† ุฅูŠุงุด ู…ู†
80
00:05:47,050 --> 00:05:51,740
ุตูุฑ ูƒู„ ุญุงู„ุฉ ููŠู‡ุง ุจุฑูˆุญุงู†ู‡ุง ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ K ุจุณุงูˆูŠ
81
00:05:51,740 --> 00:05:56,240
ุตูุฑ ุญุงู„ุฉ ุณู‡ู„ุฉ ูˆุญุงู„ุฉ trivial ู„ู…ุงุฐุงุŸ ู„ุฃู† ุฅุฐุง ูƒุงู†ุช KF
82
00:05:56,240 --> 00:06:01,340
ุจุณุงูˆูŠ ุตูุฑ ู‡ูŠุตูŠุฑ ุงู„ู€ KF ุนุจุงุฑุฉ ุนู† ุงู„ู€ zero function
83
00:06:01,340 --> 00:06:04,720
ูˆุงู„ู€ zero function is continuous ูŠุนู†ูŠ constant ู…ุง
84
00:06:04,720 --> 00:06:08,220
ุฏุงู… continuous ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู‡ุชูƒูˆู†
85
00:06:08,220 --> 00:06:11,900
ุงู„ู„ูŠ ู‡ูˆ ุฅูŠู‡ ุดู…ุงู„ู‡ุง is integrable ุฅุฐุง ููŠ ุญุงู„ุฉ ุงู„ู€ K
86
00:06:11,900 --> 00:06:15,700
ุจูŠุณุงูˆูŠ ุตูุฑ trivial KF is integrable ูˆู…ุด ู‡ูŠูƒ ูƒู…ุงู†
87
00:06:15,700 --> 00:06:19,540
ูˆ K ููŠ ุงู„ู€ integration ู„ู„ F ู‡ุฐุง ุนุจุงุฑุฉ ุนู† integrable
88
00:06:19,540 --> 00:06:23,760
ูŠุนู†ูŠ ู‚ูŠู…ุฉ ุนุฏุฏูŠุฉ ูˆู‡ุฐุง Zero ุจูŠุตูŠุฑ ุจูŠุณุงูˆูŠ Zero ูˆุงู„ู€
89
00:06:23,760 --> 00:06:26,860
integration ู„ู„ู€ Zero function ุนู„ู‰ ุงู„ูุชุฑุฉ A B ุงู„ู„ูŠ
90
00:06:26,860 --> 00:06:29,900
ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ K ููŠ ุงู„ู€ F ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู‡ูŠุณุงูˆูŠ ุตูุฑ
91
00:06:29,900 --> 00:06:33,880
ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌู‡ุชูŠู† ู‡ุฐู‡ ู„ู€ K ููŠ ุงู„ู€
92
00:06:33,880 --> 00:06:38,220
integration ู„ู„ F ุจูŠุณุงูˆูŠ ุงู„ู€ integration ู„ู„ู€ KF ู…ู† A
93
00:06:38,220 --> 00:06:42,780
ู„ู€ B ู…ู† A ู„ู€ B ุจูŠุณุงูˆูŠ 0 in the case of ูƒ ุจุชุณุงูˆูŠ ุฅูŠุงุด
94
00:06:42,780 --> 00:06:47,380
0 ุฅุฐุง ุฒูŠ ู…ุง ู‚ู„ู†ุง ูุนู„ุงู‹ ู„ุญุงู„ุฉ ูƒ ุจุชุณุงูˆูŠ ุตูุฑ ุญุงู„ุฉ ุณู‡ู„ุฉ
95
00:06:47,380 --> 00:06:52,120
ูˆ trivial case ู†ูŠุฌูŠ ุงู„ุขู† ุจุฏู†ุง ู†ุญูƒูŠ ุนู† ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ
96
00:06:52,120 --> 00:06:58,000
ุนู† ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ุฅุฐุง ูƒุงู†ุช ูƒ ุฃุตุบุฑ ู…ู† 0 ููŠ
97
00:06:58,000 --> 00:07:02,620
ุญุงู„ุฉ ุงู„ู€ K ุฃุตุบุฑ ู…ู† 0 ุฅุฐุง ุดุบู„ู†ุง ุงู„ุขู† ุนู„ู‰ ุงู„ู€ K ุฃุตุบุฑ
98
00:07:02,620 --> 00:07:07,760
ู…ู† 0 ุทูŠุจ ู„ุญุธุฉ
99
00:07:07,760 --> 00:07:13,480
ู…ุง ู‡ูŠ ู„ูŠู‡ุŸ ุฎู„ูŠู†ุง ู†ุฑูƒุฒ ุนู„ู‰ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ K ุฃุตุบุฑ
100
00:07:13,480 --> 00:07:21,380
ู…ู† 0 ุนู†ุฏูŠ K ุฃุตุบุฑ ู…ู† 0 ุนู†ุฏูŠ
101
00:07:21,380 --> 00:07:32,980
ุจุฏูŠ ุฃูˆุฌุฏ ุงู„ู€ L ุจูŠ ูˆ K F ุงู„ู€ LBQF ุงู„ู€ B ุฃุดู…ุงู„ู‡ Any
102
00:07:32,980 --> 00:07:36,820
Partition ุฃุฎุฐุช ุงู„ู€ B ุฃุดู…ุงู„ู‡ Any Partition ุจุณูˆุก X
103
00:07:36,820 --> 00:07:41,400
ู†ูˆุช X1 ู„ุนู†ุฏ XN Any Partition of ู…ูŠู†ุŸ Of the
104
00:07:41,400 --> 00:07:46,000
interval I ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†ู‡ุง ุฅุฐุง ุงู„ู€ BKF ุญุณุจ ุงู„ุชุนุฑูŠู
105
00:07:46,000 --> 00:07:51,000
ุงู„ู„ูŠ ูƒุงุชุจู‡ ููˆู‚ ุฅูŠุด ุจูŠุณุงูˆูŠ ุงู„ู€ summation ู„ู„ู€ M
106
00:07:51,000 --> 00:07:54,700
ู„ู…ูŠู†ุŸ ู„ู„ู€ M ู„ู„ู€ function ุงู„ุฌุฏูŠุฏุฉ ุงู„ู„ูŠ ู‡ูŠ ุงุณู…ู‡ุง
107
00:07:54,700 --> 00:08:00,520
ุฅูŠุดุŸ KF ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุนู† ุงู„ู€ infimum ู‡ุฐู‡
108
00:08:00,520 --> 00:08:04,280
ุงู„ู€ K ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุดุŸ ุงู„ู€ MK small ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
109
00:08:04,280 --> 00:08:11,850
infimum ู„ุฃ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุชุจุนุชู†ุง KF of X ู„ูƒู„ X ูˆูŠู†
110
00:08:11,850 --> 00:08:16,350
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ sub interval ู‡ุฐู‡ ุจุณ ุจู„ุงุด ุนุดุงู† ู…ุง ูŠุตูŠุฑุด
111
00:08:16,350 --> 00:08:19,090
conflict ุจูŠู† ุงู„ู€ K ุงู„ู„ูŠ ู‡ู†ุง ูˆุงู„ู€ K ุงู„ู„ูŠ ู‡ู†ุง ุฎู„ูŠู†ูŠ
112
00:08:19,090 --> 00:08:23,990
ุฃุณู…ูŠู‡ุง ุจุนุฏ ุฅุฐู†ูƒู… ุงุณู…ู‡ุง ุงู„ู„ูŠ ู‡ูŠ Ii ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ sub
113
00:08:23,990 --> 00:08:28,410
interval ุงู„ู„ูŠ ู‡ูˆ Xi ู†ุงู‚ุต ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ Xi
114
00:08:28,410 --> 00:08:33,350
ู‡ุฐู‡ i ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ N ู…ุถุฑูˆุจุฉ ููŠ ู…ูŠู†ุŸ ููŠ ุทูˆู„
115
00:08:33,350 --> 00:08:38,810
ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ Xi ู†ุงู‚ุต Xi ู†ุงู‚ุต ูˆุงุญุฏ ู‡ุฐู‡
116
00:08:38,810 --> 00:08:45,710
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ LBK ูˆ F ูŠุงุณุงูˆูŠู†ูƒ ุฅูŠุด ูŠุง ุฌู…ุงุนุฉ ุงุญู†ุง
117
00:08:45,710 --> 00:08:50,850
ุจู†ุดุชุบู„ ูƒ ุฃุตุบุฑ ู…ู† ุตูุฑ ุจู†ุดุชุบู„ ุนู„ู‰ ุงู„ุญุงู„ุฉ ูƒ ุฃุดู…ุงู„ู‡
118
00:08:50,850 --> 00:08:55,470
ุฃุตุบุฑ ู…ู† ุตูุฑ ุฅุฐุง ุญูŠุณุงูˆูŠ ุงู„ู€ summation ุงู„ู€ K ู„ู…ุง ุชุทู„ุน
119
00:08:55,470 --> 00:08:59,650
ุจุฑุง ุงู„ู€ infimum ูˆู‡ูŠ ุณุงู„ุจุฉ ุนู„ู‰ ุทูˆู„ ุจุชุฌู„ุจ ุงู„ู€ infimum
120
00:08:59,650 --> 00:09:04,650
ุฅู„ู‰ ุฅูŠุดุŸ ุฅู„ู‰ supremum ุฅุฐุง ุจูŠุตูŠุฑ ูƒ ููŠ ุงู„ู€ supremum ู„ู„ู€
121
00:09:04,650 --> 00:09:11,490
F of X such that X element in Ii ู…ู† ุนู†ุฏ 1 ู„ุนู†ุฏ N
122
00:09:11,490 --> 00:09:18,530
ูˆู…ุถุฑูˆุจ ู‡ุฐุง ููŠ Xi ู†ุงู‚ุต Xi ู†ุงู‚ุต 1 ูˆูŠุณุงูˆูŠ ุงู„ุขู†
123
00:09:18,530 --> 00:09:22,030
ุฎู„ูŠู†ุง ู†ุทู„ุน ุงู„ู€ K ู‡ุฐู‡ ุจุฑุง ุงู„ู€ summation ุจุงู„ู…ุฑุฉ ู„ุฃู†
124
00:09:22,030 --> 00:09:25,530
ุงู„ู€ K ุนุจุงุฑุฉ ุนู† ุฅูŠุด ูŠุง ุดุจุงุจ ุนุจุงุฑุฉ ุนู† K ุนุจุงุฑุฉ ุนู† ุซุงุจุช
125
00:09:25,530 --> 00:09:28,510
ูˆุจูŠุทู„ุน ุจุฑุง ุงู„ู€ summation ุนุงุฏูŠ ูˆูƒุฃู†ู‡ ุนุงู…ู„ ู…ุดุชุฑูƒ
126
00:09:28,510 --> 00:09:33,690
ุจูŠุตูŠุฑ K ููŠ ุงู„ู€ summation ุงู„ุขู† ู„ู…ูŠู†ุŸ ู„ู„ู€ supremum ู„ู„ู€ F
127
00:09:33,690 --> 00:09:39,590
of X ูˆุงู„ู€ x element in Ii ููŠ ู…ุถุฑูˆุจ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€
128
00:09:39,590 --> 00:09:43,070
Xi ู†ุงู‚ุต Xi ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุทูˆู„ ุงู„ู€ interval
129
00:09:43,070 --> 00:09:47,190
ูˆ ู‡ุฐุง ุงู„ูƒู„ุงู… I ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ N ุฅู„ู‰ ุฅู† ู‡ุฐุง ูŠุง
130
00:09:47,190 --> 00:09:55,220
ุดุจุงุจ ูƒู„ู‡ ุนุจุงุฑุฉ ุนู† ุฅูŠุดุŸ ุนุจุงุฑุฉ ุนู† ุจุงู„ุธุจุท ุชุนุฑูŠู ุงู„ู€ UP
131
00:09:55,220 --> 00:09:58,580
ูˆู…ูŠู†ุŸ ูˆุงู„ู€ function ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ู†ุง ุฅูŠุด ู‡ูŠ ุงู„ู„ูŠ
132
00:09:58,580 --> 00:10:06,360
ุจุดุชุบู„ ุนู„ูŠู‡ุง ู‡ู†ุง F ุฅุฐุง ุญูŠุณุงูˆูŠ K ููŠ ุงู„ู€ U ู„ู€ P ูˆู…ูŠู†ุŸ
133
00:10:06,360 --> 00:10:13,360
ูˆ F ุฅุฐุง ุงู„ู„ูŠ ูˆุตู„ุช ู„ู‡ ูŠุง ุฌู…ุงุนุฉ ุฅู† ุนู†ุฏูŠ ุงู„ู€
134
00:10:14,150 --> 00:10:21,110
L of K ูˆ P ูˆ F ุจูŠุณุงูˆูŠ K ููŠ ุงู„ู€ UP ูˆ F Similarly
135
00:10:21,110 --> 00:10:29,990
ูˆุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุจู‚ุฏุฑ ุฃุญุตู„ ุนู„ู‰ ุงู„ู€ U ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู€ U
136
00:10:29,990 --> 00:10:44,090
ู„ุฃ ุงู„ู€ P ูˆ KF ุงู„ู„ูŠ ู‡ูˆ ู‡ุชุณุงูˆูŠ K ููŠ ุงู„ู€ LP ูˆ F ู‡ุชุณุงูˆูŠ
137
00:10:44,090 --> 00:10:53,090
ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ K ููŠ ุงู„ู€ L, P ูˆ F ุฎู„ูŠ
138
00:10:53,090 --> 00:10:58,450
ู‡ุฐุง ููŠ ุงู„ุฐุงูƒุฑุฉ ุฅู† ุงู„ู„ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ ุงู„ู„ูŠ ู‚ู„ุชู‡ ู‡ุงูŠ
139
00:10:58,450 --> 00:11:03,030
ู‡ุฐุง ุงู„ูƒู„ุงู… ุฎู„ูŠู†ูŠ ุฃุณุฌู„ู‡ุง ุงู„ู„ูŠ ุญุตู„ุช ุนู„ูŠู‡ุง ู„ุฅู†ูŠ ุจุฏูŠ
140
00:11:03,030 --> 00:11:07,510
ุฃุณุชุฎุฏู…ู‡ุง ุจุนุฏ ุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ K
141
00:11:08,960 --> 00:11:15,580
ููŠ ุงู„ู€ U,B ูˆุงู„ู€ F ูˆุฒูŠ ู…ุง ู‚ู„ู†ุง similarly ุงู„ู€ U ุงู„ู€ U,B
142
00:11:15,580 --> 00:11:24,670
ูˆุงู„ู€ K ูˆุงู„ู€ F ุจุณุงูˆูŠ K ููŠ ุงู„ู€ L,B ูˆุงู„ู€ F ู…ุงุดูŠ ุงู„ุญุงู„ ุทุจุนุง ู‡ุฐู‡ ู„ูˆ
143
00:11:24,670 --> 00:11:29,250
ู„ูˆ ุญุฏ ุญุงุจุจ ูŠุนุฑู ุงู„ุชูุงุตูŠู„ ุงู„ุชูุงุตูŠู„ ุณู‡ู„ุฉ ุฎู„ูŠู†ูŠ ุจุณ ุนู„ู‰
144
00:11:29,250 --> 00:11:35,050
ุงู„ุณุฑูŠุน ุฃุญูƒูŠู‡ุง ุดููˆูŠุง ุงู„ู€ U P Q F ุฅูŠุด ู‡ูŠุตูŠุฑ ู‡ู†ุง ุจูŠุตูŠุฑ
145
00:11:35,050 --> 00:11:39,190
ุงู„ู€ summation ู„ุฃู† ุงู„ู€ supremum ุจุฏู„ ุงู„ู€ M K capital
146
00:11:39,190 --> 00:11:44,090
ู‡ุฐู‡ ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูŠ supremum ู„ู…ูŠู† ุจุฏู„ ุงู„ู€ G K F ูู„ู…ุง
147
00:11:44,090 --> 00:11:48,730
... ู„ู…ุง ุฃุทู„ุน ุงู„ู€ K ุจุฑุฉ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุตูŠุฑ ุงู„ู€ supremum
148
00:11:48,730 --> 00:11:54,160
infimum ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ K ุจุฑุฉ ูˆู‡ู†ุง ุงู„ู€ infimum ู…ุน
149
00:11:54,160 --> 00:11:59,480
ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ุถุจุท ุชุนุฑูŠู ู…ูŠู† ุงู„ู€ L of B ุฃูˆ F ู…ุงุดูŠ
150
00:11:59,480 --> 00:12:05,060
ุงู„ุญุงู„ุŸ ุทูŠุจุŒ ุงู„ุขู† ุจูƒูˆู† ุฅุญู†ุง ุฃุซุจุชู†ุง ุงู„ุฌู‡ุชูŠู† ุฃู†ุง ูˆูŠู†
151
00:12:05,060 --> 00:12:09,930
ุฑุงูŠุญุŸ ุฃู†ุง ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ู€ K ููŠ ุงู„ู€ F is integrable
152
00:12:09,930 --> 00:12:13,410
in the case K ุฃุตุบุฑ ู…ู† 100 ู…ู† 0 ุทูŠุจ ุงุญุณุจูˆู„ูŠ ูŠุง
153
00:12:13,410 --> 00:12:19,030
ุฌู…ุงุนุฉ ุงุญุณุจูˆู„ูŠ ุงู„ู€ L of K F ุฅูŠุด ุจุชุณุงูˆูŠ ุญุณุจ ุชุนุฑูŠูู†ุง
154
00:12:19,030 --> 00:12:27,730
ุงู„ู„ูŠ ููˆู‚ ุนุจุงุฑุฉ ุนู† ุงู„ู€ supremum ู„ู…ูŠู† ู„ู„ู€ L of B ูˆ K F
155
00:12:27,730 --> 00:12:34,210
ุญูŠุซ B element in the set of partitions B of I ู…ุงุดูŠ
156
00:12:34,210 --> 00:12:37,090
ุงู„ุญุงู„ ูŠุง ุฌู…ุงุนุฉ ูˆูŠุณุงูˆูŠ ุงู„ุขู†
157
00:12:39,190 --> 00:12:45,190
ุงู„ู€ LBKF ุฃู†ุง ุญุถุฑุชู„ู‡ ุฃุตู„ุง ุจูŠุณุงูˆูŠ K ููŠ ุงู„ู€ U ูˆูŠุณุงูˆูŠ
158
00:12:45,190 --> 00:12:50,790
ุจุทู„ุน ุงู„ู€ K ุจุฑุฉ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุงู„ู€ supremum ู„ู€ K ุงู„ู€ U, B
159
00:12:50,790 --> 00:12:59,930
ูˆุงู„ู€ F such that B element in B of I ูˆูŠุณุงูˆูŠ ุจุทู„ุน ุงู„ู€ K
160
00:12:59,930 --> 00:13:05,370
ุจุฑุฉ ุจูŠุตูŠุฑ K ู„ุฃู† K ุณุงู„ุจ ูŠุง ุดุจุงุจ ุจูŠุตูŠุฑ K ููŠ ู…ูŠู†ุŸ ููŠ
161
00:13:05,370 --> 00:13:12,730
ุงู„ู€ infimum ู„ู„ู€ U ุจูŠ ูˆุงู„ู€ F ูˆุงุถุญ ุฃู‡ุŸ such that B
162
00:13:12,730 --> 00:13:22,080
element in B of I ุงู„ุขู† ุงู„ู€ infimum ู„ู„ู€ U ู„ู„ู€ B ูˆุงู„ู€ F
163
00:13:22,080 --> 00:13:25,960
ุนู„ู‰ ุงู„ุดุบู„ ุนู…ูŠู† ุงู„ุขู† ุนู† ุงู„ู€ function F ุฏูŠุฑูˆุง ุจุงู„ูƒู…
164
00:13:25,960 --> 00:13:31,800
ุฅุฐุงู‹ ู‡ูŠุณุงูˆูŠ ูƒ... ููŠ ู…ูŠู† ู‡ุฐู‡ ุชุนุฑูŠูุŸ ุชุนุฑูŠู ุจุงู„ุถุจุท
165
00:13:31,800 --> 00:13:39,240
ุงู„ู€ infimum ู„ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ U of F ุงู„ู€ U
166
00:13:39,240 --> 00:13:46,800
of F ู‡ุงูŠ ูˆุงุญุฏ ุงุซู†ูŠู† ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ู†ุนุชู…ุฏ ุนู„ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ
167
00:13:46,800 --> 00:13:57,360
ู‡ูˆ ุงู„ู€ U of ุจ ... ุขุณู ุงู„ู€ U of K F ุจุฏูˆุฑู‡ุง ุงู„ู€ U of K
168
00:13:57,360 --> 00:14:05,400
ูˆุงู„ู€ F ุฅูŠุด ุญูŠูŠุณุงูˆูŠุŸ ุญูŠูŠุณุงูˆูŠ ุงู„ู€ infimum ู„ู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ L
169
00:14:05,400 --> 00:14:14,160
ุงู„ู€ U of B ูˆ K F such that B element in B of I
170
00:14:14,730 --> 00:14:19,750
ู‡ุชู„ุงู‚ูˆู‡ุง ุจุชุดุจู‡ ุงู„ู„ูŠ ููˆู‚ ูˆูŠุณุงูˆูŠ ู‡ุฐู‡ ุฃุซุจุชู†ุงู‡ุง ุฅูŠุด
171
00:14:19,750 --> 00:14:26,610
ุจุชุณุงูˆูŠ K ููŠ ุงู„ู€ L ูˆูŠุณุงูˆูŠ ุงู„ู€ infimum ู„ุฃ ุจุฏู„ ุงู„ู€ U ุฅูŠุด
172
00:14:26,610 --> 00:14:34,510
ุจุฏู‡ ูŠุตูŠุฑ ุนู†ุฏู‡ ูƒ ุงู„ู€ B ูˆุงู„ู€ F ุงู„ุขู† such that B element
173
00:14:34,510 --> 00:14:40,810
in B of I ูˆูŠุณุงูˆูŠ ุงู„ุขู† ุงู„ู€ K ุจุถุทู„ุญู‡ุง ุจุฑุฉ ุงู„ู€ M ููŠ
174
00:14:40,810 --> 00:14:44,430
ู…ุงู…ูŠ ุงู„ุฌู…ุงุนุฉ ุงู„ู€ K ุณุงู„ุจุฉ ุฅุฐุง ุฅูŠุด ู‡ุชุตูŠุฑ ุนุจุงุฑุฉ ุนู†
175
00:14:44,430 --> 00:14:49,470
ุฅูŠุดุŸ ุนู† K ููŠ ุงู„ู€ supremum ุฅุฐุง ูˆูŠุณุงูˆูŠ K ููŠ ุงู„ู€
176
00:14:49,470 --> 00:14:56,430
supremum ู„ู„ู€ L ุจูŠ ูˆุงู„ู€ F such that B element in B of I
177
00:14:56,940 --> 00:15:03,060
ุงู„ุขู† ู‡ุฐู‡ ุงู„ู€ supremum ู‡ุฐู‡ ู‡ูŠ ุจุงู„ุถุจุท ุชุนุฑูŠู ู…ู† ุงู„ู€ L
178
00:15:03,060 --> 00:15:13,180
of F ุฅุฐุง ุจูŠุตูŠุฑ ูˆูŠุณุงูˆูŠ K ููŠ L of F K ููŠ L of F ุฅุฐุง
179
00:15:13,180 --> 00:15:19,980
ุตุงุฑุช ุงู„ุขู† ุจุชุตูˆุฑ ุงู„ุตูˆุฑุฉ ุฌุฑุจุช ุฃูˆุถุญ ู‡ุงูŠ ุนู†ุฏูŠ L of K
180
00:15:19,980 --> 00:15:28,570
of F ุฃุซุจุชู†ุงู‡ุง ุจุชุณุงูˆูŠ K of U of F ูˆุงู„ู€ U K of F
181
00:15:28,570 --> 00:15:34,990
ุจุชุณุงูˆูŠ K L of F ุฎู„ูŠู†ูŠ ุฃู„ุฎุตู‡ุง ูŠุง ุดุจุงุจ ููˆู‚ ูˆู†ู‚ุงุฑู†
182
00:15:34,990 --> 00:15:40,950
ุจูŠู†ู‡ุง ูˆู†ุตู„ ู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ุง ุทูŠุจ ุตุงุฑ ุนู†ุฏูŠ
183
00:15:40,950 --> 00:15:51,130
ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู‡ูŠ L of K F ุจุชุณุงูˆูŠ K U of F ูˆููŠ ู†ูุณ
184
00:15:51,130 --> 00:16:01,230
ุงู„ุฌู‡ุฉ U of K F ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ K L of F ุทูŠุจ ู…ุง ุฅุญู†ุง
185
00:16:01,230 --> 00:16:07,430
ุจู†ู‚ูˆู„ ุฅูŠุด ุฅุญู†ุง ู…ูุชุฑุถูŠู† ู…ุง ุฅุญู†ุง ู…ูุชุฑุถูŠู† ุฅู† F is
186
00:16:07,430 --> 00:16:12,130
integrable ู…ุง ุฏุงู… F is integrable ุฅุฐุง ุฅูŠุด ู‡ูŠูƒูˆู†
187
00:16:12,130 --> 00:16:19,770
ุนู†ุฏูŠ L of F ู‡ูŠ ู†ูุณ ุงู„ู€ U of F ุฅุฐุง ุงู„ุขู† ู…ู† ู‡ุฐู‡ ูˆู…ู†
188
00:16:19,770 --> 00:16:26,710
ุงู„ู„ูŠ ููˆู‚ ุจูŠุตูŠุฑ ุนู†ุฏูŠ Lof K F ุงู„ุชูŠ ุจุชุณุงูˆูŠ K ููŠ U of
189
00:16:26,710 --> 00:16:31,910
F ุงู„ุชูŠ ุจุชุณุงูˆูŠ K
190
00:16:31,910 --> 00:16:38,470
ููŠ U
191
00:16:38,470 --> 00:16:46,360
of F ุฅุฐู† ุจูŠู† ุงู„ุฌู‡ุชูŠู† ุทู„ุน ุนู†ุฏูŠ L of K of F ุจูŠุณุงูˆูŠ U
192
00:16:46,360 --> 00:16:58,180
K F ูˆู‡ุฐุง ูŠุนู†ูŠ ุฅุฐู† K F is integrable ุฅุฐู† ุตุงุฑ ุนู†ุฏูŠ
193
00:16:58,180 --> 00:17:05,040
ุงู„ู€ K F is integrable ุทูŠุจ ุงู„ุขู† ุงู„ู„ูŠ ุจุนุฏู‡ ุณู‡ู„ ู†ุดูˆู
194
00:17:05,040 --> 00:17:11,870
ุฅูŠุด ุงู„ู„ูŠ ุจุนุฏู‡ ุถู„ ุฅูŠุด ุฃุซุจุช ุฅู†ู‡ ุงู„ integration ุงู„ู€
195
00:17:11,870 --> 00:17:16,350
integration ู„ู„ู€ KF ุจูŠุณุงูˆูŠ KF ุงู„ integration ู„ู„ F
196
00:17:16,350 --> 00:17:19,550
ุงู„ู„ูŠ ููŠ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ููŠ ุงู„ุฃูˆู„ ูŠุง ุดุจุงุจ
197
00:17:19,550 --> 00:17:28,970
ุชุดูˆููˆู‡ ุญุงุถุฑ ุฃูŠูˆุฉ
198
00:17:28,970 --> 00:17:33,930
ูŠุง ุฌู…ุงุนุฉ ุจุฏู†ุง ู†ุซุจุช ุฅู†ู‡ ุงู„ ุฌูŠุช ุฃุซุจุชู†ุง ุฅู† KF is
199
00:17:33,930 --> 00:17:38,060
integrable ุฏู„ูˆู‚ุชูŠ ุฃุซุจุช ู‡ุฐู‡ ุจุชุณุงูˆูŠ ู‡ุฐู‡ ุณู‡ู„ ุงู„ุฃู…ุฑ ุทูŠุจ
200
00:17:38,060 --> 00:17:42,920
ุฅุญู†ุง ุงู„ุขู† ู…ุง ุฏุงู… ุงู„ู„ูŠ ู‡ูˆ KF is integrable ุฅุฐุง ุงู„
201
00:17:42,920 --> 00:17:47,140
integration ู…ู† A ู„ู€ B ู„ู„ู€ KF ุงู„ู„ูŠ ู‡ูŠ ุตุงุฑุช integrable
202
00:17:47,140 --> 00:17:52,080
ุจูŠุณุงูˆู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ L of K of F ูˆุงู„ู€ U of K of F
203
00:17:52,080 --> 00:17:56,680
ุจูŠุณุงูˆู‰ U of K F ู…ุซู„ุง ูˆูŠุณุงูˆูŠ ุงู„ู€ U K of F ุฅูŠุด ู‡ุชุณุงูˆูŠ
204
00:17:56,680 --> 00:18:01,900
ู…ู† ู‡ู†ุง ุงู„ู„ูŠ ู‡ุชุจุชู†ุนู‡ุง ุฏู‡ K ููŠ ุงู„ู€ L of F ุฃูˆ ุงู„ู€ U of
205
00:18:01,900 --> 00:18:05,600
F ู…ุด ู…ุดูƒู„ุฉ ูƒุชูŠุฑ ูˆูŠุณุงูˆูŠ ู…ุง ู‡ูŠ ุงู„ู€ F is integrable
206
00:18:05,600 --> 00:18:09,660
ุฅุฐุง ุงู„ู€ L of F ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฅูŠุดุŸ ุนู† ุงู„ integration ู…ู†
207
00:18:09,660 --> 00:18:15,330
A ู„ู€ B ู„ู„ู€ F ูˆุงู„ู€ K ุจุฑุฉ ู„ุฃู† ุงู„ู€ F ู‡ูˆ ู…ู† ุงู„
208
00:18:15,330 --> 00:18:19,150
integration ู…ู† A ู„ู€ B ู„ู€ F ู„ุฃู† ุงู„ู€ F is integrable
209
00:18:19,150 --> 00:18:22,610
ุฅุฐุง ุตุงุฑ ุนู†ุฏ ุงู„ุขู† ุงู„ integration ู…ู† A ู„ู€ B ูƒ F ุณูˆุงุก
210
00:18:22,610 --> 00:18:27,070
ูƒูŠู ุงู„ integration ู…ู† A ู„ู€ B ู„ู€ F ุงู„ุขู† ุธู„ุช ุงู„ุญุงู„ุฉ
211
00:18:27,070 --> 00:18:32,990
ุงู„ุฃุฎูŠุฑุฉ ูŠุง ุดุจุงุจ ุงู„ู„ูŠ ู‡ูŠ ุญุงู„ุฉ ุฅู† K ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ ู…ู†
212
00:18:32,990 --> 00:18:38,170
ุตูุฑ K ุฃูƒุจุฑ ู…ู† ุตูุฑ Similarly ุชู…ุงู…ุง ุฒูŠ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ
213
00:18:38,170 --> 00:18:42,690
ู‡ูŠ ู…ูŠู† ู‡ูŠ ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ K ุฃุตุบุฑ ู…ู† ุตูุฑ ุจุณ ู„ู…ุง ู†ุทู„ุน
214
00:18:42,690 --> 00:18:46,250
ุงู„ู€ K ุจุฑุฉ ุงู„ู€ supremum ุจุชุธู„ ุงู„ู€ supremum supremum ูˆ
215
00:18:46,250 --> 00:18:49,690
ู„ู…ุง ู†ุทู„ุน ุงู„ู€ K ุจุฑุฉ ุงู„ู€ infimum ุจุชุธู„ ุงู„ู€ infimum
216
00:18:49,690 --> 00:18:54,950
infimum ู…ุง ุฏุงู… ูƒู„ู‡ ุจุธู„ ุฒูŠ ุจุนุถู‡ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู„ูŠ ุชูˆู‡
217
00:18:54,950 --> 00:19:04,090
ู‚ุจู„ ุจุดูˆูŠุฉ ุฅุญู†ุง ุฃุซุจุชู†ุง ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู€ L ุงู„ู€ L ุงู„ู€ L of
218
00:19:04,090 --> 00:19:11,270
F ุฃูˆ ุงู„ู€ L of B ูˆ KF ุญูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† K ููŠ ุงู„ู€ LุŒ B
219
00:19:11,270 --> 00:19:15,170
ูˆุงู„ู€ F ู„ุฃู† ูƒู„ ุงู„ุฏู†ูŠุง ู‡ุชุธู„ู‡ุง ู…ุงุดูŠุฉ ุทุจูŠุนูŠุฉ ู„ุฃู† ุงู„ู€ K
220
00:19:15,170 --> 00:19:17,910
ุฃูƒุจุฑ ู…ู† 0 ู„ู…ุง ุชุทู„ุน ู…ู† ุงู„ Infant Mom ุจุชุธู„ู‡ุง ุฒูŠ ู…ุง
221
00:19:17,910 --> 00:19:21,090
ู‡ูŠ Infant Mom ูˆู„ู…ุง ุชุทู„ุน ู…ู† ุงู„ู€ Supremum ุจุชุธู„ู‡ุง ุฒูŠ
222
00:19:21,090 --> 00:19:27,980
ู…ุง ู‡ูŠ Supremum ูˆุงู„ู€ U of K,B ูˆ K,F ู‡ุชุทู„ุน ุจุชุณุงูˆูŠ K ููŠ
223
00:19:27,980 --> 00:19:35,060
ุงู„ู€ U,B ูˆุงู„ู€ F ูˆุจู†ุงุก ุนู„ูŠู‡ ุญูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู€ U of K,F
224
00:19:35,060 --> 00:19:43,680
ู‡ูŠุณุงูˆูŠ K ููŠ U of F ูˆ Lof K F ู‡ูŠ ุณุงูˆูŠ K ููŠ ุงู„ู€ L of
225
00:19:43,680 --> 00:19:49,860
F ูˆู…ู† ุงู„ุฌู‡ุชูŠู† ุจู†ุญุตู„ ุจู…ุง ุฅู†ู‡ ุฒูŠ ุงู„ู„ูŠ ููˆู‚ ุจุงู„ุถุจุท ุฅู†ู‡
226
00:19:49,860 --> 00:19:53,740
ุงู„ู€ F is integrable ุจูŠุตูŠุฑ U of F ุจูŠุณุงูˆูŠ L of F ูˆุนู„ู‰
227
00:19:53,740 --> 00:19:57,080
ุทูˆู„ ุจุชุทู„ุน ู‡ุฐู‡ ุจุชุณุงูˆูŠ ู‡ุฐู‡ ูˆุจู†ูƒู…ู„ ุฒูŠ ู…ุง ูƒู…ู„ู†ุง ู‡ู†ุง
228
00:19:57,080 --> 00:20:01,420
ุจุงู„ุถุจุท ุฅุฐุง ุงู„ู„ูŠ ุชุฑูƒูŠู†ู‡ ุฅุญู†ุง exercise K ุฃูƒุจุฑ ู…ู† 0 ู‡ูŠ
229
00:20:01,420 --> 00:20:05,420
ุงู„ุญุงู„ุฉ ุงู„ุฃุณู‡ู„ ูˆู‡ูŠ ุดุฑุญุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ hint ุนู„ู‰ ูƒูŠู
230
00:20:05,420 --> 00:20:10,000
ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ู†ุซุจุช ุงู„ integration ู„ู„ู€ K F ุจูŠุณุงูˆูŠ ูƒูŠู
231
00:20:10,000 --> 00:20:14,620
ุงู„ integration ู„ู„ F ูˆุจุฐู„ูƒ ุจูƒูˆู† ุฅู† ู‡ู†ุง ู‡ุฐุง ุงู„ุฌุฒุก ู…ู†
232
00:20:14,620 --> 00:20:22,760
ุงู„ู†ุธุฑูŠุฉ ู„ูƒู„ K element in R ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู† ูŠุง ุดุจุงุจ
233
00:20:25,560 --> 00:20:29,360
ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
234
00:20:29,360 --> 00:20:34,300
integration ุฅู†ู‡ ู„ูˆ ูƒุงู†ุช F ูˆ G are integrable ู‡ูŠุทู„ุน
235
00:20:34,300 --> 00:20:40,660
ุนู†ุฏูŠ ุจุฑุถู‡ F ุฒุงุฆุฏ G is integrable ุฎู„ูŠู†ุง ู†ุดูˆู ูŠุง
236
00:20:40,660 --> 00:20:49,460
ุฌู…ุงุนุฉ ู…ุน ุจุนุถ ู†ูุชุฑุถ ุฅู†ู‡ F ูˆ G F ูˆ G ู…ู† I ู„ุนู†ุฏ R are
237
00:20:49,460 --> 00:20:54,820
integrable functions ุจุฏู†ุง ู†ุซุจุช ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ F
238
00:20:54,820 --> 00:20:58,960
ุฒุงุฆุฏ G is integrable ูˆูƒุฃู†ูŠ ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ู€ L of F
239
00:20:58,960 --> 00:21:05,860
ุฒุงุฆุฏ G ุจูŠุณุงูˆูŠ ุงู„ู€ U ู„ู…ูŠู† ู„ู„ู€ F ุฒุงุฆุฏ G ู…ุงุดูŠ ูŠุง ุฌู…ุงุนุฉ
240
00:21:05,860 --> 00:21:13,300
ุทูŠุจ ุจุฏูŠ ุฃุซุจุช ุงู„ุขู† ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅู†ู‡ F ุฒุงุฆุฏ G is
241
00:21:13,300 --> 00:21:14,540
integrable
242
00:21:17,640 --> 00:21:22,580
ุจุณ ููŠ ุดุบู„ุชูŠู† ู‡ูŠูƒ ูŠุนู†ูŠ ุจ... ุจ... ุจุฐูƒุฑูƒู… ููŠู‡ ุฅู† ุงู„ู„ูŠ
243
00:21:22,580 --> 00:21:27,840
ู‡ูˆ ู…ู†... ู…ู† ุงู„ู€ real ูˆุงุญุฏ ู‡ู†ุณุชุฎุฏู…ู‡ู… ุจุนุฏ ุดูˆูŠุฉ ุนู†ุฏูŠ
244
00:21:27,840 --> 00:21:34,320
ุงู„ุขู† ู„ูˆ
245
00:21:34,320 --> 00:21:38,160
ูƒุงู† ุนู†ุฏูŠ two functions ูˆุจุฏู‡ ุฃุดูˆู ุงู„ู„ูŠ ู‡ูˆ ุงู„
246
00:21:38,160 --> 00:21:44,080
supremum ู„ู„ู€ F of X ุฒุงุฆุฏ G of X such that X element
247
00:21:44,080 --> 00:21:47,200
in some interval ุงู„ู„ูŠ ุจุฏูƒู… ุฅูŠุงู‡ุง ุงุณู…ู‡ุง I I ุฒูŠ ู…ุง
248
00:21:47,200 --> 00:21:53,740
ู‡ู… ุณู…ูŠู‡ุง ู‡ูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ supremum ู„ู„ู€ F of X
249
00:21:53,740 --> 00:21:59,870
such that X element in I I ุฒุงุฆุฏ ุงู„ู€ supremum ู„ู€ g of
250
00:21:59,870 --> 00:22:04,690
x such that x element in I I ู‡ุฐู‡ ู…ุนู„ูˆู…ุฉ ุณุงุจู‚ุฉ ู…ู†
251
00:22:04,690 --> 00:22:10,090
ุงู„ู„ูŠ ู‡ูˆ ุชุญู„ูŠู„ ูˆุงุญุฏ ู†ุฐูƒุฑูƒู… ููŠู‡ุง ุงู„ู€ infimum ุจุฑุถู‡
252
00:22:10,090 --> 00:22:14,310
ุดูŠุก ู…ุดุงุจู‡ ุจุณ ุจุนูƒุณ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุฒุงุฆุฏ g of x ุทุจุนุง ูƒู„ู‡
253
00:22:14,310 --> 00:22:17,570
... ูƒู„ู‡... ู‡ุฐุง ุฅูŠู‡ ุงู„ุฅุซุจุงุช ูˆูƒู„ู‡ ุฃุณุจุงุจ ุฃุฎุฐู†ุงู‡ุง ููŠ
254
00:22:17,570 --> 00:22:23,010
ุชุญู„ูŠู„ ูˆุงุญุฏ x element in I I ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
255
00:22:23,010 --> 00:22:29,660
ุงู„ู€ infimum ู„ ุงู„ู„ูŠ ู‡ูˆ f of x such that x element in
256
00:22:29,660 --> 00:22:35,700
I I ุฒุงุฆุฏ ุงู„ู€ infimum ู„ g of x such that x element
257
00:22:35,700 --> 00:22:40,880
in I I ู‡ุฏูˆู„ ุงู„ุขู† ุจุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงุณุชุฎุฏู…ู‡ู… ุนุดุงู† ุงู„ู„ูŠ
258
00:22:40,880 --> 00:22:48,140
ู‡ูˆ ุฃุตู„ ุงู„ู„ูŠ ุจุฏูŠ ุฅูŠุงู‡ ุงู„ุขู† ู„ูˆ ุฃุฌูŠู†ุง ุญุณุจู†ุง ุงู„ู„ูŠ ู‡ูˆ
259
00:22:48,140 --> 00:22:59,910
ุงู„ู€ U ู„ู€ L of B of F ุฒุงุฆุฏ G ุนุดุงู† ู†ุตู„ ู„ู€ L F ุฒูŠ ุงู„ู€ G
260
00:22:59,910 --> 00:23:03,590
ุจุณูˆุก ุงู„ู€ U F ุฒูŠ ุงู„ู€ G ุงุนุชู…ุงุฏุง ุนู„ู‰ ุฅู† ุงู„ู€ F ูˆุงู„ู€ G
261
00:23:03,590 --> 00:23:07,030
ุงู†ุชุฌุฑุจู„ ูŠุนู†ูŠ ุงุนุชู…ุงุฏู‡ ุนู„ู‰ ุฅู† ุงู„ู‚ู„ุฉ ุงู„ู€ F ู‡ูŠ ุงู„ู€ U
262
00:23:07,030 --> 00:23:11,050
ุงู„ู€ F ูˆุงู„ู‚ู„ุฉ ุงู„ู€ G ู‡ูŠ ุงู„ู€ U G ุดูˆููˆุง ู…ุนุงูŠุง ุชุจู‚ูˆุง
263
00:23:11,050 --> 00:23:14,470
ู…ุนุงูŠุง ู‡ุฐุง ุญุณุจ ุงู„ุชุนุฑูŠู ุฃุดู‡ุฑ ุณุจุจ ู‡ูˆ ูŠุณูˆูŠ ุงู„ู€
264
00:23:14,470 --> 00:23:18,850
summation ุงู„ุขู† ุงู„... ุงู„... ุงู„... ุงู„... ุงู„... M
265
00:23:18,850 --> 00:23:27,350
small K ุจุณ ู„ู…ูŠู† ู‡ุฐู‡ ู„ู…ูŠู† ู„ู„ู€ F ุฒุงุฆุฏ G ู‡ุฐู‡ ู„ู…ูŠู† ูŠุง
266
00:23:27,350 --> 00:23:32,770
ุฌู…ุงุนุฉ ู„ู„ู€ F ุฒุงุฆุฏ G ู…ุถุฑูˆุจุฉ ููŠ XI minus XI minus 1 ุฃูˆ
267
00:23:32,770 --> 00:23:36,470
XK ุฒูŠ ู…ุง ู‡ูˆ ู†ุณู…ูŠู‡ุง ุฒูŠ ู…ุง ุจุฏูƒู… ู†ุณู…ูŠู‡ุง ุณู…ูŠู†ุงู‡ุง ููˆู‚ I
268
00:23:36,470 --> 00:23:44,020
ุฎู„ูŠู†ุง ู†ุณู…ูŠู‡ุง I I minus 1 I ู…ู† ุนู†ุฏ 1 ู„ุนู†ุฏ N ุงู„ู€ M I
269
00:23:44,020 --> 00:23:46,980
ู‡ุฐู‡ ุฅูŠู‡ ูŠุง ุดุจุงุจุŸ ุงู„ู€ F ุฒุงุฆุฏ G ู‡ูŠ ุนุจุงุฑุฉ ุนู„ู‰ ุฌู‡ุฉ
270
00:23:46,980 --> 00:23:54,040
ุนุดุงู† ู…ู†ู‡ุง ู‡ู†ู†ุทู„ู‚ ุงู„ู€ M I F ุฒุงุฆุฏ G ูŠุนู†ูŠ ุงู„ู€ M I ู‡ุฐู‡
271
00:23:54,040 --> 00:23:56,740
ู„ู…ูŠู†ุŸ ู„ู„ู€ function ุงู„ุฌุฏูŠุฏุฉ ุงู„ู„ูŠ ุงุณู…ู‡ุง F ุฒุงุฆุฏ G
272
00:23:56,740 --> 00:24:05,270
ุจูŠุณุงูˆู‰ ุงู„ู€ infimum ู„ู„ู€ F ุฒุงุฆุฏ G of X such that X
273
00:24:05,270 --> 00:24:10,310
element in I, I ูˆู‡ุฐู‡ ู…ู† ุงู„ู„ูŠ ูƒุชุจุชู‡ ุงู„ุขู† ู‡ู†ุง ุงู„ู„ูŠ
274
00:24:10,310 --> 00:24:14,510
ู‚ุฏู…ุชู‡ ู„ูƒู… ูŠุง ุฌู…ุงุนุฉ ุงู„ุงู†ูู…ุงู… ุงู„ู„ูŠ ู‡ู†ุง ุฃูƒุจุฑ ูŠุณุงูˆูŠ
275
00:24:14,510 --> 00:24:18,990
ุงู„ุงู†ูู…ุงู… ู„ู‡ุฐู‡ ุฒุงุฆุฏ ุงู„ุงู†ูู…ุงู… ู„ู‡ุฐู‡ ุงู„ู€ infimum ู„ู‡ุฐู‡
276
00:24:18,990 --> 00:24:24,350
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุฅุญู†ุง ุจู†ุณู…ูŠู‡ุง M K Small ู„ู„ู€ function F
277
00:24:24,350 --> 00:24:29,530
ูˆู‡ุฐู‡ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ุง ู…ูŠู† ุงู„ู€ M K Small ู„ู„ู€ function
278
00:24:29,530 --> 00:24:34,230
ู…ูŠู†ุŸ ู„ู„ู€ function G ู…ุนู„ุด ุงู„ุฑู…ูˆุฒ ู„ูƒู† ูˆุงุถุญ ุฅู†ู‡
279
00:24:34,230 --> 00:24:38,030
ุงู„ู„ูŠ ู‡ูˆ ุฅุญู†ุง ุจู†ุญูƒูŠ ุนู† ุฅูŠุด ุนุดุงู† ู†ู…ูŠุฒ ุจูŠู† ุงู„ู€ M K
280
00:24:38,030 --> 00:24:43,830
ุฃูˆ ุงู„ู€ M I ุณู†ุฉ ู…ุณู…ูŠู†ู‡ุง I ุงู„ู€ M I ู‡ู†ุง ูˆุงู„ู€ M I ู„ู„ู€
281
00:24:43,830 --> 00:24:49,310
ูู€ ู„ู„ู€ J ูˆ ู„ู„ู€ F ุฒุงุฆุฏ J ู„ู„ู€ F ุฒุงุฆุฏ J ู‡ูŠู‡ุง ูˆู‡ูŠ ู…ู†
282
00:24:49,310 --> 00:24:53,850
ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ infimum ุนู„ู‰ ุงู„ุฃูˆู„ู‰
283
00:24:53,850 --> 00:24:57,830
ู„ู„ู€ F ุฒุงุฆุฏ ุงู„ู€ infimum ุนู„ู‰ ุงู„ู€ M ุนู„ู‰ ุงู„ู€ J ูŠุนู†ูŠ
284
00:24:57,830 --> 00:25:02,590
ู‡ุฐุง ุจู…ุนู†ู‰ ุขุฎุฑ ู„ุฃู† ู‡ุฐุง ู‚ูŠู…ุฉ ู…ูˆุฌุจุฉ ุจู‚ู‰ ุตุงุฑ ุฃูƒุจุฑ ุฃูˆ
285
00:25:02,590 --> 00:25:10,260
ูŠุณุงูˆูŠ ุงู„ู€ summation ุงู„ู„ูŠ ู‡ูˆ ู„ู…ูŠู†ุŸ ู„ู„ู€ MI F ุฒุงุฆุฏ M I
286
00:25:10,260 --> 00:25:15,760
J ู‡ุฐุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ู† ุงู„ equality ุงู„ู„ูŠ ููˆู‚ ููŠ X I
287
00:25:15,760 --> 00:25:21,660
ู†ุงู‚ุต X I ู†ุงู‚ุต ูˆุงุญุฏ I ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ N ู†ูˆุฒุน ุงู„ N
288
00:25:21,660 --> 00:25:30,680
ู‡ุฐุง ุจุงู„ุธุจุท ุจูŠุณุงูˆูŠ summation ู„ู„ู€ M I F ููŠ xi-xi-1 i ู…ู†
289
00:25:30,680 --> 00:25:34,980
ุนู†ุฏ 1 ู„ุนู†ุฏ n ุฒุงุฆุฏ ุงู„ summation ู†ูุณู‡ ุนู„ู‰ ู…ูŠู† ุงู„ุขู†ุŸ
290
00:25:34,980 --> 00:25:44,080
mij ููŠ xi-xi-1 i ู…ู† 1 ู„ุนู†ุฏ n ูˆุงุถุญ ูŠุง ุดุจุงุจุŸ ุงู‡
291
00:25:44,080 --> 00:25:48,980
ุงู„ู…ูุฑูˆุถ ุฃู† ุงู„ูƒู„ุงู… ูˆุงุถุญุŒ ุตุฑู†ุง ุนูŠุฏู†ุง ุงู„ููƒุฑุฉ ุนุฏุฉ ู…ุฑุงุช
292
00:25:48,980 --> 00:25:52,940
ูˆูƒู„ู†ุง... ูƒู„ู‡ ุจู†ุฏูˆุฑ ุญูˆู„ ุงู„ู„ูŠ ู‡ูˆ ูุนู„ุงู‹ ุงู„ุชุนุฑูŠู ู„ู„ู€
293
00:25:52,940 --> 00:25:55,580
upper thumb ูˆุงู„ lower thumb ูˆุงู„ upper integral
294
00:25:55,580 --> 00:25:58,960
ูˆุงู„ lower integral ุจุณ ุงู„ูˆุงุญุฏ ูŠุณุชุฐูƒุฑ ุงู„ุชุนุฑูŠู ู‡ูŠู„ุงู‚ูŠ
295
00:25:58,960 --> 00:26:04,020
ุงู„ุฃู…ูˆุฑ ุณู‡ู„ุฉ ุจุฅุฐู† ุงู„ู„ู‡ ู‡ุฐู‡ ุจุชุณุงูˆูŠ... ู‡ุฐู‡ ู…ูŠู† ู‡ูŠุŸ
296
00:26:04,020 --> 00:26:10,060
ุจุงู„ุธุจุท ูŠุง ุดุจุงุจุŸ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู„ู„ู€ Partition B ุงู„ู„ูŠ
297
00:26:10,060 --> 00:26:13,820
ุจุฏุฃู†ุง ููŠู‡ ุงู„ู€ Arbitrary ุจุงู„ู†ุณุจุฉ ู„ู…ูŠู† ุงู„ุขู†ุŸ ู„ู„ู€
298
00:26:13,820 --> 00:26:20,340
Function F ุฒุงุฆุฏ ู‡ุฐุง ุจูŠู† ู‡ุฐุง ุงู„ู€ L of B ูˆุจุงู„ู†ุณุจุฉ
299
00:26:20,340 --> 00:26:28,510
ู„ู…ูŠู†ุŸ ู„ู€ G ุตุงุฑ ุนู†ุฏ ุงู„ู€ LB ูˆ F ุฒุงุฆุฏ G ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
300
00:26:28,510 --> 00:26:33,630
ุขุณูุŒ ุฃูƒุจุฑ ูŠุณุงูˆูŠ ุงู„ B ูˆ F ุฒุงุฆุฏ ู…ูŠู†ุŸ ุงู„ B of G ุฎู„ูŠู†ุง
301
00:26:33,630 --> 00:26:37,090
ู†ุฎุฒู† ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ ูŠุง ุดุจุงุจุŒ ูˆุฎู„ู‘ูŠู†ูŠ ุฃูƒุชุจู‡ุง ุจุนุฏ
302
00:26:37,090 --> 00:26:42,930
ุฅุฐู†ูƒู…ุŒ ู‡ุงู† ุฃุฎุฒู† ุงู„ู…ุนู„ูˆู…ุฉ ู„ุฃู† ุจุนุฏ ุจุดูˆูŠุฉ ู‡ุงุฌูŠ
303
00:26:42,930 --> 00:26:49,890
ุฃุณุชุนู…ู„ู‡ุง ุฃู†ุง ูˆุตู„ุช ู„ู„ L B F ุฒุงุฆุฏ G ู‡ูŠูƒูˆู† ุฃูƒุจุฑ ุฃูˆ
304
00:26:49,890 --> 00:26:59,790
ูŠุณุงูˆูŠ ุงู„ LP ูˆ F ุฒุงุฆุฏ ุงู„ L D ูˆ G ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ
305
00:26:59,790 --> 00:27:06,750
ุญุตู„ู†ุงู‡ุงุŒ ู‡ุฃุญุตู„ูƒ ุนู„ู‰ ุฅูŠุดุŸ ู…ุดุงุจู‡ ุฌุฏุงู‹ ู„ู„ U ู‡ุชุตูŠุฑ ุงู„ U P
306
00:27:06,750 --> 00:27:11,430
ูˆ F ุฒุงุฆุฏ G ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุชุจุนุงู‹ ู„ู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ุงู„ู„ูŠ
307
00:27:11,430 --> 00:27:15,550
ุงุนุชู…ุฏู†ุง ุนู„ูŠู‡ุง ููŠ ุงู„ุจุฑู‡ุงู†ุŒ ู‡ู†ุนุชู…ุฏ ุนู„ูŠู‡ุง ุงู„ุขู† ุจุฑู‡ุงู† ููŠ
308
00:27:15,550 --> 00:27:21,070
ุงู„ U ุฅูŠุด ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ุŸ ุจู‚ูˆู„ ู…ุง ูŠู„ูŠู‡ุŒ ุนุงุฑููŠู†ุŸ ุจุฏูŠ ุงุดุชุบู„
309
00:27:21,070 --> 00:27:25,750
ุนู„ู‰ ู‡ุฐู‡ ุฃูˆ ุฃุฑุฌูˆูƒู… ุฌุฏู‘ุงู‹ ุงู„ุฃู…ูˆุฑ ุณู‡ู„ุฉุŒ ุดูŠู„ ู‡ุฐู‡ ูˆ ุงุญูƒูŠ
310
00:27:25,750 --> 00:27:30,170
ุนู† ู…ูŠู†ุŸ ุนู† ุงู„ U ู„ุฃู† ู…ุฏุงู… ุญูƒูŠุช ุนู† ุงู„ U ุฅุฐุง ุจุฏูŠ ูŠุตูŠุฑ
311
00:27:30,170 --> 00:27:33,630
ุจุฏู„ ู…ุง ู‡ูŠ M small ู…ูŠู† ุจุญูƒูŠุŸ ุจุฏู„ ุงู„ infinite ุจุฏูŠ
312
00:27:33,630 --> 00:27:37,390
ูŠุตูŠุฑ ู…ูŠู†ุŸ M I ุงู„ู„ูŠ ู‡ูŠ ุงู„ supremum ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
313
00:27:37,390 --> 00:27:40,930
supremum ุฅุฐุง M I ู‡ุฐู‡ ู„ู„ F ุฒุงุฆุฏ G ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€
314
00:27:40,930 --> 00:27:45,110
supremum ู„ู„ F of X ุฒุงุฆุฏ G of X X element in I ู„ุฃู†
315
00:27:45,110 --> 00:27:50,000
ุงู„ supremum ู„ู„ู…ุฌู…ูˆุน ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ู„ู„ู€ F ุฒุงุฆุฏ G ุจุฏู„ ู…ุง
316
00:27:50,000 --> 00:27:54,220
ู‡ูŠูƒูˆู† ุฃูƒุจุฑุŒ ุฅูŠุด ู‡ูŠุณุงูˆูŠ ูŠุง ุดุจุงุจุŸ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€
317
00:27:54,220 --> 00:28:00,140
supremum ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† M I F ูˆู‡ุฐุง ู…ูŠู† ู‡ูˆ ูŠุง
318
00:28:00,140 --> 00:28:06,900
ุดุจุงุจุŸ ุงู„ M I G ุฅุฐุง ุตุงุฑ ุงู„ู…ูˆุถูˆุน ูˆุงุถุญ ู‡ูŠุตูŠุฑ ุฃุตุบุฑ ุฃูˆ
319
00:28:06,900 --> 00:28:15,770
ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ MI F ูˆ M I J ูˆู†ูุณู‡ ุจุธู„ู‡ ุฒูŠ ู…ุง ู‡ูˆุŒ ูˆ
320
00:28:15,770 --> 00:28:22,590
ู‡ู†ุง ู…ุณุงูˆุงุฉ ุญู‚ูŠู‚ูŠุฉ M I ุจุบูŠุฑ M I ูˆุฒุนุช ุฒูŠ ู…ุง ูˆุฒุนุช ู‚ุจู„
321
00:28:22,590 --> 00:28:27,090
ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุตุงุฑ ูŠุง ุดุจุงุจุŸ ู…ุฏุงู… ุงู„ M I capital
322
00:28:27,090 --> 00:28:33,490
ุฅุฐุง ุตุงุฑ U B F ูˆู‡ุฐุง ุตุงุฑ ู…ูŠู†ุŸ ุนุจุงุฑุฉ ุนู† U B J ุฅุฐุง
323
00:28:33,490 --> 00:28:42,790
ุงู„ู„ูŠ ุญุตู„ู†ุง ุงู„ุขู† ุงู„ U B F ุฒุงุฆุฏ G ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ UBF
324
00:28:42,790 --> 00:28:48,110
ุฒุงุฆุฏ UBJ ูˆู‡ูŠ ูƒู…ุง ู†ูƒูˆู† ุญุตู„ู†ุง ุฃูˆ ุจุฏู†ุง ู†ุฎุฒู† ุงู„ู…ุนู„ูˆู…ุฉ
325
00:28:48,110 --> 00:29:00,980
ุงู„ุซุงู†ูŠุฉ UBF ุฒุงุฆุฏ G ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ UBF ุฒุงุฆุฏ UBG ู‡ุฐุง
326
00:29:00,980 --> 00:29:05,760
ุงู„ุขู† ุจูŠูƒูˆู† ุงุญู†ุง ุญุตู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ ุงู„ two
327
00:29:05,760 --> 00:29:09,120
inequalities ู‡ุฏูˆู„ุฉ ุงู„ู„ูŠ ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู…
328
00:29:09,120 --> 00:29:10,140
ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู…
329
00:29:10,140 --> 00:29:10,980
ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู…
330
00:29:10,980 --> 00:29:11,100
ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู… ู‡ู…
331
00:29:19,180 --> 00:29:23,620
ุนุจุงุฑุฉ ุนู† ุนู„ู‰ ูƒู„ Partition ุจูŠู‡ุŒ ู„ูƒู„ Partition ุจูŠู‡ ููŠ
332
00:29:23,620 --> 00:29:28,960
ุงู„ุฏู†ูŠุง ุงู„ุขู† ุฃู†ุง ุนุดุงู† ุฃุตู„ ู„ู„ Integrability ูŠุงู…ุง
333
00:29:28,960 --> 00:29:35,700
ุจุฃุซุจุช ุงู„ U of ุงู ุฒุงุฆุฏ ุฌูŠ ุจูŠุณุงูˆูŠ ุงู„ุงู„ ุจูŠู‚ู„ ุงู ุฒุงุฆุฏ
334
00:29:35,700 --> 00:29:41,640
ุฌูŠ ูˆู‡ุฐู‡ ูŠู…ูƒู† ุดูˆูŠุฉ ุณู†ุฉ ุจุชุบู„ุจ ุฃูˆ ุฃู† ุฃุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ
335
00:29:41,640 --> 00:29:49,020
Integrability criteria ุงู† ุงูˆุตู„ ุงู†ู‡ ู„ูƒู„ ุฃุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู†
336
00:29:49,020 --> 00:29:53,510
ุตูุฑ there exist a partition ุจุฅุจุณู„ูˆู† ุจุญูŠุซ ุฃู† U
337
00:29:53,510 --> 00:29:57,670
ุจุฅุจุณู„ูˆู† ูˆ F ุฒุงุฆุฏ G ู†ุงู‚ุต ุงู„ L ุจุฅุจุณู„ูˆู† ูˆ F ุฒุงุฆุฏ G ูŠูƒูˆู†
338
00:29:57,670 --> 00:30:01,610
ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†ุŒ ุฅุฐุง ุญุตู„ุช ู‡ูŠูƒ ุจูƒูˆู† ุนู„ู‰ ุทูˆู„ ุฃุซุจุชุช ุฃู†
339
00:30:01,610 --> 00:30:07,010
ุงู„ F ุฒุงุฆุฏ G is integrable ูˆุงุถุญุŸ ุทูŠุจุŒ ูˆุญุฑูˆุญ ุจู‡ุฐุง
340
00:30:07,010 --> 00:30:14,350
ุงู„ุงุชุฌุงู‡ุŒ ุทูŠุจุŒ ุดูˆููˆุง ู…ุนุงูŠุง ุงู„ุขู† ุฅุญู†ุง ูุฑุถูŠู† ุฃู† F is
341
00:30:14,350 --> 00:30:19,150
integrable ุฅุฐู†ุŒ ู…ุฏุงู… F is integrable ุฅุฐู†ุŒ by
342
00:30:19,760 --> 00:30:25,000
Integrability criterion there exist ู„ูƒู„ ุฅุจุณู„ูˆู†
343
00:30:25,000 --> 00:30:31,120
ุทุจุนุงู‹ ุฃุฎุฏุช ุงู„ุขู† ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุตูุฑ given ุฃู†ุง ุฅุจุณู„ูˆู†
344
00:30:31,120 --> 00:30:34,680
ู…ุงุดูŠุŒ ู…ุฏุงู… F is integrable ูุงู†ุญุงุฑุณ ุจุงู„ู€
345
00:30:34,680 --> 00:30:39,860
Integrability criterion there exist B F ูˆ ุฅุจุณู„ูˆู†
346
00:30:39,860 --> 00:30:47,500
partition B F ูˆ ุฅุจุณู„ูˆู† such that U B F ูˆ ุฅุจุณู„ูˆู†
347
00:30:48,590 --> 00:30:54,970
ูˆุงู„ู€ Function F ู†ุงู‚ุต... ู†ุงู‚ุต ุงู„... ู…ุนุงูŠุง ุดุจุงุจุŸ
348
00:30:54,970 --> 00:31:00,890
ุชุฐูƒุฑุชูˆุง ู‡ุงู„ู†ุธุฑูŠุฉุŸ F ูˆ Epsilon ูˆ F ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ
349
00:31:00,890 --> 00:31:03,550
ุฃุตุบุฑ ู…ู† Epsilon ุนู„ู‰ 2 ู„ู„ุญุณุงุจุงุช ุงู„ู€ Epsilon ุนู„ู‰ 2
350
00:31:03,550 --> 00:31:08,270
ู…ุงุดูŠ... ุงู„ุขู† ุฎู„ูŠู†ูŠ ุจุณ ุนุดุงู† ุฃุณู‡ู„ ุนู…ู„ูŠุฉ ุงู„ุญุณุงุจุงุช
351
00:31:08,270 --> 00:31:12,070
ุฅู„ูŠู‡ุŒ ุจุชู†ู‚ู„ ู‡ุฐู‡ ู‡ู†ุง ุจุนุฏ ุฅุฐู†ูƒู…ุŒ ูˆุฃู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู…
352
00:31:12,070 --> 00:31:17,130
ุฃุตุบุฑ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุฒุงุฆุฏ ู‡ุฐุงุŒ ูˆุงุถุญ ุฅูŠุด ุงู„ู„ูŠ ุจุนู…ู„ู‡ุŸ
353
00:31:17,130 --> 00:31:20,590
ุงู„ู„ูŠ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุจู…ุง ุฃู†ู‡ F is integrable ุฅุฐุง
354
00:31:20,590 --> 00:31:24,230
ุจู„ุงู‚ูŠ partition F ุฅุจุณู„ูˆู† ุจุญูŠุซ ุฃู†ู‡ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ู‡ุฐุง
355
00:31:24,230 --> 00:31:33,030
ุฒุงุฆุฏ ู‡ุฐุงุŒ ูˆุงุถุญุŸ Similarly for G G is integrable
356
00:31:33,030 --> 00:31:41,770
Similarly for G G is integrable ุจูŠุนุทูŠู†ูŠ
357
00:31:42,670 --> 00:31:47,530
for every ฮต ุฃูƒุจุฑ ู…ู† 0 there exists ุจูŠ ุงุจุณู„ูˆู† ุฎุงุต
358
00:31:47,530 --> 00:31:51,610
ุจุงู„ G ุฎู„ูŠู†ูŠ ุฃุณู…ูŠู‡ ุจุนุฏ ุฐู„ูƒ ุจูŠ ุฌูŠ ุงุจุณู„ูˆู† such that
359
00:31:51,610 --> 00:31:54,290
ุทุจุนุงู‹ partition of ู†ูุณ ุงู„ interval ุงู„ู„ูŠ ุจู†ุดุชุบู„ ุนู„ูŠู‡ุง
360
00:31:54,290 --> 00:31:56,350
ู„ุฅู† ุงู„ F ูˆุงู„ G ุฏูŠุฑ ุจุงู„ูƒู… ู…ุนุฑูุฉ ุนู„ู‰ ู†ูุณ ุงู„ู€
361
00:31:56,350 --> 00:32:05,530
interval such that ุงู„ู„ูŠ ู‡ูˆ ุงู„ U ุจูŠ G ูˆ ุงุจุณู„ูˆู† ูˆ G
362
00:32:05,530 --> 00:32:12,270
ุงู„ุขู† ุงู„ function ุงู„ู„ูŠ ุจุญูƒูŠ ุนู†ู‡ุง ุฃุตุบุฑ ู…ู† L ุจุฌูŠ
363
00:32:12,270 --> 00:32:17,250
ูˆุฅุจุณู„ูˆู† ุฃูˆ ุงู„ู€ function ash ุฌูŠ ุฒุงุฆุฏ ุจุฑุถู‡ ู…ูŠู†ุŸ
364
00:32:17,250 --> 00:32:21,690
ุฅุจุณู„ูˆู† ุนู„ู‰ ุงุชู†ูŠู†ุŒ ูˆุงุถุญ ูŠุง ุฌู…ุงุนุฉุŸ ุฅุฐุง ู…ู† ุงู„ู€
365
00:32:21,690 --> 00:32:25,430
integrability ู„ู„ู€ F ู„ุฌูŠ ุชู„ู‡ุง partition ูˆู…ู† ุงู„ู€
366
00:32:25,430 --> 00:32:29,190
integrability ู„ู„ู€ G ู„ุฌูŠ ุชู„ู‡ุง partition ุงู„ุขู† ุฒูŠ ู…ุง
367
00:32:29,190 --> 00:32:33,030
ุนู…ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ูุงุชุฉ ุจุฏูŠ ุฃุฎุฏ partition ุนุดุงู† ุฃุณุชุฎุฏู…
368
00:32:33,030 --> 00:32:38,370
ู‡ุฐู‡ ูˆุฃุณุชุฎุฏู… ู‡ุฐู‡ ูุจู‚ูˆู„ let ุจุฅุจุณู„ูˆู† ูˆู‡ุฐุง ุจู‚ูˆู„ ุงู„ู„ูŠ
369
00:32:38,370 --> 00:32:42,570
ุจุชุฏุนูŠ ุงู† ุงู„ู„ูŠ ุญู„ู‚ูŠู‡ ุงู„ู„ูŠ ูŠุซุจุช ุงู„ู€ Integrability ุฃูˆ
370
00:32:42,570 --> 00:32:45,970
ุงู„ู„ูŠ ู‡ูŠ criterion Integrability ุฎุฏูˆุง ู…ูŠู† ู‡ูˆุŸ ุฃูƒูŠุฏ
371
00:32:45,970 --> 00:32:53,150
ูƒู„ูƒู… ุญุชู‚ูˆู„ู‡ ุฎุฏ F ูˆ E ุงุชุญุงุฏ B G ูˆ E ุนุดุงู† ูŠุตูŠุฑ
372
00:32:53,150 --> 00:32:57,710
ุจุฅุจุณู„ูˆู† refinement ู„ู‡ุฐู‡ ู„ู„ุฃูˆู„ู‰ ูˆ refinement ู„ู„ุซุงู†ูŠุฉ
373
00:32:57,710 --> 00:33:03,150
ูˆุชุธุจุท ู…ุนุงู†ุง ุฃู† ุงู„ refinement ุชุญุณูŠู† ุจูŠุตูŠุฑ ุงู„ lower
374
00:33:03,150 --> 00:33:09,830
ู„ู„ุชุญุณูŠู† ูŠูƒุจุฑ ุนุดุงู† ูŠุฑูˆุญ ู„ู„ุงุด... ู„ู†ุณุงุญุฉ ุชุญุช ุงู„ู…ู†ุญู†ู‰
375
00:33:09,830 --> 00:33:15,430
ุจุงู„ุธุจุท ููŠ ุญุงู„ุฉ ุงู„ู…ูˆุฌุจุฉ ุจู‚ู‰ุŒ ูˆุงู„ุชุญุณูŠู† ุงู„ู„ูŠ ูŠุตูŠุฑ ุงู„ U
376
00:33:15,430 --> 00:33:20,390
ูŠุตุบุฑ ูุจู„ุชุฌู† ู…ุน ุจุนุถ ูุจุนู…ู„ู†ุง ุจุนู…ู„ู†ุง ุงู„ู€ ุงู„ู€
377
00:33:20,390 --> 00:33:23,990
integrability ู…ุงุดูŠ ุงู„ุญุงู„ ุณูŠุงู†ุง ุนุงุฏูŠู†ุง ูƒุซูŠุฑ ู‡ุฐุง
378
00:33:23,990 --> 00:33:27,920
ุงู„ูƒู„ุงู…ุŒ ุทูŠุจ ุตู„ู‰ ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…ุŒ ุตู„ู‰
379
00:33:27,920 --> 00:33:32,720
ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…ุŒ ุงู„ุขู† ุนู†ุฏูŠ ุตุงุฑ ู‡ุฐุง ุนู†ุฏูŠ ู…ูˆุฌูˆุฏ
380
00:33:32,720 --> 00:33:38,280
ูˆู‡ุฐุง ุนู†ุฏูŠ ุฅูŠุด ู…ูˆุฌูˆุฏุŸ ุฃู†ุง ุบุฑุถ ู…ูŠู†ุŸ ุบุฑุถ ู‡ูŠู‡ ู„ู‡ุฐู‡ุŒ ุงู‡
381
00:33:38,280 --> 00:33:44,520
ุนู†ุฏูŠ U ุงู„ุขู†ุŒ ุจุฏุฃุŒ ุฃุจุฏุฃ ุฃุฌู‡ุฒ ุฃู† ุฃุตู„ U ุจุฅุจุณู„ูˆู† ูˆุงูุฐุงุฆุช
382
00:33:44,520 --> 00:33:50,860
G ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต ุงู„ู€ P Y ูˆ F ุฒุงุฆุฏ G ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†
383
00:33:50,860 --> 00:33:54,440
ุจูŠูƒูˆู† ุฎู„ุตุช ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ F ุฒุงุฆุฏ G is integrable
384
00:33:54,440 --> 00:34:02,640
ุฅุฐุง ุฎู„ูŠู†ุง ู†ู‚ูˆู„ U ุจูŠ ุฅุจุณู„ูˆู† ูˆ F ุฒุงุฆุฏ G ู…ุงุดูŠ ุดุจุงุจุŸ
385
00:34:02,640 --> 00:34:10,050
ุทูŠุจ ู‡ุฐู‡ ุงู„ุขู† ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ู† ุงู„ู„ูŠ ุฃุซุจุช ู‡ุฐุง
386
00:34:10,050 --> 00:34:12,650
ุฃุซุจุชู†ุง ู„ู…ูŠู† ูŠุง ุฌู…ุงุนุฉุŸ ููŠ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุญุถุฑู†ุงู‡ ูˆู‚ู„ู†ุง
387
00:34:12,650 --> 00:34:16,690
ุงุชุนุจู†ุง ุนู„ูŠู‡ ู‡ุฐุง ู‚ู„ู†ุง ุตุญูŠุญ ู„ูƒู„ Partition ููŠ ุงู„ุฏู†ูŠุง
388
00:34:16,690 --> 00:34:21,570
ู…ู† ุถู…ู†ู‡ ู…ูŠู†ุŸ ุงู„ู€ BY ุงู„ู„ูŠ ุฌุงุชู‡ ุฅุฐู† ู‡ุฐุง ุจูŠุตูŠุฑ ุฃุตุบุฑ ุฃูˆ
389
00:34:21,570 --> 00:34:30,620
ูŠุณุงูˆูŠ U BY ูˆ F ุฒุงุฆุฏ U BY ูˆ G ู…ุงุดูŠ ูŠุง ุฃุจูˆ ุญุณู†ุŸ ู…ู†ูŠุญ
390
00:34:30,620 --> 00:34:34,600
ู‡ูŠูƒ ุจูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐู‡ุŒ ุฒูŠ ุฃู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
391
00:34:34,600 --> 00:34:41,060
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุซุงู†ูŠุฉุŒ ุทูŠุจ ุงู„ุขู† ุงู„... ุงู„ U P Y ุงู„ุขู† ุงู„ P
392
00:34:41,060 --> 00:34:47,060
Y refinement ู„ู…ูŠู†ุŸ ู„ู„ P F Y ูˆ refinement ู„ู…ูŠู† ุจุฑุถู‡
393
00:34:47,060 --> 00:34:52,740
ูŠุง ุฌู…ุงุนุฉุŸ ู„ P G Y ู…ุฏุงู… refinement ุฅุฐู† ุงู„ู„ูŠ ู‡ูˆ
394
00:34:54,270 --> 00:34:59,450
ุงู„ุชุญุณูŠู†... ุงู„ุชุญุณูŠู† ู„ู„ู€ U ุจุตุบุฑุŒ ุฅุฐุง ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ู‡ุฐุง
395
00:34:59,450 --> 00:35:05,270
ุงู„ุชุญุณูŠู† ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ู† ุงู„ู€ U ุจู€ F ูˆุฅุจุณู„ูˆู†
396
00:35:05,270 --> 00:35:11,310
ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุชุญุณูŠู† ู„ู‡ุฐุง ูˆ F ุฒุงุฆุฏ ุจุฑุถู‡ ุงู„ุชุญุณูŠู† ู‡ุฐุง
397
00:35:11,310 --> 00:35:17,250
ู‡ูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ุงู„ู„ูŠ ุงุชุญุณู†ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ U ุจู€ G
398
00:35:17,250 --> 00:35:26,010
ูˆุฅุจุณู„ูˆู† ุฃูˆ G ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ุทูŠุจ ู†ูุณ ุงู„ุฃุดูŠุงุก ุนู†ุฏู†ุง ุงุญู†ุง
399
00:35:26,010 --> 00:35:36,130
ุจู†ุนุฑู ุฃู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ U ุจุฅุจุณู„ูˆู† ูˆ F F ูˆ ุฅุจุณู„ูˆู†
400
00:35:36,130 --> 00:35:39,830
ุทู„ุนูˆุง ุนู„ู‰ ู‡ู†ุง ู‡ูŠูˆุŒ ุฃุตุบุฑ ูŠุณุงูˆูŠ ู‡ุฐู‡ ุฒุงุฆุฏ ุฅุจุณู„ูˆู† ุนู„ู‰
401
00:35:39,830 --> 00:35:43,730
ุงุชู†ูŠู† ูˆู‡ุฐู‡ ู‡ูŠู‡ุง ุฃุตู„ุงู‹ ุจุงู„ุนู…ุฏ ุฃู† ุงุญู†ุง ุนู…ู„ู†ุง ุงู„ุฃุณุฑุน
402
00:35:43,730 --> 00:35:52,370
ุนุดุงู† ู†ุนูˆุถ ุจูŠุตูŠุฑ ู…ู† ู‡ุฐู‡ ูˆู…ู† ู‡ุฐู‡ ุจูŠุตูŠุฑ ุฃุตุบุฑ ู…ู† ุงู„ of
403
00:35:52,370 --> 00:35:59,850
B F ูˆ Epsilon ู…ุน ุงู„ F ุฒุงุฆุฏ Epsilon ุนู„ู‰ 2 ุฒุงุฆุฏ ุจุฏู„
404
00:35:59,850 --> 00:36:08,170
ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู‡ูŠู‡ุง ู…ู†ู‡ุง ู†ู‚ู„ L B G ูˆ Epsilon ูˆ G ุฒุงุฆุฏ
405
00:36:08,170 --> 00:36:12,510
Epsilon ุนู„ู‰ 2 ุฅู† ุดุงุก ุงู„ู„ู‡ ู…ุง ุฎุฑุจุŒ 12 ู„ุฃุŒ ู…ุง ุฎุฑุจ 12 ุงู„ุขู†
406
00:36:12,510 --> 00:36:19,590
ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐูŠ y ุนู„ู‰ ุงุชู†ูŠู† ูˆ y ุนู„ู‰ ุงุชู†ูŠู† ูˆุงุชู†ูŠู†
407
00:36:19,590 --> 00:36:20,810
ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆ
408
00:36:20,810 --> 00:36:21,390
ุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆ
409
00:36:21,390 --> 00:36:24,390
ุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆ
410
00:36:24,390 --> 00:36:24,410
ุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆ
411
00:36:24,410 --> 00:36:25,230
ุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆ
412
00:36:25,230 --> 00:36:33,730
ุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู†
413
00:36:33,730 --> 00:36:44,290
ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงุชู†ูŠู† ูˆุงู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€
414
00:36:44,290 --> 00:36:55,010
refinement ู„ู„ู€ L of B ฮต ูˆ F ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ L ุฃูˆ B ฮต
415
00:36:55,010 --> 00:36:59,910
OG ุณุจุญุงู† ุงู„ู„ู‡ุŒ ูƒู„ ุงู„ุฃู…ูˆุฑ ู…ุชู†ุงุณู‚ุฉ ุนุดุงู† ููŠ ุงู„ุขุฎุฑ ุจุฑุถู‡
416
00:36:59,910 --> 00:37:06,150
ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ููˆู‚ ูˆู‡ุฐุง ุชู†ุงุณู‚ ููŠ ุงู„ุฎู„ู‚
417
00:37:06,150 --> 00:37:10,690
ู…ุง ุจูŠู† ู…ุง ูŠู†ุชุฌู‡ ุงู„ุนู‚ู„ ูˆู…ุง ุชู†ุชุฌู‡ ุงู„ุทุจูŠุนุฉ ุงู„ู„ูŠ ู‡ูˆ
418
00:37:10,690 --> 00:37:16,190
ู‡ุฐุง ุงู„ุขู† ุงู„ู…ู‚ุฏุงุฑ ุงู„ ุจูŠุจุณู„ูˆู†ุŒ ุงู„ ุจูŠุจุณู„ูˆู† ู‡ูŠ ู‡ุฐุง
419
00:37:16,190 --> 00:37:21,890
ุงู„ู…ู‚ุฏุงุฑ ุชุทู„ุน ุนู„ูŠู‡ ู…ู† ู‡ู†ุงุŒ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ ุจูŠ ุฃู
420
00:37:21,890 --> 00:37:26,990
ุฒุงุฆุฏ ุฅูŠุดุŸ ุฌูŠุŒ ูุจูŠุตูŠุฑ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠุŒ ุนูˆุถุช ู…ู† ู‡ู†ุง ูŠุง
421
00:37:26,990 --> 00:37:35,150
ุดุจุงุจ ุงู„ู€ B ูˆ F ุฒุงุฆุฏ G ูŠุนู†ูŠ ุฅุจุณู„ูˆู† ุทุจุนุงู‹ ู„ุฃู† ู‡ุฐุง
422
00:37:35,150 --> 00:37:38,550
ุงู„ูƒู„ุงู… ุตุญูŠุญ ู„ูƒู„ partition ุฒูŠ ู…ุง ู‚ู„ู†ุง ู…ู† ุถู…ู† ุฅู† ุงู„ู€
423
00:37:38,550 --> 00:37:45,880
B ุฅุจุณู„ูˆู† ุฒุงุฆุฏ ุฅูŠุด ุฅุจุณู„ูˆู†ุŸ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู„ูŠ ุจุฏูŠู‡ุง
424
00:37:45,880 --> 00:37:50,540
ุงู„ู€ U ุจูŠุจุณู„ูˆู† F ุฒุงุฆุฏ G ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ L ุจูŠุจุณู„ูˆู† F
425
00:37:50,540 --> 00:37:54,260
ุฒุงุฆุฏ G ุฒุงุฆุฏ Y ูŠุนู†ูŠ ุนุดุงู† ุงู„ู„ูŠ ูˆุตู„ุช ู„ู‡ ุฃุฎุฏุช Y
426
00:37:54,260 --> 00:37:59,320
arbitrary ู„ุฌู‡ุฉ partition ุจูŠุจุณู„ูˆู† ุจุญูŠุซ ุฃู† ุงู„ู€ U
427
00:37:59,320 --> 00:38:06,210
ุจูŠุจุณู„ูˆู† F ุฒุงุฆุฏ G ู†ุงู‚ุต ุงู„ู‚ู„ุจูŠ Y F ุฒุงุฆุฏ G ุฃุตุบุฑ ู…ู† Y
428
00:38:06,210 --> 00:38:10,950
ูˆู‡ุฐุง ูŠุนู†ูŠ ุฃู†ู‡ ุงุญู†ุง ุญู‚ู‚ู†ุง ุงู„ู€ Integrable criterion
429
00:38:10,950 --> 00:38:18,070
ุจู…ุนู†ู‰ ุฃู†ู‡ ุตุงุฑุช ุงู„ู€ F ุฒุงุฆุฏ G is integrable ุฅุฐู† ุงู„ุขู†
430
00:38:18,070 --> 00:38:26,510
ุฃุซุจุชู†ุง ุฃู† ุงู„ู€ F ุฒุงุฆุฏ G is integrable ู†ูŠุฌูŠ ุงู„ุขู†
431
00:38:26,510 --> 00:38:31,450
ู†ุญุงูˆู„ ู†ุฎู„ูŠ ุจุณ ู‡ุฏูˆู„ ุงู„ู„ูŠ ู‡ุณุชุฎุฏู…ู‡ู† ุจุนุฏ ุดูˆูŠุฉ ู‡ู†ุฎู„ูŠู‡
432
00:38:31,450 --> 00:38:35,610
ุงู„ู…ูˆุฌูˆุฏุงุช ูˆุฏู‡ ูŠุนู†ูŠ ู…ุณุญู†ุงู‡ุง ู†ุถุทุฑู†ุง ู…ุณุญู†ุงู‡ุง ู†ุฑุฌุน
433
00:38:35,610 --> 00:38:39,770
ู„ู„ุชู„ุฎูŠุต ุฑูƒุฒูˆุง ู…ุนุงูŠุง ุฅูŠุด ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ุฅูŠุด ุงู„ู„ูŠ ุจุญูƒูŠู‡
434
00:38:39,770 --> 00:38:41,150
ุนู†ุฏูŠ
435
00:38:47,360 --> 00:38:49,720
ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ integration ู„ู„ F ุฒูŠ ุงู„ G ูŠุง
436
00:38:49,720 --> 00:38:52,460
ุดุจุงุจ ุณูˆุงุก ุงู„ integration ู„ู„ F ุฒูŠ ุงู„ integration ู„ู„
437
00:38:52,460 --> 00:38:54,280
G ูŠุนู†ูŠ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุงุญู†ุง ุฃุซุจุชู†ุง ุฃู† F ุฒูŠ ุงู„ G
438
00:38:54,280 --> 00:38:56,820
integrable ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ integration ู„ู„ F ุฒูŠ
439
00:38:56,820 --> 00:39:00,280
ุงู„ G ุณูˆุงุก ุงู„ integration ู„ู„ F ุฒูŠ ุงู„ integration ู„ู„
440
00:39:00,280 --> 00:39:06,320
G ุดูˆููˆุง ุนู„ูŠู‡ุง ู†ูŠุฌูŠ ุงู„ุขู† ุงู„ integration ู…ู† A ู„ B ู„ู„
441
00:39:06,320 --> 00:39:11,600
F ุฒูŠ ุงู„ G ู…ุงู‡ูŠ ุงู„ุญุงู„ุฉ ุงู„ integration ู„ู„ F ุฒูŠ ุงู„ G
442
00:39:12,860 --> 00:39:16,920
ุจุชุณุงูˆูŠ ุงู„ู€ U of F ุฒุงุฆุฏ G ุตุญ ูˆู„ุง ู„ุฃุŸ ุขู‡ ู„ุฃู† ุงู„ู€
443
00:39:16,920 --> 00:39:20,760
Sort of ุฒุงุฆุฏ G is integrable ุฅุฐุง ุจุชุณุงูˆูŠ ุงู„ู€ U of F
444
00:39:20,760 --> 00:39:25,060
ุฒุงุฆุฏ G ุงู„ู€ U of F ุฒุงุฆุฏ G ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุฅูŠุด ูŠุง ุฌู…ุงุนุฉุŸ
445
00:39:25,060 --> 00:39:30,620
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ infimum ู„ูƒู„ ุงู„ู€ U of ุฒุงุฆุฏ G ู…ุน
446
00:39:30,620 --> 00:39:35,570
ุงู„partition B ุฅุฐู† ุฃูŠ ูˆุงุญุฏุฉ ู…ู† ุงู„ู„ูŠ ุจู…ูˆุฌูˆุฏ ุนู„ูŠู‡ู… ุงู„ู€
447
00:39:35,570 --> 00:39:40,490
infimum ู‡ุชูƒูˆู† ู‡ุฐุง ุฃุตุบุฑ ู…ู†ู‡ุงุŒ ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ู‡ุฐู‡ ุฃุตุบุฑ
448
00:39:40,490 --> 00:39:47,990
ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ U ุจูŠุจุณู„ูˆู† ุงู„ู€ F ุฒุงุฆุฏ DุŒ ุขู‡ ุฃูƒูŠุฏุŒ
449
00:39:47,990 --> 00:39:52,790
ุนุงุฑููŠู† ู„ูŠุดุŸ ู„ุฃู† ู‡ุฐู‡ ุงู„ู€ infimum ู„ูƒู„ ุงู„ู€ U ุฒู„ุฉ ุฒูŠ
450
00:39:52,790 --> 00:39:57,850
ู‡ูŠูƒ ุญูŠุซ ุงู„ู€ PY ุนุจุงุฑุฉ ุนู† ุงู„ู€ partition ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ
451
00:39:57,850 --> 00:40:02,410
P of I ู‡ุฐู‡ ุงู„ู€ U ุนุจุงุฑุฉ ุนู† ุงู„ู€ infimum ุฅู„ู‡ู… ุฅุฐุง
452
00:40:02,410 --> 00:40:05,890
ุงู„ูˆุงุญุฏ ู…ู†ู‡ู… ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ู€ infimum
453
00:40:05,890 --> 00:40:10,790
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฑุงุจุน .. ุงู„ grades ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฑุงุจุน ุทูŠุจ ู‡ุฐุง
454
00:40:10,790 --> 00:40:17,650
U PY F ุฒุงุฆุฏ G U PY F ุฒุงุฆุฏ G ู„ุฌู†ุงู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
455
00:40:18,450 --> 00:40:23,430
ุงู„ู„ูŠ ู‡ูˆ ุงู„ ุจูŠ ุฃุจุณู„ูˆู† ูˆ F ูˆ ุจูŠ ุฃุจุณู„ูˆู† ุฌูŠ ุฒุงุฆุฏ
456
00:40:23,430 --> 00:40:26,010
ุฅุจุณู„ูˆู† ุดุงูŠููŠู† ู‡ูˆ ู…ู† ู‡ู†ุง ูŠุง ุดุจุงุจ ู‡ุงูŠ ุงู„ู„ูŠ ุจุฏุฃ
457
00:40:26,010 --> 00:40:30,390
ุงุณุชุฎุฏู…ู‡ ุงู„ุขู† ู‡ุงูŠ ุงู„ู„ูŠ ุจุฏุฃ ุชู„ุฒู…ู†ูŠ ู‡ู†ุง ู‡ุงูŠ ู‡ุฐู‡ ู‡ุงูŠ
458
00:40:30,390 --> 00:40:37,570
ู‡ุฐู‡ ุฃุซุจุชู†ุงู‡ุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐู‡ ุฎู„ูŠู†ูŠ ุงู„ุขู† ุฃุณุชุฎุฏู…ู‡ุง
459
00:40:37,570 --> 00:40:41,570
ููˆู‚ ูุฏู‡ ู†ู†ุฌู„ู‡ุง ููˆู‚ ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ุจุงู„ุฃุฒุฑู‚
460
00:40:41,570 --> 00:40:46,510
ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุฌูŠุช ุจุชุนุฑููŠ ุฃุดูŠ ุจุชุณูˆูŠ ุงู„ ุจูŠ
461
00:40:46,510 --> 00:40:47,650
ุฃุจุณู„ูˆู† ูˆ F
462
00:40:55,470 --> 00:41:02,070
ู…ุนุงูŠุง ุดุจุงุจ ุทูŠุจ ู…ุง ู‡ูˆ ุงู„ F is integrable ุฅุฐุง ุงู„
463
00:41:02,070 --> 00:41:10,870
integration ู„ู„ F ุจูŠุณุงูˆูŠ L ูˆ F ุฃูƒูŠุฏ ุจูŠุณุงูˆูŠ U ูˆ F ู„ุฃู† ู‡ุฐู‡
464
00:41:10,870 --> 00:41:15,650
ุงู„ู€ L of F ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ Supremum ู„ู‡ุฐู‡ ูƒู„ู‡ุง ุฅุฐู†
465
00:41:15,650 --> 00:41:23,090
ุฃูƒูŠุฏ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ L of F ุฒุงุฆุฏ ูˆ L of G
466
00:41:23,090 --> 00:41:26,350
ุจุฑุถู‡ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐู‡ ู„ุฃู† ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„ู€
467
00:41:26,350 --> 00:41:29,610
Supremum ู„ูƒู„ ุงู„ุฃุดูƒุงู„ ุงู„ู„ูŠ ุฒูŠ ู‡ุฐู‡ ูˆ L of F ู‡ูŠ ุนุจุงุฑุฉ
468
00:41:29,610 --> 00:41:34,230
ุนู† ุงู„ู€ Supremum ู„ูƒู„ ุงู„ู€ B's ูˆ F ู„ูƒู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„
469
00:41:34,230 --> 00:41:36,190
partitions ุงู„ู„ูŠ ููŠ set of all partitions
470
00:41:36,190 --> 00:41:42,590
partitions B of I ุฒุงุฆุฏ ู…ูŠู†ุŸ ุฒุงุฆุฏ ุฃุจุณู„ูˆู† ูˆู„ุฃู† F is
471
00:41:42,590 --> 00:41:45,490
integrable ุฅุฐุง ู‡ุฐุง ุจูŠุณุงูˆูŠ ุจุงู„ุธุจุท ุงู„ integration ู…ู†
472
00:41:45,490 --> 00:41:49,330
A ู„ B ู„ู„ F ุฒุงุฆุฏ ุงู„ integration ู„ุฃู† G is integrable
473
00:41:49,330 --> 00:41:55,810
ู…ุงุนุทูŠู†ุงูŠู‡ุง ุฃุตู„ุงู‹ G ู…ู† A ู„ B ุฒุงุฆุฏ H ุฒุงุฆุฏ ุฃุจุณู„ูˆู† ุตุงุฑ
474
00:41:55,810 --> 00:42:00,250
ุนู†ุฏูŠ ุงู„ุขู† ุงู„ integration ุงู„ู„ูŠ ุญุตู„ุชู‡ ูŠุง ุดุจุงุจ ุงู„ู„ูŠ
475
00:42:00,250 --> 00:42:06,510
ุญุตู„ุชู‡ ู…ุงู„ูŠ ุงู„ู„ูŠ ุญุตู„ุชู‡ ุฃู†ู‡ ุตุงุฑ ุนู†ุฏูŠ ุงู„ integration
476
00:42:06,510 --> 00:42:14,970
ู„ู„ F ุฒุงุฆุฏ G ู…ู† a ู„ b ุฃุดู…ุงู„ู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„
477
00:42:14,970 --> 00:42:18,250
integration ู„ู„ F ู…ู† a ู„ ุนู†ุฏ b ุฒุงุฆุฏ ุงู„ integration
478
00:42:18,250 --> 00:42:23,710
ู„ู„ g ู…ู† a ู„ b ุฒุงุฆุฏ ุงุจุณู„ูˆู† ู‡ุฐุง ู„ูƒู„ ุงุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง
479
00:42:23,710 --> 00:42:28,920
ู„ูƒู„ ุงุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง ู‡ุฐุง ุตุญูŠุญ ุฅุฐุง ุงู„ู…ุฏุงู… ุตุญูŠุญ ู„ูƒู„
480
00:42:28,920 --> 00:42:33,380
ุฅุจุณู„ูˆู† ุฅุฐุง ุฃูƒูŠุฏ ู‡ูŠุทู„ุน ู„ู„ integration ู„ู„ F ุฒุงุฆุฏ G
481
00:42:33,380 --> 00:42:37,200
ู…ู† A ู„ B ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ integration ู„ู„ F ุฒุงุฆุฏ ุงู„
482
00:42:37,200 --> 00:42:41,580
integration ู„ู„ G ู…ู† A ู„ B ู…ู† A ู„ B ู„ุฃู† ุงู„ู„ูŠ ููˆู‚
483
00:42:41,580 --> 00:42:46,880
ุตุญูŠุญ ู„ู…ูŠู†ุŸ ู„ุฃูŠ ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง ุงู„ู„ูŠ ุจุชุณุชุดูƒู„ ุนู„ูŠู‡
484
00:42:46,880 --> 00:42:51,060
ุงู„ุงุจ ุฃู†ู‡ ูŠูู‡ู…ู‡ุง ุนู† ุทุฑูŠู‚ ุฃู†ู‡ since ุฅุจุณู„ูˆู† was
485
00:42:51,060 --> 00:42:55,540
arbitrary then ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ูŠุฃุฎุฐ ุงู„ุญุงู„ุฉ
486
00:42:55,540 --> 00:42:59,540
ุงู„ุฎุงุตุฉ ู„ู„ุฅุจุณู„ูˆู†ุงุช ู„ุฃู† ู„ูƒู„ ุฅุจุณู„ูˆู† ู‡ุฐุง ุตุญูŠุญ ู…ู† ุถู…ู†ู‡ุง
487
00:42:59,540 --> 00:43:04,280
ุงู„ุฅุจุณู„ูˆู†ุงุช ุงู„ู„ูŠ ุจูŠุณุงูˆูŠ 1 ุนู„ู‰ N ู„ูƒู„ N ุจูŠุธู„ ู‡ุฐุง ุงู„
488
00:43:04,280 --> 00:43:07,940
integration ู„ู„ F ุฒุงุฆุฏ G ุฃุตุบุฑ ุฅุฐุง ูƒุงู† ุงู„
489
00:43:07,940 --> 00:43:11,380
integration ู„ู„ F ุฒุงุฆุฏ ุงู„ integration ู„ู„ G ุฒุงุฆุฏ 1
490
00:43:11,380 --> 00:43:14,720
ุนู„ู‰ N ู„ูƒู„ N ููŠ ุงู„ุฏู†ูŠุง ู„ุฃู† ู‡ุฐุง ุตุญูŠุญ ุนู„ู‰ ูƒู„ ุฅุจุณู„ูˆู†
491
00:43:14,720 --> 00:43:19,600
ู…ู† ุถู…ู†ู‡ุง ุงู„ 1 ุนู„ู‰ N ู…ุงุช ุงู„ N every N ูŠุนู†ูŠ ุงู„ุขู† ู…ุฏุงู…
492
00:43:19,600 --> 00:43:23,640
ู‡ุฐู‡ ุตุญูŠุญุฉ ุจู†ุงุก ุนู„ู‰ ู‡ุฐู‡ ุตุญูŠุญุฉ ุฎุฏ ุงู„ limit ู„ู„ุฌู‡ุชูŠู†
493
00:43:23,640 --> 00:43:28,240
as n goes to infinity ุงู„ limit ู„ู„ุฌู‡ุชูŠู† as n goes
494
00:43:28,240 --> 00:43:31,280
to infinity ู‡ุฐุง independent of n ูˆู‡ุฐุง independent
495
00:43:31,280 --> 00:43:34,920
of n ูˆู‡ุฐุง as n goes to infinity ุจุชุฑูˆุญ ู„ู„ุตูุฑ ุจูŠุตูŠุฑ
496
00:43:34,920 --> 00:43:39,220
ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ integration ู„ู„ F ุฒุงุฆุฏ G ู‡ูŠูƒูˆู† ุฃุตุบุฑ
497
00:43:39,220 --> 00:43:42,420
ุงู„ุณู‡ูˆู„ุฉ integration ู„ู„ F ุฒุงุฆุฏ integration ู„ู…ู†ุŸ ู„ู„
498
00:43:42,420 --> 00:43:46,740
G ู‡ุฐุง ูู‡ู… ุขุฎุฑ ุงู„ู„ูŠ ุจุดูˆูŠุฉ ุจุชุบู„ุจ ู…ู† ู‚ุตุฉ since Y ู‡ูˆ
499
00:43:46,740 --> 00:43:52,090
ุงู„ูˆุงุถุน ุงู„ุงุฑุจุชุฑุฏู† ูƒุฐุง ูƒุฏู‡ ุทูŠุจ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู†
500
00:43:52,090 --> 00:43:57,250
ุฅุซุจุงุชุฉ ุงู„ integration ู„ F ุฒูŠ ุงู„ G ุธู‡ุฑ ุณูˆุงุก ุงู„
501
00:43:57,250 --> 00:44:03,230
integration ู„ F ุฒูŠ ุงู„ integration ู„ G ุงู„ู„ูŠ ู‡ุงู† ุจุฏู‡
502
00:44:03,230 --> 00:44:05,970
ูŠุฃุซุจุช ุงู„ู…ุณุงูˆุงุฉ ุจุฏู‡ ูŠุซุจุช ุงู„ุนูƒุณ ุจุฏู‡ ูŠุงุฎุฏ ุงู„ู€
503
00:44:05,970 --> 00:44:09,390
integration ู„ู„ู€ F ุฒูŠ ุงู„ู€ integration ู„ู„ู€ G ูˆ ุฃุตู„
504
00:44:09,390 --> 00:44:14,350
ู„ู„ูŠ ุจุฏูŠู‡ ุดูˆู ูƒูŠู ุงุชูุฌู†ุง ุงู„ุขู† ุฅูŠุด ุฃุซุจุชู†ุง ูŠุง ุดุจุงุจ
505
00:44:14,350 --> 00:44:19,210
ุฎู„ูŠู†ูŠ ุฃุณุฌู„ู‡ุง ู‡ุงู† ุฃุฎุฒู†ู‡ุง ุงู„ integration ู„ู„ู€ F ุฒูŠ
506
00:44:19,210 --> 00:44:24,490
ุงู„ู€ G ู…ู† A ู„ B ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ integration ู„ู„ู€ F ู…ู† A
507
00:44:24,490 --> 00:44:29,570
ู„ B ุฒูŠ ุงู„ integration ู„ู„ู€ G ู…ู† A ู„ B ูˆู‡ุฐุง ุฃุซุจุชู†ุงู‡
508
00:44:29,570 --> 00:44:32,970
ุจุงู„ุฏูุช ุจุช ุงู„ู„ูŠ ู‡ูˆ conversely ุจุฑุถู‡ ุงุนุชู…ุงุฏุง ุนู„ู‰
509
00:44:32,970 --> 00:44:44,310
ุงู„ุญุฏูŠุซ ุงู„ุฃูˆู„ุงู†ูŠ ุฎู„ูŠู†ูŠ
510
00:44:44,310 --> 00:44:48,850
ุงูƒุชุจ ุจุงู„ุฃุณูˆุฏ ู‡ู†ุง ุนุดุงู† ุฃุชู…ูŠุฒ ุจูŠู† ุงู„ุฌู‡ุชูŠู† ุนู†ุฏ ุงู„ุขู†
511
00:44:48,850 --> 00:44:53,330
ุงู„ integration ู„ู„ F ู…ู† A ู„ B ุฒุงุฆุฏ ุงู„ integration ู„ู„
512
00:44:53,330 --> 00:45:02,420
G ู…ู† A ู„ B ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
513
00:45:02,420 --> 00:45:07,360
ุงู„ู„ูŠ ู‡ูˆ ู†ูุณ ุงู„ู…ู†ุทู‚ ุงู„ุฃูˆู„ุงู†ูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู†
514
00:45:07,360 --> 00:45:13,760
ุงู„ู„ูŠ ุจุงู„ุธุจุท ุจูŠุณุงูˆูŠ ุงู„ U of F ุฒุงุฆุฏ ุงู„ U of G ูˆ ุงู„ U
515
00:45:13,760 --> 00:45:17,380
of F ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„ infimum ุนู„ู‰ ูƒู„ ุงู„ U's ุงู„ู„ูŠ ู‡ูŠ
516
00:45:17,380 --> 00:45:20,000
ุงู„ lower ุงู„ upper sums ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ U
517
00:45:20,000 --> 00:45:27,620
ู„ู„ ุจูŠ ุฅุจุณู„ูˆู† ูˆ F ุฒุงุฆุฏ ุงู„ U ู„ู„ ุจูŠ ุฅุจุณู„ูˆู† ูˆ ุฌูŠ ู…ุธุจูˆุท
518
00:45:27,620 --> 00:45:31,540
ูˆู„ุง ู„ุฃุŸ ุฃูƒูŠุฏ ู…ุธุจูˆุท ู„ุฃู† ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ุงู… ููŠ ู…ู…ู„ูƒุฉ
519
00:45:31,540 --> 00:45:35,060
ูƒู„ ู‡ุฐูˆู„ ูˆู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„ supreme ู…ู…ู„ูƒุฉ ู„ูƒู„ ู‡ุฐูˆู„
520
00:45:35,060 --> 00:45:46,120
ู…ุงุดูŠ ุงู„ุขู† ุนู†ุฏูŠ ู‡ุฐุง ู†ูุณู‡ ุงู„ U ุจูŠ ุฅุจุณู„ู† ูˆ ุฃู ูˆ ุงู„ U
521
00:45:46,120 --> 00:45:51,880
ุจูŠ ุฃู„ ุฅุจุณู„ู† ูˆ ุฃู ุฃุซุจุชู†ุงู‡ุง ู†ุชุทู„ุน ุนู„ูŠู‡ุง ู†ุณุชุฎุฏู… ุญุงุฌุฉ
522
00:45:51,880 --> 00:45:56,220
ู‡ู†ุง ูŠูˆ ุจูŠ ุฅุจุณู„ ูˆ ุฃู ูˆ ูŠูˆ ุจูŠ ุฅุจุณู„ ูˆ ุฃู ุฃุตุบุฑ ูŠุณุงูˆูŠ
523
00:45:56,220 --> 00:46:05,420
ู…ูŠู†ุŸ ู‡ุงูŠู‡ุง ุงู„ ุจูŠ ุฅุจุณู„ูˆู† ูˆ ุฃู ุฒุงุฆุฏ ุฌูŠ ุตุญูŠุญุŸ ูˆุงุถุญ
524
00:46:05,420 --> 00:46:11,180
ุนุดุงู† ุจุงุจุง ูŠุนู†ูŠ ุจุฏุช ุฃุณุชุฎุฏู… ุงู„ุขู† ู‡ุงูŠ ู‡ุฐูŠ ูŠูˆ ุจูŠ
525
00:46:11,180 --> 00:46:16,550
ุฅุจุณู„ูˆู† ุดุงูŠููŠู†ู‡ุงุŸ ู‡ูŠ ุงู„ู„ูŠ ุจุญูƒูŠ ุจุดูˆูŠุด ุนุดุงู† ุชุชุฑูƒุฒูˆุง
526
00:46:16,550 --> 00:46:19,890
ู…ุนุงูŠุง ุงู„ู„ูŠ ุจุงู„ุฃุฒุฑู‚ ู‡ุฐุง ุงู„ู„ูŠ ุจุงู„ุฃุตูุฑ ุขุณู ู…ุนู‡ุง ุฏูŠ
527
00:46:19,890 --> 00:46:23,970
ู‡ุฐุง ูƒู„ู‡ ุฃุซุจุชู†ุงู‡ ุฅุฐุง ู…ูŠู† ุฏู‡ุŸ ุงุณุชุฎุฏู…ู‡ ุฅุฐุง ู‡ุฐุง ุฃุตูุฑ
528
00:46:23,970 --> 00:46:31,650
ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ L ุจูŠ ุฃุจุณู„ูˆู† ูˆ F ุฒุงุฆุฏ G ุฒุงุฆุฏ 100
529
00:46:31,650 --> 00:46:38,270
ุฒุงุฆุฏ ุฃุจุณู„ูˆู† ู…ุนุงูŠุง ูŠุง ุดุจุงุจ ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ูˆุถุญุช ุฅูŠุด
530
00:46:38,270 --> 00:46:44,690
ุจุฏูŠ ุฃุณูˆูŠ ู‡ุฐุง ู†ูุณู‡ ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ L of F ุฒูŠ
531
00:46:44,690 --> 00:46:48,430
ุงู„ู€ G ุฒูŠ ุงู„ู€ Epsilon ู„ุฃู† L of F ู…ูŠู† ุฒูŠ ุงู„ู€ G
532
00:46:48,430 --> 00:46:51,070
ูŠู‚ูˆู„ูˆู†ู‡ุง ูƒุชูŠุฑ ุฅูŠุด ู‡ูŠ ุฏูŠุŸ ุนุจุงุฑุฉ ุนู† ุงู„ู€ Supremum ู„ูƒู„
533
00:46:51,070 --> 00:46:56,860
ุฏูˆู„ุฉ ุขู‡ ุนู„ู‰ ูƒู„ ุงู„ partitions ุฅุฐุง ุฃูƒูŠุฏ ุงู„ L of F ู‡ูˆ
534
00:46:56,860 --> 00:47:00,580
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุฑ ุงู„ L of F ุฒุงุฆุฏ G ุนุจุงุฑุฉ ุนู†
535
00:47:00,580 --> 00:47:05,680
ุงู„ sobremom ู„ูƒู„ ุงู„ู„ูŠ ู‡ูŠ lower sums ุงู„ู„ูŠ ุฅู†ุตุงุฑ ุนู†ุฏูŠ
536
00:47:05,680 --> 00:47:09,940
ูˆ ู‡ุฐุง ู„ุฃู† F ุฒุงุฆุฏ G ุฃุซุจุชู†ุงู‡ุง inintegrable ุจูŠุณุงูˆูŠ ุงู„
537
00:47:09,940 --> 00:47:15,860
integration ู…ู† A ู„ B ู„ู„ F ุฒุงุฆุฏ G ู„ูƒู„ ุฃุดู…ุงู„ู‡ ุฒุงุฆุฏ Y
538
00:47:16,670 --> 00:47:20,990
ุฅุฐุง ุญุตู„ู†ุง ุงู„ู€ F ุฒุงุฆุฏ ุงู„ู€ integration ู„ู„ู€ A ู„ู„ู€ F
539
00:47:20,990 --> 00:47:23,470
ู…ู† A ุฅู„ู‰ B ุฒุงุฆุฏ ุงู„ู€ integration ู„ู„ู€ G ู…ู† A ุฅู„ู‰ B
540
00:47:23,470 --> 00:47:26,930
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ integration ู…ู† A ุฅู„ู‰ B ู„ู„ู€ F ุฒุงุฆุฏ
541
00:47:26,930 --> 00:47:32,510
G ุฒุงุฆุฏ ู…ูŠู†ุŸ ุฒุงุฆุฏ ุฅุจุณู†ูˆู† ู…ุธุจูˆุท ูŠุง ุดุจุงุจ ุงู„ุขู† ู†ูุณ
542
00:47:32,510 --> 00:47:38,580
ุงู„ู‚ุตุฉ ุงู„ุฃูˆู„ู‰ ุจู…ุง ุฃู† ุฅุจุณู„ูˆู† ูƒุงู† ู…ุฎุตุตู‹ุง ูˆุจู†ูุณ ุงู„ู…ู†ุทู‚
543
00:47:38,580 --> 00:47:43,320
ุงู„ู„ูŠ ุญูƒูŠุชู‡ ู‚ุจู„ ุจุดูˆูŠุฉ ุฅุฐุง ุงู„ integration ู„ู„ F ู…ู† A
544
00:47:43,320 --> 00:47:47,800
ู„ุนู†ุฏ B ุฒุงุฆุฏ ุงู„ integration ู„ู„ G ู…ู† A ู„ุนู†ุฏ B ู‡ูŠูƒูˆู†
545
00:47:47,800 --> 00:47:53,720
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ integration ู„ู„ F ุฒุงุฆุฏ G ู‡ุฐู‡ ุงู„ุขู†
546
00:47:53,720 --> 00:47:58,520
ุงู„ู„ูŠ ุจุงู„ุฃุตูุฑ ู…ุน ู‡ุฐู‡ ุงู„ู„ูŠ ุจุงู„ุฃุญู…ุฑ ูŠุนุทูŠู†ุง ุฃู† ุงู„
547
00:47:58,520 --> 00:48:06,520
integration ู„ู„ู€ F ุฒุงุฆุฏ G ู…ู† A ู„ุนู†ุฏ B ูŠุณุงูˆูŠ ุจุงู„ุธุจุท
548
00:48:06,520 --> 00:48:10,340
integration ู…ู† A ู„B ู„ู„F ุฒุงุฆุฏ integration ู…ู† A ู„B
549
00:48:10,340 --> 00:48:13,360
ู„ู„G ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ
550
00:48:15,210 --> 00:48:20,010
ูˆ ุจูƒูˆู† ุงุญู†ุง ู‡ูŠ ูƒุฃุซุจุชู†ุง ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู†ุธุฑูŠุฉ
551
00:48:20,010 --> 00:48:23,770
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ integration ู„ู„ F ุฒูŠ ุงู„ G
552
00:48:23,770 --> 00:48:28,990
ุจุณุจุจ ุงู„ integration ู„ู„ F ุฒุงุฆุฏ ุงู„ integration ู„ู…ูŠู†ุŸ
553
00:48:28,990 --> 00:48:34,370
ู„ู„ G ููŠูƒู… ุชุตู„ูˆุง ุนู„ูŠู†ุง ุจูŠู‡ุŸ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ูˆุตู„ู‰
554
00:48:34,370 --> 00:48:38,310
ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู… ูŠุง ุญู…ุฏ ุทูŠุจ ูŠุง ุดุจุงุจ ุดูˆููˆุง ุงู„ู†ุธุฑูŠุฉ
555
00:48:38,310 --> 00:48:44,610
ุงู„ู„ูŠ ุนู†ุฏูŠ ูƒู…ุง ูŠู„ูŠ ู†ุธุฑูŠุชู†ุง ุจู‚ูˆู„ ู„ูˆ ูƒุงู†ุช F ู…ู† ุงู„ู€
556
00:48:44,610 --> 00:48:48,270
closed bounded interval A ูˆB ู„ุนู†ุฏ ุงู„ู€ R ุจู€
557
00:48:48,270 --> 00:48:52,310
Integrable function On I ุงู„ู„ูŠ ู‡ูŠ ุฏุงู„ุฉ ู‚ุงุจู„ุฉ
558
00:48:52,310 --> 00:48:57,210
ู„ู„ุชูƒุงู…ู„ ุจุงู„ู†ุณุจุฉ ู„ู„ุฑู…ุงู† ูˆูƒุงู†ุช ุงู„ุฏุงู„ุฉ F of X ุฃูƒุจุฑ ุฃูˆ
559
00:48:57,210 --> 00:49:01,530
ูŠุณุงูˆูŠ ุตูุฑ ูŠุนู†ูŠ ุงู„ู…ู†ุญู†ู‰ ูˆูŠู†ุŸ ููˆู‚ ุงู„ู„ูŠ ู‡ูˆ ู…ุญูˆุฑ
560
00:49:01,530 --> 00:49:06,090
ุงู„ุณูŠู†ุงุช ุฅุฐุง ุญูŠูƒูˆู† ุงู„ integration ู„ู„ู€ F ู†ูุณู‡ ุจุฑุถู‡
561
00:49:06,090 --> 00:49:12,370
ุฃุดู…ุงู„ู‡ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ ูŠุนู†ูŠ ุงู„ุขู† ุจู‚ูˆู„ูŠ F of X
562
00:49:13,950 --> 00:49:17,850
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ on I ุงู„ู„ูŠ ุจูŠุนุทูŠู†ูŠ ุงู„ integration
563
00:49:17,850 --> 00:49:23,490
ุนู„ู‰ ุงู„ I ู…ู† A ู„ B ู„ู„ F ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฃูŠุด ุจุฑุถู‡ ุตูุฑ
564
00:49:23,490 --> 00:49:29,250
ูˆ proof ุณู‡ู„ ุงู„ุฃู…ุฑ ูˆ ู…ุง ุฃุนุทูŠูƒ F integrable ูƒู…ุงู†
565
00:49:29,250 --> 00:49:34,990
ู…ุง ุฃุนุทูŠูƒ F ุฃุดู…ุงู„ู‡ is integrable ู…ุนุงูŠุง ู…ุฏุงู… ุงู„ F is
566
00:49:34,990 --> 00:49:40,690
integrable ุฅุฐุง ุฃูƒูŠุฏ ุงู„ integrationู„ู„ู€ F ู…ู† ุนู†ุฏ A ู„
567
00:49:40,690 --> 00:49:45,750
B ุจุณุงูˆูŠ L of F ู…ุซู„ุง ุฃูˆ ุจุณุงูˆูŠ U of F ุฒูŠ ู…ุง ุจุฏูƒ
568
00:49:45,750 --> 00:49:53,410
ุจุณุงูˆูŠ L of F ุงู„ู€ L of F ุฃูƒูŠุฏ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู„ุฅู†ู‡ ุงู„ู€ L of
569
00:49:53,410 --> 00:49:57,270
F ุนุจุงุฑุฉ ุนู† ุฅูŠุด ูŠุง ุดุจุงุจ ุนุจุงุฑุฉ ุนู† ุทุจุนุง ุงู„ู€ L of F ู‡ู†ุง
570
00:49:57,270 --> 00:50:02,670
ุจุชุธุจุท ู…ุนู†ุง ุงู„ู€ L of F ุนุจุงุฑุฉ ุนู† ุฅูŠุด ุนุจุงุฑุฉ ุนู† ุงู„ู€
571
00:50:02,670 --> 00:50:09,210
Supremumู„ู…ูŠู†ุŸ ู„ูƒู„ ุงู„ partitions ุฅุฐุง ุฃูƒูŠุฏ ู‡ูŠ ุฃูƒุจุฑ
572
00:50:09,210 --> 00:50:18,650
ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ L of P ุฃูˆ P ุฃูˆ F ุฅูŠุด ุงู„ู€ L of P ุฃูˆ FุŸ
573
00:50:18,650 --> 00:50:23,790
some partition ุฃู†ุง ุจุฏูŠู‡ุง Partition ู…ูŠู†ุŸ ู„ู„ูุชุฑุฉ A ูˆ B
574
00:50:23,790 --> 00:50:28,590
ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ู…ูŠู†ุŸ I ุงู„ู„ูŠ ู‡ูŠ A ูˆ B ู‡ุฐุง ูุชุฑุฉ ู†ู‡ุงุฑ
575
00:50:28,590 --> 00:50:33,090
ุงู„ุขู† ุฃู†ุง ุจู‚ูˆู„ ุงู„ู€ L of F ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ supremum ุนู„ู‰ ูƒู„
576
00:50:33,090 --> 00:50:37,650
ุงู„ partitions ุฏูˆู„ุฉ ู„ู„ู€ L ุนู„ู‰ ูƒู„ ุงู„ partitions ุฏูˆู„ุฉ
577
00:50:37,650 --> 00:50:41,350
ุฃูƒูŠุฏ ู‡ูŠูƒูˆู† ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุทูŠุจ ู‡ุฐุง ุฅูŠุด ู…ุนู†ู‰ ู‡ุฐุง
578
00:50:41,350 --> 00:50:44,590
ุงุฎุชุฑุชู‡ ู‡ู„ ุฌูŠุช ุจุชุดูˆููˆุง ุฅูŠุด ู…ุนู†ู‰ ุงุฎุชุฑุชู‡ุŸ ุฅูŠุด ุงู„
579
00:50:44,590 --> 00:50:48,290
partition ู‡ุฐุง B A ูˆ BุŸ ู‡ุฐุง ุงู„ partition ู‡ูˆ B A ูˆ B
580
00:50:48,290 --> 00:50:52,310
ู‡ูˆ ุจุณ ุงู„ partition ุงู„ู„ูŠ ููŠ ู†ู‚ุทุชูŠู† ุฃูˆู„ ู†ู‚ุทุฉ ูˆ ุขุฎุฑ
581
00:50:52,310 --> 00:50:55,670
ู†ู‚ุทุฉ ูŠุนู†ูŠ ู…ุง .. ู…ุง ุฌุฒุฃุช ุงู„ู€ interval ุฅู„ุง ู„ุญุงู„ู‡ุง ู‡ูŠ
582
00:50:55,670 --> 00:50:58,510
.. ู‡ูŠ ุงู„ุชุฌุฒุฆุฉ ู‡ูŠ ุงู„ู€ interval a ูˆ b ุจุตุญูŠุญ ุงู„ู„ูŠ ู‡ูˆ
583
00:50:58,510 --> 00:51:02,930
ุทุจุนุง I partition ู„ู„ู€ a ูˆ ุงู„ู€ b ุทูŠุจ ุฅูŠุด ุชุนุฑูŠูู‡ ู‡ุฐุง ..
584
00:51:02,930 --> 00:51:07,550
ู‡ุฐุง .. ู‡ุฐุง .. ุฅูŠุด ุชุนุฑูŠูู‡ ู‡ุฐุง ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
585
00:51:07,550 --> 00:51:11,910
summation ู…ุด ู‡ู†ุญุชุงุฌ ุงู„ู€ summation ู„ุฃู†ู‡ ุจุณ ุฅูŠุด ู…ุงู„ู‡ุง
586
00:51:11,910 --> 00:51:15,750
ู…ุง ููŠุด ุชุบูŠุฑ ุตูุฑ ุงู„ู€ interval ูˆุงุญุฏุฉ ุฅุฐุง ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
587
00:51:15,750 --> 00:51:25,230
ุงู„ู€ M summation ู„ู„ู€ M Kุฃู‡ ููŠ ุฅูŠุด ููŠ xk-xk-1 ู„ูƒู† ุฃุตู„ุง
588
00:51:25,230 --> 00:51:28,690
ุฃู†ุง ุจุงุฎุฏ ุจุณ ุงู„ู„ูŠ ู‡ูˆ ู…ุง ููŠุด ุบูŠุฑ sub interval ูˆุงุญุฏุฉ
589
00:51:28,690 --> 00:51:33,530
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ a ูˆ ุงู„ู€ b ูŠุนู†ูŠ ู‡ุฐู‡ ุจู…ุนู†ู‰ ุขุฎุฑ b minus
590
00:51:33,530 --> 00:51:37,910
a minus a ูˆ ุงู„ mk ู‡ู†ุง ูˆุงุญุฏุฉ ุจุณ ู…ูŠู† ู‡ูŠ ุงู„
591
00:51:37,910 --> 00:51:43,790
maximum ุงู„ู„ูŠ ู‡ูŠ ุฎู„ูŠู†ุง ู†ุณู…ูŠู‡ุง m a ูˆ b ู‡ุฐู‡ MAP ู…ุงุฐุง
592
00:51:43,790 --> 00:51:49,290
ุจุชุณุงูˆูŠ ุญุณุจ ุงู„ุชุนุฑูŠู ุงู„ู€ infimum ู„ู„ู€ F of X ุญูŠุซ ุงู„ู€ X
593
00:51:49,290 --> 00:51:54,220
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ sub interval ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ I ู†ูุณู‡ ุงู„ุขู†
594
00:51:54,220 --> 00:51:57,680
ู‡ูŠูƒ ุจุงุฎุฏ ุงู„ู€ .. ุงู„ู€ .. ุงู„ู€ .. ุงู„ partition ุตุงุฑ ุนู†ุฏูŠ
595
00:51:57,680 --> 00:52:01,900
ุงู„ุขู† ู‡ุฐุง ุฃูƒุจุฑ ูŠุณุงูˆูŠ m of P ููŠ ู…ูŠู†ุŸ ู ุฃู†ุง ู‡ุฐู‡
596
00:52:01,900 --> 00:52:05,460
infimum ู…ู† ุงู„ู€ F of X ูˆ ุฃุญู†ุง ูุฑุถูŠู† ุฅู† ุงู„ู€ F of X ุฃูƒุจุฑ
597
00:52:05,460 --> 00:52:09,040
ูŠุณุงูˆูŠ ุตูุฑ ูŠุนู†ูŠ ุงู„ู€ infimum ุบุตุจ ุจูŠู† ุนู†ุง ู‡ูŠุทู„ุน F ุฃูƒุจุฑ
598
00:52:09,040 --> 00:52:13,060
ูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ู‡ุฐู‡ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ ูˆ ู‡ุฐู‡ ุฃูƒุจุฑ ุฃูˆ
599
00:52:13,060 --> 00:52:16,760
ูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ู…ุน ุจุนุถ ุงู„ุชู†ุชูŠู† ุฅูŠุด ุดู…ุงู„ู‡ุŸ ุฃูƒุจุฑ ุฃูˆ
600
00:52:16,760 --> 00:52:20,460
ูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุงู„ integration ู…ู† A ู„ B ู„ู„ F ุฃูƒุจุฑ ุฃูˆ
601
00:52:20,460 --> 00:52:21,720
ูŠุณุงูˆูŠ ุตูุฑ
602
00:52:24,180 --> 00:52:31,620
ู‡ุฐู‡ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ 722 ู†ุฌูŠ ุงู„ุขู† ู„ู„ู€ remark ุงู„ู„ูŠ ุจุนุฏู‡ุง ูˆ
603
00:52:31,620 --> 00:52:36,860
ุงู„ู€ remark ุงู„ู„ูŠ ุจุนุฏู‡ุง ูŠุนู†ูŠ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ
604
00:52:36,860 --> 00:52:42,800
ุงู„ูู‡ู… ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุนู„ู‰ ุทูˆู„ ุจู†ุณุชูˆุนุจู‡ุง ุฅู† ุดุงุก ุงู„ู„ู‡ ูˆ
605
00:52:42,800 --> 00:52:43,360
ุจู†ูู‡ู…ู‡ุง
606
00:52:48,870 --> 00:52:52,690
ู…ุง ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุชุฑูŠุฏ ุฃู† ุชู‚ูˆู„ู‡ุงุŸ ุฅุฐุง ูƒุงู†ุช f ู…ู† I
607
00:52:52,690 --> 00:52:56,850
a ูˆ b ู„ุนู†ุฏ R is integrable ู„ูƒู„ x element in I
608
00:52:56,850 --> 00:53:00,590
ู„ุฌูŠู†ุง ุฃู† f of x ุจูŠู† ู…ูŠู†ุŸ ุจูŠู† ู‚ูŠู…ุชูŠู† ุจูŠู† M ูˆ ุจูŠู†
609
00:53:00,590 --> 00:53:04,330
ู…ูŠู†ุŸ ุจูŠู† M capital ุฏุงุฆู…ุง ุงู„ู€ f of x ูŠุนู†ูŠ ูƒุฃู†ู‡
610
00:53:04,330 --> 00:53:10,190
ุฏู„ุชู†ุง ุฏู„ุชู†ุง ู‡ูŠ ู‡ุง ู‡ูŠ ุนู†ุง ุงู„ function ุฃูŠ ุฅู† ูƒุงู†ุช
611
00:53:10,190 --> 00:53:16,380
ูˆ ู‡ูŠ ุงู„ูุชุฑุฉ a ูˆ b ุนู†ุฏู†ุง ู…ู† ู‡ู†ุง a ูˆ b ูˆ B ูˆ ู‡ุงูŠ ุงู„ู„ูŠ
612
00:53:16,380 --> 00:53:20,720
ู‡ูˆ M small ูˆ ู‡ุงูŠ M capital ูŠุนู†ูŠ ุงู„ุฏุงู„ุฉ ุจูŠู† ..
613
00:53:20,720 --> 00:53:25,340
ุฏุงูŠู…ุง ูˆ ุงุฌุนุฉ ุจูŠู† ู‡ุฏูˆู„ ุงู„ู†ุบุทูŠู† ุงู„ู„ูŠ ู‡ูˆ ุจูŠู† M small ูˆ
614
00:53:25,340 --> 00:53:30,260
ุจูŠู† M capital ุฅุฐุง ุงู„ integration ุชุจุนู‡ุง ู…ู† A ู„ B ู„ู„
615
00:53:30,260 --> 00:53:35,260
F ุฃูƒุจุฑ ูŠุณุงูˆูŠ M ููŠ B minus A ูˆ ุฃุตุบุฑ ู…ู† M ููŠ B minus
616
00:53:35,260 --> 00:53:42,380
A capital ูˆุงุถุญุŸ ุทูŠุจ ุดูˆู
617
00:53:42,380 --> 00:53:50,950
ุงู„ุขู† ุฃูˆู„ ุญุงุฌุฉ ู…ุฏุงู… F is integrable ุฅุฐุง ุจุฏูƒ ุชู„ุงุญุธ ุฃู†
618
00:53:50,950 --> 00:53:56,830
ุงู„ู€ L of F ุจุณุงูˆูŠ ุงู„ู€ U of F ุจุณุงูˆูŠ ู‚ูŠู…ุฉ ุงู„
619
00:53:56,830 --> 00:54:02,430
integration ู…ู† A ู„ B ู„ู„ F of X DXุŒ ู…ุธุจูˆุทุŸ ู‡ุฐุง ู…ู†
620
00:54:02,430 --> 00:54:07,770
ุชุนุฑูŠู ุฃู† ุงู„ู€ F ุฃุดู…ุงู„ู‡ F is integrable ุชุนุงู„ูŠ ุงู„ู€ L
621
00:54:07,770 --> 00:54:12,180
of F ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ L of F ุงู„ู„ูŠ ู‡ูŠ ุฃุดู…ุงู„ู‡
622
00:54:12,180 --> 00:54:16,560
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู„ุฅู† ุงู„ู€ supremum ุนู„ู‰ ูƒู„ ู…ูŠู† ุนู„ู‰ ุงู„
623
00:54:16,560 --> 00:54:21,160
partitions ุงู„ู„ูŠ ู„ู‡ุง ุฅุฐุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„
624
00:54:21,160 --> 00:54:28,960
ุงู„ู€ L of P ุฃูˆ P ูˆ F ุงู„ู„ูŠ ู‚ุจู„ ุดูˆูŠุฉ ุนู…ู„ุชู‡ ู…ุงุดูŠ ุงู„ู„ูŠ
625
00:54:28,960 --> 00:54:34,780
ู‡ูˆ L ุฃูˆ P ูˆ F ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ infimum ู„ู„ู€ F of X
626
00:54:34,780 --> 00:54:41,000
such that X element in the interval A ูˆ B ู‡ุฐุง ุงู„ู€
627
00:54:41,000 --> 00:54:44,220
sub interval ููŠ ุงู„ุดุบู„ ู‡ูŠ ูˆุงุญุฏุฉ ุงู„ู„ูŠ ู‡ูˆ ู…ุถุฑูˆุจ ููŠ
628
00:54:44,220 --> 00:54:46,380
ู…ูŠู†ุŸ ููŠ ุทูˆู„ ุงู„ู€ interval ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† ุทูˆู„ ุงู„
629
00:54:46,380 --> 00:54:49,700
interval ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉุŸ ุฃูˆ ุงู„ู€ sub interval B minus
630
00:54:49,700 --> 00:54:52,940
A ู‡ูŠ ุณู…ุงุดูŠ ู„ูƒู† ุฃู†ุง ุฃุตู„ุง ู…ุง ุนู†ุฏูŠุด ุบูŠุฑ sub interval
631
00:54:52,940 --> 00:54:57,780
ูˆุงุญุฏุฉ ู‡ูŠูƒ ู…ุฌุฒู‚ุฉ ุฃู†ุง ุงู„ูุชุฑุฉ ุฅู„ู‰ ุฌุฒุก ูˆุงุญุฏ ุจุณ ุงู„ุขู† ุงู„
632
00:54:57,780 --> 00:55:01,240
infimum ู‡ุฐุง ุนู…ุงู„ูŠ ุจู‚ูˆู„ ุฃู†ุง ุงู„ู€ F of X ุฃูƒุจุฑ ูŠุณุงูˆูŠ
633
00:55:01,240 --> 00:55:07,050
ู…ูŠู†ุŸ M ุฅุฐุงู‹ุŒ ุญูŠูƒูˆู† ุนู†ุฏ ุงู„ู€ infimum ู„ู‡ ุฃูƒูŠุฏ ู‡ูŠูƒูˆู†
634
00:55:07,050 --> 00:55:12,830
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ M ู‡ุฐู‡ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ B minus A
635
00:55:12,830 --> 00:55:18,090
ูƒู…ุงู† ู…ุฑุฉ ุงู„ู€ F of X ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ M ุฅุฐุงู‹ุŒ ุงู„ู€
636
00:55:18,090 --> 00:55:22,390
infimum ุชุจุนู‡ ุฃูƒูŠุฏ ู‡ูŠุธู„ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุฃูƒุจุฑ ุฃูˆ
637
00:55:22,390 --> 00:55:30,080
ูŠุณุงูˆูŠ M ู‡ุฐู‡ ู…ู† ุฌู‡ุฉ ุงู„ุขู†ุŒ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู„ูŠ ุนู…ู„ุชู‡
638
00:55:30,080 --> 00:55:36,600
L of F ู‡ุฐุง ุฃุชุจุนุชู‡ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ M ููŠ B minus A
639
00:55:36,600 --> 00:55:40,520
Similarly ุงู„ุขู† ุจุฏูŠ ุฃุดุชุบู„ ุนู„ู‰ ู…ูŠู† ูŠุง ุดุจุงุจ ุจุฏูŠ ุฃุดุชุบู„
640
00:55:40,520 --> 00:55:44,460
ุนู„ู‰ ุงู„ู€ U ุนุดุงู† ุฃุณูŠุจ ุฃุฌูŠุจ ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุดูˆู
641
00:55:44,460 --> 00:55:50,730
ูƒูŠู ุจุฏูŠ ุฃุนู…ู„ู‡ุง ุงู„ู€ U of F ุฅูŠุด ุจูŠุณุงูˆูŠุŸ ุทุจุนุง ุงู„ู€ U ููŠ
642
00:55:50,730 --> 00:55:54,250
F ุฅูŠุด ู…ุงู„ู‡ุŸ ู‡ูˆ ุงู„ู€ infimum ุนู„ู‰ ูƒู„ ุงู„ other sums
643
00:55:54,250 --> 00:56:01,890
ุฅุฐู† ู‡ูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ U ุนู„ู‰ ุงู„ู€ B .. ุงู„ู€ B A ูˆ
644
00:56:01,890 --> 00:56:06,970
B ู†ูุณ ุงู„ partition ุจุชุงุฎุฏู‡ ูˆ ู…ูŠู† ูˆ ุงู„ู€ F ุงู„ู€ U of F ู‡ูˆ
645
00:56:06,970 --> 00:56:12,890
ุนุจุงุฑุฉ ุนู† ุงู„ู€ infimum ุนู„ู‰ ูƒู„ ุงู„ other sums ู‡ุฐุง ุงู„ุฃู†
646
00:56:12,890 --> 00:56:16,610
ุฅูŠุด ุจูŠุณุงูˆูŠุŸ ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุณ ุงู„ู€ sub interval
647
00:56:16,610 --> 00:56:19,290
ูˆุงุญุฏุฉ ู…ูŠู† ู‡ูŠุŸ ุฃู†ุง ุจุงุฎุฏู‡ุง ุงู„ู„ูŠ ุจุฑุฏุด ุฅู† ุฃู†ุง ุจุณ
648
00:56:19,290 --> 00:56:22,570
ู†ู‚ุทุชูŠู† ุฅุฐุง ุงู„ู€ sub interval ูˆุงุญุฏุฉ ุงู„ู„ูŠ ู‡ูŠ B minus
649
00:56:22,570 --> 00:56:29,250
A ุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ู€ supremum ู„ู… K Capital ู„ุฃ ุงู„ู€ F of X
650
00:56:29,250 --> 00:56:35,080
such that X element in A ูˆ B ู‡ูˆ ู…ุถุฑูˆุจ ููŠ ู…ูŠู† ููŠ ุทูˆู„
651
00:56:35,080 --> 00:56:38,780
ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ sub interval ุนู†ุฏ ุจูŠ minus ุงูŠู‡
652
00:56:38,780 --> 00:56:44,150
ุงู„ุขู† ูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู€ supremum ู…ุนู„ู‚ู‡ุง ูŠุง ุดุจุงุจ ุฃูƒูŠุฏ
653
00:56:44,150 --> 00:56:49,290
ู…ุฏุงู…ุฉ ุงู„ู€ F of X ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ M ุฅุฐุงู‹ ู‡ูŠูƒูˆู† ุงู„ู€
654
00:56:49,290 --> 00:56:53,070
Supremum ู„ุฃู† ู‡ุฐุง ุงู„ู€ Supremum ุฅูŠุด ุดู…ุงู„ู‡ุŸ ุงู„ู€ Least
655
00:56:53,070 --> 00:56:58,550
Upper Bound ู…ุฏุงู…ุฉ ุงู„ู€ M ุนุจุงุฑุฉ ุนู† Upper Bound ู„ู„ู€ F
656
00:56:58,550 --> 00:57:01,810
of X ู„ุฃู†ู‡ุง ุฃูƒุจุฑ ูŠุณุงูˆูŠ F of X ุฅุฐุงู‹ ู‡ูŠูƒูˆู† ุนู†ุฏ ุงู„ู€
657
00:57:01,810 --> 00:57:05,090
Least Upper Bound ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Supremum ุฃุตุบุฑ ุฃูˆ
658
00:57:05,090 --> 00:57:10,310
ูŠุณุงูˆูŠ ุงู„ู€ Upper Bound M ููŠ ุงู„ู€ B minus A ุฅุฐุงู‹ ุตุงุฑ
659
00:57:10,310 --> 00:57:15,540
Luv F ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ B M ููŠ B minus A ู‡ุฐุง ุตุงุฑ ุนู†ุฏูŠ
660
00:57:15,540 --> 00:57:19,400
ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ M ููŠ B minus A ุงู„ู„ูŠ ู‡ูˆ
661
00:57:19,400 --> 00:57:23,860
ุจูŠุณุงูˆูŠ ู‡ุฐุง ุทุจุนุง ู…ุนุทู‰ ุจูŠุตูŠุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ M ููŠ B
662
00:57:23,860 --> 00:57:29,340
minus A ูุจูŠุตูŠุฑ ูุนู„ุง ุงู„ integration ุชุจุนู‡ุง ุจูŠู† M ููŠ B
663
00:57:29,340 --> 00:57:35,120
minus A ูˆ ุจูŠู† M ููŠ B minus A capital M ุงู„ู„ูŠ
664
00:57:35,120 --> 00:57:39,320
ู…ุง ุฃูˆุถุญุช ู„ู‡ูˆุด ู‡ุฐู‡ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ู‡ู†ุง ุนู†ุฏ ุงู„ู€ M ุตุงุฑุช
665
00:57:39,320 --> 00:57:42,780
lower bound ู„ู‡ุฐู‡ ูˆ ุงู„ู€ infimum ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู†
666
00:57:42,780 --> 00:57:45,480
greatest lower bound ู…ุฏุงู… greatest lower bound ุฏู‡
667
00:57:45,480 --> 00:57:48,180
ุงู„ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู…ู† ุงู„ู€ lower bound ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†
668
00:57:48,180 --> 00:57:52,720
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ M ู…ุงุดูŠ ุงู„ุญุงู„ุฉ ูˆ ุงู„ุจุงู‚ูŠ ุฒูŠ ู…ุง ู‡ูˆ ู‡ูŠูƒ
669
00:57:52,720 --> 00:57:56,040
ุจูŠูƒูˆู† ุฃุซุจุชู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ remark ุงู„ู„ูŠ ุนู†ุฏูŠ
670
00:58:06,640 --> 00:58:12,280
ุฅู† ูŠูŠุฌูŠ ุฅู„ู‰ ุงู„ู€ Corollary ู„ู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ
671
00:58:12,280 --> 00:58:19,460
ุจุฑุถู‡
672
00:58:19,460 --> 00:58:33,220
ุงู„ุฅุซุจุงุช ุฅู† ุดุงุก ุงู„ู„ู‡ ุณู‡ู„ ุดูˆููˆุง
673
00:58:33,220 --> 00:58:38,690
ูŠุง ุดุจุงุจ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู€ Corollary ุจุชู‚ูˆู„ ู…ุง ูŠู„ูŠ F F ูˆ
674
00:58:38,690 --> 00:58:43,730
G ู…ู† I ู„ุนู†ุฏ R ุฑ ุงู†ุชูŠุฌุฑุงุจู„ on I ูุนู†ุฏูŠ F ูˆ G
675
00:58:43,730 --> 00:58:47,870
ุงู†ุชูŠุฌุฑุงุจู„ ูˆ F of X ุฃุตุบุฑ ูŠุณุงูˆูŠ G of X ู„ูƒู„ X element
676
00:58:47,870 --> 00:58:51,050
on I ุฏู‡ ุงู„ integration ู…ู† A ู„B ู„ู„F ุฃุตุบุฑ ุงู„
677
00:58:51,050 --> 00:58:56,890
integration ู…ู† A ู„B ู„ู…ู† ู„ู„ G ู…ุงุดูŠ ุงู„ุญุงู„ ูุจูŠุตูŠุฑ ุนู†ุฏูŠ
678
00:58:56,890 --> 00:59:03,230
ุงู„ุขู† ุงู„ integration ุฃู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€ F of X ุฃุตุบุฑ
679
00:59:03,230 --> 00:59:08,820
ูŠุณุงูˆูŠ G of X on I ุจูŠุนุทูŠู†ูŠ ุงู„ integration ู„ู„ู€ F ุนู„ู‰
680
00:59:08,820 --> 00:59:11,380
ุงู„ู€ I ุงู„ู„ูŠ ู‡ูˆ ู…ู† A ูˆ ู„ุง B ู†ุธุฑู‡ุง ู„ุชุนุฑู ุงู„
681
00:59:11,380 --> 00:59:21,080
integration ู…ู† A ู„B ู„ู…ู† ู„ู€ G ุทูŠุจ ุนู†ุฏูŠ F ูˆ G
682
00:59:21,080 --> 00:59:25,860
integrable ุตุญ ูˆู„ุง ู„ุฃ ุฅุฐุง ุฃูƒูŠุฏ ุฒูŠ ู…ุง ุญูƒูŠุช ููŠ ุฃูˆู„
683
00:59:25,860 --> 00:59:30,900
ุงู„ู…ุญุงุถุฑุฉ ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ ุฅู†ู‡ F integrable ูˆ G
684
00:59:30,900 --> 00:59:35,230
integrable ุฅุฐุง ู…ุฌู…ูˆุนู‡ู… ุงู†ุชุฌุฑุงุจู„ ุฃูˆ ุญุงุตู„ ุทุฑุญ ุงู„ู€
685
00:59:35,230 --> 00:59:38,910
Integrable ุจู†ุงุก ุนู„ู‰ ุฅู†ู‡ K ููŠ F ุงู†ุชุฌุฑุงุจู„ ุฃูˆ K ููŠ G
686
00:59:38,910 --> 00:59:41,910
ุงู†ุชุฌุฑุงุจู„ ุฃูˆ ุจู†ุงุก ุนู„ู‰ ุฅู†ู‡ ุจูŠุตูŠุฑ ู†ุงู‚ุต G is
687
00:59:41,910 --> 00:59:46,970
integrable ุจูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู€ F ู†ุงู‚ุต G ุฃุดู…ุงู„ู‡ is
688
00:59:46,970 --> 00:59:55,830
integrable ู…ุด ุงู„ุญุงู„ ุทูŠุจ ูˆ ู…ุด ู‡ูŠูƒ ูƒู…ุงู† ูˆ ู‚ู„ู†ุง ุงู„
689
00:59:55,830 --> 01:00:02,270
integration ู„ู„ู€ F ู†ุงู‚ุต G ุฃูˆ ุงู„ู€ G - F ุชู„ุฒู…ู†ูŠ ุฃู†ุง ุงู„ู€
690
01:00:02,270 --> 01:00:08,830
G - F ูู‡ู† ุงู„ู€ G - F is integrable ู…ุฏุงู… G - F is
691
01:00:08,830 --> 01:00:14,150
integrable ุฅุฐุง ุงู„ู€ G - F ุญุณุจ ุงู„ู„ูŠ .. ุงู„ู†ุธุฑูŠุฉ ู‚ุจู„
692
01:00:14,150 --> 01:00:20,770
ุจุดูˆูŠุฉ ุงู„ู€ G minus F ู…ู† ู‡ู†ุง ุจุตูŠุฑ G ู†ุงู‚ุต F of X ุฃูƒุจุฑ
693
01:00:20,770 --> 01:00:24,670
ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ ู…ู† I ุฅุฐุง ุญูŠูƒูˆู† ุงู„ู€ G minus F ุนู„ู‰ ู…ู† A
694
01:00:24,670 --> 01:00:27,390
ู„ B ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ุงุฏ
695
01:00:27,390 --> 01:00:32,170
ุงู„ู€ Corollary ุฅู„ู‡ุง ุทูŠุจ ูˆ ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ุจุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
696
01:00:32,170 --> 01:00:35,870
ุญูƒูŠู†ุงู‡ุง ููŠ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ู…ุฌู…ูˆุน ุฏุงู„ุชูŠู† ุฃูˆ ุญุงุตู„ ุทุฑุญูŠู†
697
01:00:35,870 --> 01:00:42,110
ุจุณุงูˆูŠ ุงู„ integration ุฅู† ุงู„ู€ G ู…ู† A ู„B ุฒุงุฆุฏ ุงู„
698
01:00:42,110 --> 01:00:51,410
integration ู…ู† A ุฅู„ู‰ B ู„ู„ู€
699
01:00:51,410 --> 01:00:58,230
G ู†ุงู‚ุต ุงู„ integration ู…ู† A ุฅู„ู‰ B ู„ู„ู€ F ุงุนุชู…ุฏุช ู‡ู†ุง
700
01:00:58,230 --> 01:01:02,430
ููŠ ุงู„ุชูˆุฒูŠุน ูˆ ููŠ ุฅุฎุฑุงุฌ ุงู„ู†ู‚ุต ุนู„ู‰ ุงู„ู€ K F Integrable
701
01:01:02,430 --> 01:01:04,710
ูˆ ุงู„ู€ K ููŠ ุงู„ integration ุจูŠุณุงูˆูŠ ุงู„ integration
702
01:01:04,710 --> 01:01:09,190
ู„ู„ู€ K ูˆ ุงู„ู„ูŠ ู‡ูˆ ุงุนุชู…ุงุฏุง ุนู„ู‰ ุงู„ integration ู„ู„ู€ F ุฒูŠ
703
01:01:09,190 --> 01:01:11,190
ุงู„ู€ G ุจูŠุณุงูˆูŠ ุงู„ integration ู„ู„ู€ F ุฒูŠ ุงู„ integration
704
01:01:11,190 --> 01:01:15,250
ู„ู„ู€ G ู…ู† ู‡ู†ุง ุตุงุฑ ุนู†ุฏูŠ ุฃู†ู‚ู„ ู‡ุฐุง ุจุณ ุนู„ู‰ ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ
705
01:01:15,250 --> 01:01:18,930
ุจูŠุตูŠุฑ ุงู„ integration ู„ู„ู€ G ู…ู† A ู„ู€ B ู„ู…ุง ุงู†ู‚ู„ ู‡ุฐุง
706
01:01:18,930 --> 01:01:23,130
ุนู„ู‰ ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ integration ู„ู„ู€
707
01:01:23,130 --> 01:01:30,850
F ู…ู† A ู„ู€ B ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ. ุทูŠุจ ูŠุง ุดุจุงุจ ู†ูŠุฌูŠ ู„ู„ู†ุธุฑูŠุฉ
708
01:01:30,850 --> 01:01:36,970
ุงู„ู„ูŠ ุจุนุฏู‡ุง. ุฎู„ูˆู†ุง ู†ุฑูƒุฒ ุดูˆูŠุฉ ู„ุฃู†ู‡ ุงู„ุจุฑู‡ุงู† ูŠุนู†ูŠ ุทูˆูŠู„
709
01:01:36,970 --> 01:01:45,850
ุดูˆูŠุฉ ู„ูƒู† ุฅู† ุดุงุก ุงู„ู„ู‡ ุจุชุณุชูˆุนุจูˆู‡. ู†ุดูˆู ุฅูŠุด ุงู„ู†ุธุฑูŠุฉ
710
01:01:45,850 --> 01:01:54,690
ุจุชู‚ูˆู„ ุงู„ู†ุธุฑูŠุฉ
711
01:01:54,690 --> 01:02:02,260
ุชู‚ูˆู„ ู…ุง ูŠู„ูŠ: let I ุนุจุงุฑุฉ ุนู† ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ BุŒ ู‡ุงูŠ
712
01:02:02,260 --> 01:02:09,460
ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ. ู‡ุงูŠ ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ BุŒ ูˆุนู†ุฏูŠ ู…ุงุฎุฏ
713
01:02:09,460 --> 01:02:15,220
ุฃู†ุง C ู†ู‚ุทุฉ ููŠ ุฏุงุฎู„ ุงู„ูุชุฑุฉ A ูˆ B. ุทุจุนุง ุงู„ู†ุธุฑูŠุฉ
714
01:02:15,220 --> 01:02:17,900
ู‡ุชู„ุงู‚ูˆู‡ุง ู…ุด ุบุฑูŠุจุฉ ุนู„ูŠูƒู…. ู…ุฑุฉ ุชู„ุงู‚ูˆูƒู… ุงู„ูƒู„ูƒูˆู„ุงุช ูˆู„ูƒู†
715
01:02:17,900 --> 01:02:22,330
ุงู„ุจุฑู‡ุงู† ุงู„ู„ูŠ ุจุฏู‡ ุดุบู„. let I ุจูŠุณุงูˆูŠ ู…ู† A ู„ุนู†ุฏ B and
716
01:02:22,330 --> 01:02:25,830
let C be an element in A ูˆ B and let F ู…ู† ูƒู„ I
717
01:02:25,830 --> 01:02:29,210
ู„ุนู†ุฏ R be a bounded function. ูŠุนู†ูŠ ุงู„ function ุงู„ู„ูŠ
718
01:02:29,210 --> 01:02:32,830
ุจู†ุดุชุบู„ ุนู„ูŠู‡ุง bounded ุฌุงู‡ุฒุฉ ูŠุนู†ูŠ. and then ุงู„ู†ุชูŠุฌุฉ
719
01:02:32,830 --> 01:02:36,970
ุจู‚ูˆู„ูŠ F is integrable on I. ู‡ุชูƒูˆู† ุงู„ู€ F integrable
720
01:02:36,970 --> 01:02:42,990
ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ I ู…ู† A ูˆ B ุฅุฐุง ูˆ ูู‚ุท ุฅุฐุง F
721
01:02:42,990 --> 01:02:51,480
is integrable ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ on both I ูˆุงุญุฏ ู…ู† A ู„ู€ C ูˆ
722
01:02:51,480 --> 01:03:00,520
I2 ู…ู† C ู„ุนู†ุฏ B. ูˆู…ุด ู‡ูŠูƒ ุจู‚ูˆู„ูƒ ูˆูƒู…ุงู† ู‡ูŠูƒูˆู† ุนู†ุฏ ุงู„ู€
723
01:03:00,520 --> 01:03:03,080
integration ู…ู† A ู„ู€ B ู„ู€ F ุณูˆู‰ ุงู„ integration ู…ู† A ู„ู€
724
01:03:03,080 --> 01:03:05,820
C ู„ู€ F ุฒุงุฆุฏ ุงู„ integration ู…ู† C ู„ู€ ุนู†ุฏ B ู„ู€ F ุงู„ู„ูŠ ู‡ูŠ
725
01:03:05,820 --> 01:03:09,460
ุงู„ุดูŠุก ุงู„ู…ุนูˆุฏ ุนู†ุฏู†ุง. ุฅุฐุง ุงู„ุฃู† ุจู‚ูˆู„ูŠ ุงู„ุฅุนู„ุงู† ุงู„ู„ูŠ
726
01:03:09,460 --> 01:03:12,560
ุจู‚ูˆู„ู‡ ู…ุงู„ูŠ ุฅุฐุง ูƒุงู†ุช F is a bounded function on the
727
01:03:12,560 --> 01:03:18,080
interval ูƒู„ู‡ุง I ุงู„ู„ูŠ ุณู…ูŠู†ู‡ุง ู…ู† A ู„ู€ ุนู†ุฏ BุŒ I. ุฃู‡ ุฅุฐุง
728
01:03:18,080 --> 01:03:22,800
ูƒุงู†ุช F is bounded function ุนู„ูŠู‡ุง ุฅุฐุง F is
729
01:03:22,800 --> 01:03:32,220
integrable on I if and only if F is integrable on
730
01:03:32,220 --> 01:03:42,140
I1 and F is integrable on I2. ูˆููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุณูŠูƒูˆู†
731
01:03:42,140 --> 01:03:46,500
ุนู†ุฏู‡ ุงู„ integration ู…ู† A ู„ุนู†ุฏ B ุณูˆู‰ ุงู„ integration
732
01:03:46,500 --> 01:03:52,470
ู…ู† A ู„ู€ C ุฒุงุฆุฏ ุงู„ integration ู…ู† C ู„ุนู†ุฏ B. ุจุฏู†ุง ู†ูุชุฑุถ
733
01:03:52,470 --> 01:03:58,550
ููŠ ุงู„ุฃูˆู„ ุฃู† F is integrable ุนู„ู‰ I1 ูˆ I2 ูˆู†ุตู„ ุฃู†ู‡
734
01:03:58,550 --> 01:04:01,450
ุงู„ู„ูŠ ู‡ูˆ ุฅูŠู‡ ุดู…ุงู„ู‡ุŸ ุงู„ู„ูŠ ู‡ูˆ ุงู„ function is
735
01:04:01,450 --> 01:04:07,430
integrable ุนุงู„ู…ูŠุง ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ I. ุฅุฐุง ุงู„ุฃู†
736
01:04:07,430 --> 01:04:15,030
ุฃูˆู„ ุญุงุฌุฉ ุจุฏู†ุง ู†ูุชุฑุถู‡ุง ุงู†ุชุจู‡ูˆุง ุนู†ุฏูŠ ุฅูŠุด ุจู†ุณูˆูŠุŒ ุตุจูˆุฒ
737
01:04:17,840 --> 01:04:32,080
that F is integrable on I1 and I2. ุณุชุฌุฏูˆู† ุฃู†ู†ุง
738
01:04:32,080 --> 01:04:37,580
ู†ุนุชู…ุฏ ูƒุซูŠุฑ ุนู„ู‰ ุงู„ู€ Integrable criterion. ุณุชุฌุฏูˆู† ูƒู…
739
01:04:37,580 --> 01:04:42,820
ู‡ูŠ ู…ู‡ู…ุฉ ููŠ ุฅุซุจุงุช ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุงุช. ู…ุงุฏุงู… F is
740
01:04:42,820 --> 01:04:48,300
integrable ุนู„ู‰ I1 ุฎู„ู‘ูŠู†ุง ู†ุงุฎุฏ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ
741
01:04:48,300 --> 01:04:52,260
arbitrary. for every Y ุฃูƒุจุฑ ู…ู† ุตูุฑ ุจู…ุง ุฃู† F is
742
01:04:52,260 --> 01:05:00,440
integrable on I1 then there exists B1Y. ู‡ุฐุง
743
01:05:00,440 --> 01:05:06,260
partition ุนุงู„ู…ูŠุง ุนู„ู‰ I1 such that ู„ุฃู† F is
744
01:05:06,260 --> 01:05:14,210
integrable ุนู„ู‰ I1 such that ุงู„ู€ UB1 ูˆ Epsilon ูˆ
745
01:05:14,210 --> 01:05:20,490
ุงู„ู€ function F ู†ุงู‚ุต ุงู„ู€ LB1 ูˆ Epsilon ูˆ ุงู„ู€
746
01:05:20,490 --> 01:05:25,250
function F ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Epsilon ุนู„ู‰ 2 ู„ู„ุญุณุงุจุงุช
747
01:05:25,250 --> 01:05:30,770
ู…ุงุดูŠ ุงู„ุญุงู„. ู‡ุฐุง
748
01:05:30,770 --> 01:05:36,590
ุงุณุชุฎุฏุงู…ุง ู„ู„ู€ integrability ู„ู„ู€ function F ุนุงู„ู…ูŠู†
749
01:05:36,590 --> 01:05:44,720
ุนู„ู‰ ุงู„ู€ I1. Similarly, There exist B2
750
01:05:44,720 --> 01:05:48,920
ูˆ Epsilon ุจู…ุง ุฃู† F Integra ุจุงู„ุนุงู„ู… I2 ุฅุฐุงู‹ there
751
01:05:48,920 --> 01:05:58,140
exist B2 ูˆ Epsilon such that U B2 ูˆ Epsilon ู‡ุฐุง
752
01:05:58,140 --> 01:06:02,160
partition ู„ู…ูŠู†ุŸ ู„ู„ูุชุฑุฉ ุงู„ุชุงู†ูŠุฉ I2 ุงู„ู„ูŠ ู‡ูŠ ู…ู† C
753
01:06:02,160 --> 01:06:10,740
ู„ุนู†ุฏ B ูˆ F ู†ุงู‚ุต ุงู„ู€ LB2 ูˆ Epsilon ูˆ F ุฃุตุบุฑ ู…ู† ู…ูŠู†
754
01:06:10,740 --> 01:06:15,180
ูŠุง ุฌู…ุงุนุฉ ุฃุตุบุฑ ุจุฑุถู‡ ู…ู† Epsilon ุนู„ู‰ ุงุชู†ูŠู†. ู…ุงุดูŠ ุงู„ุญุงู„
755
01:06:15,180 --> 01:06:21,100
ุงู„ุขู† ุฃู†ุง ุบุฑุถูŠ ุฃู† ุฃุซุจุช ุฃู† F is Integra ุจุงู„ุนุงู„ู…ูŠู†
756
01:06:21,100 --> 01:06:30,050
ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ I ู…ู† A ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ B. ุงู„ุงู† let ู…ุง
757
01:06:30,050 --> 01:06:34,130
ุฏุงู… ุจุฏู‡ .. ุจุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุฃุซุจุช ุงู„ู€ Integrability ู„ู„ู€
758
01:06:34,130 --> 01:06:38,270
F ูŠุง ุดุจุงุจ ุนู„ู‰ ูƒู„ ุงู„ู€ I. ุฅุฐุง ุจุฏูŠ partition ุนู„ู‰ ูƒู„
759
01:06:38,270 --> 01:06:43,070
ุงู„ู€ IุŒ ุงู„ partition ุงู„ู…ุคู‡ู„ ู„ูŠูƒูˆู† ุงู„ู€ I ุงู„ู€ B1 ูˆ Y
760
01:06:43,070 --> 01:06:48,530
ุฌุฒุก ู‡ุฐู‡ ูˆ ุงู„ู€ B2 ูˆ Y ุฌุฒุก ู‡ุฐู‡. ุฅุฐุง ุญุงูƒูŠุฏ ุนู†ุฏ let B
761
01:06:48,530 --> 01:06:55,170
ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ ุฃูˆ ุจูŠ ุงู„ู„ูŠ ู‡ูˆ .. ุงู…ุณู…ูŠู‡ ุจูŠ ุฅุจุณู„ูˆู†
762
01:06:55,170 --> 01:07:04,240
ุจูŠุณุงูˆูŠ B1 ูˆ Epsilon ุงุชุญุงุฏ B2 ูˆ Epsilon. ูˆุงุถุญุฉุŸ
763
01:07:04,240 --> 01:07:10,000
ูˆู‡ุฐุง ู‡ูŠูƒูˆู† ุฅุดู…ุงู„ ูˆ partition. partition ู„ู…ูŠู†ุŸ ู„ูƒู„
764
01:07:10,000 --> 01:07:17,140
ุงู„ู€ I ู…ุนุงูŠุง ูŠุง ุดุจุงุจุŒ ุงู‡ุŸ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงุฎุชุฑุช ุฃู†ุง
765
01:07:17,140 --> 01:07:22,900
ุงู„ู€ ุจูŠ ุฅุจุณู„ูˆู† ุนุจุงุฑุฉ ุนู† B1 ุฅุจุณู„ูˆู† ุงุชุญุงุฏ B2
766
01:07:22,900 --> 01:07:26,760
ุฅุจุณู„ูˆู† ูˆุจุฏุฃ ุฃุตู„ ู„ู„ู€ UB ุฅุจุณู„ูˆู† ู†ุงู„ ุฃู‚ู„ ุงู„ู€ LB
767
01:07:26,760 --> 01:07:32,300
ุฅุจุณู„ูˆู† ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†. ูˆุงุถุญ ุงู‡ุŸ ุนุดุงู† ุฃุซุจุช ุฃู†ู‡ ุงู„ู€
768
01:07:32,300 --> 01:07:36,180
function F is integrable ุนู„ู‰ ูƒู„ ุงู„ู€ I. ู‡ุฐุง ุฅูŠุด ู…ุงู„ู‡ุŸ
769
01:07:36,180 --> 01:07:44,020
ุตุงุฑ let BY ุจุณูˆุง ูƒุฏู‡ which ู‡ุฐุง ุงู„ู…ู‡ู… is a partition
770
01:07:44,020 --> 01:07:50,640
of I ูƒู„ู‡ุง ู„ุฃู† ุงู„ุฃูˆู„ุงู† ุฌุฒุก ู‡ุฐุง ุงู„ุนู†ุฏู„ู‡ุงู† ูˆุงู„ุชุงู†ูŠ
771
01:07:50,640 --> 01:07:54,960
ุฌุฒุก ู‡ุฐุง ุงู„ุนู†ุฏู„ู‡ุงู† ุฅุฐุง ุฅุชุญุงุฏุง ู‡ูŠุฌุฒุก ูƒู„ ุงู„ู…ู†ุทู‚ุฉ
772
01:07:54,960 --> 01:08:06,000
ุงู„ู…ุทู„ูˆุจุฉ. ุทูŠุจ ุดูˆู ุงู„ุขู† ุงุญุณุจู„ูŠ ุงู„ุขู† U,B,Y,F-L,B,Y,F
773
01:08:06,000 --> 01:08:10,360
ูˆูŠุณุงูˆูŠ ุงู„ู€
774
01:08:10,360 --> 01:08:15,700
U,B,Y,F ุนุจุงุฑุฉ ุนู† ุฅูŠุด ูŠุง ุฌู…ุงุนุฉุŸ ุงู„ู€ U,B,Y,F ุฎู„ูŠู†ุง
775
01:08:15,700 --> 01:08:20,320
ู†ู‚ูˆู„ U,B,Y,F ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† some U ุจุชุญุช ุนุดุงู†
776
01:08:20,320 --> 01:08:27,020
ุชุดูˆููˆุง ุฅูŠุด ุงู„ู„ูŠ ุจุนู…ู„ู‡. U,B,Y,F ุนุจุงุฑุฉ
777
01:08:27,020 --> 01:08:38,620
ุนู† summation ู„ุฃ ุงู„ู€ MK ุงู„ู€ N ูˆ Xk minus Xk minus
778
01:08:38,620 --> 01:08:43,580
ูˆุงุญุฏ. K ู…ุซู„ุง ู…ู† ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ N. ู‡ุฐู‡ ุงู„ู„ูŠ
779
01:08:43,580 --> 01:08:52,700
ุจุชุฌุฒุฆู„ูŠ ู…ู† ุนู†ุฏ A ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ B. ูˆ ุฃูƒูŠุฏ ู‡ุชู…ุฑ ููŠ C
780
01:08:52,700 --> 01:08:58,570
ู„ูŠุดุŸ ุฃูƒูŠุฏ C ู‡ุชูƒูˆู† ู†ู‚ุทุฉ ู…ู† ุงู„ู†ู‚ุงุทุŒ ู„ูŠุด ู‡ุชูƒูˆู† ู†ู‚ุทุฉ ู…ู†
781
01:08:58,570 --> 01:09:03,230
ุงู„ู†ู‚ุงุทุŸ ู„ุฃู†ู‡ ุฃู†ุง ุฃุฎุฏุช ุจูŠ ุฅุจุณู„ูˆู† ู‡ูŠ ุงุชุญุงุฏ ู‡ุฐู‡ ู…ุน
782
01:09:03,230 --> 01:09:08,210
ู‡ุฐู‡. ูˆ ุขุฎุฑ ู†ู‚ุทุฉ ููŠ ู‡ุฐู‡ ู‡ูŠ ุงู„ู€ C ูˆ ุฃูˆู„ ู†ู‚ุทุฉ ููŠ ู‡ุฐู‡
783
01:09:08,210 --> 01:09:11,210
ู‡ูŠ ุงู„ู€ C. ูƒูŠู ู‡ุฐู‡ partition ู„ู‡ุฐู‡ ูˆ ู‡ุฐู‡ partition
784
01:09:11,210 --> 01:09:14,470
ู„ู‡ุฐู‡ุŸ ู…ุด ู„ู…ุง ู†ุนู…ู„ partition ู„ูƒู„ ุงู„ูุชุฑุฉ ุจูŠูƒูˆู† ุฃูˆู„
785
01:09:14,470 --> 01:09:18,390
ู†ู‚ุทุฉ ูˆ ุฃุฎุฑ ู†ู‚ุทุฉ ู…ู† ุถู…ู† ุงู„ partitionุŸ ุฃูƒูŠุฏ. ูˆ ุฅุฐู† ุงู„ู€
786
01:09:18,390 --> 01:09:22,230
partition ู„ู„ูุชุฑุฉ ุงู„ุตุบูŠุฑุฉ ู‡ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุนู†ุฏ A
787
01:09:22,230 --> 01:09:26,430
ู„ุนู†ุฏ C ุฅุฐุง ุงู„ู€ C ู‡ู†ุง ูˆ ุงู„ู€ C ู‡ู†ุง. ุฅุฐุง ู…ุถู…ูˆู† ุงู„ู€ C
788
01:09:26,430 --> 01:09:32,570
ูˆุงุญุฏุฉ ู…ู† ู‡ุฏูˆู„. ู…ุงุดูŠ ุงู„ุญุงู„. ุฅุฐุง ู‡ุฐุง ุงู„ุขู† ุจุงุฌูŠ ุงู„ู€ Mk
789
01:09:32,570 --> 01:09:37,600
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู†ูุชุฑุถ ุฃู†ู‡ ู…ู† ุนู†ุฏ X Note ู„ุนู†ุฏ XN ูˆู‡ู†ุง
790
01:09:37,600 --> 01:09:42,040
ุงู„ู€ XL ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ C ูˆุงุญุฏุฉ ู…ู† ุนู†ุงุตุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ ..
791
01:09:42,040 --> 01:09:46,020
ุงู„ .. ุงู„ .. ุงู„ partition. ุฅุฐู† ุงู„ุขู† ุจู‚ุฏุฑ ุฃุฌุฒุก ู‡ุฐุง
792
01:09:46,020 --> 01:09:55,690
ู„ุฌุฒุฆูŠู†. Mk ููŠ Xk minus Xk minus 1 ู…ู† ูƒุงู…ุŸ ู…ู† ุนู†ุฏ 1 ู„ุนู†ุฏ
793
01:09:55,690 --> 01:10:00,710
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ู€ K ุงู„ู„ูŠ ุฎู„ู‘ูŠู†ูŠ ุฃุณู…ูŠู‡ุง M ุญูŠุซ ุงู„ู€
794
01:10:00,710 --> 01:10:08,330
XM ู‡ูŠ ุงู„ู€ C ุฒุงุฆุฏ ุงู„ู€ summation ู„ู„ู€ MK ุงู„ู€ Xk minus
795
01:10:08,330 --> 01:10:13,110
Xk minus 1 ูƒุงู…ุŸ ู…ู†
796
01:10:13,110 --> 01:10:19,210
ุนู†ุฏ ูˆุงุญุฏุŒ ุขุณูุŒ ูƒุงู…ุŸ ู…ู† ุนู†ุฏ ู…ูŠู†ุŸ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ M
797
01:10:19,210 --> 01:10:26,820
ุงู„ู„ูŠ ุนู†ุฏ ุงู„ู€ M ุนู†ุฏ ุงู„ู€ N. ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ XM ุจูŠุณุงูˆูŠ
798
01:10:26,820 --> 01:10:32,720
ุงู„ู€ C. ุฅุฐุง ููŠ ุงู„ุญุงู„ุชูŠู† ู‡ู†ุง ุนู†ุฏ ู‡ุฐุง ุฒุงุฆุฏ ู‡ุฐุง ุงู„ู€
799
01:10:32,720 --> 01:10:36,520
summation ู‡ูˆ ุงู„ู€ summation ู‡ุฐุง ุนู„ู‰ ุงู„ intervals
800
01:10:36,520 --> 01:10:41,000
ุจุถู„ูŠ ุฃุฌุฒุก ุฃุฌุฒุก ู„ู…ู† ุฃุตู„ ุนู†ุฏ ู‡ุฐู‡ ุจูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ
801
01:10:41,000 --> 01:10:45,980
ุงู„ุชุฌุฒุฆุฉ ุงู„ุฃูˆู„ู‰ ูˆุจุนุฏูŠู† ุงู„ุชุฌุฒุฆุฉ ุงู„ุซุงู†ูŠุฉ ุจูƒู…ู„ ู…ู† ู‡ู†ุง
802
01:10:45,980 --> 01:10:51,810
ูˆ ุจุถู„ูŠ ุทุงู„ุนุฉ ูˆ ุจูˆุฌุฏ ุงู„ู€ MK ู„ู„ู†ู‡ุงู†ุฉ ูˆ ุงู„ู€ MK ู„ู„ู†ู‡ุงู†ุฉ
803
01:10:51,810 --> 01:11:00,010
ุงู„ู…ุฌู…ูˆุน ุงู„ู†ู‡ุงู†ุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู‡ูŠุนู…ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ UB
804
01:11:00,010 --> 01:11:04,910
ุฅุจุณู„ูˆู† ุทุจุนุง MK capitalุŒ ุขุณูุŒ ู‡ุฐู‡ ูˆ ู‡ุฐุง MK capital
805
01:11:04,910 --> 01:11:09,190
ู„ุฃู†ู‡ ุจุญูƒูŠ ุนู† ุงู„ู€ other ุงู„ู„ูŠ ู…ู‡ู… ุงู„ููƒุฑุฉ ุงู„ู€ UB
806
01:11:09,190 --> 01:11:16,730
ุฅุจุณู„ูˆู† ูˆุงุญุฏ F ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ partition ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุจู†ูŠุช
807
01:11:16,730 --> 01:11:21,140
ุนู„ูŠู‡ ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูˆ partition ุจูŠ ุฅุจุณู„ูˆู† ุณู…ูŠุชู‡ ูˆุงุญุฏ ูˆ
808
01:11:21,140 --> 01:11:28,180
ุฅุจุณู„ูˆู† ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ mean ุงู„ู…ุชุจู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ U ุจูŠ ุชู†ูŠู†
809
01:11:28,180 --> 01:11:33,400
ูˆ ุฅุจุณู„ูˆู† ูˆ F. ู‡ุฐุง ูƒู„ู‡ mean ุงู„ู€ UB ุฅุจุณู„ูˆู† ูˆ F
810
01:11:33,400 --> 01:11:37,140
similarly mean ุงู„ุขู†
811
01:11:40,410 --> 01:11:45,370
Similarly mean ุงู„ู€ L of B, Epsilon ูˆ F ุจุฑุถู‡ ู‡ุฐุง
812
01:11:45,370 --> 01:11:49,970
ุจุฌุฒุก ุงู„ู…ู†ุทู‚ุฉ ูƒูƒู„ ูˆู‡ูˆ ู…ุจู†ูŠ ุนู„ู‰ ุฃุณุงุณ ุชุฌุฒุฆุฉ ุงู„ู„ูŠ ู‡ูˆ
813
01:11:49,970 --> 01:11:54,450
B1 ูˆ Epsilon ุงุชุญุงุฏ B2 ูˆ Epsilon. ุฅุฐุง ุจุงู„ุธุจุท ู‡ุฐุง
814
01:11:54,450 --> 01:12:04,030
ุจุฑุถู‡ ุจูŠุณุงูˆูŠ ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ LB1 ูˆ Epsilon ูˆ F
815
01:12:04,030 --> 01:12:16,290
ุฒุงุฆุฏ L ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ B2 Epsilon ูˆ F ูˆ ูŠุณุงูˆูŠ ุงู„ุงู†
816
01:12:16,290 --> 01:12:26,530
ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง U B1 Epsilon ูˆ F ู†ุงู‚ุต ุงู„ู€ LB1 Epsilon ูˆ
817
01:12:26,530 --> 01:12:34,990
F. ุฃุฎุฏุช ู‡ุฐุง ูŠุง ุฌู…ุงุนุฉ ู…ุน ู‡ุฐุง ุฎู„ุตู†ุง ู…ู†ู‡ ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ
818
01:12:34,990 --> 01:12:43,780
ุงู„ู„ูŠ ู…ุชุจู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ U B2 ูˆ
819
01:12:43,780 --> 01:12:51,520
Epsilon ูˆ F ู†ุงู‚ุต L B2 ูˆ Epsilon ูˆ F. ู‡ุฐุง ุงู„ุขู†
820
01:12:51,520 --> 01:12:59,880
ู‡ูŠู‡ ู…ู† ููˆู‚ ุงู„ู„ูŠ ุญุถุฑู†ุงู„ู‡ ุฃุตุบุฑ ู…ู† Epsilon ุนู„ู‰ ุงุชู†ูŠู† ูˆ
821
01:12:59,880 --> 01:13:04,320
ู‡ุฐุง ุญุถุฑู†ุงู„ู‡ ุจุฑุถู‡ ุฃุตุบุฑ ู…ู† Epsilon ุนู„ู‰ ุงุชู†ูŠู†. ุฅุฐุง ุตุงุฑ
822
01:13:04,320 --> 01:13:10,240
ู‡ุฐุง ุงู„ุทุฑุญ ุจูŠู†ู‡ู… ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Epsilon. ุตุฑู†ุง ู…ุซู„ ุชูŠู†
823
01:13:10,240 --> 01:13:13,980
ู„ูƒู„ Epsilon ุฃูƒุจุฑ ู…ู† ุตูุฑ there exist B2, there exist
824
01:13:13,980 --> 01:13:18,180
ุจุฅุจุณู„ูˆู† such that U ุจุฅุจุณู„ูˆู† ูˆ F ู†ุงู‚ุตู‡ุง L ุฅุจุณู„ูˆู† ูˆ F
825
01:13:18,180 --> 01:13:23,180
ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฅุจุณู„ูˆู†. ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ F is
826
01:13:23,180 --> 01:13:30,890
integrable on I ุงู„ู„ูŠ ู„ุฌูŠู†ุง ุงู„ partition ู„ู‡ุง ู‡ุฐุง
827
01:13:30,890 --> 01:13:34,470
ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ู†ุธุฑูŠุฉ. ุงู„ุขู† ุจุฏู†ุง ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ
828
01:13:34,470 --> 01:13:40,710
conversely. ุจุฏู†ุง ู†ูุชุฑุถ ุฃู†ู‡ F is integrable ุนู„ู‰ ูƒู„
829
01:13:40,710 --> 01:13:46,810
ุงู„ูุชุฑุฉ ูˆู…ู† ุซู… ู†ุซุจุช ุฃู†ู‡ integrable ุนู„ู‰ ูƒู„
830
01:13:46,810 --> 01:13:54,570
subinterval ู…ู† ุงู„ุชู†ุชูŠู† ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ. ุฅุฐุง ุงู„ุขู† ุงู„ุฌุฒุก
831
01:13:54,570 --> 01:13:57,550
ุงู„ุซุงู†ูŠ ุจู†ู‚ูˆู„ suppose
832
01:14:00,050 --> 01:14:14,710
that F is integrable on I ู„ู‡ุง ุจุชุณุงูˆูŠ A ูˆ B ูˆ ุจุฏู†ุง
833
01:14:14,710 --> 01:14:20,470
ู†ุซุจุช ุฃู†ู‡ุง integrable ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ุฃูˆู„ู‰ A ูˆ
834
01:14:20,470 --> 01:14:26,560
C ูˆ ุงู„ูุชุฑุฉ ุงู„ุซุงู†ูŠุฉ C. ุทูŠุจ ุฎู„ู‘ูŠู†ุง ู†ูƒู…ู„ ุงู„ู„ูŠ ู‡ูˆ ู†ู‚ูˆู„
835
01:14:26,560 --> 01:14:27,600
conversely.
836
01:14:34,910 --> 01:14:37,530
ู…ุงุฏุงู… ุงู„ู„ูŠ ู‡ูŠ F is integrable ุฅุฐุง ุจุงู„ู€ Cauchy
837
01:14:37,530 --> 01:14:41,810
criterion ู„ูƒู„ ูŠ ุฃูƒุจุฑ ู…ู† ุตูุฑ there exists B ุงู„ู„ูŠ ู‡ูˆ
838
01:14:41,810 --> 01:14:44,950
partition ุงู„ู„ูŠ ู‡ูˆ ู…ุณู…ูŠู‡ B ู…ู…ูƒู† ู†ุณู…ูŠู‡ ุงุญู†ุง ุจูŠ
839
01:14:44,950 --> 01:14:48,170
ุฅุจุณู„ูˆู† element in B of I. ู‡ุฐุง ุทุจุนุง ุงู„ partition
840
01:14:48,170 --> 01:14:52,570
ุจูŠุนุชู…ุฏ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุฅุจุณู„ูˆู† such that U, B ูˆ F ู†ุงู‚ุต
L, B ูˆ F ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฅุจุณู„ูˆู†.
841
01:14:52,570 --> 01:14:56,370
ุงู„ู€ U of F ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ู‡ุฐุง ู„ุฃู† F is
842
01:14:56,370 --> 01:15:00,630
integrable ุงู„ู„ูŠ ู‡ูŠ by Cauchy .. by .. by
843
01:15:00,630 --> 01:15:06,140
integrability criterion ุญุตู„ู†ุง ุนู„ู‰ ู‡ุฐู‡ ุงู„ุขู† ู„ู…ูŠู†
844
01:15:06,140 --> 01:15:11,400
ุฑุงูŠุญ ุจุฏูŠ ุฃุซุจุช ุงู„ู€ Integrability ู„ุนุงู„ูุชุฑุฉ A ูˆC ูˆ
845
01:15:11,400 --> 01:15:15,040
Integrability ู„ูุชุฑุฉ B ูˆC ูุงู†ุง ุจุฏูŠ ููŠ ุงู„ู€ partition
846
01:15:15,040 --> 01:15:22,140
ุงู„ู„ูŠ ุฃุตู„ ู„ู‡ ุจุฏูŠ ุฃุตู„ ู„ู„ู€ U ู„ู„ partition B ู…ุซู„ุง ู…ุนูŠู†ุฉ
847
01:15:22,140 --> 01:15:30,020
B' ูˆ F- L B' ูˆ F ุจุฏูŠ ุฃุตู„ ุฃุตุบุฑ ู…ู† ู…ูŠู† ุฃุตู„ ุฃุตุบุฑ ู…ู†
848
01:15:30,020 --> 01:15:34,080
ุฅุจุณู„ูˆู† ูˆู‡ุฐู‡ ุชูƒูˆู† ุงู„ู€ B' partition ู„ู…ูŠู† ู„ู„ูุชุฑุฉ
849
01:15:34,080 --> 01:15:38,000
ุงู„ุฃูˆู„ู‰ ูุนุดุงู† ุชูƒูˆู† ู„ู„ูุชุฑุฉ ุงู„ุฃูˆู„ู‰ ู„ุงุฒู… ุชูƒูˆู† ุงู„ู€ C
850
01:15:38,000 --> 01:15:42,620
ู…ูˆุฌูˆุฏุฉ ููŠู‡ุง ูุจู†ุงุก ุนู„ูŠู‡ ุฃู†ุง ู…ุด ุนุงุฑู ุงู„ู€ B' ุงู„ู€ B ุงู„ู„ูŠ
851
01:15:42,620 --> 01:15:46,560
ู„ุฌูŠุช ููŠู‡ ุงู„ู€ C ูˆู„ุง ู„ุฃ ุฅุฐุง ุจุชุงุฎุฏูˆุง ุจุนูŠู† ุงู„ุงุนุชุจุงุฑ
852
01:15:46,560 --> 01:15:51,760
ุนุดุงู† ุฃุตู„ ู„ู…ูŠู† ู„ู„ู€ B' ุงู„ู„ูŠ ุชูƒูˆู† ููŠู‡ุง ุงู„ู€ C ุนุดุงู† ู‡ูŠูƒ
853
01:15:51,760 --> 01:15:58,130
ุฃู†ุง ุฅูŠุด ุฌูŠุช ู‚ู„ู†ุง ู„ู…ุง ู„ุฌูŠู†ุง ุงู„ู€ B ู‡ุฐู‡ ูˆูู‚ุง ู„ู„ู€ F is
854
01:15:58,130 --> 01:16:02,690
integrable ูˆุจุชุญู‚ู‚ ู‡ุฐู‡ ุฌูŠุช ุฎู„ูŠู†ูŠ ูˆู‚ู„ุช ุฎู„ูŠู†ูŠ ู†ุงุฎุฏ
855
01:16:02,690 --> 01:16:07,730
B' ุฅูŠุด ุจุชุณุงูˆูŠ ูŠุง ุดุจุงุจ ุจุชุณุงูˆูŠ B ุงุชุญุงุฏ ุงู„ู€ C ูŠุนู†ูŠ
856
01:16:07,730 --> 01:16:13,390
ุถูุช ู„ู„ู€ partition ุงู„ู„ูŠ ู„ุฌูŠุช ู…ู† ุงู„ู€ C ูˆู‡ูˆ ู‡ุฐุง ุงู„ู€
857
01:16:13,390 --> 01:16:19,070
B' ุจุฑุถู‡ ู‡ูŠุญู‚ู‚ ู„ู„ูŠ ุจุฏูŠ ุงู‡ ุงู„ู„ูŠ ู‡ูˆ A ุดู…ุงู„ู‡ ุตุงุฑ B'
858
01:16:19,510 --> 01:16:24,420
refinement ู„ู„ู€ B ู…ุง ุฏุงู… ุงู„ู€ Refinement ู„ู„ู€ B ุฅุฐุง
859
01:16:24,420 --> 01:16:29,960
UB' ูˆ F ุฃูƒูŠุฏ ุงู„ู€ Refinement ู‡ุฐุง ู‡ูŠุตุบุฑ ุนู† ุงู„ุฃุตู„
860
01:16:29,960 --> 01:16:36,960
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ UBF ุจูŠู†ู…ุง ุงู„ู€ B' of F ู‡ูŠูƒุจุฑ ุนู† ู…ูŠู†ุŸ ุนู†
861
01:16:36,960 --> 01:16:41,980
ุงู„ุฃุตู„ ูู„ู…ู‘ุง ุฃุถุฑุจู‡ ููŠ ุณุงู„ุจ ู‡ูŠุตุบุฑ ุฅุฐุง ุญูŠุตูŠุฑ ุนู†ุฏ U B'
862
01:16:42,300 --> 01:16:48,080
F ู†ุงู‚ุต ุงู„ู€ B' F ุฃุตุบุฑ ูŠุณุงูˆูŠ U B ูˆ F ู†ุงู‚ุต ุงู„ู€ B ูˆ F
863
01:16:48,080 --> 01:16:52,900
ูˆู‡ุฐุง ุฃุตู„ุง ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Epsilon ุฅุฐุง ุทู„ุน ุนู†ุฏ ุงู„
864
01:16:52,900 --> 01:16:58,390
B' ุงู„ู„ูŠ ุฃู†ุง ุงุญุชุฌุชู‡ ุงู„ู„ูŠ ููŠ ุงู„ุฃุตู„ ู‡ูˆ ุงู„ู€ B ุงู„ุฃุตู„ูŠุฉ
865
01:16:58,390 --> 01:17:03,550
ุงู„ู„ูŠ ู„ุฌูŠุช ุงุชุญุงุฏ ุงู„ู€ C ุทู„ุน ุจุฑุถู‡ ุงู„ู€ U B' F ู†ุงู‚ุต
866
01:17:03,550 --> 01:17:08,590
ุงู„ู€ B' F ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ุฃู†ุง ุจุนุฏ ุดูˆูŠุฉ ู‡ุญุชุงุฌู‡
867
01:17:08,590 --> 01:17:13,850
ููŠ ุนู…ู„ูŠุฉ ุฅุซุจุงุช ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ F is integrable ุนู„ู‰
868
01:17:13,850 --> 01:17:17,710
ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ I1 ูˆ F is integrable ุนู„ู‰ ุงู„ุฌุฒุก
869
01:17:17,710 --> 01:17:22,410
ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ I2 ุทุจ ูƒูŠู ุจุฏู‡ ูŠุญุตู„ ู‡ู†ุงุŸ ุดูˆู ูƒูŠู ุจุฏู‡
870
01:17:22,410 --> 01:17:28,890
ูŠุญุตู„ ุงู„ู€ Partition ุงู„ุฃูˆู„ุงู†ูŠ B1 ุจุฑุงูŠู† ู…ุซู„ุง B1 ุจุฑุงูŠู†
871
01:17:28,890 --> 01:17:33,070
ุงู„ู„ูŠ ุจูŠุฎู„ู„ูŠ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆู‡ุฐุง partition
872
01:17:33,070 --> 01:17:38,670
ู„ู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู…ุง ูŠุคุฏูŠ ู„ูˆ ูˆุฌุฏุชู‡ ู‡ุฐุง ุฃู† ุงู„ู€ F is
873
01:17:38,670 --> 01:17:42,150
integrable ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ุฃูˆู„ู‰ ูˆ similarly ุญู„ุงุฌุฉ ุนู„ู‰
874
01:17:42,150 --> 01:17:47,180
ุงู„ูุชุฑุฉ ุงู„ุซุงู†ูŠุฉ ูˆุจูƒูˆู† ุฎู„ุตุช ุงู„ู†ุธุฑูŠุฉ ู‡ูŠูƒ ู†ุดูˆู ูƒูŠู ุงู„ุขู†
875
01:17:47,180 --> 01:17:52,660
ูˆุฌุฏู†ุง ุงู„ู€ B' ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ B ุงุชุญุงุฏ ุงู„ู€ C ูŠุญู‚ู‚ ู‡ุฐู‡
876
01:17:52,660 --> 01:17:57,800
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุฃูˆ ู‡ุฐู‡ ุงู„ู…ุชุจุงูŠู†ุฉ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
877
01:17:57,800 --> 01:18:02,160
Epsilon ุดูˆู ุงู„ุขู† ูƒูŠู ุฏูŠ ุจุงุฑุชุดู†ูŠ ู„ู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† A
878
01:18:02,160 --> 01:18:07,760
ู„ุนูŠู† C ุจูƒู„ ุจุณุงุทุฉ ู‚ุทุน ู„ู„ู€ B' ู‡ุฐุง ู…ุน ู…ูŠู†ุŸ ู…ุน A ูˆ C
879
01:18:07,760 --> 01:18:12,580
ุฃูƒูŠุฏ ู‡ุฐุง ููŠ C ุฃูƒูŠุฏ ูˆููŠ A ุฅุฐุง ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ู…ูˆุฌูˆุฏุฉ
880
01:18:12,580 --> 01:18:16,680
ูˆุงู„ู†ู‚ุทุฉ C ู…ูˆุฌูˆุฏุฉ ุฅุฐุง ู‡ูˆ ูุนู„ุง partition ู„ู…ูŠู†ุŸ ู‡ูŠูƒูˆู†
881
01:18:16,680 --> 01:18:21,200
B' partition ู„ู„ู€ A ูˆุงู„ู€ C ูˆุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ and let B
882
01:18:21,200 --> 01:18:27,880
T2' ุจูŠุณุงูˆูŠ B' ุชู‚ุงุทุน ุงู„ู€C ูˆุงู„ู€B ุฅุฐุง ุงู„ู€C ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง
883
01:18:27,880 --> 01:18:32,280
ูˆุงู„ู€B ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุจุญุชูˆูŠ ุงู„ู€ partition
884
01:18:32,280 --> 01:18:36,080
ุนู„ู‰ ุงู„ู€C ูˆุนู„ู‰ ุงู„ู€B ุฅุฐุง ูุนู„ุง ู‡ูˆ partition ู„ู…ูŠู†
885
01:18:36,080 --> 01:18:42,640
ู„ู„ูุชุฑุฉ ุงู„ุซุงู†ูŠุฉ is a partition of C ูˆB so that ุฅุฐุง
886
01:18:42,640 --> 01:18:49,380
ุงู„ุขู† ุจุญุถุฑ ุฅู† ู„ุฌูŠุช ุงู„ู„ูŠ ู‡ูˆ B1' ูˆB2' ูˆุงุญุฏ partition
887
01:18:49,380 --> 01:18:54,540
ู„ู„ู€A ูˆุงู„ู€C ูˆุงู„ุชุงู†ูŠ ู„ู„ู€C ูˆุงู„ู€B ูˆุจุฏู‘ุนูŠ ุฅู† ู‡ู…ุง ุงู„
888
01:18:54,540 --> 01:18:59,540
partitions ุงู„ู„ูŠ ู‡ูˆุตู„ู†ูŠ ุนู„ู‰ ู‡ุฐู‡ ูˆ similarly ุฒูŠู‡ุง
889
01:18:59,540 --> 01:19:03,020
ู„ู„ุชุงู†ูŠุฉ ุงู„ู„ูŠ ุจุชุนุทูŠู†ูŠ ุงู„ integrability ู„ู„ู€F ุนู„ู‰
890
01:19:03,020 --> 01:19:08,780
ุงู„ุฃูˆู„ู‰ ูˆ integrability ู„ู„ู€F ุนู„ู‰ ุงู„ุซุงู†ูŠุฉ ู†ุดูˆู ุฅูŠุด
891
01:19:08,780 --> 01:19:14,720
ุงู„ู„ูŠ ุจูŠู‚ูˆู„ู‡ ูŠู„ุง ุตู„ูˆุง ุนู„ูŠู†ุง ูŠุง ุดุจุงุจ ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู†ุฏูŠ
892
01:19:15,170 --> 01:19:20,550
ุฃุญุณุจู†ูŠ ุงู„ุขู† ุจุณ ุฎู„ูŠู†ูŠ ุจุณ ุนุดุงู† ุชูƒูˆู† ูˆุงุถุญุฉ ู‚ุฏุงู…ูƒ ุงู„ู„ูŠ
893
01:19:20,550 --> 01:19:26,010
ู‡ูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณุชุฎุฏู…ู‡ุง ุจุนุฏ ุดูˆูŠุฉ ุทูŠุจ ุดูˆููˆุง ูŠุง
894
01:19:26,010 --> 01:19:38,970
ุฌู…ุงุนุฉ ุฃุญุณุจู†ูŠ ุงู„ุขู† U ุจูŠ ุจุฑุงูŠู… ูˆ F ุงู„ู„ูŠ ู‡ูˆ ุจุชุณุงูˆูŠ U
895
01:19:38,970 --> 01:19:44,740
ุจูŠ ุจุฑุงูŠู… ูˆุงุญุฏ ูˆ F ุฒูŠ U ุจูŠ ุงุชู†ูŠู† ุจุฑุงูŠู… ูˆ F ุงู„ู„ูŠ ู‚ุจู„
896
01:19:44,740 --> 01:19:48,660
ุจุดูˆูŠุฉ ุนู…ู„ู†ุงู‡ุง ู‡ูˆ ุงู„ู€ partition ู‡ุฐุง ุจูŠ ุจุฑุงูŠู… ู‡ูˆ
897
01:19:48,660 --> 01:19:55,790
ุนุจุงุฑุฉ ุนู† ุงุชุญุงุฏ ู‡ุฐุง ุงุชุญุงุฏ ู‡ุฐุง ู…ุงุดูŠ ุงู„ุญุงู„ ู…ุงุดูŠ ุงู„ุขู† ูˆ
898
01:19:55,790 --> 01:19:59,610
ู†ูุณ ุงู„ุดูŠุก ุนู…ู„ุชู‡ุง ู‚ุจู„ ู‡ูŠูƒ ุงู„ู€ b prime of f ุณูˆุงุก ุงู„ู€ b
899
01:19:59,610 --> 01:20:03,470
prime ูˆุงุญุฏ ุฃูˆ ุงู„ู€ b2 prime ุญูŠุซ ุจูŠ ุงุชู†ูŠู† ุจุฑุงูŠู… ุจูŠ
900
01:20:03,470 --> 01:20:08,050
ูˆุงุญุฏ ุจุฑุงูŠู… ุจูŠุณุงูˆูŠ ุงุชุญุงุฏ ู‡ู†ุง ุดู…ุงู„ู‡ ู‡ูˆ ุจูŠ ุจุฑุงูŠู… ุฅุฐุง
901
01:20:08,050 --> 01:20:12,370
ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ equality
902
01:20:12,370 --> 01:20:17,190
ุงู„ุซุงู†ูŠุฉ ุงู„ุขู† ู…ู† ูˆุงุญุฏ ูˆู…ู† ุงุชู†ูŠู† ุจุฏูŠ ุฃุตู„ ู„ู„ูŠ ุจุฏูŠ ุงู‡
903
01:20:17,190 --> 01:20:25,950
ุฅูŠุด ุงู„ู„ูŠ ุจุฏูŠ ุงู‡ ุงุญุณุจ ู„ูŠ ุงู„ุขู† UB1' F ุฒูŠ UB2' F ู†ุงู‚ุต ุงู„
904
01:20:25,950 --> 01:20:34,350
B1' F ุฒูŠ ุงู„ B2' of F ุงู„ู„ูŠ ู‡ูˆ ู…ู† ูˆูŠู† ู‡ุฐุง ุฌุจุช ุงู„ู„ูŠ
905
01:20:34,350 --> 01:20:41,050
ู‡ูˆ ุนู†ุฏ ู‡ูŠ ู…ู† ูˆุงุญุฏ ู‡ูŠ ู‡ุฐู‡ ุงุชู‚ูˆุท ุนู†ู‡ุง ุจุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ู…ู†
906
01:20:41,050 --> 01:20:47,720
ูˆูŠู† ู‡ุฐู‡ ู…ู† ุงู„ุขู† ู…ู† ู‡ู†ุง ุดูŠู„ุช ุงู„ู„ูŠ ู‡ูˆ .. ู‡ุงูŠ ู…ู† ู‡ุฐูˆู„
907
01:20:47,720 --> 01:20:50,780
ูŠุง ุฌู…ุงุนุฉ ู…ู† ุงู„ู„ูŠ ุญุงุทุท ุนู„ูŠู‡ู… ุฃุญู…ุฑ ุฃู†ุง ุซู„ุงุซุฉ ..
908
01:20:50,780 --> 01:20:56,140
ุงู„ุชู†ุชูŠู† ู‡ุฐูˆู„ ุนู†ุฏ ุดูŠู„ุช ู‡ุฐูˆู„ .. ู‡ุฐู‡ ูˆุญุทูŠุช ู‡ุฐู‡
909
01:20:56,140 --> 01:21:04,180
ู…ูƒุงู†ู‡ุง ุทู„ุนุช ู‡ุฐู‡ .. ู‡ูŠู‡ุง .. ุฑุงูŠุญุฉุŸ ูˆุดูŠู„ุช ู‡ุฐู‡ ูˆุญุทูŠุช ู‡ุฐู‡
910
01:21:04,180 --> 01:21:05,500
ู…ูƒุงู†ู‡ุง
911
01:21:08,330 --> 01:21:13,550
ุตุงุฑุช ู‡ุฐู‡ ู…ูƒุงู†ู‡ุง ุฅุฐุง ู‡ุฐู‡ ู†ุงู‚ุต ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ู†ุงู‚ุต
912
01:21:13,550 --> 01:21:17,290
ู‡ุฐู‡ ุงู„ู„ูŠ ูƒุงู†ุช ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู‡ุชุตูŠุฑ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†
913
01:21:17,290 --> 01:21:24,150
ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ U ุฃูˆุถุญ ู„ูƒูŠ ุฃู†ุง U ุจูˆุงุญุฏ
914
01:21:24,150 --> 01:21:36,350
ุจุฑุงูŠู… ูˆ F ุฒุงุฆุฏ U ุจูŠุชู†ูŠู† ุจุฑุงูŠู… ูˆ F ู†ุงู‚ุต ุงู„ู€ of ุจูˆุงุญุฏ
915
01:21:36,350 --> 01:21:46,170
ุจุฑุงูŠู… ูˆ F ุฒุงุฆุฏ ุงู„ู€ B2 prime ูˆ F ู‡ุฐุง ูƒู„ู‡ ุฃุตุบุฑ ู…ู†
916
01:21:46,170 --> 01:21:50,810
ุฅุจุณู„ูˆู† ู„ุฃู† ู‡ุฐุง ุฃุตู„ุง ูƒู„ู‡ .. ู„ูŠุด ู‡ุฐุง ุตุญุŸ ู„ุฃู† ู‡ุฐุง
917
01:21:50,810 --> 01:22:00,330
ุฃุตู„ุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† U B prime ูˆ F ูˆู‡ุฐุง ุงู„ู€ B prime ูˆ
918
01:22:00,330 --> 01:22:06,440
F ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ุฃุตู„ ู‡ุฐุง ู…ู† ุนู†ุฏูŠ ู…ู† ู‡ู†ุง ุฃุตุบุฑ ู…ู† ุฅูŠุด
919
01:22:06,440 --> 01:22:09,860
ู…ู† ุฅุจุณู„ูˆู† ุฅุฐุงู‹ ู‡ุฐุง ุตุงุฑ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุฎู„ู‘ูŠ ู‡ุฐุง
920
01:22:09,860 --> 01:22:13,160
ุงู„ูƒู„ุงู… ููŠ ุงู„ุฐุงูƒุฑุฉ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู„ุฃู†ู‡ ู‡ูŠููŠุฏู†ูŠ ุจุนุฏ
921
01:22:13,160 --> 01:22:19,900
ุจุดูˆูŠุฉ ุดูˆู ุงู„ุขู† ููˆุฒุน ุฎู„ู‘ูŠู†ูŠ ุจุณ ุฃู…ุณุญ ุงู„ู„ูŠ ุนู„ู‰ ุงู„ู„ูˆุญ
922
01:22:19,900 --> 01:22:29,960
ูˆูˆุฒุน ุงู„ุขู† ุนู†ุฏูŠ ู‡ุฐุง ุจูŠุตูŠุฑ ุฅูŠุด ู‡ูˆ ู‡ุฐุง ุจูŠุตูŠุฑ U ุจ U
923
01:22:31,310 --> 01:22:36,370
ุจ1 ุจุฑุงูŠู… ูˆ F ู†ุงู‚ุต
924
01:22:36,370 --> 01:22:47,190
ุงู„ู€ ุจ ูˆุงุญุฏ ุจุฑุงูŠู… ูˆ F ูƒู„ ู‡ุฐุง ู…ุน ุจุนุถู‡ ุฒุงุฆุฏ U ุจ ุงุชู†ูŠู†
925
01:22:47,190 --> 01:22:55,930
ุจุฑุงูŠู… ูˆ F ู†ุงู‚ุต ุงู„ู€ ุจ ุงุชู†ูŠู† ุจุฑุงูŠู… ูˆ F ู‡ุฐุง ูƒู„ู‡ ุฃุตุบุฑ
926
01:22:55,930 --> 01:23:01,160
ู…ู† ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ ู…ู† ุฅุจุณู„ูˆู† ู‡ุฐูˆู„ ุงู„ูƒู…ูŠุชูŠู† ู‡ุฐู‡ ุฒุงุฆุฏ
927
01:23:01,160 --> 01:23:06,080
ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆู‡ุฐู‡ ู…ูˆุฌุจุฉ ูˆู‡ุฐู‡ ู…ูˆุฌุจุฉ ุฅุฐุง
928
01:23:06,080 --> 01:23:12,140
ุงู„ูƒู…ูŠุฉ ู‡ุฐู‡ ุฃูƒูŠุฏ ู„ุญุงู„ู‡ุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆุงู„ูƒู…ูŠุฉ ู‡ุฐู‡
929
01:23:12,140 --> 01:23:17,900
ู„ุญุงู„ู‡ุง ุฅูŠุด ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุชุนู†ูŠ
930
01:23:17,900 --> 01:23:22,520
ุฃู† ู„ูƒู„ ุฅุจุณู„ูˆู† ู„ุฌูŠู†ุง partition ุจูŠ ูˆุงุญุฏ ุจุฑุงูŠู… ุจุญูŠุซ
931
01:23:22,520 --> 01:23:26,620
ุฃู† ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูŠุนู†ูŠ F is
932
01:23:26,620 --> 01:23:38,540
integrable on I ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ู…ู† A ู„ู€ C ู„ุฌูŠู†ุง
933
01:23:38,540 --> 01:23:45,180
partition B2' ุจุญูŠุซ ุฃู†ู‡ ู‡ุฐุง ู†ุงู‚ุต B2' ู„ู…ูŠู† ู„ู€ I2 ู‡ูŠูƒูˆู†
934
01:23:45,180 --> 01:23:49,500
ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆู‡ุฐุง ูŠุนู†ูŠ ุฃู† F is
935
01:23:49,500 --> 01:24:00,780
integrable on I2 ูƒุฏู‡ ู†ูƒูˆู† ู‡ูŠ ูƒุฅุญู†ุง ูˆุตู„ู†ุง ู„ู„ูŠ
936
01:24:00,780 --> 01:24:08,840
ุจุฏูŠ ู…ู† ู†ุงุญูŠุฉ ุฅุซุจุงุช ุฃู† F is integrable on I if and
937
01:24:08,840 --> 01:24:15,760
only if F is integrable on I ูˆุงุญุฏ and on I ุงุชู†ูŠู†
938
01:24:15,760 --> 01:24:23,380
ุฏู„ ุนู„ู‰ ุงู„ุฌุฒุก ุงู„ุฃุฎูŠุฑ ุงู„ู„ูŠ ุฃุซุจุชู‡ ุฃู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
939
01:24:23,380 --> 01:24:28,900
integration ู…ู† A ุฅู„ู‰ B ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุจุงู„ุจุณุงูˆูŠ ุงู„
940
01:24:28,900 --> 01:24:32,780
integration ู…ู† A ุฅู„ู‰ C ุฒุงุฆุฏ ุงู„ integration ู…ู† C
941
01:24:32,780 --> 01:24:39,840
ู„ุนู†ุฏ B ุฑูƒุฒูˆุง ู…ุนุงูŠุง ุนุดุงู† ู†ุฎุชุตุฑ ุงู„ูˆู‚ุช ุดุจูŠู‡ ุจุงู„ู„ูŠ
942
01:24:39,840 --> 01:24:42,780
ุดุฑุญุชู‡ ู‚ุจู„ ุจุดูˆูŠุฉ ููŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‚ุจู„ู‡ุง ุงู„
943
01:24:42,780 --> 01:24:45,860
integration ู…ู† A ู„ู€ B ู„ู„ู€ F ู…ุฏุงู… ุฅู† F is Integra
944
01:24:45,860 --> 01:24:50,400
ุจุงู„ูุฑุถ ุฅุญู†ุง ุฅุฐุง ู‡ุฐุง ุจูŠุณุงูˆูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ U of F ูˆ
945
01:24:50,400 --> 01:24:53,600
ุงู„ู€ U of F ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ M ููŠ ู…ู…ู„ุฉ ูƒู„ ู‡ุฐูˆู„ ุฅุฐุง ุฃุธู‡ุฑ
946
01:24:53,600 --> 01:24:58,320
ูŠุณุงูˆูŠ U B prime ูˆ F B prime partition ู…ู† A ู„ุนู†ุฏ ู…ูŠู†
947
01:24:58,320 --> 01:25:03,280
ู„ุนู†ุฏ B ูˆู‡ุฐุง ู‚ุจู„ ุจุดูˆูŠุฉ ุฅูŠุด ู‚ู„ู†ุง ุนู†ู‡ ุจูŠุณุงูˆูŠ UB1 of F
948
01:25:03,280 --> 01:25:10,760
ุฒุงุฆุฏ UB2 of F ู‡ุฐุง ุฃูƒูŠุฏ ุฃุตุบุฑ ูŠุณุงูˆูŠ ุงู„ุฃู„ ุชุจุนู‡ ูˆู‡ุฐุง
949
01:25:10,760 --> 01:25:16,420
ุฃูƒูŠุฏ ุฃุตุบุฑ ูŠุณุงูˆูŠ ุงู„ุฃู„ ุงู„ู„ูŠ ุฅู„ู‡ ุฒุงุฆุฏ 2 ุฅุจุณู„ูˆู† ู…ู† ูˆูŠู†
950
01:25:16,420 --> 01:25:22,960
ุฌุจุชู‡ ู‡ุฐุง ู‚ู„ู†ุง ุจู…ุง ุฃู† F is integrable ุฅุฐุง U ู†ุงู‚ุต
951
01:25:22,960 --> 01:25:29,840
ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆ U ู†ุงู‚ุต ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุฅุฐุง
952
01:25:29,840 --> 01:25:34,220
ุตุงุฑ ุนู†ุฏูŠ U ุฒุงุฆุฏ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ู‡ุฐุง ุฒุงุฆุฏ ู‡ุฐุง ุฒุงุฆุฏ ู…ูŠู†
953
01:25:34,220 --> 01:25:38,620
2 ุฅุจุณู„ูˆู† ู…ู† ูˆูŠู† ุฌุจุช ู‡ุฐุง ูŠุง ุฌู…ุงุนุฉ ู…ู† ุงู„ู„ูŠ ู‡ูŠ
954
01:25:38,620 --> 01:25:45,660
ุงู„ู€ integrability criterion for ู…ูŠู† for F on the
955
01:25:45,660 --> 01:25:50,520
interval I ูˆุงุญุฏ ุญูŠูƒูˆู† ุงู„ู€ U ุจูˆุงุญุฏ ุจุฑุงูŠู… ูˆ F ู†ุงู‚ุต ุงู„ู€
956
01:25:50,520 --> 01:25:54,400
ุจูˆุงุญุฏ ุจุฑุงูŠู… ูˆ F ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ู€ U
957
01:25:54,400 --> 01:25:55,580
ุจูˆุงุญุฏ
958
01:25:57,750 --> 01:26:03,830
ุฃุตุบุฑ ู…ู† L ุจูŠ ูˆุงุญุฏ ุฅุจุฑุงู‡ูŠู… ูˆ F ุฒุงุฆุฏ ุฅุจุณู„ูˆู† ู‡ุฐุง ุฌุจุชู‡
959
01:26:03,830 --> 01:26:09,610
ู…ู† ุณุจุจู‡ ุฃู† ุงู„ู€ F is integrable on I ูˆุงุญุฏ ูƒู„ู‡ุง
960
01:26:09,610 --> 01:26:15,580
Similarly since F is integrable on I ูˆุงุญุฏ ูƒู„ู‡ุง I2
961
01:26:15,580 --> 01:26:19,360
ูƒู„ู‡ุง ุฅุฐุง ุจูŠู„ุงู‚ูŠ ุจูŠ ุงุชู†ูŠู† ุจุฑุงูŠู… ุจุญูŠุซ ุฅู† U ุจูŠ ุงุชู†ูŠู†
962
01:26:19,360 --> 01:26:23,940
ุจุฑุงูŠู… ูˆ F ุฃุตุบุฑ ู…ู† L ุจูŠ ุงุชู†ูŠู† ุจุฑุงูŠู… ูˆ F ุฒุงุฆุฏ ุฅุจุณู„ูˆู†
963
01:26:23,940 --> 01:26:30,900
ู…ุน ุจุนุถ ุตุงุฑ ู‡ุฐุง ุฒุงุฆุฏ ู‡ุฐุง ุฒุงุฆุฏ ุฅูŠุด 2 ุฅุจุณู„ูˆู† ุจู†ูุณ
964
01:26:30,900 --> 01:26:34,380
ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ุญูƒูŠุชู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ F is Integrable ูˆู‡ุฐุง
965
01:26:34,380 --> 01:26:36,960
ุฃู‚ู„ู‡ ููŠ F ูุงู„ุฃู‚ู„ ููŠ F ู‡ูˆ ุงู„ supremum ู„ู‡ุง ุฏูˆู„ ุฅุฐุง
966
01:26:36,960 --> 01:26:40,500
ู‡ุฐุง ุฃูƒุจุฑ ูˆุดูˆูŠุฉ ู‡ุฐุง ูˆู‡ุฐุง ุฃูƒุจุฑ ูˆุดูˆูŠุฉ ู‡ุฐุง ุฅุฐุง ุตุงุฑ
967
01:26:40,500 --> 01:26:45,060
ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃูƒุจุฑ ุฃุตุบุฑ ูˆุดูˆูŠุฉ ู‡ุฐุง ุฒุงุฆุฏ ู‡ุฐุง ุฒุงุฆุฏ
968
01:26:45,060 --> 01:26:49,270
ุฅูŠู‡ ุดู…ุงู„ู‡ 2 ุฅุจุณู„ูˆู† ูˆุฒูŠ ู…ุง ุญูƒูŠู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ since
969
01:26:49,270 --> 01:26:53,290
ุฅุจุณู„ูˆู† was arbitrary ูˆุจู†ูุณ ุงู„ุชูˆุถูŠุญ ุงู„ุฃูˆู„ุงู†ูŠ ุจุทู„ุน
970
01:26:53,290 --> 01:26:55,470
ุนู†ุฏ ุงู„ integration ู…ู† LB ู„ู€ LF ุขุฎุฑ ุดู‡ุฑ ุงู„
971
01:26:55,470 --> 01:26:59,110
integration ู„ู„ุฃูˆู„ ุฒุงุฆุฏ ุงู„ integration ู„ู„ุชุงู†ูŠ ุจุฏูˆู†
972
01:26:59,110 --> 01:27:03,250
ุงู„ุฅุจุณู„ูˆู† ูˆู‚ู„ู†ุง ู„ูŠุด ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ุงู„ุขู† ุงู„ุงุชุฌุงู‡
973
01:27:03,250 --> 01:27:06,230
ุงู„ุซุงู†ูŠ similarly ุจุฑุถู‡ ู‡ุชู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุจุฑู‡ุงู†
974
01:27:06,230 --> 01:27:12,370
ู…ุชุดุงุจู‡ ุงู„ุขู† ุจู†ูุณ ุงู„ู…ู†ุทู‚ ูˆุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ูˆ similarly
975
01:27:19,820 --> 01:27:22,620
ุทุจุนุง ุนุงุฑููŠู† ุฅูŠู‡ ุฑุงูŠุญ ุฃู†ุงุŸ ุฃู†ุง ุฑุงุญ ุฃุซุจุช ุฅู† ู‡ุฐุง
976
01:27:22,620 --> 01:27:25,540
ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนู†ุฏ ุงู„
977
01:27:25,540 --> 01:27:28,700
integration ู‡ุฐุง ุฒุงุฆุฏ ุงู„ integration ู‡ุฐุง F is
978
01:27:28,700 --> 01:27:33,240
integrable ุฅุฐุง ู‡ูŠ ุจุณุงูˆูŠ ุงู„ู€ U ุงู„ู€ U of F ุงู„ู€ U of F
979
01:27:33,240 --> 01:27:36,860
ู‡ูŠ ุงู„ infimum ุฅุฐุง ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ U ูˆุงุญุฏุฉ
980
01:27:36,860 --> 01:27:40,580
ู…ู†ู‡ู… ูˆู‡ุฐู‡ ุจุฑุถู‡ ุงู„ู€ U of F ุนู„ู‰ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุจุฑุถู‡ ุฃุตุบุฑ
981
01:27:40,580 --> 01:27:43,280
ุฃูˆ ุณุงูˆูŠู‘ุฉ ูˆุงุญุฏุฉ ู…ู†ู‡ุง ุฅุฐุง ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠู‘ุฉ ุงู„ู€ U ู‡ุฐู‡
982
01:27:43,280 --> 01:27:47,820
ุฒุงุฆุฏ ุงู„ู€ U ู‡ุฐู‡ ููŠ ู…ู‚ุงุจู„ู‡ ู‚ุจู„ ู‚ู„ูŠู„ ุฃุซุจุชู†ุง ุฃู†ู‡ .. ู‚ู„ู†ุง
983
01:27:47,820 --> 01:27:51,440
ุฃู†ู‡ ู…ุฏุงู… ุชูุฒ integrable ุฅุฐุง ุจุงู„ู€ .. integrability
984
01:27:51,440 --> 01:27:55,980
criterion ุงู„ูุฑู‚ ุจูŠู† ู‡ุฐู‡ ูˆู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุฅุฐุง
985
01:27:55,980 --> 01:28:00,260
ุตุงุฑ ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ู‡ุฐู‡ ุฒุงุฆุฏ ุฅุจุณู„ูˆู† ูˆู‡ุฐู‡ ู†ูุณ ุงู„ุดูŠุก
986
01:28:00,260 --> 01:28:03,740
ู„ู„ุฃูุฒ integrable ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ุชุงู†ูŠุฉ ู†ูุณ ุงู„ู„ูŠ ู‚ู„ุชู‡
987
01:28:03,740 --> 01:28:07,760
ุฃุตุบุฑ ู…ู† ู‡ุฐู‡ ุฒุงุฆุฏ ุฅุจุณู„ูˆู† ุฅุฐุง ุตุงุฑ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ูƒู„ู‡
988
01:28:07,760 --> 01:28:10,560
ุนู„ู‰ ุจุนุถู‡ ุฃุตุบุฑ ู…ู† ู‡ุฐู‡ ุฒุงุฆุฏ ู‡ุฐู‡ ุฒุงุฆุฏ ุงุซู†ูŠู† ุฅุจุณู„ูˆู†
989
01:28:10,560 --> 01:28:17,430
ู„ูƒู† ู‡ุฐูˆู„ุง ุงู„ุซู†ุชูŠู† ุงู„ู„ูŠ ู‡ู†ุงุจุณุงูˆูŠู† ุงู„ู„ูŠ ู‡ูˆ LB'F ููŠ
990
01:28:17,430 --> 01:28:22,530
ู‡ู†ุง ุฅูŠุด ู…ุงู„ู‡ุง ู…ุณุงูˆุงุฉ ุจุณุงูˆูŠู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู„ุฃู† ุงู„ู€ LB
991
01:28:22,530 --> 01:28:26,450
'F ุฅูŠุด ู…ุงู„ู‡ุง ุนุจุงุฑุฉ ุนู† ู‡ุฐู‡ ุงุชุญุงุฏ ู‡ุฐู‡ ุนู…ู„ู†ุงู‡ุง ู‚ุจู„
992
01:28:26,450 --> 01:28:31,150
ุดูˆูŠู‘ุฉ ูˆ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ู‡ุฐุง
993
01:28:31,150 --> 01:28:36,290
ู„ุฃู† ู‡ุฐุง ุนุจุงุฑุฉ ุนู† LF ูˆ LF ุนู„ู‰ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูˆ
994
01:28:36,290 --> 01:28:39,210
ุนุจุงุฑุฉ ุนู† ุงู„ู€ supreme ุฃูˆ ุฃูƒุจุฑ ุฃูˆ ุณุงูˆูŠ ู‡ุฐู‡ ุฅุฐุง ุตุงุฑ
995
01:28:39,210 --> 01:28:43,120
ููŠู‡ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ integration
996
01:28:43,120 --> 01:28:47,360
ุฒุงุฆุฏ ุงุซู†ูŠู† ุฅุจุณู„ูˆู† ุฅุฐุง ุญุตู„ู†ุง ุนู„ู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃูƒุจุฑ ุฃูˆ
997
01:28:47,360 --> 01:28:50,800
ูŠุณุงูˆูŠ ู‡ุฐุง for every ุฅุจุณู„ูˆู† ุจู†ูุณ ุงู„ู…ู†ุทู‚ since
998
01:28:50,800 --> 01:28:54,160
ุฅุจุณู„ูˆู† was arbitrary ุฅุฐุง ุงู„ู€ integration ู‡ุฐุง ุฒุงุฆุฏ
999
01:28:54,160 --> 01:28:58,460
ุงู„ู€ integration ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ู† ู‡ุฐู‡ ูˆู…ู† ุงู„ู„ูŠ
1000
01:28:58,460 --> 01:29:03,660
ุฌุงุจู„ู‡ุง ู‡ุฐู‡ ุจูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู…ุณุงูˆุงุฉ ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ูˆู‡ูŠูƒ
1001
01:29:03,660 --> 01:29:09,860
ุจู†ูƒูˆู† ุงุญู†ุง ุจุฑู‡ู†ุง ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุฃูŠุถุง ุจุดูƒู„ ูƒุงู…ู„ ููŠ
1002
01:29:09,860 --> 01:29:17,330
ู…ู„ุงุญุธุฉ ุฃุฎูŠุฑุฉ ุนู„ู‰ ุงู„ู†ุธุฑูŠุฉ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ุฅู†ู‡ ุนู†ุฏูŠ ู„ูˆ
1003
01:29:17,330 --> 01:29:21,990
ูƒุงู†ุช c1 ุฃุตุบุฑ ู…ู† c2 ุฃุตุบุฑ ู…ู† cn ุญูŠุซ ูˆ c1 ูˆ c2 ูˆ cn
1004
01:29:21,990 --> 01:29:26,050
ููŠ ุงู„ูุชุฑุฉ a ูˆ b ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุจู†ู‚ุฏุฑ ุงู„ู„ูŠ
1005
01:29:26,050 --> 01:29:32,470
ู‡ูŠ ู†ุทุจู‚ ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุนุฏุฉ ู…ุฑุงุช ูุนู†ุฏูŠ ู‡ูŠ a ูˆ ู‡ูŠ b ูˆ
1006
01:29:32,470 --> 01:29:38,320
ู‡ูŠ c1 ู‡ุฐู‡ C2 ูˆู‡ุฐู‡ C3 ู„ุนู†ุฏ Cn ู…ุซู„ุง ุจูŠุตูŠุฑ ุฃูˆ ุฎู„ู‘ูŠู†ูŠ
1007
01:29:38,320 --> 01:29:41,720
ุฃู‚ูˆู„ C1 ู…ู† ู‡ู†ุง ูˆู‡ู†ุง Cn ู…ู† ู‡ู†ุง ุจูŠุตูŠุฑ ุงู„ู€ integration
1008
01:29:41,720 --> 01:29:46,500
ู…ู† A ู„ู€ B ุจูŠุณุงูˆูŠ ุงู„ู€ integration ู…ู† A ู„ู€ C1 ุฒูŠุงุฏุฉ ุงู„ู€
1009
01:29:46,500 --> 01:29:49,520
integration ู…ู† C1 ู„ู€ C2 ุฒูŠุงุฏุฉ ุงู„ู…ู‚ุตุฑ ุงู„ู„ูŠ ุนู†ุฏ ุฃุฎุฑ
1010
01:29:49,520 --> 01:29:55,980
ูˆุงุญุฏุฉ ุงู„ู€ integration ู…ู† Cn ู„ุนู†ุฏ B ู„ู„ู€ function ูˆู‡ุฐู‡
1011
01:29:55,980 --> 01:30:04,230
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู„ุงุญุธุฉ ู…ุนู‡ูˆุฏุฉ ุงู„ุขู† ููŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ
1012
01:30:04,230 --> 01:30:08,930
ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ู…ุดู‡ูˆุฑุฉ ุงู„ู„ูŠ ู‡ูŠ
1013
01:30:08,930 --> 01:30:16,510
composition theorem ุฅู† ู„ูˆ ูƒุงู† ุนู†ุฏูŠ F is a function
1014
01:30:16,510 --> 01:30:24,630
ู…ู† I ู„ุนู†ุฏ R ูˆููŠ function ู…ู† ุงู„ู„ูŠ ู‡ูˆ domain ุงู„ู€ I ู…ู†
1015
01:30:24,630 --> 01:30:28,690
range ุงู„ู€ I .. ุงู„ู€ F ูƒุงุณู ู„ุนู†ุฏ ุงู„ู€ .. ู„ุนู†ุฏ ุงู„ู€ R
1016
01:30:32,310 --> 01:30:36,870
ูˆ ูƒุงู†ุช had integrable ูˆ ูƒุงู†ุช had integrable ู‡ู„ ุงู„ู€
1017
01:30:36,870 --> 01:30:40,430
composition ุจูŠู†ู‡ู… integrable ุทุจุนุง ู‡ุฐุง ุงู„ูƒู„ุงู… need
1018
01:30:40,430 --> 01:30:44,570
not to be true in general ู‡ู†ุดูˆู ู…ุซุงู„ ุจุนุฏ ุดูˆูŠู‘ุฉ ู„ูƒู†
1019
01:30:44,570 --> 01:30:48,790
ู„ูˆ ูƒุงู†ุช ุงู„ู€ Phi continuous ูŠุนู†ูŠ ู‚ูˆู‘ูŠู†ุง ุงู„ุดุฑุท ุงู„ุขู†
1020
01:30:48,790 --> 01:30:54,290
ุดูˆูŠู‘ุฉ ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู€ Phi composite ู F is integrable
1021
01:30:54,290 --> 01:30:58,410
ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู„ูˆ ูƒุงู†ุช F is integrable ุงู„ู€ Phi is
1022
01:30:58,410 --> 01:31:01,510
continuous ุญูŠูƒูˆู† ุงู„ู€ Phi composition ุฃูุถู„ ู„ู…ุง ูŠูƒูˆู†
1023
01:31:01,510 --> 01:31:05,730
ุงู„ู€ composition ู…ุนุฑู ุนุจุงุฑุฉ ุนู† integrable function
1024
01:31:05,730 --> 01:31:13,350
ูˆ ุงุญู†ุง ุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุจู†ูƒู…ู„ ูˆุฅู„ู‰ ู„ู‚ุงุก