abdullah's picture
Add files using upload-large-folder tool
6d205e9 verified
raw
history blame
71.5 kB
1
00:00:10,580 --> 00:00:15,760
ุฅูŠุด ูŠุง ุฃุจูˆ ุญุณูŠู†ุŸ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุญู…ุฏ ู„ู„ู‡
2
00:00:15,760 --> 00:00:18,980
ุฑุจ ุงู„ุนุงู„ู…ูŠู† ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุณูŠุฏ ุงู„ู…ุฑุณู„ูŠู† ุณูŠุฏู†ุง
3
00:00:18,980 --> 00:00:24,540
ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ุฃุฌู…ุนูŠู† ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 17
4
00:00:24,540 --> 00:00:29,900
ููŠ ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ุฉ 2 ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ
5
00:00:29,900 --> 00:00:37,170
ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู„ูŠุฉ ุงู„ุนู„ูˆุฏ ู‚ุณู… ุงู„ุฑูŠุงุถูŠุฉุจุฏุฃู†ุง ุงู„ูŠูˆู…
6
00:00:37,170 --> 00:00:41,490
ุงุณุชูƒู…ุงู„ ู„ู„ูŠ ุจุฏุฃู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุญูƒูŠู†ุง ุงู„ู…ุฑุฉ
7
00:00:41,490 --> 00:00:48,070
ุงู„ู…ุงุถูŠุฉ ุนู† ุงู„ู€ integration as a limit ู‚ู„ู†ุง ุงุญู†ุง
8
00:00:48,070 --> 00:00:51,970
ู‚ุจู„ ูƒู†ุง ู…ุนุฑููŠู† ุงู„ integration ุงู†ู‡ ู…ูˆุฌูˆุฏ ุนู„ู‰ ุฃุณุงุณ
9
00:00:51,970 --> 00:00:56,950
ุงู† ุงู„ upper integral U of F ูŠุณุงูˆูŠ ุงู„ lower
10
00:00:56,950 --> 00:01:01,710
integral L of F ู‚ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู† ุงุญู†ุง ุจุฏู†ุง
11
00:01:01,710 --> 00:01:07,300
ู†ุฑูˆุญ ุจุงุชุฌุงู‡ุฅู†ู‡ ู†ุตู„ ููŠ ุงู„ู†ู‡ุงูŠุฉ ุฅู†ู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู„ูŠ
12
00:01:07,300 --> 00:01:11,440
ู‡ูˆ ุงู„ู€ Integrability ูŠูƒุงูุฆ ุฅู† ู†ุตู„ ุฅู†ู‡ ุงู„ limit
13
00:01:11,440 --> 00:01:14,760
ุทุจุนุง ูˆููŠ ุญุงู„ุฉ ูˆุฌูˆุฏู‡ ู‡ู†ุณู…ูŠู‡ ุจุณุงูˆุฉ ุงู„ integration ู…ู†
14
00:01:14,760 --> 00:01:19,940
a ู„ b of x dx ู‚ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฅู†ู‡ ู‡ู†ุตู„ ููŠ
15
00:01:19,940 --> 00:01:25,600
ุงู„ู†ู‡ุงูŠุฉ ููŠ ู†ู‡ุงูŠุฉ ุงู„ section 7-4 ุฅู†ู‡ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„
16
00:01:25,600 --> 00:01:28,840
condition ุฃูˆ ู‡ุฐุง ุงู„ definition ูŠูƒุงูุฆ ุฅู†ู‡ ู†ู‚ูˆู„
17
00:01:28,840 --> 00:01:35,640
limit ุงู„ู„ูŠ ู‡ูˆ SB ูˆ F as normal B ุฃูˆ ุงู„ู…ุด ุชุจุน ุงู„ู€ B
18
00:01:35,640 --> 00:01:41,100
ุจูŠุฑูˆุญ ู„ู€ 0 ูˆ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุฅุฐุง ูƒุงู† ู‡ุฐุง exist ุจูŠุตูŠุฑ
19
00:01:41,100 --> 00:01:45,380
.. ู‡ูŠุณุงูˆูŠ ุงู„ integration ู…ู† A ู„ B F of X DX ูŠุนู†ูŠ
20
00:01:45,380 --> 00:01:49,500
ุจู…ุนู†ู‰ ุขุฎุฑ .. ุจู…ุนู†ู‰ ุขุฎุฑ ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุทุจุนุง ุงู„ู€
21
00:01:49,500 --> 00:01:55,460
Riemann Sum ุฃู†ู‡ ุงู„ู€ limitู„ุฑู…ุงู† sum as ุงู„ู€
22
00:01:55,460 --> 00:02:00,020
partition B ุจูŠุฑูˆุญ ู„ู„ู€ 0 ู„ูˆ ูƒุงู† exist ุญุณูŠุฑ ุงู„ู„ูŠ ู‡ูŠ
23
00:02:00,020 --> 00:02:04,220
F is integrable ูˆุงู„ู€ integration ู„ู‡ุง ู‡ูˆ ุนุจุงุฑุฉ ุนู†
24
00:02:04,220 --> 00:02:09,520
ู‚ูŠู…ุฉ ู‡ุฐุง ุงู„ู€ limitูˆู„ูˆ ูƒุงู† ุงู„ integration exist
25
00:02:09,520 --> 00:02:14,040
ุทุจุนุง ุจุงู„ู…ูู‡ูˆู… ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ู‡ูŠูƒูˆู† ุนู†ุฏู‡ ุงู„ limit ู‡ุฐุง
26
00:02:14,040 --> 00:02:18,300
exist ูˆ ู‡ูŠุณุงูˆูŠ ู‚ูŠู…ุฉ ู…ูŠู† ุงู„ integration ู‡ุฐุง ุงู„ู„ูŠ
27
00:02:18,300 --> 00:02:22,260
ุญู†ุตู„ ุฅู„ูŠู‡ ููŠ ุงู„ู†ู‡ุงูŠุฉ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ
28
00:02:22,260 --> 00:02:27,380
ุจุดูƒู„ ุณุฑูŠุน ุงู„ู„ูŠ ู‡ูˆ ุนุฑูู†ุง ุฅูŠุด ู‡ูˆ ู…ุนู†ุงุช ุงู„ู„ูŠ ู‡ูˆ ุงู„
29
00:02:27,380 --> 00:02:32,080
remand ุตู… ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ู‡ุฐุงุจุนุฏ ู‡ูŠูƒุฉ ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุฌูŠู†ุง
30
00:02:32,080 --> 00:02:36,600
ุฃุฎุฏู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ู‚ู„ู†ุง ุฏุงูŠู…ุง ุงู„ุฑูŠู…ุงู†
31
00:02:36,600 --> 00:02:41,140
sum ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ lower sum ูˆ ุจูŠู† ุงู„ upper sum ูˆ
32
00:02:41,140 --> 00:02:46,080
ุจุนุฏูŠู† ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุฌูŠู†ุง ู‚ู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ุงู„ .. ุงู„
33
00:02:46,080 --> 00:02:47,220
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
34
00:02:47,220 --> 00:02:47,280
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
35
00:02:47,280 --> 00:02:48,000
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
36
00:02:48,000 --> 00:02:48,120
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
37
00:02:48,120 --> 00:02:49,580
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
38
00:02:49,580 --> 00:02:49,700
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
39
00:02:49,700 --> 00:02:50,220
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
40
00:02:50,220 --> 00:02:59,260
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..ุฅุฐุง
41
00:02:59,260 --> 00:03:03,200
ูƒุงู†ุช F Integrable ุฅุฐุง ู„ูƒู„ Y ุฃูƒุจุฑ ู…ู† 0 ู†ุฌุฏุฑ ู†ู„ุงู‚ูŠ
42
00:03:03,200 --> 00:03:07,220
partition ุจูŠ ุฅุจุณู„ูˆู† ูˆ by such that ุฅุฐุง ูƒุงู†ุช ุจูŠ ุฃูŠ
43
00:03:07,220 --> 00:03:10,600
ุงู„ู„ูŠ ู‡ูˆ refinement partition refinement ู„ู„ุจูŠ
44
00:03:10,600 --> 00:03:14,260
ุฅุจุณู„ูˆู† ูŠุนู†ูŠ ูŠุญุชูˆูŠ ุงู„ุจูŠ ุฅุจุณู„ูˆู† ู‡ูŠูƒูˆู† ูˆ ูƒุงู† ุนู†ุฏ ุงู„
45
00:03:14,260 --> 00:03:18,540
SPUF ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฑูŠู…ุงู† sumุจูƒูˆู† ุงู„ู€ absolute
46
00:03:18,540 --> 00:03:21,300
value ุงู„ integration ุจูŠู† S ุจูŠ ูˆ F ู…ู‚ุตุฏ ุงู„
47
00:03:21,300 --> 00:03:24,840
integration ุฃุด ู…ุงู„ู‡ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ูŠุนู†ูŠ ู„ูˆ
48
00:03:24,840 --> 00:03:28,460
F is integrable ู‡ู†ู„ุงู‚ูŠ ุจูŠ ุฅุจุณู„ูˆู† ุจุญูŠุซ ูƒู„ ุงู„ B
49
00:03:28,460 --> 00:03:31,540
ุจุชุญุชูˆูŠ ุจูŠ ุฅุจุณู„ูˆู† ู‡ูŠูƒูˆู† ุงู„ absolute value ุจูŠู†
50
00:03:31,540 --> 00:03:36,400
ุงู„ุฑู…ุงู† ุตู…ูˆุง ู‡ุฐุง ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ุฅุจุณู„ูˆู†
51
00:03:36,820 --> 00:03:41,900
ุทูŠุจ ุจุนุฏ ู‡ูŠ ูƒุชุจ ุนู† ุงู„ุจุฑู‡ู†ุงู‡ุง ู‡ุฐู‡ ูˆุตุงุฑ ููŠ ุนู†ุฏูŠ ุงู„ุขู†
52
00:03:41,900 --> 00:03:46,240
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ุงู„ุซุงู†ูŠุฉ ุฃูŠุถุง ุจุฑู‡ู†ุงู‡ุง ูˆ ุงู„ู†ุธุฑูŠุฉ
53
00:03:46,240 --> 00:03:52,110
ุงู„ุซุงู†ูŠุฉ ูƒุงู†ุช ุชู‚ูˆู„ ุฃู†ู‡ ู„ูˆ ูƒุงู†ุช F is boundedุงู„ุงู† ..
54
00:03:52,110 --> 00:03:57,250
ูˆู‚ุฏุฑู†ุง .. ูˆุจุฏู†ุง ุงู„ุงู† ู†ูุชุฑุถ ุงู†ู‡ ู„ุฌูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ
55
00:03:57,250 --> 00:04:01,830
number a ูŠุญู‚ู‚ ู…ุงู„ูŠ ุงูŠุด ู‡ุฐุง number a ูŠุญู‚ู‚ ุงู†ู‡ ู„ูƒู„
56
00:04:01,830 --> 00:04:04,890
epsilon ุฃูƒุจุฑ ู…ู† 0 ูˆู†ู„ุงู‚ูŠ ุจูŠ ุงุจุณู„ูˆู† ุจุญูŠุซ ุงู†ู‡ ุฃูŠ ุจูŠ
57
00:04:04,890 --> 00:04:11,040
ูŠุญุชูˆูŠ ุจูŠ ุงุจุณู„ูˆู† ูˆ S ุงู„ู„ูŠ ู‡ูŠ ุฃูŠ ุฑู…ุงู† sumูˆthen ุงู„ู„ูŠ
58
00:04:11,040 --> 00:04:16,060
ู‡ูŠ s,b ูˆf ู†ุงู‚ุต a ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุฅุฐุง ูƒุงู† ู‡ุฐุง ุงู„ูƒู„ุงู…
59
00:04:16,060 --> 00:04:19,480
ูƒู„ู‡ ุนู„ู‰ ุจุนุถ ุงุชุญู‚ู‚ ู„ู…ุง ู†ู„ุงู‚ูŠ a ุจุญูŠุซ ูŠู‚ูˆู„ ูƒู„ ุฅุจุณู„ูˆู†
60
00:04:19,480 --> 00:04:24,180
ุฃูƒุจุฑ ู…ู† ุณูุฑ ุงู„ู„ูŠ ู‡ูˆ ู†ู„ุงู‚ูŠ ุจูŠ ุฅุจุณู„ูˆู† ู„ูˆ ูƒุงู† ุจูŠ
61
00:04:24,180 --> 00:04:27,740
ุฅุจุณู„ูˆู† ุจุญูŠุซ ุฃู† ุจูŠ ุจุชุญุชูˆูŠ ุจูŠ ุฅุจุณู„ูˆู† ูˆู‡ุฐุง ุงู„ remand
62
00:04:27,740 --> 00:04:32,030
sum ู‡ูŠุนุทูŠู†ูŠ ู‡ุฐู‡ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุจุนุถ ุงู„ conditions ุฒูŠ ู…ุง
63
00:04:32,030 --> 00:04:35,410
ู‚ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจูŠุนุทูŠู†ุง ุงู† F ุงูŠ ุดู…ุงู„ู‡ุง
64
00:04:35,410 --> 00:04:39,270
integrable ูˆู‡ุฐุง ุงู„ู€ A ุงู„ู„ูŠ ุญู‚ู‚ ู‡ุฐู‡ ุงู„ุดุฑูˆุท ู‡ู†ุง ู‡ูˆ
65
00:04:39,270 --> 00:04:44,050
ู‚ูŠู…ุฉ ุงู„ integration ู‡ุฐุง ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ
66
00:04:44,050 --> 00:04:51,120
ูˆ ุจุนุฏูŠู† ุงู„ู„ูŠ ู‡ูˆุฃุญู†ุง ุฅุฌูŠู†ุง ูˆุนุฑูู†ุง ุดูˆ ู…ุนู†ุงุช ุงู„ ู…ุด ุฃูˆ
67
00:04:51,120 --> 00:04:54,800
ุงู„ norm ุฅุฐุง ุจุฐูƒุฑูƒู… ุงู„ ู…ุด ุฃูˆ ุงู„ norm ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„
68
00:04:54,800 --> 00:05:00,140
supremum ู„ุงู„ู„ูŠ ู‡ูŠ ุฃุทูˆุงู„ ุงู„ subintervals ุชุจุนุงุช ุงู„
69
00:05:00,140 --> 00:05:03,060
partition ู‚ู„ู†ุง ุงู„ norm ู„ู„ุจูŠุจุณ ุฃูˆ ุงู„ supremum ู„ู‡ุฐู‡
70
00:05:03,060 --> 00:05:07,280
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุทูˆุงู„ ุชุจุนุงุช ุงู„ subintervals ุงู„ู„ูŠ ู†ุงุชุฌุฉ
71
00:05:07,280 --> 00:05:11,550
ู…ู† ุงู„ partition Bู‡ุฐุง ุงุณู…ู†ุง ุงู„ู…ุด ุฃูˆ ุงู„ norm ุฃุฎุฏู†ุง
72
00:05:11,550 --> 00:05:17,230
ุจุนุถ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎูˆุงุต ูˆุตูุฌูู†ุง ุนู†ุฏ ู…ูŠู†ุŸ ุนู†ุฏ Darabox's
73
00:05:17,230 --> 00:05:20,690
theorem ุงู„ูŠูˆู… ุจุฏู†ุง ู†ุจุฏุฃ ู†ุดุฑุญ ููŠ ู…ูŠู† ููŠ Darabox's
74
00:05:20,690 --> 00:05:24,230
theorem ู†ุดูˆู ุฃูŠุด Darabox's theorem ุจุชู‚ูˆู„ ุงู„ุขู† ุจู‚ูˆู„
75
00:05:24,230 --> 00:05:28,990
ู„ูŠ let i ุจุชุณุงูˆูŠ a ูˆ bุงู„ู„ูŠ ู‡ูŠ bounded interval ูˆ F
76
00:05:28,990 --> 00:05:32,910
ู…ู† I ู„ุนู†ุจ R Integrable on I in the sense of
77
00:05:32,910 --> 00:05:38,050
definition mean 716 ูŠุนู†ูŠ ุจู‚ูˆู„ ู„ูŠ ู†ูุชุฑุถ ุฃู† F is an
78
00:05:38,050 --> 00:05:42,830
integrable function ุญุณุจ ุชุนุฑูŠู mean 716 ูŠุนู†ูŠ ุงู„
79
00:05:42,830 --> 00:05:46,470
upper integral ุจุณูˆุก ุงู„ lower integral ุจุณูˆุก ุงู„
80
00:05:46,470 --> 00:05:50,350
integration ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ definition 716 ุงู„ุขู†
81
00:05:50,350 --> 00:05:56,710
ุจู‚ูˆู„ ู„ูŠ then for every epsilon ุฃูƒุจุฑ ู…ู† 0then for
82
00:05:56,710 --> 00:06:02,450
every epsilon ุฃูƒุจุฑ ู…ู† ุตูุฑ there exists delta such
83
00:06:02,450 --> 00:06:07,150
thatุงู„ุงู† ู„ูˆ ูƒุงู† P is any partition of I ูˆ ุงู„
84
00:06:07,150 --> 00:06:11,710
normal P ุฃุตุบุฑ ู…ู† Delta ูˆ ูƒุงู† ุนู†ุฏ ุงู„ S P ูˆ F ุงู„ู„ูŠ
85
00:06:11,710 --> 00:06:15,810
ู‡ูˆ is any corresponding Riemann sum then ุงู„
86
00:06:15,810 --> 00:06:19,450
integration ุจูŠู† ุงู„ S P .. ุงู„ุจุนุฏ ุจูŠู† ุงู„ integration
87
00:06:19,450 --> 00:06:23,670
ุจูŠู† ุงู„ S P ูˆ ุงู„ integration ุฃุตุบุฑ ู…ู† ู…ูŠู† ุฃุตุบุฑ ู…ู†
88
00:06:23,670 --> 00:06:28,990
Epsilon ุจุณ
89
00:06:28,990 --> 00:06:29,910
ุจู‚ู‰ ููŠ ุฏู‚ูŠู‚ุฉ ูŠุง ุฃุจูˆ ุญุณู†
90
00:06:59,460 --> 00:07:03,900
ุฃูŠูˆุฉ ุฃู†ุง ููŠ ู…ุญุงุถุฑุฉ .. ุฃู†ุง ููŠ ู…ุญุงุถุฑุฉ ูˆุจุณุฌู„ .. ุฃูŠูˆุฉ
91
00:07:03,900 --> 00:07:08,400
ุฃู‡ ููŠ
92
00:07:08,400 --> 00:07:16,360
ูƒู„ูŠุฉ ุงู„ุนู„ูˆู…ุŸ ู…ู† ู‚ุงู„ูƒ ููŠ ูƒู„ูŠุฉ ุงู„ุนู„ูˆู…ุŸ
93
00:07:16,360 --> 00:07:18,500
ู„ุฃ ูŠุง ุนู… ุฃู†ุง ุฑูˆุญุช ุนู„ู‰ ุฏุฑุงุณุงุช ุงู„ุนู„ูˆู… ุงู„ู„ูŠ ู‚ุงู„ูˆู„ูŠ
94
00:07:18,500 --> 00:07:27,580
ุทู„ุนู† ุฃู‡ .. ุจุนุฑูุด .. ุจุนุฑูุด ูƒู„ุงู… ู‡ูˆ ุตุญูŠุญ ูˆู„ุง ู„ุฃ ู„ุฃ
95
00:07:27,580 --> 00:07:33,080
ู„ุฃุจู‚ู‰ ุทูŠุจ ูŠุง ุฑุงุฌู„ ุฃู†ุง ููŠ ุงู„ู…ุญุงุถุฑุฉ ู…ุงุดูŠ ู…ุน ุงู„ุณู„ุงู…
96
00:07:33,080 --> 00:07:40,800
.. ู…ุงุดูŠ ุจู‚ู‰ ูƒู„ู‡ ู…ุฑูˆุญ ู…ุน ุงู„ุณู„ุงู… ู„ูŠุดุŸ
97
00:07:40,800 --> 00:07:44,040
ู…ุน ุงู„ุณู„ุงู… .. ุจุณ ุดูˆู ูƒูŠู ู…ุน ุงู„ุณู„ุงู…
98
00:08:32,780 --> 00:08:36,900
ุงุนุทูŠู†ูŠ ุจุณ ุชู„ูŠููˆู† ู‡ุฐุง ููŠ ุงู„ุนู„ูˆู… 1600 ุงู†ุง ุนุงุฑู ุงู„ู„ู‡
99
00:08:36,900 --> 00:08:41,780
ุฏู‡
100
00:08:41,780 --> 00:08:45,660
ุงู„ุฏุณ
101
00:08:45,660 --> 00:08:50,040
ุงู‡ ู‡ูˆ ูƒูŠุฏ ุฑูˆุญ ุงุฐุง ุงุจูˆ ุจู„ุงู„ ุงู„ู…ูˆุฌูˆุฏ ุฑูˆุญ
102
00:09:15,660 --> 00:09:18,500
ุนู„ูŠูƒู… ุงู„ุณู„ุงู… ุนู„ูŠูƒ ูŠุง ุฃุจูˆ ุณุงู…ุง ูƒูŠู ุญุงู„ูƒุŸ ูƒูŠู ุตุญุชูƒุŸ
103
00:09:18,500 --> 00:09:21,980
ุงู„ู„ู‡ ุจุนุฑููŠูƒ ุงู„ุญู…ุฏ ู„ู„ู‡ ุงู„ู„ู‡ ุนุฒูŠุฒูŠ ุนู†ูƒ ู‡ู„ ููŠ ุฅู„ูŠ
104
00:09:21,980 --> 00:09:28,260
ุนู†ุฏูƒู… ุฑุณุงู„ุฉ ุชุงุจุนุฉ ุงู„ุณู†ุงู‚ุŸ ูˆ ุชุงุจุนุฉ ูŠุงุณุฑุŸ ุทุจ .. ุทุจ
105
00:09:28,260 --> 00:09:33,820
.. ู…ูŠู† ุนู†ุฏูƒุŸ ู‚ุงุนุฏ ุจุชุณุฃู„ ุนู„ูŠู‡ ู„ูˆ .. ู„ูˆ ุฃุจูˆ ุฃูƒุฑู…
106
00:09:33,820 --> 00:09:36,880
ุฃุฎุฏู† ุจุณ ูˆ ุญุทู† ููŠ ุบุฑูุชูŠ ู„ุฃู†ู‡ ุฃู†ุง ู‚ุงุนุฏ ุจุตูˆุฑ ูˆุงู„ู„ู‡
107
00:09:36,880 --> 00:09:42,060
ูŠุจู‚ู‰ ุงู‡ .. ุงู‡ .. ุงู‡ .. ุงู„ู„ู‡ ูŠุจุงุฑูƒ ููŠุง ูŠุง ุนุฒูŠุฒูŠ ุงู†ุง
108
00:09:42,060 --> 00:09:50,370
ุจุฌูŠุจู‡ุง ุงู„ู…ูุชุงุญ ู‡ูˆุฃู‡ ุฃู‡ ู…ุงุดูŠ
109
00:09:50,370 --> 00:09:54,770
ู„ูˆ ุญุชู‰ ุฃู†ุง ูŠุนู†ูŠ ุฃู†ุง ู…ูˆุฌูˆุฏ ุจุณ ุจู†ุชุฃุฎุฑ ูŠุนู†ูŠ ุงู„ุชุตูˆูŠุฑ
110
00:09:54,770 --> 00:09:59,950
ู…ู…ูƒู† ุฃุธู„ ุงู„ุชู„ุงุชุฉ ู…ุงุดูŠ ู…ุงุดูŠ ุงู„ู„ู‡ ุฃุจู‚ู‰ ุฃุฑูุน ุญุงุฌุฉ
111
00:09:59,950 --> 00:10:03,290
ู„ุฅู†ู‡ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ
112
00:10:03,290 --> 00:10:03,490
ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ
113
00:10:03,490 --> 00:10:06,830
ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ ุจุณ
114
00:10:06,830 --> 00:10:08,250
ุจ
115
00:10:27,230 --> 00:10:30,330
ุฃุฏู† ุฏุฑุงุจูƒุณ ุงู„ู€ theorem ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅู† ู„ูˆ ูƒุงู†ุช F
116
00:10:30,330 --> 00:10:34,600
ุงู†ุชุฌุฑุฉ ุจุงู„ู€ functionุจู‚ูˆู„ ุฅุฐุง ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† 0
117
00:10:34,600 --> 00:10:38,780
ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ Delta ุฃูƒุจุฑ ู…ู† 0 ุจุญูŠุซ ุฃู†ู‡ ู„ูˆ ูƒุงู† ุจูŠ ุฃูŠ
118
00:10:38,780 --> 00:10:41,620
partition ุจุญูŠุซ ุฃู†ู‡ ุงู„ .. ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„ .. ุงู„
119
00:10:41,620 --> 00:10:44,980
norm ู„ู„ู€ B ุฃุตุบุฑ ู…ู† Delta ูˆ S, B ูˆ F ุฃูŠ
120
00:10:44,980 --> 00:10:49,420
corresponding remand sum ุจุงู„ู†ุณุจุฉ ู„ู„ู€ B ู‡ูŠุนุทูŠู†ูŠ ุฃู†ู‡
121
00:10:49,420 --> 00:10:52,860
ุงู„ absolute value ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ ุฃูˆ ุงู„ุจุนุฏ ุจูŠู† S, B ูˆ
122
00:10:52,860 --> 00:10:57,780
F ู†ุงู‚ุต ุงู„ integration ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูŠุนู†ูŠ ูˆ ูƒุฃู†ู‡
123
00:10:57,780 --> 00:11:02,190
ุจู‚ูˆู„ ู…ู† ุชุญุช ุจุทู†ุงู†ู‡ ุงู„ integration ุงู„ integration
124
00:11:02,190 --> 00:11:08,710
ู„ู„ F ู„ูˆ F is integrable ุจูŠุนุทูŠู†ุง ุงู†ู‡ ุจู…ูู‡ูˆู… ุงู„ู„ูŠ ู‡ูˆ
125
00:11:08,710 --> 00:11:18,140
ุณุจุนุฉ ูˆุงุญุฏ ุณุชุฉ ุจูƒูˆู† ุนู†ุฏู‡ limit ุงู„ SB ูˆF as normal B
126
00:11:18,140 --> 00:11:24,320
ุจุฑูˆุญ ู„ู„ุณูุฑ ุจุณูˆุง ุจุงู„ุธุจุท integration ู…ู† A ู„B F of X
127
00:11:24,320 --> 00:11:29,260
DX ู„ุฃู† ุงูŠุด ู…ุนู†ุงุชู‡ ู‡ุฐุงุŸ ู…ุนู†ุงุชู‡ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุญุณุจ ุงู„ู€
128
00:11:29,260 --> 00:11:32,160
Epsilon Delta Definition for every Epsilon ุฃูƒุจุฑ ู…ู†
129
00:11:32,160 --> 00:11:36,740
ุณูุฑ there exists Delta ุฃูƒุจุฑ ู…ู† ุณูุฑ such that if
130
00:11:36,740 --> 00:11:43,170
normal B ุฃุตุบุฑุŒ ู†ุงู‚ุต ุงู„ุณูุฑ ุฃุตุบุฑ ู…ู† ุฏู„ุชุงthen ู‡ูŠุนุทูŠู†ูŠ
131
00:11:43,170 --> 00:11:46,810
ุงู„ู€ absolute value ู„ู„ู€ S, P ูˆ F ู†ุงู‚ุต ุงู„
132
00:11:46,810 --> 00:11:52,650
integration ู…ู† A ู„ B F of X DX ูƒู„ู‡ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
133
00:11:52,650 --> 00:11:56,790
ุฅุจุณู„ูˆู† ุฅุฐุง ุงู„ู„ูŠ ุจุฏู†ุง ู†ุชุจุชู‡ ุจุฏู†ุง ู„ูƒู„ ุฅุจุณู„ูˆู† ู†ู„ุงู‚ูŠ
134
00:11:56,790 --> 00:12:01,870
DeltaุจุญูŠุซ ุฃู†ู‡ ู„ู…ุง ุฃูŠ partition ู†ูˆุฑู…ู‡ ุฃุตุบุฑ ู…ู† Delta
135
00:12:01,870 --> 00:12:05,510
ูŠุนุทูŠู†ูŠ ุงู„ูุฑู‚ ุจูŠู† ุงู„ู€ Riemann Sum ูˆ ุจูŠู† ุงู„ู€
136
00:12:05,510 --> 00:12:08,910
Integration ูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Epsilon ู‡ุฐู‡ ุงู„ู„ูŠ
137
00:12:08,910 --> 00:12:11,990
ู‡ูŠ ุงู„ู„ูŠ ุจุชู‚ูˆู„ู†ุง ุฏุฑุงุจูˆูƒุณ Theorem ุฃู†ู‡ ู„ูˆ F is
138
00:12:11,990 --> 00:12:15,610
integrable ุฅุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ limit ู„ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
139
00:12:15,610 --> 00:12:18,730
Riemann Sum ู‡ูˆ ุญูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ integration ุงู„ู„ูŠ
140
00:12:18,730 --> 00:12:23,330
ูุฑุถู†ุง ุฅุญู†ุง ุฅุดู…ุงู„ู‡ ุฃู†ู‡ ู…ูˆุฌูˆุฏ ุฎู„ูŠู†ุง ู†ุดูˆู ูƒูŠู ุจุฏู†ุง
141
00:12:23,330 --> 00:12:29,380
ุงู†ุจุฑู‡ู† ุงู„ู†ุธุฑูŠุฉ ูˆ ุฑูƒุฒูˆุง ู…ุนุงูŠุงูˆุชุจุนูˆุง ุฅูŠุด ุงู„ู„ูŠ ุจุฏู†ุง
142
00:12:29,380 --> 00:12:35,200
ู†ุญูƒูŠู‡ ุนุดุงู† ู†ุตู„ ู„ู„ูŠ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุทูŠุจ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡
143
00:12:35,200 --> 00:12:41,370
ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุฃูˆู„ ุฅุดูŠ ุจู…ุง ุฃู† F is integrableุงู„ู€
144
00:12:41,370 --> 00:12:42,290
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
145
00:12:42,290 --> 00:12:42,330
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
146
00:12:42,330 --> 00:12:43,190
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
147
00:12:43,190 --> 00:12:43,510
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
148
00:12:43,510 --> 00:12:44,470
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
149
00:12:44,470 --> 00:12:50,750
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
150
00:12:50,750 --> 00:12:52,070
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
151
00:12:52,070 --> 00:12:53,590
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
152
00:12:53,590 --> 00:12:53,750
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
153
00:12:53,750 --> 00:12:54,490
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
154
00:12:54,490 --> 00:12:54,910
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
155
00:12:54,910 --> 00:13:02,270
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ุฅุฐู† ุงู„ุขู† ุฃุฎูุฑุถุช epsilon
156
00:13:02,270 --> 00:13:06,870
arbitrary ุจุฏูŠ ุฃุฏูˆุฑ ุนู„ู‰ ุงู„ู€ delta ุงู„ู„ูŠ ู„ู…ุง ุงู„
157
00:13:06,870 --> 00:13:10,630
normal ุจูŠู‡ ุฃุตุบุฑ ู…ู† delta ูŠุนุทูŠู†ูŠ ุงู„ูุฑู‚ ุจูŠู† ู‡ุฐู‡ ูˆ
158
00:13:10,630 --> 00:13:14,710
ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† epsilon ู„ุฐุง ู‡ูŠูƒ ุฑุงูŠุญ ุฃู†ุง ู„ุฃู†
159
00:13:14,710 --> 00:13:19,400
ุฅุฐู† ุจู…ุง ุฃู† ุฃูู†ุชูŠ ุฌุฑุจุช ู„ูƒู„ epsilon ุฃูƒุจุฑ ู…ู† 0ุจู‚ุฏุฑ
160
00:13:19,400 --> 00:13:23,980
ุฃู„ุงู‚ูŠ partition ุงู„ุขู† ุณู…ูŠุชู‡ ุจูŠ ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ู‡ูˆ x0 ูˆ
161
00:13:23,980 --> 00:13:29,400
x1 ู„ุนู†ุฏูŠ xn such that ุงู„ U ุงู„ upper sum ู„ู„ ุจูŠ
162
00:13:29,400 --> 00:13:32,340
ุฅุจุณู„ูˆู† ูˆ F ู†ุงู‚ุต ุงู„ lower sum ู„ู„ ุจูŠ ุฅุจุณู„ูˆู† ูˆ F ุฃุตุบุฑ
163
00:13:32,340 --> 00:13:35,780
ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุณู…ูŠุชู‡ุงุด ุฃู†ุง ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ
164
00:13:35,780 --> 00:13:38,700
ู„ู„ุญุณุงุจุงุช ุทุจุนุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง ู…ู† ุถู…ู†ู‡ุง
165
00:13:38,700 --> 00:13:45,040
ุงู„ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ู‡ุฐุง ุญุณุจ ุงู„ุฑูŠู…ุงู† criterion ุฃูˆ ุงู„
166
00:13:45,040 --> 00:13:51,190
integrable criterionุทูŠุจ moreover ู„ุฃู† ู„ูˆ ูƒุงู†ุช ุนู†ุฏูŠ
167
00:13:51,190 --> 00:13:55,650
ุงู„ B ุฃูŠ B partition ุจุญุชูˆู‰ ุงู„ ุจูŠ ุฅุจุณู„ูˆู† ุฃูƒูŠุฏ ู‡ูŠูƒูˆู†
168
00:13:55,650 --> 00:13:59,550
ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„ .. ุงู„ .. ู‡ุฐุง ุจูŠุตูŠุฑ refinement
169
00:13:59,550 --> 00:14:04,410
ู…ุฏุงู… refinement ุงู„ refinement ุงู„ุชุญุณูŠู† ุงู„ lower
170
00:14:04,410 --> 00:14:09,670
ุจุนู„ู‡ ูˆ ุงู„ upper ุจู‚ุงุดู‡ ุจูŠู†ุฒู„ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ู‡ูŠูƒูˆู†
171
00:14:09,670 --> 00:14:13,030
ุงู„ lower ู„ู„ refine .. ู„ู„ refinement ุฃูˆ ุงู„ุชุญุณูŠู†
172
00:14:13,030 --> 00:14:17,240
ุฃูƒุจุฑ ุฃูˆูŠ ุณูˆู‰ ู…ูŠู† ุงู„ lower ู„ู„ุฃุตู„ ุงู„ ุจูŠ ุฅุจุณู„ูˆู†ูˆุฃูƒูŠุฏ
173
00:14:17,240 --> 00:14:20,840
ุงู„ู€ lower ู„ู„ B ูˆ ุงู„ F ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ุณูˆุก ุงู„ู‚ุจุฑ ู„ู„ B
174
00:14:20,840 --> 00:14:24,780
ูˆ ุงู„ F in general ูˆ ุงู„ู‚ุจุฑ ู„ู„ B ูˆ F ู‚ู„ู†ุง ู…ุฏุงู…ู‡
175
00:14:24,780 --> 00:14:29,600
ุชุญุณูŠู† ุฅุฐุง ุฃูƒูŠุฏ ุจู†ุฒู„ ุจุตุบุฑ ุนู† ู…ูŠู† ุนู† ุงู„ู„ูŠ ุตุงุฑ ู„ู‡
176
00:14:29,600 --> 00:14:34,960
ุชุญุณูŠู† ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† U, B, Y ูˆ F ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ..
177
00:14:34,960 --> 00:14:45,230
ู‡ูŠ ุนู†ุฏูŠ ุงู„ L .. ุงู„ L, B, Y ูˆ F ูˆู‡ุฐุง L, B ูˆ Fูˆู‡ุฐุง
178
00:14:45,230 --> 00:14:51,650
ุงู„ู€ U, B ูˆ F ูˆู‡ุฐุง ุงู„ู€ U, B, E, F ูˆุงุถุญ ุฅู† ุงู„ู…ุณุงูุฉ
179
00:14:51,650 --> 00:14:58,430
ุจูŠู† ุงู„ู€ U, B, E, F ูˆ ุงู„ู€ L, B, E, F ุฃูƒูŠุฏ ุฃูƒุจุฑ ุฃูˆ
180
00:14:58,430 --> 00:15:02,550
ุชุณุงูˆูŠ ุงู„ู…ุณุงูุฉ ุจูŠู† ุงู„ู€ U ูˆ ุงู„ู€ L ู„ู„ู€ B ูˆ ุงู„ู€ F ูŠุนู†ูŠ
181
00:15:02,550 --> 00:15:05,710
ู‡ุฐู‡ ุงู„ู…ุณุงูุฉ ูˆุงุถุญ ุฅู†ู‡ุง ุฃูƒุจุฑ ุฃูˆ ุชุณุงูˆูŠ ู‡ุฐู‡ ุงู„ู…ุณุงูุฉ
182
00:15:05,710 --> 00:15:12,000
ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู‡ูŠูƒูˆู† ุงู„ู€ U, B, Fู†ู‚ุต lbf ุฃุตุบุฑ ุฃูˆ
183
00:15:12,000 --> 00:15:15,240
ูŠุณุงูˆูŠ ู„ู€ U ุจูŠ ุฅุจุณู„ูˆู† ู†ู‚ุต ู„ L ุจูŠ ุฅุจุณู„ูˆู† ูˆ F ู‡ุฐุง
184
00:15:15,240 --> 00:15:21,260
ู„ู…ูŠู†ุŸ ุนุฏูŠ ุงู„ .. ุงู„ .. ุงู„ ุจูŠ ุฅุจุณู„ูˆู† ู…ู† ููˆู‚ ุญุตู„ู†ุง
185
00:15:21,260 --> 00:15:24,940
ุนู†ู‡ุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ ุฅุฐุง ุตุงุฑ ุนู†ุฏ ุงู„ U ุจูŠ ุฅู
186
00:15:24,940 --> 00:15:29,500
ูˆ ุงู„ L ุจูŠ ุฅู ุงู„ู…ุณุงูุฉ ุจูŠู†ู‡ู… ุจุฑุถู‡ ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†
187
00:15:29,500 --> 00:15:35,360
ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ ุฅุฐุง ุงู„ุขู† ุตุงุฑ ุนู†ุฏ ุฃูŠุจ ู„ุฌุฃุช ุงู„ู€
188
00:15:35,360 --> 00:15:39,840
ุจุฅุจุณู„ูˆู† ูˆ ุฃูŠ ุจูŠ ุจูŠุญุชูˆู‰ ุงู„ู€ ุจุฅุจุณู„ูˆู† ู„ุฌุฆู†ุง ุงู„ู…ุณุงูุฉ
189
00:15:39,840 --> 00:15:47,880
ุจูŠู† ุงู„ู€ U ุจูŠ ูˆ F ู†ุงู‚ุต ุงู„ู€ L ุจูŠ ูˆ F ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
190
00:15:47,880 --> 00:15:53,710
ุฅุจุณู„ูˆู† ุนู„ู‰ 3ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐุง ุงู„ู„ูŠ ุญุตู„ู†ุงู‡ ููŠ ุงู„ุฃูˆู„
191
00:15:53,710 --> 00:15:57,170
ุงู„ุขู† ุงุญู†ุง ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงุฏูˆุฑุชู†ุง ุน ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ
192
00:15:57,170 --> 00:16:01,210
ุงุฏูˆุฑุชู†ุง ุนู„ู‰ ุงู„ู€ Delta ุงู„ู„ูŠ ู„ู…ุง ุงู„ Normal ุจูŠู‡ ุฃุตุบุฑ
193
00:16:01,210 --> 00:16:04,330
ู…ู† Delta ูŠุนุทูŠู†ุง ุงู„ู…ุณุงูุฉ ุจูŠู† ุงู„ุฑูŠู…ุงู† ุตู…ูˆุง ุงู„
194
00:16:04,330 --> 00:16:08,670
integration ุฃุตุบุฑ ู…ู† ุฅูŠุด ู…ู† ุฃุจุณู„ูˆู† ุงู„ุขู† ุฃู†ุง ุจุชุฏุนูŠ
195
00:16:08,670 --> 00:16:15,060
ุฃูˆ ุงู„ูƒุงุชุจ ุจุชุฏุนูŠ ุฃู†ู‡ู‡ู†ุงุฎุฏ Delta ุจู‚ูŠู…ุฉ ู…ุนูŠู†ุฉ ูˆ ู‡ุชุดูˆู
196
00:16:15,060 --> 00:16:17,960
ุฅู†ู‡ุง ูุนู„ุงู‹ ู‡ุฐู‡ ุงู„ู€ Delta ุจุชุญู‚ู‚ ุทุจุนุงู‹ ุงู„ู€ Delta ู‡ุฐู‡
197
00:16:17,960 --> 00:16:22,160
ู†ุชูŠุฌุฉ ุฅุญุณุงุจุงุช ุงู„ู„ูŠ ู‡ูˆ ุจูŠุจู‚ู‰ ู…ุดุฉ ุนู„ู‰ ุจุฑู‡ุงู† ูƒุงู…ู„ ูˆ
198
00:16:22,160 --> 00:16:26,400
ููŠ ุงู„ุขุฎุฑ ู„ุฌุฃ ุงู„ุฅุญุณุงุจ ุงู„ู„ูŠ ุจูŠุฎู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ู‚ูŠู…ุฉ ู‡ู†ุง
199
00:16:26,400 --> 00:16:30,540
Epsilon ุงู„ุฏู„ุชุฉ ุงู„ู„ูŠ ุจูŠุงุฎุฏู‡ุง ุงู„ุขู† ุทูŠุจุŒ ู‚ุจู„ ู…ุง ู†ู‚ูˆู„
200
00:16:30,540 --> 00:16:34,560
ุฅูŠุด ุงู„ู€ Delta ุจุฏู†ุง ู†ุนุทูŠ ุงู„ุฑู…ุฒ ุงู„ู€ F is bounded,
201
00:16:34,740 --> 00:16:37,220
integrable ู„ุฅู†ู‡ุง ู…ุฏุงู… bounded ุฃูˆ integrable
202
00:16:37,220 --> 00:16:41,460
ุงู„ุณุจุฑูŠู…ู… ุฅู„ู‡ุง ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ ู…ูˆุฌูˆุฏุฎูุฏ ุงู„ู€ Supremum
203
00:16:41,460 --> 00:16:45,200
ู„ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ F of X ู„ู„ู€ X element in the interval
204
00:16:45,200 --> 00:16:49,940
I ุณู…ูŠู‡ุง ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุณู…ูŠู‡ุง ุจุชุณุงูˆูŠ M CapitalุŒ ู…ุงุดูŠ
205
00:16:49,940 --> 00:16:54,360
ุงู„ุญุงู„ุŒ ุงู„ุงู† ุจุงุฏุนูŠ ุงู„ุงู† ุฅู† ุฏู„ุชุง ุงู„ู„ูŠ ู‡ุชุธุจุท ู…ุนู†ู‰ ูˆ
206
00:16:54,360 --> 00:16:57,320
ุชุฌูŠุจู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ
207
00:16:57,320 --> 00:17:00,180
ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†ุŒ ุงู„ู„ูŠ ู‡ูŠ ุฏู„ุชุง ุจุชุณุงูˆูŠ ุฅุจุณู„ูˆู† ุนู„ู‰
208
00:17:00,180 --> 00:17:05,140
ุงุชู†ุงุดุฑ N ููŠ ู…ูŠู† ููŠ M N ู…ูŠู† ู‡ุฐู‡ุŒ N ุงู„ู„ูŠ ุธู‡ุฑุช ููŠ ุงู„
209
00:17:05,140 --> 00:17:09,750
partition ู‡ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ partitionุงู„ู„ูŠ
210
00:17:09,750 --> 00:17:14,490
ุฌุฒุฃู†ูŠ ุงู„ูุชุฑุฉ ู‡ูŠ N ุฒุงุฆุฏ 1 ู‡ุฐุง ู…ูŠู† ุงู„ partition ุงู„ู„ูŠ
211
00:17:14,490 --> 00:17:19,790
ู„ุฌูŠุชู‡ ููŠ ุงู„ุฑูŠู…ุงู† ู…ู† ุฎู„ุงู„ ุงู„integrability ู„ู„ุฃูุฅุฐุงู‹
212
00:17:19,790 --> 00:17:24,370
where ุงู„ู€ N ุฒุงุฆุฏ ูˆุงุญุฏ is the number of parts in B
213
00:17:24,370 --> 00:17:29,190
ุฅุจุณู„ูˆู† ูŠุนู†ูŠ ุงู„ู€ Delta ุจุชุณุงูˆูŠ ุฅุจุณู„ูˆู† ุนู„ู‰ 12 ููŠ N
214
00:17:29,190 --> 00:17:33,370
ุงู„ู€ N ุงุฑุชุจุทุช ุจุงู„ partition ุงู„ู„ูŠ ู„ุฌูŠุชู‡ ูˆุงู„ู€ M ู‡ูŠ
215
00:17:33,370 --> 00:17:39,250
ุนุจุงุฑุฉ ุนู† ุงู„ supremum ู„ูƒู„ ุงู„ุฏุงู„ุฉ ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ
216
00:17:39,250 --> 00:17:41,410
ุงู„ู…ุฐูƒูˆุฑุฉ ู†ูŠุฌูŠ ุงู„ุขู†
217
00:17:46,350 --> 00:17:53,750
Now let Q ุจูŠุณุงูˆูŠ Y not Y ูˆุงุญุฏ ูˆ Y ุงุชู†ูŠู† ู„ุนู†ุฏ Y M
218
00:17:53,750 --> 00:17:59,890
ู…ุด NุŒ Y M ู…ุงุดูŠ ุจู€any partition of I with ุงู„
219
00:17:59,890 --> 00:18:03,550
absolute value ู„ู„ู€Q ุฃูˆ ุงู„ norm ู„ู„ู€Q ุฃุตุบุฑ ู…ู† Delta
220
00:18:04,420 --> 00:18:08,500
ุฃูŠุด ูŠุง ุฌู…ุงุนุฉ ู‚ุงุนุฏ ุฃู†ุง ุฃุญุงูˆู„ ุฃุตู„ ู„ู„ูŠ ุจุฏูŠู‡ุงุŸ ุฃูŠุด
221
00:18:08,500 --> 00:18:12,080
ุบุฑุถูŠุŸ ุฅู† ู„ูƒู„ epsilon ุฃูƒุจุฑ ู…ู† 0 ุจุฏูŠ ุฃู„ุงู‚ูŠ delta
222
00:18:12,080 --> 00:18:16,600
ุจุญูŠุซ ุฃู†ู‡ ุฃูŠ partition ุฃุตุบุฑ ู…ู† delta norm ูŠุนุทูŠู†ูŠ
223
00:18:16,600 --> 00:18:21,320
ุงู„ูุฑู‚ ุจูŠู† ุฑู…ุงู† ุตู…ู‡ ูˆุงู„ integration ุฃุตุบุฑ ู…ู† epsilon
224
00:18:21,320 --> 00:18:27,660
ูˆูƒุฃู†ู‡ ุงู„ุขู† ุจุฏุฃุช ุฃุญุท ุฃูŠุฏูŠ ุนู„ู‰ ุงู„ุฌุฑุญ ูˆุฃุตู„ ุฃู‚ูˆู„ let Q
225
00:18:27,660 --> 00:18:34,780
ุจูŠุณุงูˆูŠ Y0 Y1 YM ุจุฃูŠ partitionNormal ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ
226
00:18:34,780 --> 00:18:40,260
ู…ู† Delta ู…ุชูˆู‚ุน ุฃู†ุง ุฃู†ู‡ ููŠ ุงู„ู†ู‡ุงูŠุฉ ุนุดุงู† ุฃุฎู„ุต
227
00:18:40,260 --> 00:18:47,200
ุงู„ู†ุธุฑูŠุฉ ุฃุซุจุชู„ูƒ ุฃู†ู‡ ุงู„ absolute value ู„ุฃ ุงู„ู„ูŠ ู‡ูˆ ุงู„
228
00:18:47,200 --> 00:18:55,230
S ุงู„ UFู†ุงู‚ุต ุงู„ integration ู…ู† ู‚ู„ุจูŠ f of x dx ูŠุทู„ุน
229
00:18:55,230 --> 00:19:00,290
ู„ูŠ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุฅุฐุง ุฃุซุจุชุช ู‡ุฐุง ุจู†ุงุก ุนู„ู‰
230
00:19:00,290 --> 00:19:05,830
ุฅุฎุชูŠุงุฑูŠ ู„ู„ู€ Delta ุงู„ู„ูŠ ุนู†ุฏูŠ ูˆุจู†ุงุก ุนู„ู‰ ูƒู„ ุงู„ cues
231
00:19:05,830 --> 00:19:10,490
ุงู„ู„ูŠ ู†ูˆุฑู‡ู… ุฃุตุบุฑ ู…ู† Delta ูŠุนุทูŠู†ูŠ ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง ุฃุตุบุฑ
232
00:19:10,490 --> 00:19:14,210
ู…ู† ุฅุจุณู„ูˆู† ูˆุจู‚ูˆู„ ุฎู„ุตุช ูˆุจุฑู‡ู†ุช ุงู„ู„ูŠ ู‡ูŠ ู†ุธุฑูŠุชูŠ
233
00:19:14,210 --> 00:19:19,350
ุฏุฑุงุจูˆูƒุณูŠุฒ theoremุฎู„ู‘ูŠู†ุง ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุฑูˆุญ ู„ู‡ุฐู‡
234
00:19:19,350 --> 00:19:24,810
ุงู„ู„ูŠ ู‡ูŠ ู†ุซุจุชู‡ุง ุฅู†ู‡ุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุชุนุงู„ูŠ ุดูˆูŠุฉ ุงู„ุขู†
235
00:19:24,810 --> 00:19:31,630
ู„ุฃู† let Q*) ุจุณูˆู‰ Q ุงุชุญุงุฏูŠู† ุจุฅุจุณู„ูˆู† ู‡ุฐู‡ ุจูŠ ุฅุจุณู„ูˆู†
236
00:19:31,630 --> 00:19:37,210
ู…ูŠู† ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ููˆู‚ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุจูŠ ุฅุจุณู„ูˆู†
237
00:19:38,430 --> 00:19:43,870
ุจุฅุจุณู„ูˆู† ู‡ูŠ ุงู„ูุชุฑุฉ ู…ู† a ู„ุนู†ุฏ b ุจุฅุจุณู„ูˆู† ุงู„ู„ูŠ ู‡ูŠ ุฃุด
238
00:19:43,870 --> 00:19:50,850
ุฌุฒุฃุฉ ู„ู„ูุชุฑุฉ ู‡ุฐู‡ ู‡ุฐูŠ x note ู‡ุฐูŠ x1 ู‡ุฐูŠ x2 ู‡ุฐูŠ x3
239
00:19:50,850 --> 00:19:56,430
ู„ู…ุง ุฃุตู„ xn ู†ุงู‚ุต ูˆุงุญุฏ ู„ู…ุง ุฃุตู„ ู‡ู†ุง ุนู†ุฏ ู…ูŠู† xn ุงู„ู„ูŠ
240
00:19:56,430 --> 00:20:01,390
ู‡ูŠ ู…ูŠู† ุงู„ b ู‡ุฐูŠ ู…ูŠู† ุฌุฒุฃู‡ุง ุฌุฒุก ุงู„ูุชุฑุฉ ู‡ุฐู‡ ูˆุงุญุฏุฉ
241
00:20:01,390 --> 00:20:08,190
ุงุณู…ู‡ุง ุจุฅุจุณู„ูˆู†ู†ูŠุฌูŠ ุงู„ุขู† ุงุชุฌุฒุฃุช ุงู„ูุชุฑุฉ ุจู…ูŠู† ุจุงู„ู€ Q
242
00:20:08,190 --> 00:20:17,270
ุงู„ู€ Q ู…ูŠู† ู‡ูŠ ุจุฏุฃุช ุจ Y note ุทุจุนุง ู‡ูŠ ุงูŠู‡ Y1 ูˆ Y2 ูˆ
243
00:20:17,270 --> 00:20:24,950
Y3 ู„ุนู†ุฏ ู…ุคุตู„ ู„ุนู†ุฏ Y M ู†ุงู‚ุต ูˆุงุญุฏูˆู‡ู†ุง ุงู„ู„ูŠ ู‡ูŠ YM
244
00:20:24,950 --> 00:20:29,730
ุงู„ู„ูŠ ู‡ูŠ ุทุจุนุงู‹ ู…ูŠู† ู‡ูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€B ู‡ุฐู‡ ุงู„ู€Q ุฌุฒู‚ุชู‡ุง
245
00:20:29,730 --> 00:20:33,430
ุจุดูƒู„ู‡ุง ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ู…ุน ุงู„ุนู„ู… ุฅู† ุงู„ู€Q ู‡ูŠ ุชุจุนุชู†ุง
246
00:20:33,430 --> 00:20:38,950
ู„ู†ูˆุฑู…ู‡ุง ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† Delta ุงู„ุขู† ุจูŠู‚ูˆู„ู„ูŠ ุฎุฏ Q*)
247
00:20:38,950 --> 00:20:46,150
ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุงู„ู€Q ุงุชุญุงุฏ ู…ู† ุงู„ู€Bุฅุจุณู„ูˆู† ุตุงุฑุช ุงู„ุขู†
248
00:20:46,150 --> 00:20:54,880
ุงู„ู€Q ู‡ุฐู‡ุจุณุงูˆุฉ ุจูŠ ุจูŠ ุณุชุงุฑ ุงุชุญุงุฏ ู„ู€ Q ู‡ุฐู‡ ู…ูŠู† ู‡ูŠ ุงู„ู€
249
00:20:54,880 --> 00:21:01,100
Q star ุทุจุนุง ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ X not ู‡ูŠ ู†ูุณู‡ุง Y not
250
00:21:01,100 --> 00:21:06,840
ูˆุงู„ู€ Xn ู‡ูŠ ู…ูŠู† ุงู„ู€ Yn ุงู„ู„ูŠ ูŠุนู†ูŠ ู…ู…ูƒู† ูŠูƒูˆู†
251
00:21:06,840 --> 00:21:11,380
ุงู„ู…ุฎุชู„ูุงุช ุงู„ู„ูŠ ู‡ูŠ ู…ู† X ูˆุงุญุฏ ู„ุนู†ุฏ Xn ู†ู‚ุต ูˆุงุญุฏ ูŠูƒูˆู†
252
00:21:11,380 --> 00:21:16,890
ุงู„ู…ุฎุชู„ูุงุช ุนู† ู‡ุฏูˆู„ ุงู„ุงุชุญุงุฏุฃู‚ุตู‰ ุญุฏูˆุฏู‡ู… ูŠุนู†ูŠ ุฅุฐุง ุจุฏู‡ู…
253
00:21:16,890 --> 00:21:21,430
ูŠุนู…ู„ู†ู‘ูŠ sub intervals ุฒูŠุงุฏุงุช ู‡ูŠูƒูˆู† ุฃู‚ุตู‰ ุญุฏูˆุฏู‡ู…
254
00:21:21,430 --> 00:21:27,290
ุงู„ู„ูŠ ู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ X1 ูˆ X2 ูˆ X3 ูˆ X-1 ู…ุงุชู†ุทุจู‚ุด ูˆู„ุง
255
00:21:27,290 --> 00:21:33,810
ุนู„ู‰ ุฃูŠ Y1 ูˆู„ุง Y2 ูˆู„ุง Y3 ูˆู„ุง Y ุฃู… minus 1 ู…ุชู‰ ู…ุง
256
00:21:33,810 --> 00:21:38,410
ุงู†ุทุจู‚ู„ู†ุด ู…ุนู†ุงุชู‡ ุฃู†ู‡ ู‡ูŠูƒูˆู†ูŠู† ูˆูŠู† ู…ูˆุฌูˆุฏุงุช ููŠ ุฏุงุฎู„ ุงู„
257
00:21:38,410 --> 00:21:42,630
intervals ู…ุนู†ุงุชู‡ ูƒู„ ูˆุงุญุฏุฉ ุนู…ู„ุชู„ู‡ุง ุฅู„ุง ุนู† ูุชุฑุฉ ุชุงู†ูŠ
258
00:21:42,630 --> 00:21:46,550
ุฌุฏุงุฏุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ูุชุฑุฉ ุชุงู†ูŠุฉ ุงู„ุฅุฌุฏุงุฏ ูŠุนู†ูŠ ู„ูˆ ุฅุฌุช
259
00:21:46,550 --> 00:21:51,390
ู‡ู†ุง ุงู„ู€ X1 ู‡ู†ุง ู…ุซู„ุง ุจูŠูƒูˆู† ู‡ุฐู‡ ุนู…ู„ุฉ ูุชุฑุฉ ุชุงู†ูŠุฉ ู„ูˆ
260
00:21:51,390 --> 00:21:58,930
ุฅุฌูŠู†ุง ุณู…ูŠู†ุง ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ู‡ูˆ M1 star ุงู„ู„ูŠ ู‡ูˆ M1
261
00:21:58,930 --> 00:22:02,470
ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ maximum ุฃูˆ ุงู„ supreme ุนู„ู‰ ู…ูŠู† ุนู„ู‰
262
00:22:02,470 --> 00:22:09,510
ุงู„ partition ุงู„ุฌุฏูŠุฏ Q starูˆู‡ุฐู‡ ุณู…ู†ุงู‡ุง ู‡ุชูƒูˆู† M2*)
263
00:22:09,510 --> 00:22:15,670
ู‡ูŠุตูŠุฑ ุงู„ู€ M1*) ุจุชุฎุชู„ู ู„ุฃู† ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„ู€
264
00:22:15,670 --> 00:22:20,490
Supremum ุนู„ู‰ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ุจูŠู†ู…ุง ุจุงู„ู†ุณุจุฉ ู„ู„ู€ Q ู„ูˆ
265
00:22:20,490 --> 00:22:27,030
ุฃุฌูŠู†ุง ู„ู€ Maximum ุชุจุนู‡ุง ุฃูˆ Supremum ุชุจุนู‡ุง ู‡ู†ุณู…ูŠู‡ M1
266
00:22:27,030 --> 00:22:32,970
ู‡ุฐุง ุงู„ู€ M1ู‚ุฏ ูŠุฎุชู„ู ุนู† ุงู„ู€ M1 Star ูˆุนู† ู…ูŠู† ุงู„ู€ M2
267
00:22:32,970 --> 00:22:37,610
Star ู„ุฃู† ุงู„ู€ M1 ุนู„ู‰ ู‡ุฐู‡ ูƒู„ู‡ุง ุจูŠู†ู…ุง ุงู„ู€ M1 Star ุนู„ู‰
268
00:22:37,610 --> 00:22:41,070
ู‡ุฐู‡ ูˆุงู„ู€ M2 Star ุนู„ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Supremum
269
00:22:41,070 --> 00:22:44,670
ู„ู„ุฏุงู„ุฉ ุนู„ู‰ ุงู„ุฌุฒุก ู…ู† ู‡ุฐุง ุฃูˆ ุงู„ุฌุฒุก ู…ู† ู‡ุฐุง ู‚ุฏ ูŠุฎุชู„ู
270
00:22:44,670 --> 00:22:49,860
ุนู† ุงู„ู€ Supremum ุนู† ุงู„ุฌุฒุก ู‡ุฐุง ูŠุนู†ูŠ ุงู„ุขู†ุงู„ู€ ุงู„ู€ ุงู„ู€
271
00:22:49,860 --> 00:22:55,060
ุงู„ู€ ุงู„ู€ subintervals ุฌุฏูŠุฏุฉ ู‡ุชูˆู„ุฏู„ูŠ M1 maximum
272
00:22:55,060 --> 00:23:00,700
ู„ุนู†ุงุตุฑ ู„ู„ู€ function ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูƒู„ูŠ ุจุฎุชู„ู ุนู† ู…ูŠู†
273
00:23:00,700 --> 00:23:07,240
ุนู† ุงู„ุฌุฒุก ู‚ุฏ ูŠุฎุชู„ูุงู„ู€ N ู„ูƒู† ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ู„ูˆ ูƒุงู†ุช
274
00:23:07,240 --> 00:23:12,420
ุงู„ู„ูŠ ู‡ูŠ ุนุฏุฏ ู‡ู†ุง ุฏูˆู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ N ุฃูƒุจุฑ ู…ู† ุงู„ู€ N
275
00:23:12,420 --> 00:23:19,420
ู‡ุชุชูˆุฒุน .. ู‡ุชุชูˆุฒุน ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ X1 ูˆุงู„ู€ X2 ู„ุฅุฐุง
276
00:23:19,420 --> 00:23:23,280
ุงุฎุชู„ูู† ูƒู…ุงู† ูˆุงุชูˆุฒุนู† ู…ุฎุชู„ูุงุช ู‡ูŠุชูˆุฒุนู† ูˆูŠู†ุŸ ููŠ
277
00:23:23,280 --> 00:23:28,870
ุงู„ู…ู†ุงุทู‚ ุงู„ู„ูŠ ู‡ูŠุฌุจู„ ู…ุง ู†ุฎู„ุต ุงู„ู€ YM ูŠุนู†ูŠ ู‡ุชู„ุงู‚ูŠู‡ุง ูƒู„
278
00:23:28,870 --> 00:23:33,970
ูˆุงุญุฏุฉ ู…ูƒุงู† ู„ุฃู† ุงู„ู€ M ุฃูƒุจุฑ ู…ู† ุงู„ู€ N ุงู„ู„ูŠ ุจุชุถุงู„ ุจุฏูˆู†
279
00:23:33,970 --> 00:23:39,870
ู…ุง ุชุฏุฎู„ู‡ุง ูˆุงุญุฏุฉ ู…ู† ุงู„ู€ X1 ุฃูˆ X2 ุฃูˆ X3 ู‡ุชุณูŠุฑ ููŠ ุงู„
280
00:23:39,870 --> 00:23:43,810
partition ุงู„ุฌุฏูŠุฏ Q ู‡ูŠ ู†ูุณู‡ุง ููŠ ุงู„ุงุตู„ ููŠ ุงู„
281
00:23:43,810 --> 00:23:50,140
partition main ุงู„ู€ Q ูŠุนู†ูŠ ู‡ูŠูƒูˆู† ุงู„ู€ M ู‡ู†ุงstar ูˆ ุงู„
282
00:23:50,140 --> 00:23:56,440
M ู†ูุณู‡ุง ู‡ูŠูƒูˆู† ุฒูŠ ุจุนุฑ ูŠุนู†ูŠ ู‡ูŠูƒูˆู† ุงู„ุชู†ุชูŠู† ุจู†ูุณ
283
00:23:56,440 --> 00:24:02,600
ุงู„ู‚ูŠู…ุฉ ุนุดุงู† ู‡ูŠูƒ ู„ูˆ ุฃุฌูŠู†ุง ุทุฑุญู†ุง ุงู„ู„ูŠ ู‡ูˆ .. ุงู„ู„ูŠ ู‡ูŠ
284
00:24:02,600 --> 00:24:09,860
ู‚ูŠู…ุฉ ุงู„ lower sum ุงู„ upper sum ุนู„ู‰ ุงู„ Q star ู…ุน ุงู„
285
00:24:09,860 --> 00:24:16,340
upper sum ุนู„ู‰ ุงู„ Q ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ู†ุง ูŠุธู‡ุฑ ุงู„ู„ูŠ
286
00:24:16,340 --> 00:24:22,810
ู‡ูˆ Mู…ู† ุงู„ุนุงุฏูŠุฉ ุฃูˆ M ู…ู† ุงู„ู€ Star ู†ุงู‚ุต ุงู„ู€ M ู…ู† ุงู„ู€
287
00:24:22,810 --> 00:24:27,350
Star ู„ุฃู†ู‡ ุจูŠูƒูˆู† ู‚ุฏ ูŠูƒูˆู† ุงู„ู…ุฎุชู„ูุงุช ู„ูƒู† ุงู„ู„ูŠ ู‡ุงู† ู…ุด
288
00:24:27,350 --> 00:24:31,050
ู‡ูŠุธู‡ุฑ ู„ุฃู†ู‡ ู‡ูŠุตูŠุฑ ุงู„ู€ M ู†ุงู‚ุต M ู…ู† ุงู„ู€ Star ุณูุฑ ุฅุฐู†
289
00:24:31,050 --> 00:24:36,110
ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุธู‡ูˆุฑ ู‡ุฐูˆู„ุฉ ููŠ ุฃูƒุงู… ูุชุฑุฉ ุนู† ุฃูƒุซุฑ ู‡ุงูŠ
290
00:24:36,110 --> 00:24:41,710
ูˆุงุญุฏุฉ ุชู†ุชูŠู†ุจุถู„ ุฃู…ุดูŠ ู„ N ู†ุงู‚ุต ูˆุงุญุฏ ู„ุฅู† ุนุฏุฏู†ุง ุฏูˆู„ุฉ
291
00:24:41,710 --> 00:24:45,330
ู…ู† X1 ุนู†ุฏ XN ู†ุงู‚ุต ูˆุงุญุฏุฉ ูƒู… ูˆุงุญุฏุฉ N ู†ุงู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ
292
00:24:45,330 --> 00:24:49,130
ุนู„ู‰ ุงู„ุฃูƒุซุฑ ู‡ูŠูƒูˆู† ุนุฏุฏ ุงู„ sub intervals ุงู„ู„ูŠ ุงุฌุฏุงุฏ
293
00:24:49,130 --> 00:24:54,390
ุนู…ู„ุงู‹ ุงู„ู„ูŠ ู‡ูˆ 2 ููŠ N ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ู„ูŠ ุงุชุฌุณู…ุช ุชู†ุชูŠู†
294
00:24:54,390 --> 00:25:00,590
ุชู†ุชูŠู† ุงู„ุขู† ูุจุตูŠุฑ ุนู†ุฏูŠ ุงู„ summation ู‡ุฐุง ู„ูˆ ุฌูŠู†ุง ู„ูˆ
295
00:25:00,590 --> 00:25:08,230
ุฃุฎุฏู†ุง ู„ูƒ ุงู„ U ุงู„ U star ู…ุนุงู„ู„ูŠ ุงู„ู€ F ู†ุงู‚ุต ุงู„ู€ U
296
00:25:08,230 --> 00:25:14,910
ุงู„ู€ QF ู‡ูŠูƒูˆู† ุนุจุงุฑุฉ ุนู† ุฅูŠุด ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู‡ู†ุง ู‡ูŠุชุตูุฑ
297
00:25:14,910 --> 00:25:19,070
ุญูŠุณุงูˆูŠ ุงู„ุตู…ูŠู‡ ุฃูƒู… ูˆุงุญุฏุฉ ู…ู† ู‡ุฐูˆู„ุฉ ู‡ูŠูƒูˆู† ุนู„ู‰ ุงู„ุฃูƒุซุฑ
298
00:25:19,070 --> 00:25:23,790
ุงู„ุดูƒู„ ู‡ุฐุง ูˆุงุญุฏุฉ ุงุณู…ู‡ุง ู…ุซู„ุง MK MJ ุฒูŠ ู…ุง ู‡ูˆ ู…ุณู…ูŠู‡ุง
299
00:25:23,790 --> 00:25:28,870
ูˆุงู„ุชุงู†ูŠ M star K ู‡ุฐูˆู„ุฉ ุนู„ู‰ ุงู„ุฃูƒุซุฑ ุนู„ู‰ ุงู„ุฃูƒุซุฑ ุนู„ู‰
300
00:25:28,870 --> 00:25:34,900
ุงู„ุฃูƒุซุฑ ู‡ูŠูƒูˆู† ุนุฏุฏู‡ู… ุฌุฏุงุดุนุฏุฏู‡ู… ุนุจุงุฑุฉ ุนู† ุงุชู†ูŠู† ูุฆุฉ
301
00:25:34,900 --> 00:25:40,240
ู†ุงู‚ุต ูˆุงุญุฏ ู…ุถุฑูˆุจุงุช ููŠ ุทูˆู„ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ุงู„ุตุบูŠุฑุฉ
302
00:25:40,240 --> 00:25:43,680
ุงู„ู„ูŠ ู‡ูŠ .. ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ุชุจุนุช .. ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†
303
00:25:43,680 --> 00:25:48,720
ุงู„ู€Q*) ุงู„ู„ูŠ ู‡ูŠ .. ูˆุงุณู…ูŠู‡ุง ู…ุซู„ุง ZK ู†ุงู‚ุต ZK ู…ุงูŠุณ
304
00:25:48,720 --> 00:25:53,700
ูˆุงุญุฏ ูŠุนู†ูŠ ุนุฏุฏู‡ู… ู‡ุฐูˆู„ุฉ ุงู„ู„ูŠ ุจุธู‡ุฑ ุงู„ู€U ู†ุงู‚ุต ุงู„ู€U
305
00:25:53,700 --> 00:25:59,270
ุจุธู‡ุฑ ุนุจุงุฑุฉ ุนู† ุฃูƒู… ูˆุงุญุฏุฉ ู…ู† ู‡ุฐูˆู„ุฉ ุณู…ุงุดู† ู„ู‡ู…ุนุจุงุฑุฉ ุนู†
306
00:25:59,270 --> 00:26:04,390
ุงู„ู€ two ูุฆุฉ ู†ุงู‚ุต ูˆุงุญุฏ ู…ู† ุงู„ู€ terms ู†ุฌูŠ ุงู„ุขู† ุฅูŠุด
307
00:26:04,390 --> 00:26:12,830
ุงู„ู„ูŠ ูƒุงุชุจูˆุง ุดูˆู ู‚ู„ู†ุง ู„ุช Q star ุจูŠุณุงูˆูŠ Q ุงุชุญุงุฏ ู…ู†
308
00:26:12,830 --> 00:26:17,930
ุงู„ู€ B ุฅุจุณู„ูˆู† ุงู„ู€ Q star ุตุงุฑ refinement ู„ู…ูŠู†ุŸ ู„ู„ู€ B
309
00:26:17,930 --> 00:26:23,620
ุฅุจุณู„ูˆู†ุฅุฐุง ุงู„ู€ Q*) ุญุณุจ ุงู„ู„ูŠ ุญูƒูŠุชู‡ ู‡ู†ุงูƒ has at most
310
00:26:23,620 --> 00:26:28,540
N ู†ุงู‚ุต ูˆุงุญุฏ more than points than main Q ุนู„ู‰
311
00:26:28,540 --> 00:26:32,660
ุงู„ุฃูƒุชุฑ ู‡ูŠูƒูˆู† ุนุฏุฏ ุงู„ู„ูŠ ููŠ ุงู„ู€ Q*) ุงู„ุนู†ุงู‚ุต ุงู„ู„ูŠ ููŠ
312
00:26:32,660 --> 00:26:38,040
Q*) ุนู†ุฏ Canon ุงู„ู„ูŠ ููŠ ุงู„ู€ Q ุงู„ู„ูŠ ููŠ ุงู„ .. ุฃู…ุณุญ
313
00:26:38,040 --> 00:26:45,900
ุงู„ู„ูŠ ููˆู‚ ุจุณ ุฒูŠ ู…ุง ู‚ู„ุช ุงู„ู„ูŠ ููŠ ุงู„ู€ By ุงู„ู„ูŠ ููŠ ุงู„ู€
314
00:26:45,900 --> 00:26:54,870
By ู‡ูŠ ุนุจุงุฑุฉ ุนู† X0X1 Xm-1 ู„ุนู†ุฏ Xm ุงู„ู„ูŠ ููŠ ุงู„ Q ู‡ูŠ
315
00:26:54,870 --> 00:27:04,190
ุนุจุงุฑุฉ ุนู† Y0 Y1 Ym-1 ู„ุนู†ุฏ Ym ุงู„ู„ูŠ ููŠ ุงู„ Q*) ุฅูŠุด
316
00:27:04,190 --> 00:27:10,910
ู‡ูŠุตูŠุฑ ุงู†ู‡ ุฃูƒูŠุฏ ู‡ุฐูŠ ูˆ ู‡ุฐูŠ ู‡ู… ู†ูุณู‡ู… ูุฃูƒูŠุฏ ู„ูˆ ุจุฏุฃู†ุง ุจ
317
00:27:10,910 --> 00:27:17,650
Z0 ูˆ ุงู†ุชู‡ูŠู†ุง ุจุฃุฎุฑ ูˆุงุญุฏุฉ Z ู…ูŠู† ZB ู…ุซู„ุง ู‡ูŠูƒูˆู† ุงู„ู„ูŠ
318
00:27:17,650 --> 00:27:23,390
ู‡ูˆุนุงู„ ุฃูƒุชุฑุŒ ุนุงู„ ุฃูƒุชุฑุŒ ุนุงู„ ุฃูƒุชุฑ ุงู„ู€Q*) ุจุชุฒูŠุฏ ุนู†
319
00:27:23,390 --> 00:27:30,170
ุงู„ู€P ุจุฌุฏุงุด ุจุงู„ู†ู‚ุงุท ู‡ุฐูˆู„ุฉ ุงู„ู„ูŠ ู„ูˆ ูƒุงู†ุช ู…ุด ู…ูƒุฑุฑุงุช ู…ู†
320
00:27:30,170 --> 00:27:35,430
ู‡ู†ุง ุฎุงู„ุต ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ ุนู†ุฏู‰ ููŠ ุฏุงุฎู„ ู‡ุฐู‡ ุนุฏุฏ ุนู†ุงุตุฑ
321
00:27:35,430 --> 00:27:41,890
ุงู„ู€Q*) ุฃูƒุชุฑ ู…ู† ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ู€Q ุจุนุงู„ ุฃูƒุชุฑ ุฃู†ุงู‚ุต ูˆุงุญุฏ
322
00:27:42,200 --> 00:27:50,720
ูˆูƒู„ ู‡ุฐุง ุชุจุน ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ู‚ุงุท ุงุชูƒุฑุฑ ุงู„ู…ุนู‡ุง ุฏูˆู„ุฉ ุงูˆ ู…ุง
323
00:27:50,720 --> 00:27:57,000
ุงุชูƒุฑุฑู†ุด ู…ุง ุงุชูƒุฑุฑู†ุด ุจุงู„ู…ุฑุฉ ุจูŠูƒูˆู† ุจุงู„ุธุจุท ุนุฏุฏู‡ู… ุงู„ู„ูŠ
324
00:27:57,000 --> 00:28:03,000
ู‡ูˆ ุงู„ YM ุฒุงุฆุฏ ุงู„ N ู†ุงู‚ุต ูˆุงุญุฏ ู„ูˆ ู…ุง ุงุชูƒุฑุฑู†ุด ูˆู„ุง
325
00:28:03,000 --> 00:28:07,700
ูˆุงุญุฏุฉ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุงุฎุฑ ุงู„ Q start ุฒูŠุฏ ุนู† ุงู„ Q ุจ N
326
00:28:07,700 --> 00:28:10,740
ู†ุงู‚ุต ูˆุงุญุฏ ู…ู† ุงู„ู†ู‚ุงุท
327
00:28:12,960 --> 00:28:17,560
ุทูŠุจ ุฒูŠ ู…ุง ู‚ุงู„ ุฅุฐู† So Q star ุชุญุชูˆูŠ ุจูŠ ุฅุจุณู„ูˆู† and Q
328
00:28:17,560 --> 00:28:21,780
star has at most N ู†ู‚ุต ูˆุงุญุฏ more points than Q
329
00:28:21,780 --> 00:28:26,220
namely those points among ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ู…ู†
330
00:28:26,220 --> 00:28:30,080
ู…ูŠู† ุงู„ู„ูŠ ุจูŠูƒูˆู† ุงู„ุฒูŠุงุฏุงุช ู…ู† ุงู„ X ูˆุงุญุฏ ู„ุนู†ุฏูŠ ุงู„ X N
331
00:28:30,080 --> 00:28:35,200
ุงู„ X N ู†ู‚ุต ูˆุงุญุฏ that is belongs to B star but not
332
00:28:35,200 --> 00:28:40,560
to ู…ูŠู† to Q ุงู„ู„ูŠ ู‡ุฏูˆู„ ุงู„ู„ูŠ ุจุชูƒูˆู† ุงู„ุฒูŠุงุฏุงุช ุทูŠุจ ู†ุทู„ุน
333
00:28:40,560 --> 00:28:48,130
ู„ููˆู‚ุงู„ุขู† ุจู…ุง ุฃู† ุงู„ู€ Q ุตุงุฑ ุชุญุชูˆู‰ ู„ู€ Q ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู€
334
00:28:48,130 --> 00:28:53,850
UQ ู†ุงู‚ุต ุงู„ู€ UQ ุตุงุฑ ุฃูƒุจุฑ ุณูˆู‰ 0 ุทุจุนุง ุนุงุฑููŠู† ู„ูŠุด ู„ุฃู†
335
00:28:53,850 --> 00:28:58,890
ุงู„ู€ refinement ุฏุงุฆู…ุง ู„ู„ upper sum ุจูŠุฌู„ู„ู‡ ู…ุงุดูŠ ุนุดุงู†
336
00:28:58,890 --> 00:29:02,670
ูŠุตูŠุฑ refinement ุนุดุงู† ูŠุจุทู„ ูŠุทู„ุน ููˆู‚ ูŠู†ุฒู„ ุฅุดูŠ ุจุณูŠุท
337
00:29:02,670 --> 00:29:07,730
ูู‡ุฐุง ููŠ ุงู„ู€ refinement ู…ุนู†ุงุชู‡ ุจูŠุตูŠุฑ ุงู„ู€ UQุฃุตุบุฑ ู…ู†
338
00:29:07,730 --> 00:29:11,790
ู…ูŠู†ุŸ ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู€UQ UQ star ู„ุฃู†ู‡ ููŠ
339
00:29:11,790 --> 00:29:15,630
ุงู„ู€refinement ุงู„ุฃุนู„ู‰ ุจุฌู„ุฏ ู…ุฏุงู… ุจุฌู„ุฏ ุฅุฐุง ู‡ุฐุง UQ
340
00:29:15,630 --> 00:29:20,610
ู†ุงู‚ุต UQ star ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุณูุฑ ุงู„ุขู† ุฒูŠ ู…ุง ุณู…ู†ุง if
341
00:29:20,610 --> 00:29:25,170
we write UQ star ุจูŠุณุงูˆูŠ Z node Z ูˆุงุญุฏ ุนู†ุฏ ู…ูŠู†ุŸ ุนู†ุฏ
342
00:29:25,170 --> 00:29:34,610
ZB then ู„ูˆ ุฃุฌูŠู†ุง ุจุฏู†ุง ู†ุญุณุจ ุงู„ุขู† UQ F ู†ุงู‚ุต UQ star
343
00:29:34,610 --> 00:29:42,230
ูˆFุฎู„ู‘ูŠู†ูŠ ุงูˆุถู‘ุญ ู„ูƒ
344
00:29:42,230 --> 00:29:53,010
ุฎู„ู‘ูŠู†ูŠ ุงูƒุชุจู‡ุง ู…ุงุนู„ูŠุด ุนู†ุฏูŠ U Q ูˆ
345
00:29:53,010 --> 00:29:59,290
F ู†ุงู‚ุต U Q Star ูˆ F
346
00:30:02,130 --> 00:30:07,370
ุงู„ู€ summation ุงู„ุฃูˆู„ู‰ ุงู„ุนุจุงุฑุฉ ุนู† ุงู„ู€ summation ู„ู‡
347
00:30:07,370 --> 00:30:19,310
ุงู„ู„ูŠ ู‡ูŠ M J ููŠ 100 ููŠ ุงู„ู€ Q ุงู„ู„ูŠ ู‡ูˆ Y J minus Y J
348
00:30:19,310 --> 00:30:25,130
minus 1 J ู…ู† ุนู†ุฏ 1 ู„ุนู†ุฏ ุงู„ู€ M ู†ุงู‚ุต ุงู„ summation
349
00:30:25,130 --> 00:30:37,430
ู„ู„ุชุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ MK Star ููŠ ู…ูŠู†ุŸ ููŠ Z K-Z K-1 K ู…ู†
350
00:30:37,430 --> 00:30:42,750
ุนู†ุฏ 1 ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ ุงู„ู€ B ุงู„ู„ูŠ ูุฑุถู†ุงู‡ุง ุฅูŠุด ุงุณู…ู‡ุง
351
00:30:42,750 --> 00:30:49,190
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ B ุฒูŠ ู…ุง ู‚ูˆู„ุช ู‚ุจู„ ุจุดูˆูŠุฉู„ูˆ ูƒุงู† ู‡ุฐูˆู„ุฉ
352
00:30:49,190 --> 00:30:53,870
ุงู„ู„ูŠ ุตุงุฑู† ุฒูŠุงุฏุงุช ู‡ู†ุง ุงู„ู„ูŠ ุตุงุฑู† ุฒูŠุงุฏุงุช ู‡ู†ุง ุงู„ X
353
00:30:53,870 --> 00:30:59,410
ู†ู‚ุทุฉ ู…ู† X ูˆุงุญุฏ ู„ุนู†ุฏ X ุงู†ุงู‚ุณ ูˆุงุญุฏ ู„ูˆ ุชูˆุฒุน ุจูŠู† ู‡ุฐูˆู„ุฉ
354
00:31:00,990 --> 00:31:04,390
ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ูƒู„ ู‡ุฏู ููŠ ุญุงู„ุฉ ุงู„ู€ M ุฃูƒุจุฑ ู…ู† N
355
00:31:04,390 --> 00:31:10,430
ุงุชูˆุฒุน ุจูŠู†ู‡ูŠู† ู‡ูŠุนู…ู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ intervals ุฒูŠ ู…ุง ู‚ู„ู†ุง
356
00:31:10,430 --> 00:31:15,850
2 ููŠ N ู†ุงู‚ุต 1 ููŠ ู‡ุฐู‡ ุงู„ intervals ู‡ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ
357
00:31:15,850 --> 00:31:22,460
ุงู„ู€ Mj ูˆ ุงู„ู€ Mk ู‚ุฏ ูŠูƒูˆู† ุงู„ู…ุฎุชู„ูุงุชู„ูƒู† ููŠ ุงู„ุจุงู‚ูŠ
358
00:31:22,460 --> 00:31:28,400
ุงู„ู„ูŠ ุฃุตู„ุง ู…ุงุฏุฎู„ู‡ู†ุด ุฅุด ุฌุฏูŠุฏ ูˆุถู„ุช ุงู„ู€Q ุฒูŠ ุงู„ู€Q*)
359
00:31:28,400 --> 00:31:35,680
ูุจุชูƒูˆู† M ุชุจุนุช ุงู„ู€Q ูˆ M*) ุชุจุนุช ุงู„ู€Q*) ุฒูŠ ุจุนุถ ูุจุตูŠุฑ
360
00:31:35,680 --> 00:31:40,360
ู‡ุฐู‡ ู†ุงู‚ุต ู‡ุฐู‡ ุจุณุงูˆูŠ 0 ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€Mj ูˆุงู„ู…ูƒ ุจุณุงูˆูŠ 0
361
00:31:40,360 --> 00:31:47,070
ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑุงู„ู€ terms ุงู„ู„ูŠ ู‡ุชูƒูˆู† ุน ุตูˆุฑุฉ MJ ู†ุงู‚ุต
362
00:31:47,070 --> 00:31:52,110
MK star ุน ุงู„ุฃูƒุซุฑ ุน ุงู„ุฃูƒุซุฑ ุงู„ู„ูŠ ู…ู…ูƒู† ูŠูƒูˆู† ุงู„ู…ุฎุชู„ูุงุช
363
00:31:52,110 --> 00:31:57,550
ุนุจุงุฑุฉ ุนู† ุฌุฏุงุด ุฌู…ุงุนุฉ ุงุชู†ูŠู† ููŠ N ู†ุงู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ ู‡ุฐูˆู„
364
00:31:57,550 --> 00:32:01,950
ุนุฏุฏ ู‡ู†ุง ุน ุงู„ุฃูƒุชุฑ ุทุจุนุง ููŠ ZK minus ZK minus ูˆุงุญุฏ
365
00:32:01,950 --> 00:32:04,770
ุชุจุนูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุฌุฒุฆุฉ ุงู„ุฌุฏูŠุฏุฉ ู„ุฅู†ู‡ ู‡ุฐู‡ ุงู„ุชุฌุฒุฆุฉ ุงู„ู„ูŠ
366
00:32:04,770 --> 00:32:08,950
ุจุชุฌุณู…ู‡ุง ู„ sub intervals ูŠุนู†ูŠ ุน ุงู„ุฃูƒุชุฑ ู‡ุฐูˆู„ ุนุฏุฏ ู‡ู†ุง
367
00:32:08,950 --> 00:32:13,180
ุฌุฏุงุด ุงุชู†ูŠู† ููŠ N ู†ุงู‚ุต ูˆุงุญุฏู‡ุฐุง ุฃู†ุง ู‚ู„ุชู‡ ู„ู…ุง ููŠ ุญุงู„ุชูŠ
368
00:32:13,180 --> 00:32:18,610
ุงู„ุฃู… ุฃูƒุจุฑ ู…ู† ุฃู†ุงููŠ ุญุงู„ุฉ ุงู„ู€ M ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ N
369
00:32:18,610 --> 00:32:23,890
ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ุดูŠุก .. ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุบุตุจู‹ุง ุนู†ู‡ุง
370
00:32:23,890 --> 00:32:30,270
ู…ุฏุงู… ุงู„ู€ N ุฃูƒุจุฑ ูˆุจุฏู‡ุง ุชุฏุฎู„ ุงู„ู€ X1 ุนู„ูŠู‡ู… ุบุตุจู‹ุง ุนู†ู‡ุง
371
00:32:30,270 --> 00:32:35,210
ู‡ูŠูƒูˆู† ููŠ ุงู„ุฏุงุฎู„ ุงู†ุทุจุฌ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุฅูŠุด ู…ู† ู‡ุงู† ูŠุนู†ูŠ
372
00:32:35,210 --> 00:32:39,630
ู…ุด ู‡ูŠุนู…ู„ ุฅู† 2 ููŠ N ู†ุงู‚ุต 1 ู‡ูŠุนู…ู„ ุฅู† ุฃุฌู„ ู…ู† ู‡ูŠูƒ ุฅู„ุง
373
00:32:39,630 --> 00:32:42,150
ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูŠ M ุจุชุณุงูˆูŠ N ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰
374
00:32:42,150 --> 00:32:47,560
ุงู„ุฃูƒุซุฑ ู…ู…ูƒู† ูŠุทู„ุน 2 ููŠ N-1 ู„ุฃู†ู‡ ู…ุง ุจูŠุธู„ุด ููŠู‡ ุนู†ุฏู‡
375
00:32:47,560 --> 00:32:53,580
ุงู„ู„ูŠ ู‡ูˆ ู…ูƒุงู† ุจูŠู† ู‡ุฐูˆู„ู‡ ูŠุฏุฎู„ู† ูุจุถุทุฑ ุงู† ุงู„ู„ูŠ ู‡ูˆ ุงูƒูŠุฏ
376
00:32:53,580 --> 00:32:58,140
ู‡ูŠูƒูˆู† ู…ู† ู…ู†ูŠู† ู…ู† ุฌูˆุงูƒ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุงูˆ ุจูƒูˆู† ุงู„ู„ูŠ ุฌูˆุง
377
00:32:58,140 --> 00:33:03,760
ุจุฑุถู‡ ู…ุด ู‡ูŠุฒูŠุฏู† ุนู† ุงุชู†ูŠู† ููŠ ุงู„ู€-1 ุงุฐุง ุงู„ู„ูŠ ู‡ูŠ ุฏุฎู„ู†
378
00:33:04,020 --> 00:33:09,620
ุนู„ู‰ ุฃู…ุงูƒู† ุบูŠุฑ ู…ูŠู† ุญุชู‰ ููŠ ุญุงู„ุฉ ุงู„ M ุงู„ M ุฃุตุบุฑ ู…ู† N
379
00:33:09,620 --> 00:33:14,000
ู„ุฃ ู‡ูŠุฏุฎู„ู† ู‡ูŠุฏุฎู„ู† ูŠุนู…ู„ู† sub intervals ู‡ูŠุฎุชู„ูู† ุจุฑุถู‡
380
00:33:14,000 --> 00:33:18,640
ู†ูุณ ุงู„ุดูŠุก ูŠุนู†ูŠ ู„ูˆ ุฏุฎู„ุช X1 ู‡ู†ุง ูˆ X2 ู‡ู†ุง ูุจุตูŠุฑ ุจุฑุถู‡
381
00:33:18,640 --> 00:33:22,550
ูŠุนู…ู„ู† sub intervals ููŠ ู…ุฌู…ูˆุญูŠู†ู„ู† ูŠุชุฌุงูˆุฒ ุงู† ุงุชู†ูŠู†
382
00:33:22,550 --> 00:33:29,230
ููŠ ุงู† ู†ุงู‚ุต ูˆุงุญุฏ ู„ุฃู† ุนุฏุฏ ุงู† ู†ุงู‚ุต ูˆุงุญุฏ ู…ู† ุงู„ู†ู‚ุงุท
383
00:33:29,230 --> 00:33:33,550
ุงู„ุฌุฏูŠุฏุฉ ุงู„ X1 X2 ุนู†ุฏ Xn ู†ุงู‚ุต ูˆุงุญุฏ ุงู† ุดุงุก ุงู„ู„ู‡ ุชูƒูˆู†
384
00:33:33,550 --> 00:33:39,490
ูˆุงุถุญุฉ ู‡ุฐู‡ ุงู„ุตูˆุฑุฉ ูŠุนู†ูŠ ู…ุฎุชุตุฑู‡ุง ุงู†ู‡ู‡ู† ุงู„ู„ูŠ ู…ู…ูƒู† ู…ุง
385
00:33:39,490 --> 00:33:47,270
ูŠุญูุธู„ุด ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
386
00:33:47,270 --> 00:33:48,310
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
387
00:33:48,310 --> 00:33:48,670
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
388
00:33:48,670 --> 00:33:48,690
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
389
00:33:48,690 --> 00:33:48,810
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
390
00:33:48,810 --> 00:33:49,030
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
391
00:33:49,030 --> 00:33:52,480
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ุงู„ู„ูŠ
392
00:33:52,480 --> 00:33:57,120
ู‡ูŠ ุจุณ ุงู„ู„ูŠ ู‡ูŠ N ู†ุงู‚ุต ูˆุงุญุฏ ู…ู† ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ู‡ุชุตู†ุนู†ูŠ
393
00:33:57,120 --> 00:34:02,180
ุจุณ ุงุชู†ูŠู† ููŠ N ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุงู„ุฃูƒุซุฑ ู…ู† ุงู„ .. ุงู„ู„ูŠ
394
00:34:02,180 --> 00:34:10,840
ู‡ูŠ ุงู„ M ูˆุงุญุฏ ุฃูˆ ุงู„ Mj ุชุฎุชู„ู ุนู† ุงู„ M ูƒุณุชุงุฑ ุทูŠุจุŒ
395
00:34:10,840 --> 00:34:13,940
ู…ุงุดูŠ ุงู„ุญุงู„ุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุชูƒูˆู† ุงู„ู…ุถุญูƒุฉ ู‡ุฐู‡ ู„ุฃู† ู‡ูŠ ุจุณ
396
00:34:13,940 --> 00:34:17,840
ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุจุฏู‡ุง ุชูˆุถูŠุญ ููŠ ุงู„ุจุงู‚ูŠ ู‡ูŠูƒูˆู† ุจุฅุฐู†
397
00:34:17,840 --> 00:34:23,040
ุงู„ู„ู‡ ุณุนูŠุฏ ุฅุฐุง ุตุงุฑ ุฒูŠ ู…ุง ู‚ู„ู†ุงู†ุฑุฌุน ู„ู‡ุฐุง then U Q F
398
00:34:23,040 --> 00:34:27,200
ู†ู‚ุต U Q Star ูˆ F can be written as the sum of at
399
00:34:27,200 --> 00:34:31,920
most ุงุชู†ูŠู† ููŠ M ู†ู‚ุต ูˆุงุญุฏ terms of the form M J ู†ู‚ุต
400
00:34:31,920 --> 00:34:37,460
M K Star ููŠ Z K minus Z K minus ูˆุงุญุฏ ู„ุฃู† ุนุฏุฏ ู‡ุฐู‡
401
00:34:37,460 --> 00:34:41,680
ุงู„ุฏูˆู„ุฉ ุนู„ู‰ ุงู„ุฃูƒุซุฑ ุงู„ู„ูŠ ู‡ูˆ ุจุงู„ุดูƒู„ ู‡ุฐุง ุฅุฐุง ุงู„ุขู† ู„ูˆ
402
00:34:41,680 --> 00:34:51,060
ุฃุฌูŠู†ุง ุจุฏูŠ ุฃุญุณุจู„ูƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ M J ู†ู‚ุต M K Starู‡ุฐู‡
403
00:34:51,060 --> 00:35:00,000
ู‡ูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ุฌ ุฒุงุฆุฏ ู…ูƒ
404
00:35:01,360 --> 00:35:05,180
ูˆูƒู„ ูˆุงุญุฏุฉ ุทุจุนุงู‹ ู‡ุฐุง supremum ุนู„ู‰ ูุชุฑุชู‡ุง ูˆู‡ุฐุง
405
00:35:05,180 --> 00:35:09,240
supremum ู„ู„ F ุนู„ู‰ ูุชุฑุชู‡ุง ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ M
406
00:35:09,240 --> 00:35:13,160
ุฒุงุฆุฏ ุงู„ M ู„ุฃู† ู‡ุฐุง ุงู„ M ุนุจุงุฑุฉ ุนู† ุงู„ supremum ุนู„ู‰ ูƒู„
407
00:35:13,160 --> 00:35:16,360
ุงู„ interval A ูˆB ู‡ุฐุง ุนู„ู‰ ุฌุฒุกู‡ ู‡ุฐุง ุนู„ู‰ ูƒู„ ุงู„
408
00:35:16,360 --> 00:35:19,240
interval A ูˆB ู‡ุฐุง ุนู„ู‰ ุฌุฒุกู‡ ูŠุนู†ูŠ ููŠ ุงู„ู†ู‡ุงูŠุฉ ู‡ุฐุง
409
00:35:19,240 --> 00:35:25,460
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‚ุฏุงุด 2 ููŠ M ูŠุนู†ูŠ ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„
410
00:35:25,460 --> 00:35:32,980
absolute value ู„ู„ M J ู†ุงู‚ุต M K StarููŠ ZK-ZK-1
411
00:35:32,980 --> 00:35:39,970
ู‡ูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ุณุงูˆู‰ 2MููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู„ูŠ ู‡ูŠ ุทูˆู„ ุงู„ู€
412
00:35:39,970 --> 00:35:43,550
interval ู‡ุฐู‡ ุทูˆู„ ุงู„ู€ interval ู‡ุฐู‡ ุทุจ ู‡ุฐู‡ ุงู„ู€
413
00:35:43,550 --> 00:35:50,170
interval zk minus zk minus 1 ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
414
00:35:50,170 --> 00:35:56,410
ู…ูŠู†ุŸ norm ู„ู€ Q star ู…ูŠู† norm ู„ู€ Q starุŸ ุงู„ู„ูŠ ู‡ูˆ ุงู„
415
00:35:56,410 --> 00:36:01,510
supremum ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุฃุทูˆุงู„ ุงู„ subintervals ุงู„
416
00:36:01,510 --> 00:36:05,750
supremum ุฃูƒูŠุฏ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ุทูˆู„ ูˆุงุญุฏุฉ
417
00:36:05,750 --> 00:36:13,190
ู…ู†ู‡ู…ู„ูƒู„ู‡ู… ูˆู‡ุฐู‡ ุฏุงุฆู…ุงู‹ ู„ู…ุง ู†ุฒูŠุฏ ุงู„ุนุฏุฏ ู‚ู„ู†ุง ู„ู…ุง ู†ูƒูˆู†
418
00:36:13,190 --> 00:36:19,630
Q ูŠุญุชูˆูŠ Q*) automatic norm ู„ู€ Q*) ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู„ู…ุฑุฉ
419
00:36:19,630 --> 00:36:24,710
ุงู„ูุงุชุฉ ู‡ูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุดูˆูŠ .. ุขุณู ู„ู…ุง ูŠูƒูˆู† Q
420
00:36:24,710 --> 00:36:28,370
substantive ู„ู€ Q*) ูŠูƒูˆู† norm ู„ู€ Q*) ุนูƒุณู‡ ุฃุตุบุฑ ุฃูˆ
421
00:36:28,370 --> 00:36:34,420
ูŠุดูˆูŠ norm ู…ู† ู„ู€ Qุฅุฐุง ุงู„ู€ N ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ูˆ
422
00:36:34,420 --> 00:36:38,940
ู‡ุฐุง ู†ูุณู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุงู„ู€ Q ูˆ ุงู„ู€ Normal Q
423
00:36:38,940 --> 00:36:42,720
ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฏู„ุชุง ู…ุง ุงุญู†ุง ุนู„ู‰ ุฃุณุงุณู‡ ุงู„ู„ูŠ ู‡ูŠ
424
00:36:42,720 --> 00:36:48,120
ุงุดุชุบู„ู†ุง ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง Normal ุฃุตุบุฑ ู…ู† ุฏู„ุชุง ูŠุนู†ูŠ
425
00:36:48,120 --> 00:36:53,380
ู†ุฑุฌุน ู„ู‡ุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูƒู„ ูˆุงุญุฏ ู„ุญุงู„ู‡ ุฃุตุบุฑ ู…ู† ุงุชู†ูŠู†
426
00:36:53,380 --> 00:36:58,350
ุฃู… ููŠ ู…ูŠู† ุจูŠุตูŠุฑุŸ ููŠ ุฏู„ุชุงุงู„ุฃู† ุนุฏุฏ ู‡ุฐูˆู„ ุงู„ู„ูŠ ู…ู…ูƒู†
427
00:36:58,350 --> 00:37:07,870
ูŠุธู‡ุฑ ููŠ UQ ู†ุงู‚ุต UQ star ุนุจุงุฑุฉ ุนู† 2M ู†ุงู‚ุต 1 ูŠุนู†ูŠ ููŠ
428
00:37:07,870 --> 00:37:14,330
ุงู„ู†ู‡ุงูŠุฉ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุนุฏุฏ ุงู„ู€ 2M ู†ุงู‚ุต
429
00:37:14,330 --> 00:37:22,940
1 ู…ุถุฑูˆุจ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู„ูŠ ู‡ูŠ 2M2M ููŠ Delta ู„ุฃู† ู‡ุฐุง
430
00:37:22,940 --> 00:37:28,390
ู†ูุณู‡ ุฃุตุบุฑ ูŠุณุงูˆูŠ 2M ูˆ ู‡ุฐุง ู†ูุณู‡ ุฃุตุบุฑ ูŠุณุงูˆูŠ Deltaุงู„ุงู†
431
00:37:28,390 --> 00:37:33,030
ู‡ุฏูˆู„ุฉ ุจุชูƒุฑุฑ ุนู„ู‰ ุงู„ุฃูƒุชุฑ ุงุชู†ูŠู† ูุฆุฉ ู†ุงู‚ุต ูˆุงุญุฏ ู‡ุฐุง ..
432
00:37:33,030 --> 00:37:36,750
ู‡ุฐุง ุจุชูƒุฑุฑ ููŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนู„ู‰ ุงู„ุฃูƒุชุฑ ููŠ ู‡ุฐุง ูˆ
433
00:37:36,750 --> 00:37:40,370
ุงู„ุจุงู‚ูŠุฉ ู‡ูŠุชุตูุฑ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅุฐุง ุตุงุฑ ู‡ูŠูƒูˆู† ู‡ุฐุง ุฃุตุบุฑ
434
00:37:40,370 --> 00:37:44,750
ุฃูˆ ูŠุณุงูˆูŠ ุนุฏุฏ ุชูƒุฑุงุฑ ู…ู† ุงุชู†ูŠู† ูุฆุฉ ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ุงุชู†ูŠู†
435
00:37:44,750 --> 00:37:51,010
M ููŠ ู…ูŠู† ููŠ Delta ูุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ UQF ู†ุงู‚ุต
436
00:37:51,010 --> 00:37:55,050
ุงู„ UQ star ูˆ F ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ุงุชู†ูŠู† ูุฆุฉ ู†ุงู‚ุต ูˆุงุญุฏ ููŠ
437
00:37:55,050 --> 00:38:01,350
ุงุชู†ูŠู† M ููŠ ู…ูŠู†ูู‰ delta ู†ุตุจูˆุช ุงู„ู„ู‰ ู‡ูˆ ู‡ุฐุง ุนุจุงุฑุฉ ุนู†
438
00:38:01,350 --> 00:38:13,090
ู‚ุฏุงุดุฉ ุฌู…ุงุนุฉ ู†ูŠุฌู‰ ู†ุญุณุจู‡ุง ุนุดุงู† ู†ุตู„ ู„ู„ูŠ ุจุฏู†ุงูŠุง ุตุงุฑ
439
00:38:13,090 --> 00:38:26,230
ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ูˆ ุงู„ U Q F U star ูˆ F Q F ู†ุงู‚ุต U
440
00:38:32,930 --> 00:38:38,230
UQF-UQF UQF
441
00:38:38,230 --> 00:38:44,130
-UQF UQF
442
00:38:44,130 --> 00:38:45,750
-UQF UQF-UQF UQF-UQF UQF-UQF UQF-UQF UQF-UQF UQF
443
00:38:45,750 --> 00:38:45,850
-UQF UQF-UQF UQF-UQF UQF-UQF UQF-UQF UQF-UQF UQF
444
00:38:45,850 --> 00:38:54,050
-UQF UQF-UQF UQF-UQF UQFูู‰ ุงู„ู„ู‰ ู‡ูˆ M ูู‰ Delta ุงู„ู„ู‰
445
00:38:54,050 --> 00:38:59,870
ู‡ูˆ ุฃูƒูŠุฏ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฃุฑุจุนุฉ ูู‰ N ูู‰ M ูู‰ Deltaู…ุธู‡ูˆุฑุฉ
446
00:38:59,870 --> 00:39:03,790
ูˆู„ุง ู„ุฃุŸ ู„ุฃู† ุงู„ู€ N ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู€ N ู†ู‚ุต ูˆุงุญุฏ
447
00:39:03,790 --> 00:39:06,370
ุงู„ู€ Delta ุฅูŠุด ุงุฎุชุฑู†ุงู‡ุงุŸ ู…ุง ู‡ูŠ ุงู„ุญุณุงุจุงุช ู…ู† ุงู„ุฃูˆู„
448
00:39:06,370 --> 00:39:12,010
ุญุงุณุจูŠู†ู‡ุง ุงุญู†ุง ุงุฎุชุฑู†ุง ุงู„ู€ Delta ููˆู‚ ุนุจุงุฑุฉ ุนู† ุฌุฏุงุด
449
00:39:12,010 --> 00:39:15,710
ู„ุฅู† ุงุญู†ุง ูƒู†ุง ุนุงุฑููŠู† ุญุงู„ู†ุง ุฃุตู„ุง ุจู†ุตู„ ู„ู‡ุง ุงู„ู…ุฑุญู„ุฉ
450
00:39:15,710 --> 00:39:19,730
ูุจุฏู†ุง ู†ุฎู„ูŠ ู‡ุฐู‡ ูŠ ุนู„ู‰ ุชู„ุงุชุฉ ู„ูŠุด ูŠ ุนู„ู‰ ุชู„ุงุชุฉุŸ ุจุนุฏ
451
00:39:19,730 --> 00:39:26,470
ุดูˆูŠุฉ ุชุดูˆู ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูŠ ู‡ุฐู‡ ูŠ ุนู„ู‰ 12N ููŠ ู…ูŠู†
452
00:39:26,470 --> 00:39:31,170
ููŠ Nู‡ุฐู‡ ุงู„ุขู† ู„ู…ุง ุฃุดูŠู„ ู‡ุฐู‡ ูˆ ุฃุถุฑุจ ู‡ุฐู‡ ููŠู‡ุง ุจูŠุตูŠุฑ
453
00:39:31,170 --> 00:39:34,770
ุฃุฑุจุนุฉ ููŠ ูˆุงุญุฏ ูˆ ุงู„ุงู† ู…ุน ุงู„ุงู† ูˆ ุงู„ุงู… ู…ุน ุงู„ุงู… ูˆ ู‡ุฐูŠ
454
00:39:34,770 --> 00:39:41,750
ุจูŠุตูŠุฑ ุฌุฏุงุด ุชู„ุงุชุฉ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุงู† U Q ูˆ F ู†ุงู‚ุต U
455
00:39:41,750 --> 00:39:48,000
Q Star ูˆ F ุฃุตุบุฑ ู…ู† epsilon ุน ุชู„ุงุชุฉูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ
456
00:39:48,000 --> 00:39:55,380
ุตุงุฑ ุนู†ุฏ ุงู„ู€ U Q ูˆ F ุฃุตุบุฑ ู…ู† ุฅุจุณู„ ู…ู† ุน ุชู„ุงุชุฉ ุฒุงุฆุฏ U
457
00:39:55,380 --> 00:40:01,420
Q star ู…ู† ูˆ F ู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ู‡ุฐู‡ ุงู„ in quality
458
00:40:01,420 --> 00:40:06,160
ุงู„ุชุงู†ูŠุฉ ุงู„ู„ูŠ ูˆุตู„ู†ุงู‡ุง ุงู„ู„ูŠ ู‡ุชูˆุตู„ู†ูŠ ููŠ ุงู„ู†ู‡ุงูŠุฉ ู„ู„ูŠ
459
00:40:06,160 --> 00:40:11,490
ุจุฏูŠู‡ ูˆู†ุดูˆู ูƒูŠู ู‡ุชูˆุตู„ู†ูŠุทูŠุจ ูŠุง ุฌู…ุงุนุฉ ุตู„ูˆุง ุนู„ู‰ ุงู„ู†ุจูŠ
460
00:40:11,490 --> 00:40:17,670
ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุชู†ุณูˆุด ุฃู†ู‡ ุงุญู†ุง ููŠ ุงู„ุฃูˆู„ ุญุตู„ู†ุง
461
00:40:17,670 --> 00:40:21,730
ุนู„ู‰ U ุจูŠ ูˆ ุฃู ู…ุงุทุณ ุฃู„ ุจูŠ ูˆ ุฃู ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
462
00:40:21,730 --> 00:40:24,930
ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ูˆุญุตู„ู†ุง ุนู„ู‰ U ุจูŠ ูˆ ุฅุจุณู„ูˆู† ู‡ุฐุง ุฃุตุบุฑ
463
00:40:24,930 --> 00:40:27,910
ู…ู† ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ู‡ู†ุญุชุงุฌู‡ุง ุจุนุฏ ุดูˆูŠุฉ ุฎู„ูŠู†ูŠ ุงูƒุชุจู‡ุง
464
00:40:27,910 --> 00:40:35,630
ุงู„ุชุงู†ูŠุฉ ุนู†ุฏ ุญุตู„ู†ุง ู‚ุจู„ ู‡ูŠูƒ ุนู„ู‰ ุงู„ U ุจูŠ ูˆ ุฃู ู…ุงุทุณ ุฃู„
465
00:40:35,630 --> 00:40:42,970
ุจูŠ ูˆ ุฃู ุฃุตุบุฑู…ู† epsilon ุน ุชู„ุงุชุฉ ูˆุทุจุนุง ุงูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ
466
00:40:42,970 --> 00:40:46,870
ุงุตุบุฑ ู…ู† u ุจูŠ ุงุจุณู„ูˆู† ูˆ ุงู ุนุดุงู† ู„ุง ู†ุฑุฌุน ุงู„ู‡ุงุดู…ูˆู†
467
00:40:46,870 --> 00:40:51,970
ุงู‚ุตุงู„ ุจูŠ ุงุจุณู„ูˆู† ูˆ ุงู ูƒู„ู‡ ุงุตุบุฑ ู…ู† ุงุจุณู„ูˆู† ุน ุชู„ุงุชุฉ
468
00:40:51,970 --> 00:41:00,930
ู‡ุงูŠ ูƒู…ุงู† ู‡ุฏูˆู„ ุงู„ุชู†ุชูŠู† ุญุตู„ู†ุงู‡ุง ู…ุงุดูŠ ุทูŠุจ ุงู„ุงู†
469
00:41:00,930 --> 00:41:09,000
ุงู„ู„ูŠ ุนู…ู„ู†ุง ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู…ุน ุงู„ upper sumุจู†ุนู…ู„ ู†ูุณู‡
470
00:41:09,000 --> 00:41:14,680
ู…ุน ู…ูŠู† ู…ุน ุงู„ู„ูŠ ู‡ูˆ our sum ู‡ู†ู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ LQ ูŠุนู†ูŠ
471
00:41:14,680 --> 00:41:19,060
LQ star ูˆ F ู†ุงู‚ุต LQ F ู‡ู†ู„ุงู‚ูŠู‡ ู‡ู†ุง ุนู„ู‰ ุงู„ุฃูƒุชุฑ
472
00:41:19,060 --> 00:41:23,020
ุจุงุฎุชู„ุงู ุฃู†ู‡ ู‡ูˆ ุงู„ุชูˆ ูุฆุฉ ู†ุงู‚ุต ูˆุงุญุฏ ู…ู† ุงู„ุชู„ุฒู…ู‡ ูˆ ูˆ ูˆ
473
00:41:23,020 --> 00:41:26,640
ุงู„ุงุฎุฑ ูˆ ุจู†ูƒู…ู„ ู†ูุณ ุงู„ุงุดูŠ ุจุทู„ ุนู†ุฏ LQ star ูˆ F ู†ุงู‚ุต
474
00:41:26,640 --> 00:41:30,600
ุฅุจุดุฑ ุนู„ู‰ ุชู„ุงุชุฉ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† LQ F ุฅุฐุง similarly
475
00:41:30,600 --> 00:41:35,120
for ู‡ุฐู‡ ุงู„ู„ูŠ ุนู…ู„ู†ุงู‡ุง ู‡ุฐู‡ ู…ุง ุญุฏ ุจู†ุนู…ู„ู‡ ู…ุน ุงู„ู„ูŠ ู‡ูˆ
476
00:41:35,730 --> 00:41:47,930
ุงู„ู€ L L of Q star ูˆ F ู…ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ
477
00:41:47,930 --> 00:41:55,890
ุฃุตุบุฑ ู…ู† L Q O mean O F ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ุทูŠุจ and exactly
478
00:41:55,890 --> 00:42:00,310
ุฒูŠ ู…ุง ุจู†ู‚ูˆู„ similar argument symbolize that ุงู„ู„ูŠ
479
00:42:00,310 --> 00:42:07,870
ูƒุชุจู†ุงู‡ู„ู†ุจุฏุฃ ู†ุฌู…ุน ู…ุนู„ูˆู…ุงุชู†ุง ุนุดุงู† ู†ุตู„ ู„ุฅู†ู‡ ุงู„ู€
480
00:42:07,870 --> 00:42:11,530
Riemann Sum ู†ู‚ุต ุงู„ู€ integration ูŠูƒูˆู† ุฅูŠู‡ ุดู…ุงู„ู‡
481
00:42:11,530 --> 00:42:15,890
ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†ุŒ ุงู†ุชุจู‡ูˆุง ูƒูŠู ุนุดุงู† ูŠู…ูƒู† ู‡ูŠูƒ
482
00:42:15,890 --> 00:42:23,210
ุชูƒูˆู† ุฃุณู‡ู„ ู„ู†ุง ู†ุฑุณู… ุฎุท ุงู„ุฃุนุฏุงุฏ ูˆู‡ู†ุง ู‡ุฎู„ูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ
483
00:42:23,210 --> 00:42:43,920
ู†ุญุท ุงู„ู€ U ุฃูƒูŠ ูˆ FU Q F ู‡ูŠ ุฃุตุบุฑ ู…ู†
484
00:42:43,920 --> 00:42:55,420
ุฃุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ุฒูŠ U U ุฃุณุชุงุฑ U F ุนู†ุฏูŠ
485
00:42:55,420 --> 00:42:57,860
U Q F
486
00:43:00,380 --> 00:43:07,380
ุจุณ ุฎู„ูŠู†ูŠ ุนุดุงู† ุฃุญุท ุงู„ L ู‚ุจู„ ู„ L ู‚ุจู„ ู‡ู‡ ุนุดุงู† ู…ููŠุด
487
00:43:07,380 --> 00:43:14,800
ูˆุณุญ ุฃู†ุง ุฌู…ุงุนุฉ ุจุนุฏ ุฃุฐู†ูƒู… ุฎู„ูŠู†ูŠ ุจุณ ู‡ูƒุชุจ ุงู„ุฃูˆู„ ุฃุดู†ุจ
488
00:43:14,800 --> 00:43:27,870
ุฏู‡ ุจู…ูŠู† ุจ L L Q ูˆ Fุงู„ู€ Refinement ุทุจุนุงู‹ ู„ู€ L, Q,
489
00:43:27,970 --> 00:43:36,450
Star ูˆ F ู‚ุจู„ู‡ุง ุฒูŠ ู…ุง ุงู†ุชูˆุง ุนุงุฑููŠู† L, Q ูˆ F ุฎู„ูŠู†ูŠ
490
00:43:36,450 --> 00:43:41,090
ุฃุนู…ู„ ู‡ุฐู‡ ู‚ุจู„ู‡ุง ุนุดุงู† ุชุธุจุท ุฃุญุณู† L, Q, Star ูˆ F ู†ุงู‚ุต
491
00:43:41,090 --> 00:43:50,640
ุจุตู†ุงุนุฉ ุชู„ุงุชุฉ ูˆู‡ุฐู‡ LUQF ู…ุนุงูŠุง ู‡ู‰ ู‡ุฐู‡ ุจุชูƒูˆู† ู‚ุจู„ ู‡ุฐู‡
492
00:43:50,640 --> 00:43:59,300
ุทูŠุจ ุงู„ QF ุฃูƒูŠุฏ ุจุนุฏู‡ุง ู…ูŠู† UQF ุตุญ ูˆู„ุง ู„ุฃ ุฃูƒูŠุฏ ุทูŠุจ
493
00:43:59,300 --> 00:44:07,420
ุจุนุฏ ุงู„ UQF ุฅูŠุด ุจุชูŠุฌูŠ ุจุชูŠุฌูŠ ู‡ู†ุง ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ ุฒุงุฆุฏ
494
00:44:07,420 --> 00:44:15,340
UQ star ูˆ F ู…ุธุจูˆุทู…ุธุจูˆุท ุงูƒูŠุฏุŸ ุทูŠุจ ุงุฐุง ุงู†ุง ุงุฌูŠุช ู„ุฎุตุช
495
00:44:15,340 --> 00:44:21,120
ุงู„ู…ุนู„ูˆู…ุฉ ู‡ุฐู‡ ูˆ ู„ุฎุตุช ุงู„ู…ุนู„ูˆู…ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู†
496
00:44:21,120 --> 00:44:28,460
epsilon ุน ุชู„ุงุชุฉ UQF UQF ูˆู„ุง ุงู„ PUF ู‡ุฐู‡ ุงู„ู…ุณุงูุฉ
497
00:44:28,460 --> 00:44:32,910
ุจูŠู†ู‡ู… ุงูŠู‡ ุงุดู…ู„ ูŠุง ุฌู…ุงุนุฉุŸุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ
498
00:44:32,910 --> 00:44:37,130
ูˆุงุถุญ ุฃู‡ุŸ ูˆู…ู† ู‡ู†ุง ู‚ุงู„ ู„ูƒ U square of F ู†ู‚ุต ู‡ุฐู‡ ูˆู‡ุฐู‡
499
00:44:37,130 --> 00:44:43,050
ุฅุจุณู„ูˆู† ูˆู‡ุฐู‡ ุจุงู„ุชุฑุชูŠุจ ุงู„ู„ูŠ ุงุญู†ุง ุญุตู„ู†ุง ุนู„ูŠู‡ ุทูŠุจ ุงู„ุงู†
500
00:44:43,050 --> 00:44:48,230
ุทุจูŠุนูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ remansum ูˆ ุงู„ integration ู‡ูŠูƒูˆู†
501
00:44:48,230 --> 00:44:52,030
ุจูŠู† ุงู„ lower ูˆ ุจูŠู† main ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุงุด ุงู„ุฃุจุฑ ุฅุฐู†
502
00:44:52,030 --> 00:44:57,110
ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุงู„ remansum ุชุจุนู†ุง ู‡ูŠ ุจุฏูŠู†ุง ู†ุตู„ ู„ู„ูŠ
503
00:44:57,110 --> 00:45:04,400
ุฌุฏู†ุง ุฅูŠุงู‡ุง ุงู„ CQFูˆุงู„ู„ูŠ ู‡ูˆ ุงู„ integration ู…ู† a ุฅู„ู‰
504
00:45:04,400 --> 00:45:08,720
b ุฅู„ู‰ ุงู„ F ู‡ูŠูƒูˆู† ุจูŠู† ุงู„ lower ูˆ ุจูŠู† ุงู„ upper ุงู„
505
00:45:08,720 --> 00:45:11,720
integration ู…ูˆุฌูˆุฏ ู„ุฃู† ู…ุฑุงุณ ุงู„ุฏูˆุฑ ุฌู„ู„ู†ุง ุฅุฐุง ู‡ุฐูˆู„ู‡
506
00:45:11,720 --> 00:45:17,800
ุตุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุจูŠู† ู‡ุฐู‡ ูˆ ุจูŠู† ู‡ุฐู‡ ุฅุฐุง ุตุงุฑ ู‡ุฐู‡ ูˆ ู‡ุฐู‡
507
00:45:17,800 --> 00:45:26,120
ุจูŠู† ู‡ุฐู‡ ุงู„ุฏู†ุชูŠู†ูˆู‡ุฐู‡ ุทุจุนุง ุงู„ U Q F ูˆ ุงู„ู„ูŠ ู‚ุงู„ู‡ Q F
508
00:45:26,120 --> 00:45:31,780
ูˆุงุถุญ .. ูˆุงุถุญ ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ูˆูŠู† ููŠ ุฏุงุฎู„ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ
509
00:45:31,780 --> 00:45:36,660
ู‡ูŠ L Q Star ูˆ F ู†ุงู‚ุต ุฃุจุณู„ ุนู„ู‰ ุซู„ุงุซุฉ ูˆ U Q Star ูˆ F
510
00:45:36,660 --> 00:45:42,500
ุฃุจุณู„ ุนู„ู‰ ุชู„ุงุชุฉ ูŠุนู†ูŠ ุจูŠู† .. ู‡ุฐู‡ ุทุจุนุง .. ุจูŠู† ู‡ุฐู‡ ูˆ
511
00:45:42,500 --> 00:45:47,200
ุจูŠู† ู…ูŠู† ูˆ ุจูŠู† ุงู„ interval ู‡ุฐู‡ ูŠุนู†ูŠ subset ู…ู† ู…ูŠู†
512
00:45:47,200 --> 00:45:53,460
ุฌุงูŠู„ ู…ู† I ุฃุจุณู„ูˆู†ุงู„ู„ูŠ ู‡ูŠ I Epsilon ุจุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
513
00:45:53,460 --> 00:45:59,440
ุงู„ูุชุฑุฉ ู‡ุฐู‡ ู…ู† ู‡ู†ุง ู„ุนู†ุฏ ุงู„ู€ hand ู‡ูˆ ุงู„ู„ูŠ ู…ุณู…ูŠู†ู‡ุง
514
00:45:59,440 --> 00:46:05,740
ุงุญู†ุง ุงุดู…ุงู„ู‡ุง I Epsilon ุจูŠู† L Q Star ูˆ F ู†ู‚ุต
515
00:46:05,740 --> 00:46:11,860
Epsilon ุน ุชู„ุงุชุฉ ูˆ U Q Star F ูˆ Epsilon ุน ุชู„ุงุชุฉ
516
00:46:11,860 --> 00:46:20,060
ุงู„ุขู†U Q Star ูˆ F ู†ุงู‚ุต ู‚ุงู„ูƒ U Star ูˆ F ู…ุง ู…ุณุญุชุงุด
517
00:46:20,060 --> 00:46:28,200
ู„ุณู‡ ุฃู†ุง U Q Star F ูˆ ู‚ุงู„ูƒ U Star F ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
518
00:46:28,200 --> 00:46:36,520
ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ ู„ุฃ ุงู„ู„ูŠ ู‡ูŠ U
519
00:46:36,520 --> 00:46:42,670
Q Star Fูˆู‚ุงู„ ุงู„ู€ Q star F ุญุตู„ู†ุง ุนู„ูŠู‡ุง ู‚ุจู„ ู‡ูŠูƒ ุฃู†ู‡ุง
520
00:46:42,670 --> 00:46:46,650
ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ ุน ุชู„ุงุชุฉ ุทุจุนุง ู…ู† ูˆูŠู† ุจู†ุญุตู„ู‡ุงุŸ
521
00:46:46,650 --> 00:46:49,650
ู…ู…ูƒู† ู†ุญุตู„ู‡ุง ู…ุจู‚ู‰ ู…ู† ู‡ู†ุง ุฏู‡ ูƒู…ุง ุญุตู„ู†ุงุด ุฃู† ุงู„ู€ Q
522
00:46:49,650 --> 00:46:54,430
star ูˆ F ูˆ ุงู„ู€ By ุจุชุญุชูˆูŠ ุงู„ู€ By ูู‡ูŠูƒูˆู† ุงู„ู€ U ุงู„ู„ูŠ
523
00:46:54,430 --> 00:47:00,090
ุญุตู„ู†ุง ุฃูˆู„ุง ุจุงู„ู†ุณุจุฉ ู„ู…ู†ุŸ ู„ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ By ุญุตู„ู†ุง ู‚ุจู„
524
00:47:00,090 --> 00:47:06,400
ู‡ูŠูƒ ุฃู† ุงู„ู€ Uุจุฅุจุณู„ูˆู† ูˆ ุงู„ ุงู„ ุจุฅุจุณู„ูˆู† ุงู„ูุฑู‚ ุจูŠู† ู‡ู…ูŠู†
525
00:47:06,400 --> 00:47:10,840
ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ูˆ ุงู„ Q star refinement ุฅุฐุง ุฃูƒูŠุฏ
526
00:47:10,840 --> 00:47:14,920
ุงู„ู…ุณุงูุฉ ุจูŠู† ุงู„ other ุทุจุนุง ููŠ ุงู„ refinement ุงู„ู…ุณุงูุฉ
527
00:47:14,920 --> 00:47:20,440
ุจูŠู† ุงู„ other ูˆ ุงู„ other ู‡ุชุตุบุฑ ู„ูƒู„ refinement ุงู„ U
528
00:47:20,440 --> 00:47:28,340
ุจู…ุง ุฃู† ู‡ุฐู‡ refinement ุฅุฐุง ุงู„ Uู„ุฃ ุงู„ู€ Q star ูˆ F
529
00:47:28,340 --> 00:47:34,960
ู†ุงู‚ุต L Q star ูˆ F ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู„ุฃู†ู‡ุง ุตุงุฑุช ุชุญุณูŠู†
530
00:47:34,960 --> 00:47:38,400
ุนู„ูŠู‡ุง ู…ุงุฒุงู„ุช ุตุงุฑุช ุชุญุณูŠู† ูŠุนู†ูŠ ุจุชุฌู„ู„ ู…ุณุงูุฉ ุจูŠู† ุงู„
531
00:47:38,400 --> 00:47:40,780
Upper ูˆ ุงู„Lower ุนุดุงู† ู†ุฑูˆุญ ููŠ ุงู„ุขุฎุฑ ู„ู„ integration
532
00:47:40,780 --> 00:47:51,520
ู†ุงู‚ุต ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู„L B epsilon ูˆ F U ู†ุงู‚ุต L B
533
00:47:51,520 --> 00:47:56,980
epsilon ูˆ F ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† 100ู…ู† ุฅุจุณู„ูˆู† ูˆูŠู†ู‡ุง
534
00:47:56,980 --> 00:48:03,400
ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุน ุชู„ุงุชุฉ ุฅุฐุง
535
00:48:03,400 --> 00:48:10,320
ูุนู„ุง ุนุฑูู†ุง ู…ู† ูˆูŠู† ุฅุฌุช ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุน
536
00:48:10,320 --> 00:48:18,460
ุชู„ุงุชุฉ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ length ู„ู‡ุฐู‡ุงู„ู€ length ู„ู‡ุฐู‡
537
00:48:18,460 --> 00:48:23,240
ุณู‡ู„ ู†ูˆุฌุฏู‡ ุจุนู„ูŠุด ุฎู„ู‘ูŠู†ูŠ ุฃูƒุชุจ ููˆู‚ ุนุดุงู† ู„ูˆ ุฌุจุชู„ูƒู… ุงู„
538
00:48:23,240 --> 00:48:29,780
length ุฅู„ู‡ุง ุนุดุงู† ุฃู‚ูˆู„ูƒู… ุฅู†ู‡ ู‡ุฐู‡ ูˆ ู‡ุฐู‡ ู‡ูŠูƒูˆู† ุงู„ู„ูŠ
539
00:48:29,780 --> 00:48:38,900
ู‡ูˆ ุจุงู„ุจุนุฏ ุงู„ู…ุทู„ูˆุจ ุชุญุณุจู„ูŠ ุงู„ุขู† ู‡ุฐู‡ ู†ุงู‚ุต ู‡ุฐู‡ ุจุตูŠุฑ
540
00:48:38,900 --> 00:48:48,940
ุนุจุงุฑุฉ ุนู† ุทูˆู„ ุงู„ interval mean Iy ุจุณุงูˆูŠ ุงู„ UQ star
541
00:48:48,940 --> 00:48:55,780
ูˆ F ุฒุงุฆุฏ ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ู†ุงู‚ุต ุชุจุนูŠู† ู…ุนูŠุงุฑ ุงู„ Q
542
00:48:55,780 --> 00:49:01,720
star ูˆ F ู†ุงู‚ุต ู†ุงู‚ุต ุจูŠุตูŠุฑ ุฒุงุฆุฏ ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ูˆ
543
00:49:01,720 --> 00:49:04,900
ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ูˆ ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ
544
00:49:04,900 --> 00:49:12,180
ุงุชู†ูŠู† ุฅุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ุฒุงุฆุฏ U Q star ูˆ F ู†ุงู‚ุต ุงู„ Q
545
00:49:12,180 --> 00:49:18,800
star ูˆ F ุงู„ู„ูŠ ู‡ู… ู‡ุฐูˆู„ุฉู‡ุฐู‡ ุงู„ู„ูŠ ูƒุชุจุชู‡ุง ู„ุณู‡ ู…ุงุญุชู†ุด
546
00:49:18,800 --> 00:49:23,400
ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ูŠุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ูุจุชุตูŠุฑ ู‡ุฐู‡ ุทูˆู„ู‡ุง
547
00:49:23,400 --> 00:49:26,700
ุฃุตุบุฑ ู…ู† ุงุชู†ูŠู† ูŠุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ุฒุงุฆุฏ ูŠุจุณู„ูˆู† ุนู„ู‰
548
00:49:26,700 --> 00:49:31,620
ุชู„ุงุชุฉ ูˆูŠุณุงูˆูŠ ูŠุจุณู„ูˆู† ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุทูˆู„ ุงู„ู€ interval
549
00:49:31,620 --> 00:49:40,520
ุงู„ู„ูŠ ุฃุณูŠ Qf ูˆุงู„ู€ integration A ูˆBู…ูˆุฌูˆุฏุฉ ููŠ ูƒู„
550
00:49:40,520 --> 00:49:46,660
ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุณุงูุฉ ุจูŠู†ู‡ู… ุนุจุงุฑุฉ ุนู† ุฃุตุบุฑ ู…ู†
551
00:49:46,660 --> 00:49:53,460
ู…ูŠู† ู…ู† Epsilon ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ integration
552
00:49:53,460 --> 00:50:05,480
ุฃูŠู† ุฃูƒุชุจ ุงู„ integration ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ
553
00:50:05,480 --> 00:50:12,380
ุงู„ู…ุณุงูุฉ ุจูŠู† ู‡ุฐู‡ ูˆ ู‡ุฐู‡SQF ู†ู‚ุต ุงู„ integration ู…ู† A B
554
00:50:12,380 --> 00:50:16,900
ู„ F ุฃุตุบุฑ ู…ู† ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ ู…ู† ูŠุจุณุท ู…ู† ู…ูŠู† ู‡ุฐุง ุชุญุช
555
00:50:16,900 --> 00:50:23,360
ุดุฑุท ู…ูŠู† ุฅู†ู‡ normally Q ู‡ุฐุง ุฃุตุบุฑ ู…ู† A H ู…ู† ุฏู„ุชุง
556
00:50:23,360 --> 00:50:29,200
ุฃุตุบุฑ ู…ู† ุฏู„ุชุง ุจู‚ูˆู„ ุฅูŠู‡ ุฃุญู†ุง ุฎู„ุตู†ุง ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡
557
00:50:29,200 --> 00:50:32,280
ู†ูˆู‚ู
558
00:50:32,280 --> 00:50:33,020
ุงู„ุฌูŠุฌุง ุจุญุซู‡ุง
559
00:51:39,830 --> 00:51:44,830
ุฃู‡ ูŠุง ุฃุจูˆ ุญุณู† ุจู‚ูˆู„ ู‡ูŠูƒ ุฃุญู†ุง ุฎู„ุตู†ุง ุจุฑู‡ุงู† ู†ุธุฑูŠุฉ ุฃูˆู„
560
00:51:44,830 --> 00:51:48,490
ุญุฏ ูŠู‚ูˆู„ ู„ูŠ ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุณุงูุฉ ุจูŠู† U ูˆQ ู‚ุงู„ ุงู„ู€ Q
561
00:51:48,490 --> 00:51:50,950
ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ู„ุฃ ุงุญู†ุง ู…ุงู‚ู„ู†ุงุด ู‡ูŠูƒ
562
00:51:50,950 --> 00:51:53,950
ุงู„ุจุณุงูุฉ ุจูŠู† ุงู„ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ุนู„ู‰ ุชู„ุงุชุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
563
00:51:53,950 --> 00:51:58,190
P ูŠุจุณู„ูˆู† ุงู„ู€ U P ูŠุจุณู„ูˆู† ูˆุงู„ู€ L P ูŠุจุณู„ูˆู† ูˆุฃูŠ
564
00:51:58,190 --> 00:52:01,010
refinement ู„ู‡ ุจุณ ุงู„ู€ Q ู‡ู†ุง ู…ุด refinement ู‡ุฐุง ุจุณ
565
00:52:01,010 --> 00:52:04,830
ุงู„ู„ูŠ ุจู†ุนุฑู ุฃู†ู‡ norm ู„ู€ Q ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฏู„ุชุง ุฃุตู„ุง
566
00:52:04,830 --> 00:52:08,960
ุงุญู†ุง ุจุฏู†ุง ู†ุตู„ ู„ุฅู†ู‡ุงู„ู…ุณุงูุฉ ุจูŠู† ู‡ุฐูˆู„ุฉ ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ
567
00:52:08,960 --> 00:52:13,300
ู…ู† ุฅุจุณู„ูˆู† ูˆุนู„ู‰ ุทูˆู„ ู…ู†ู‡ุง ุจู†ุณุชู†ุชุฌ ู‡ุฐู‡ ููƒูŠู ูˆุตู„ู†ุง
568
00:52:13,300 --> 00:52:16,160
ุจุฅู†ู†ุง ู‚ู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ integration ู‡ุฐู‡ ููŠ ู‡ุฐู‡
569
00:52:16,160 --> 00:52:19,780
ุงู„ูุชุฑุฉ ูˆุงู„ูุชุฑุฉ ู‡ุฐู‡ ุฌุฒุก ู…ู† ู‡ุฐู‡ ูˆู‡ุฐู‡ ู‚ู„ู†ุง ู‡ุฐู‡ ุทูˆู„ู‡ุง
570
00:52:19,780 --> 00:52:22,960
ุนู„ู‰ ุงู„ุฃูƒุซุฑ ุจุณุงูˆูŠ ุฅุจุณู„ูˆู† ุนุดุงู† ู‡ูŠูƒ ุตุงุฑุช ุงู„ู…ุณุงูุฉ ุจูŠู†
571
00:52:22,960 --> 00:52:28,000
ู‡ุฐู‡ ูˆู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู†
572
00:52:28,000 --> 00:52:34,060
ุฏู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง theorem
573
00:52:35,670 --> 00:52:45,070
ู„ุช I ุจุชุณุงูˆูŠ A ูˆB ูˆ ู„ุช F ู…ู† I ู„ุนู†ุฏ R ุจูŠูƒูˆู† ูู†ูƒุดู
574
00:52:46,090 --> 00:52:49,330
suppose there exists a number B such that ู„ูƒู„ Y
575
00:52:49,330 --> 00:52:54,110
ุฃูƒุจุฑ ู…ู† 0 if B is any partition of I with normal B
576
00:52:54,110 --> 00:52:58,030
ุฃุตุบุฑ ู…ู† Delta and S of Bi is any corresponding
577
00:52:58,030 --> 00:53:01,950
Riemann sum ุงู„ู„ูŠ ู‡ูˆ then ู„ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† then
578
00:53:01,950 --> 00:53:06,310
F is integrable on I in the sense of definition
579
00:53:06,310 --> 00:53:12,590
716 ูŠุนู†ูŠ ูˆูƒุฃู†ู†ุง ุฌุงุนุฏูŠู† ุจู†ู‚ูˆู„ conversely ุฅูŠุด ุจู†ู‚ูˆู„ุŸ
580
00:53:12,590 --> 00:53:13,610
ุจู†ู‚ูˆู„
581
00:53:16,710 --> 00:53:24,890
ุฅู†ู‡ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ limit ู„ูˆ ูƒุงู† ุนู†ุฏูŠ limit
582
00:53:24,890 --> 00:53:32,330
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ S ุฃูˆ B ูˆ F as normal B ุจุฑูˆุญ ู„ู„ุณูุฑ
583
00:53:32,330 --> 00:53:38,190
exist ูˆ ุจุณูˆุก some number B ุฅุฐู† ู‡ุฐุง ุงู„ู€ B ุจุณูˆุก ุงู„
584
00:53:38,190 --> 00:53:43,410
integration ู…ู† A ู„B F of X DX ูŠุนู†ูŠ ุจู‚ูˆู„ู„ูŠ ู„ูˆ ูƒุงู†
585
00:53:43,410 --> 00:53:50,850
ู‡ุฐุง ู…ุชุญู‚ู‚ู„ูˆ ูƒุงู† ู‡ุฐุง ู…ุชุญู‚ู‚ ุจูŠุนุทูŠู†ูŠ ุฅู†ู‡ ู‡ุฐุง ู‡ูˆ ู‡ูŠุทู„ุน
586
00:53:50,850 --> 00:53:55,110
ุงู„ู„ูŠ ู‡ูŠ ู‡ุชุทู„ุน F-integrable ูˆู‡ูŠูƒูˆู† ุจูŠู‡ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ
587
00:53:55,110 --> 00:53:59,030
ุงู„ limit ู‡ุฐุง ู‡ูˆ ู‚ูŠู…ุฉ ู…ูŠู† ุงู„ integration ู„ูŠุดุŸ ู„ุฃู†
588
00:53:59,030 --> 00:54:02,490
ู‡ุฐุง ุงุตู„ุง ุดูˆ ู…ุนู†ุงุชู‡ุŸู‡ุฐุง ู…ุนู†ุงุชู‡ for every epsilon
589
00:54:02,490 --> 00:54:07,490
ุฃูƒุจุฑ ู…ู† ุตูุฑ there exist ุงู„ู„ูŠ ู‡ูˆ delta ุฃูƒุจุฑ ู…ู† ุตูุฑ
590
00:54:07,490 --> 00:54:14,370
such that b ุฃุตุบุฑ ู…ู† delta ุจูŠุคุฏูŠ ุฅู„ู‰ S B ูˆ F ู†ุงู‚ุต
591
00:54:14,370 --> 00:54:17,630
ุงู„ B ุงู„ู„ูŠ ู…ูุชุฑุถูŠู† ุฃุตุบุฑ ู…ู† ู…ูŠู† ุงู„ epsilon ู‡ุฐุง ู‡ูˆ
592
00:54:17,630 --> 00:54:23,290
ู…ุนู†ุงุชู‡ ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนุทู‰ุทุจุนุง f bounded ู…ู†
593
00:54:23,290 --> 00:54:30,590
ุฑุฃุณ ุงู„ุฏูˆุฑ ู„ุฌู‡ู†ุง number b ุจุญูŠุซ ุงู† ู„ูƒู„ epsilon ุงูˆ fb
594
00:54:30,590 --> 00:54:33,270
is any partition ุจุญูŠุซ ุงู† normal b ุฃุนู„ู‰ ู…ู† delta
595
00:54:34,000 --> 00:54:39,600
ูˆูƒุงู†ุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุณุงูุฉ ุจูŠู† ุงู„ู€ B ุฃุตุบุฑ ู…ู† Epsilon
596
00:54:39,600 --> 00:54:44,440
ู‡ุฐุง .. ุฏู‡ ู…ุชุญู‚ู‚ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ูƒู„ู‡ ุนุจุงุฑุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู†
597
00:54:44,440 --> 00:54:47,940
limit S ุจูŠ ูˆ F as and non-invalid ุงู„ู„ูŠ ู‡ูˆ ุณูุฑ
598
00:54:47,940 --> 00:54:52,160
ุจุณุงูˆู„ B ุฅุฐุง .. ุฅุฐุง ุงุชุญู‚ู‚ ู‡ุฐุง ุจุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ F
599
00:54:52,160 --> 00:54:55,440
integrable ูˆู‚ูŠู…ุฉ ุงู„ู€ B ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู‚ูŠู…ุฉ ุงู„ limit
600
00:54:55,440 --> 00:54:59,420
ุจุณุงูˆู„ integration ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† .. ุงู„ู†ุธุฑูŠุฉ
601
00:54:59,420 --> 00:55:04,470
ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุจู† ..ุงู„ู„ูŠ ู‡ูŠ ุฏู…ุฌ ุจูŠู† ุงู„ู„ูŠ ู‡ูŠ
602
00:55:04,470 --> 00:55:08,190
ู†ุธุฑูŠุงุช ุงู„ุณุงุจู‚ุฉ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู†ุดูˆู ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ
603
00:55:08,190 --> 00:55:14,100
ุงู„ุจุฑู‡ู† ุจุฑู‡ู† ุจุณูŠุท ู„ุฅู†ู‡ ุจุนุชู…ุฏ ุนู„ูŠู‡ ุจุดูƒู„ ุณุฑูŠุนู„ุช y
604
00:55:14,100 --> 00:55:17,440
ุฃูƒุจุฑ ู…ู† 0 ูˆ delta ุฃูƒุจุฑ ู…ู† 0 as in the theorem ุงู„ู„ูŠ
605
00:55:17,440 --> 00:55:20,180
ู‡ูˆ ุงู„ู„ูŠ ููŠ ุงู„ู€ theorem ุงู„ู„ูŠ ููˆู‚ ุงู„ู…ู‚ุตูˆุฏ ููŠู‡ุง ุงู„ู†ุต
606
00:55:20,180 --> 00:55:25,820
ู‡ุฐู‡ ู‚ุฏุช ุจูŠ ุฅุจุณู„ูˆู† ุจูŠ partition of I with ู†ูุชุฑุถ ุฃู†ู‡
607
00:55:25,820 --> 00:55:30,080
norm ุจูŠ ุฅุจุณู„ูˆู† ุฃุตุบุฑ ู…ู† 200 ู…ู† ุฏู„ุชุง ู‡ุฐุง ุงู„ู…ุนุทู‰ ู…ุงุดูŠ
608
00:55:30,080 --> 00:55:36,240
ุงู„ุญุงู„ ู†ูุชุฑุถ ุฃู†ู‡ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† 0 arbitrarily ูˆ
609
00:55:36,240 --> 00:55:41,190
delta ุฃูƒุจุฑ ู…ู† 0ุฃูˆ ู†ูุชุฑุถ ุฃู† ุจูŠ ุฅุจุณู„ูˆู† ุฃูŠ partition
610
00:55:41,190 --> 00:55:45,310
ุจุญูŠุซ ุฃู†ู‡ ู†ูˆุฑู…ู‡ ุฅูŠู‡ ุดู…ุงู„ู‡ ุฃุตุบุฑ ู…ู† ุฏู„ุชุง ู„ูƒู† ู„ูˆ ุฌูŠู†ุง
611
00:55:45,310 --> 00:55:48,930
ุฃุฎุฏู†ุง ุจูŠู‡ ุฃูŠ partition ุขุฎุฑ ูˆ ุจูŠู‡ ู…ุญุชูˆู‰ ุจูŠู‡ ุฅุจุณู„ูˆู†
612
00:55:48,930 --> 00:55:53,770
ู‡ูŠูƒูˆู† ู†ูˆุฑู… ุงู„ partition ุจูŠู‡ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„
613
00:55:53,770 --> 00:55:57,470
refinement ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ุณูˆู‰ ู†ูˆุฑู… ู…ูŠู† ุงู„ุฃุตู„ูŠ ุงู„ู„ูŠ
614
00:55:57,470 --> 00:56:01,030
ู‡ูˆ ุฃุตุบุฑ ู…ู† ุฏู„ุชุง ุตุงุฑ ุนู†ุฏู‡ ุงู„ุขู† ู„ูƒู„ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู†
615
00:56:01,030 --> 00:56:06,470
ุณูุฑ there exists ุฏู„ุชุง ุจุญูŠุซ ุฃู†ู‡ ู†ูˆุฑู… ุงู„ุจูŠ ุฅุจุณู„ูˆู†
616
00:56:06,470 --> 00:56:11,740
ุฃุตุบุฑ ู…ู† ุฏู„ุชุงูˆู„ุฃูŠ partition ุจูŠ refinement ู„ุจูŠุจุณู„ูˆู†
617
00:56:11,740 --> 00:56:17,260
ุตุงุฑ norm ุฃุตุบุฑ ู…ู† delta ุฅุฐุง ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุจูˆุงุณุท
618
00:56:17,260 --> 00:56:21,740
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ุญูŠูƒูˆู† ุนู†ุฏ ุงู„ S minus ุงู„ุจูŠ
619
00:56:21,740 --> 00:56:27,580
ุฃุตุบุฑ ู…ู† ุงุจุณู„ูˆู† ูŠุคุฏูŠ ุฅู„ู‰ ู‡ุฐุง ุจูŠุจุณุงูˆ ุงู„ integration
620
00:56:27,580 --> 00:56:32,020
ู„ุฅู† ุฅูŠุด ูƒุงู†ุช ู†ุธุฑูŠุฉ ุณุจุนุฉ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ุจุชุดุชุฑุท ุชุดุชุฑุท
621
00:56:32,020 --> 00:56:33,840
ุฅู†ู‡ ู†ู„ุงู‚ูŠ ู„ูƒู„ ุงุจุณู„ูˆู†
622
00:56:36,480 --> 00:56:42,920
ุฃูŠ ุจุงุฑุชุดู† ุจูŠ ุงุจุณู„ูˆู† ุจุญูŠุซ ุฃู† ุฃูŠ ุจูŠ ุจุชุญุชูˆู„ ุจูŠ ุงุจุณู„ูˆู†
623
00:56:43,910 --> 00:56:48,530
ูŠุคุฏูŠ ุฅู„ู‰ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูƒู„ู‡ ุนู„ู‰ ุจุนุถ ุจูŠุคุฏูŠ F
624
00:56:48,530 --> 00:56:53,790
ุฃุดู…ุงู„ู‡ุง is integrable ุฅุฐุง ุจูŠูˆุงุตู„ 7 4 3 ู…ุฏุงู… ุญุตู„ู†ุง
625
00:56:53,790 --> 00:56:57,910
ุนู„ู‰ ุงู„ S ุจูŠ ูˆ F ู†ู‚ุต ุงู„ V ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุจูŠูƒูˆู† ู‡ุฐุง
626
00:56:57,910 --> 00:57:01,190
ุงู„ู„ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ P ุจุณุงูˆุฉ ุงู„ integration ู„ู„
627
00:57:01,190 --> 00:57:06,630
F ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† A ู„B ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ุงุญู†ุง ุงู„ู„ูŠ
628
00:57:06,630 --> 00:57:13,530
ุญุตู„ู†ุง ุงู„ุขู† ู…ู† ุงู„ู†ุธุฑูŠุชูŠู† ุฃู† F is integrableF is
629
00:57:13,530 --> 00:57:19,050
integrable if and only if limit ุงู„ู€ S,B ูˆF ู…ู†
630
00:57:19,050 --> 00:57:23,890
normal B ุจูŠุฑูˆุญ ู„ู„ุณูุฑ exist ูˆุจุณุงูˆูŠ ู‚ูŠู…ุฉ ุงู„
631
00:57:23,890 --> 00:57:28,550
integration ูŠุนู†ูŠ ุงู„ุขู† ุงู„ integration ุฃูˆุตู„ู†ุง ู„ู‡ ุนุจุฑ
632
00:57:28,550 --> 00:57:34,330
ุทุฑูŠู‚ูŠู† ุฅู…ุง ุนุจุฑ ุทุฑูŠู‚ ุงู„ู„ูŠ ู‡ูˆ limit ู„ู„ุฑู…ุงู† sumูŠูƒูˆู†
633
00:57:34,330 --> 00:57:38,690
exist ุฃูˆ ุนุจุฑ ุงู„ุทุฑูŠู‚ ุงู„ุขุฎุฑ ู„ุฃู† ุงู„ upper .. ุงู„ upper
634
00:57:38,690 --> 00:57:42,930
integral ูˆุงู„lower integral ูŠูƒูˆู† ุฌุฏ ุจุนุถ ูˆู…ุชุณุงูˆูŠูŠู†
635
00:57:42,930 --> 00:57:52,690
ูˆุญูŠูƒูˆู† ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู‡ู… ุงู„ integration ูˆู‚ู
636
00:57:52,690 --> 00:57:59,570
ู‡ู†ุง ูŠุง ุฃุจูˆ ุญุณู† ูƒู… ุณุงุนุฉ .. ูƒู…
637
00:57:59,570 --> 00:58:00,810
ุนู†ุฏูƒ ุงู„ูˆู‚ุชุŸ
638
00:58:03,290 --> 00:58:10,650
ู†ุฎู„ุตู‡ุง ู‡ูŠูƒ ูˆ ู†ุจุฏุฃ ุชุงู†ูŠุฉุŸ ู„ุฃู† ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู‡ุฐุง ุงู„ู„ูŠ
639
00:58:10,650 --> 00:58:17,070
ู‡ูˆ ุงู„improver integral ุจุณ ุจุทูˆู„ุด ุจูŠุงุฎุฏ ู†ุต ุณุงุนุฉ ุงู†ุช
640
00:58:17,070 --> 00:58:22,090
ู‚ุงุนุฏ ู…ุนุงูŠุง ู„ู„ุฌุฏ ุฅูŠุดุŸ ุฃูƒูŠุฏุŸ ู…ุฏูŠุด ุฃุถุบุท ุนู„ูŠูƒ ูŠุง ุฃุจูˆ
641
00:58:22,090 --> 00:58:30,390
ุญุณู† ุทูŠุจ ู„ุฃ ุฎู„ูŠู†ุง ู†ุฎู„ุต ู‡ุฐู‡ ู…ุง ู‡ูˆ ุฏุฑุณ 17 ู‡ุงุŸ ู‡ู„ุฌูŠุช
642
00:58:30,390 --> 00:58:31,270
18ุŸ
643
00:58:41,590 --> 00:58:48,290
ู‡ูŠ ุงู„ุงู† ุจุชุจุฏุฃ ููŠ ุงู„ู…ุญุงุถุฑุฉ 18 ุฎู„ุตู†ุง 17 ูƒูŠูุŸ
644
00:58:54,810 --> 00:58:59,850
ู‡ูƒ ู…ูƒูˆู† ุงุญู†ุง ุฎู„ุตู†ุง ุงู„ู…ุญุงุถุฑ ุฑู‚ู… 17 ุงู„ู„ูŠ ู‡ูˆ ุงู„
645
00:58:59,850 --> 00:59:03,610
integration as a limit ุจุนุฏ ุดูˆูŠุฉ ู‡ู†ูƒู…ู„ ุงู„ section
646
00:59:03,610 --> 00:59:08,490
ู‡ุฐุง ู…ุธุจูˆุท ุจุณ ู‡ู†ูƒู…ู„ู‡ ุจู…ูˆุถูˆุน ุฌุฏูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู†
647
00:59:08,490 --> 00:59:12,510
ุงู„improver integral ูˆุฅู„ู‰ ู„ู‚ุงุก ุขุฎุฑ ูˆุงู„ุณู„ุงู… ุนู„ูŠูƒู…
648
00:59:12,510 --> 00:59:13,670
ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡