|
1 |
|
00:00:04,720 --> 00:00:09,780 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุฐู ูู ุงูู
ุญุงุถุฑุฉ ุฑูู
11 ูู |
|
|
|
2 |
|
00:00:09,780 --> 00:00:16,040 |
|
ู
ุณุงู ุชุญููู ุญูููู 2 ูุทูุงุจ ูุทุงูุจุงุช ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉ |
|
|
|
3 |
|
00:00:16,040 --> 00:00:24,760 |
|
ูููุฉ ุงูุนููู
ููู ุงูู
ุญุงุถุฑุฉ ุงูุฃููู ุจุนุฏ ุฅุนูุงู ุงูุทูุงุฑุฆ |
|
|
|
4 |
|
00:00:24,760 --> 00:00:32,580 |
|
ุจุฎุตูุต ุฃู ุจู
ูุงุฌูุฉ ููุฑูุณ ููุฑููุง ุงูู
ูุชุดุฑ ุงุชุญุฏุชูุง |
|
|
|
5 |
|
00:00:32,580 --> 00:00:37,960 |
|
ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุจุฏุฃูุง ูู ุงููู ูู chapter 7 ุงููู ูุงู |
|
|
|
6 |
|
00:00:37,960 --> 00:00:41,280 |
|
ุงูุญุฏูุซ ุนู ุงู riman integral ุฃู ุชูุงู
ู ุงู riman |
|
|
|
7 |
|
00:00:41,280 --> 00:00:45,860 |
|
ุจุฏุฃูุง ูู ุงู section ุงูุฃูู ุงููู ูู ุชุญุช ุนููุงู riman |
|
|
|
8 |
|
00:00:45,860 --> 00:00:50,740 |
|
integrability ุนุฑููุง ุดุบูุชูู ุญุงุฌุฉ ุงุณู
ูุง ุงู upper sum |
|
|
|
9 |
|
00:00:50,740 --> 00:00:55,960 |
|
ู ุญุงุฌุฉ ุงุณู
ูุง ุงู lower sum ู ูููุง ุงููู ูู ุงู lower |
|
|
|
10 |
|
00:00:55,960 --> 00:01:00,290 |
|
sum ูู ุนุจุงุฑุฉ ุนู ุงูู summation ููู mk ุงูู mk ูุฐู |
|
|
|
11 |
|
00:01:00,290 --> 00:01:06,410 |
|
ุชู
ุซู ูู xk minus xk minus 1 ุญูุซ mk ูุงูุช ุชู
ุซู ุฃู m |
|
|
|
12 |
|
00:01:06,410 --> 00:01:10,910 |
|
small k ูุงูุช ุชู
ุซู ุนุจุงุฑุฉ ุนู ุงูู infimum ููุฏุงูุฉ ุนูู |
|
|
|
13 |
|
00:01:10,910 --> 00:01:15,520 |
|
ุงููุชุฑุฉ ุงููู ูู ุงูู
ุฐููุฑุฉ ุงูุขู ุงู .. ุงู .. ุงู other |
|
|
|
14 |
|
00:01:15,520 --> 00:01:19,380 |
|
sum ูู ุนุจุงุฑุฉ ุนู ุงู summation ูููุณ ุงู sum ุงูุนููู |
|
|
|
15 |
|
00:01:19,380 --> 00:01:24,520 |
|
ูููู ุจุฏูุง ู
ููุง ุงููู ูู M K capital ุงููู ูุงูุช ุชู
ุซู |
|
|
|
16 |
|
00:01:24,520 --> 00:01:28,280 |
|
ุงู supremum ู ุงู F of X ูุงู X ุนูู ุงููู ูู ูู |
|
|
|
17 |
|
00:01:28,280 --> 00:01:34,110 |
|
ุงููุชุฑุฉ ุงูู
ุฐููุฑุฉ ุงููู ุนูุฏู ุงูุขู ุฃุฎุฏูุง ุฃูู ูู
ูุฉ ุงูู
ุฑุฉ |
|
|
|
18 |
|
00:01:34,110 --> 00:01:38,190 |
|
ุงูู
ุงุถูุฉ ููููุง ุฅุฐุง ูุงูุช F ู
ู I ูR bounded ู B any |
|
|
|
19 |
|
00:01:38,190 --> 00:01:43,230 |
|
partition of I ุจุฏู ูููู ุงู lower ุงููู ูู sum ูุฃู |
|
|
|
20 |
|
00:01:43,230 --> 00:01:47,810 |
|
partition B ู function F ุฃุตุบุฑ ุฃู ูุณุงูู ุงู upper |
|
|
|
21 |
|
00:01:47,810 --> 00:01:52,470 |
|
sum ูููุณ ุงู partition ู ูููุณ ุงููู ูู ุงู function F |
|
|
|
22 |
|
00:01:52,470 --> 00:01:58,710 |
|
ุจุนุฏ ูู ุทุจุนุง ุฎุทููุง ุฎุทูุฉ ุฃุฎุฑู ู ุฌููุง ุนุฑููุง ุงููู ูู ุดู |
|
|
|
23 |
|
00:01:58,710 --> 00:02:03,110 |
|
ู
ุนูุงุชู ุงููุง ุชููู ุงููู ูู ุงู partition Q refinement |
|
|
|
24 |
|
00:02:03,110 --> 00:02:08,610 |
|
ูู partition B ูููุง Q ุงููู ูู ุชุญุณูู ู B ุฅุฐุง ูุงูุช B |
|
|
|
25 |
|
00:02:08,610 --> 00:02:13,940 |
|
ุจู ุนุจุงุฑุฉ ุนู ู
ุฌู
ูุนุฉ ุฌุฒุฆูุฉ ู
ู Q ู ุจูุงุก ุนููู ุงููู ูู |
|
|
|
26 |
|
00:02:13,940 --> 00:02:19,440 |
|
ูููุง ุงู ุงู ุงููู ูู sub interval xk-1xk ู
ู ุงู |
|
|
|
27 |
|
00:02:19,440 --> 00:02:23,520 |
|
partition B ูู
ูู ูุชุงุจุชูุง ุนูู ุตูุฑุฉ union of sub |
|
|
|
28 |
|
00:02:23,520 --> 00:02:27,680 |
|
intervals ู
ู ุงููู ูู ุงูุชุญุณูู ุงููู ูู EQ |
|
|
|
29 |
|
00:02:31,060 --> 00:02:36,380 |
|
ุงูุขู ุฌููุง ุงููู ูู ุจูุงุก ุนูู ูุฐุง ุงูุชุนุฑูู ุฌููุง ููููุง |
|
|
|
30 |
|
00:02:36,380 --> 00:02:40,480 |
|
ูู ูุงูุช F is ู
ู I ูุนูุฏ R is bounded ู B is any |
|
|
|
31 |
|
00:02:40,480 --> 00:02:45,780 |
|
partition of I ู Q refinement ูู B ู
ุฏุงู
ุงููู ูู Q |
|
|
|
32 |
|
00:02:45,780 --> 00:02:50,420 |
|
refinement ุฅุฐุง ุงู lower sum ููุนูู ู ุงู upper sum |
|
|
|
33 |
|
00:02:50,420 --> 00:02:54,820 |
|
ูููุฒู ุนูู ุฃุณุงุณ ุงูู ุงููู ูู ูู ุงูููุงูุฉ ููุชูู ุงู |
|
|
|
34 |
|
00:02:54,820 --> 00:02:58,740 |
|
upper ู
ุน ุงู lower ู ูุตู ูุงููู ูู ุงู integrability |
|
|
|
35 |
|
00:02:58,740 --> 00:03:02,800 |
|
ุฃู ู
ุนูู ุงู integrability ูู
ุง ุณูุฑู ูุงุญูุง ุนูู ุงูุฃูู |
|
|
|
36 |
|
00:03:02,800 --> 00:03:06,560 |
|
ูู ุงููู ูู ูููู ูุงุถุญ ู
ู ุฎูุงู ุงูุฑุณู
ูู ุงููู ูู |
|
|
|
37 |
|
00:03:06,560 --> 00:03:13,890 |
|
ุงูุฏูุงู ุงูู
ูุฌุจุฉ ูู
ุง ุฐูุฑูุง ุณุงุจูุง ุงููู ุจุญููู ุฅูู ูู |
|
|
|
38 |
|
00:03:13,890 --> 00:03:17,330 |
|
ูุงูุช ุนูุฏู ุงููู ูู F ู
ู I ู R bounded ูB partition |
|
|
|
39 |
|
00:03:17,330 --> 00:03:22,750 |
|
ูQ ูrefinement ููู B ููููู ุนูุฏู lower sum ูู |
|
|
|
40 |
|
00:03:22,750 --> 00:03:28,570 |
|
partition B ุฃุตุบุฑ ุฃู ูุณุงูู lower sum ููุชุญุณูู ุนู
ุงูู |
|
|
|
41 |
|
00:03:28,570 --> 00:03:32,850 |
|
ุงูุชุญุณูู ุจูุจุฑ ูู
ุง ุจุฏู ูุตู ููุนูุง ุงูู
ุณุงุญุฉ ุชุญุช ุงูู
ูุญูุฉ |
|
|
|
42 |
|
00:03:32,850 --> 00:03:39,470 |
|
ูู ุญุงูุฉ ุงูุฏูุงู ุงูู
ูุฌุจุฉ ุงููุจุฑ ุตู
ูู Q ู F ุณูุจุฏุฃ ูุตุบุฑ |
|
|
|
43 |
|
00:03:39,470 --> 00:03:42,850 |
|
ููููู ุฃุตุบุฑ ู
ู ุงูุณุงูู ุงููู ูู ุงููุจุฑ ุตู
ูู P ู F |
|
|
|
44 |
|
00:03:42,850 --> 00:03:47,310 |
|
ุงูุชุญุณูู ูุนูู ุณูุตุบุฑู ุจู
ุนูู ุขุฎุฑ ุณูุจุฏุฃ ููุชููุง ุฅูู |
|
|
|
45 |
|
00:03:47,310 --> 00:03:51,770 |
|
ุฃุณูู ูู
ุง ูุตู ุฅูู ุงููู ูู ู
ุณุงูุงุฉ ูู ุญุงูุฉ ุงูู |
|
|
|
46 |
|
00:03:51,770 --> 00:03:55,730 |
|
Integrability ูู
ุง ูููู ุนูุฏูุง ุฃุฎุฏูุง ุงูู Supremum |
|
|
|
47 |
|
00:03:55,730 --> 00:04:01,340 |
|
ููู L ู F ุงูู L ูุงูู infimum ููู ุงูู U ุจูุตูุฑ ุจูุณู
ู |
|
|
|
48 |
|
00:04:01,340 --> 00:04:04,800 |
|
ุจุนุฏ ุดููุฉ ุญุงุฌุฉ ุงุณู
ูุง ุงู lower integral ูุงู upper |
|
|
|
49 |
|
00:04:04,800 --> 00:04:08,980 |
|
integral ูุจุฑูููุง ูุฐู ุงููุธุฑูุฉ ู ุจุนุฏูู ุฌููุง ูููู
ุฉ ู |
|
|
|
50 |
|
00:04:08,980 --> 00:04:13,520 |
|
ุจุนุฏูู ุฌููุง ูููู
ุฉ ุฃุฎุฑู ุงููู ูู ูู ูุงูุช F ู
ู I ู R |
|
|
|
51 |
|
00:04:13,520 --> 00:04:17,600 |
|
bounded ูB1 ูB2 ุงู partitions ุงูุขู ูุฃู partitions |
|
|
|
52 |
|
00:04:17,600 --> 00:04:22,480 |
|
ููููู ุงูlower ุฏุงูู
ุง ุจุบุถ ุงููุธุฑ ุนู ุงู partition ุงููู |
|
|
|
53 |
|
00:04:22,480 --> 00:04:26,120 |
|
ูู ููููู ุฃุตุบุฑ ุฃู ูุณุงูู ุงูุฃุจุฑ ุจุบุถ ุงููุธุฑ ุนู ุงู |
|
|
|
54 |
|
00:04:26,120 --> 00:04:28,660 |
|
partition B2 ูุนูู ู
ุด ูููุณ ุงู partition ุฒู ู
ุง ูููุง |
|
|
|
55 |
|
00:04:28,660 --> 00:04:33,180 |
|
ูู ุงููู
ุจุฉ 7 1 1 ูุฃ ูุฃู two partitions ุฏุงูู
ุง |
|
|
|
56 |
|
00:04:33,180 --> 00:04:37,170 |
|
ุงูlower ู
ุง ูู ููููู ุชุญุช ุฃุณูู ุงูู
ูุญูู ูุงูู Upper |
|
|
|
57 |
|
00:04:37,170 --> 00:04:41,350 |
|
ููููู ุฃุนูู ุงูู
ูุญูู ุจุบุถ ุงููุธุฑ ุนู ุงู partitions ุงููู |
|
|
|
58 |
|
00:04:41,350 --> 00:04:45,690 |
|
ุนูุฏู ุทุจุนุง ุงูุชู
ุซูู ูุฐุง ูู ุญุงู ุงููู ูู ุงู F is a |
|
|
|
59 |
|
00:04:45,690 --> 00:04:49,130 |
|
positive function ุนูู ุงู interval ุงูู
ุฐููุฑุฉ ุงูุขู |
|
|
|
60 |
|
00:04:49,130 --> 00:04:52,730 |
|
ุจุนุฏ ูููุฉ ุงุฌููุง ูุนุฑููุง ุดู ู
ุนูุงู ุงู lower integral |
|
|
|
61 |
|
00:04:52,730 --> 00:04:55,510 |
|
ูุดู ู
ุนูุงู ุงู upper integral ููููุง ุงู lower |
|
|
|
62 |
|
00:04:55,510 --> 00:05:00,050 |
|
integral ูู
ุง ูู ู
ุชููุน ุณู
ููุงู ุงูู F ูู ุนุจุงุฑุฉ ุนู ุงู |
|
|
|
63 |
|
00:05:00,050 --> 00:05:05,660 |
|
supremum ูู lowers ูุงู .. ู ุงู .. ู ุงู .. ู ุงู |
|
|
|
64 |
|
00:05:05,660 --> 00:05:10,440 |
|
upper ูู ุนุจุงุฑุฉ ุนู ุงูู infimum ูู uppers ุญุชู ูู |
|
|
|
65 |
|
00:05:10,440 --> 00:05:14,300 |
|
ุงูุชูุช ุงูุงูู ุฃู ู
ุน ุงูุงูู ุฃู ุงููู ูู ู
ู ุฃุนูู ู
ุน |
|
|
|
66 |
|
00:05:14,300 --> 00:05:17,940 |
|
ุงูุฃุณูู ููููููุง ุงูุชููุง ุจุงูุธุจุท ุนูุฏ .. ู
ู ู
ุณุงุญุฉ ุชุญุช |
|
|
|
67 |
|
00:05:17,940 --> 00:05:20,960 |
|
ุงูู
ูุญูู ูู ุญุงูุฉ ุงูุฏุงูุฉ ุงูู
ูุฌุจุฉ ููุฐู .. ูู ูุฐู |
|
|
|
68 |
|
00:05:20,960 --> 00:05:24,300 |
|
ุงูุญุงูุฉ ุจูุณู
ู ุฅุฐุง ูุงูุช ุงู upper ุชุณุงูู ุงู lower |
|
|
|
69 |
|
00:05:24,300 --> 00:05:27,920 |
|
ุจูุณู
ู ุงู function ุนูู ูุฐู ุงููุชุฑุฉ is integral ู ูุฐุง |
|
|
|
70 |
|
00:05:27,920 --> 00:05:31,900 |
|
ุงูููุงู
ููู ุชุญุฏุซูุง ููู ุนุดุงู ููู ุฃูุง ู
ุณุฑุน ุดููุฉ ูู |
|
|
|
71 |
|
00:05:31,900 --> 00:05:37,160 |
|
ุญูููุง ุฅูู ุงููู ูู ุฏุงูู
ุง ุงู lower sum ูู F ุฃุฎุฏูุง |
|
|
|
72 |
|
00:05:37,160 --> 00:05:40,760 |
|
ูุธุฑูุฉ ููููุง ุงู lower integral ุฃุณู ุงู lower |
|
|
|
73 |
|
00:05:40,760 --> 00:05:45,100 |
|
integral ุฏุงูู
ุง ุฃุตุบุฑ ูุณุงูู ู
ูู ุงู upper integral |
|
|
|
74 |
|
00:05:45,100 --> 00:05:46,860 |
|
ุฅุฐู ุงูุขู ุงููุธุฑูุฉ |
|
|
|
75 |
|
00:05:49,600 --> 00:05:52,760 |
|
ุงูุฅุนูุงู ุงูู
ูู
ุงููู ูู ูู ูุงูุช F ู
ู I ูุนูุฏ R |
|
|
|
76 |
|
00:05:52,760 --> 00:05:56,000 |
|
bounded function ุนูู closed bounded interval A ูB |
|
|
|
77 |
|
00:05:56,000 --> 00:05:59,720 |
|
ุจุฏู ูููู ุงู lower integral L of F ุฃุตุบุฑ ุฃู ุณุงูู ุงู |
|
|
|
78 |
|
00:05:59,720 --> 00:06:04,930 |
|
upper integral U of F ุจุตูุฑุฉ ุนุงู
ุฉ ูุฐู ูู ุงูู |
|
|
|
79 |
|
00:06:04,930 --> 00:06:08,050 |
|
definition ุงููู ุฐูุฑุชู ูุจู ู ุดููุฉ ูููู ุนู ุงูู |
|
|
|
80 |
|
00:06:08,050 --> 00:06:15,150 |
|
function F ุนูู bounded sub interval A ู B ุฃู |
|
|
|
81 |
|
00:06:15,150 --> 00:06:18,650 |
|
closed bounded interval A ู B ู ูุงูุช ุงูู F ุนุจุงุฑุฉ |
|
|
|
82 |
|
00:06:18,650 --> 00:06:22,080 |
|
ุนู bounded function ุจูุนุฑู ุฃู ุงูู F is remain |
|
|
|
83 |
|
00:06:22,080 --> 00:06:26,840 |
|
integrable on I ุฅุฐุง ูุงูุช ุงู lower of F ุจุณุงูู ุงู |
|
|
|
84 |
|
00:06:26,840 --> 00:06:30,080 |
|
upper of F ู
ุนูุงุชู ุตุงุฑุช ุงููู ูู ุงู F is remain |
|
|
|
85 |
|
00:06:30,080 --> 00:06:34,460 |
|
integrable if and only if ุงู lower sum ูุณุงูู ุงู |
|
|
|
86 |
|
00:06:34,460 --> 00:06:39,240 |
|
upper sum ูุฐุง ููู ุฐูุฑูุงู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ู ุฃูุถุง |
|
|
|
87 |
|
00:06:39,240 --> 00:06:42,520 |
|
ุนุฑููุง .. ูููุง ูู ูุฐุง ุงูุญููุฉ ุฃู ูู integration ู
ู A |
|
|
|
88 |
|
00:06:42,520 --> 00:06:47,890 |
|
ู B ูู ุงู lower ุฃู ุงู upper ุงูู
ุชุณุงูููู ูุนุฑููุง ุงูุถุง |
|
|
|
89 |
|
00:06:47,890 --> 00:06:50,610 |
|
ุชุนุฑูู ุขุฎุฑ ููููุง ุงู integration ู
ู a ู b ุจุณุงูู ูุงูุต |
|
|
|
90 |
|
00:06:50,610 --> 00:06:53,830 |
|
ุงู integration ู
ู b ู a ูุนุฑููุง ุงู integration ู
ู a |
|
|
|
91 |
|
00:06:53,830 --> 00:06:59,410 |
|
ู a ุจุณุงูู ุตูุฑ ูุฐุง ููู ุญูููุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ูู
ุด ููู |
|
|
|
92 |
|
00:06:59,410 --> 00:07:03,820 |
|
ูู
ุงู ูุงุฎุฏูุง ุงูู
ุซุงู ุงููู ูู ุฃุซุจุชูุง ุฅูู ุงููู ูู g of |
|
|
|
93 |
|
00:07:03,820 --> 00:07:07,880 |
|
x ุจูุณุงูู x is integrable on i ุงุณุชูุงุฏูุง ุนูู ุฅูู |
|
|
|
94 |
|
00:07:07,880 --> 00:07:11,020 |
|
ุฃูุฌุฏูุง ุงู lower sum ุงู lower integral ู ุงู upper |
|
|
|
95 |
|
00:07:11,020 --> 00:07:13,300 |
|
integral ุฃุซุจุชูุง ุฅู ุงู lower integral ู ุงู upper |
|
|
|
96 |
|
00:07:13,300 --> 00:07:16,300 |
|
integral are equal ู ู
ู ุซู
ุฃุซุจุชูุง ุฅูู ุงู |
|
|
|
97 |
|
00:07:16,300 --> 00:07:19,940 |
|
integration exist ูู function x ุนูู ุงููุชุฑุฉ 0 ู 1 |
|
|
|
98 |
|
00:07:19,940 --> 00:07:26,810 |
|
ูุฃูุฌุฏูุง ููู
ุฉ ุงู integration ูู ุญููู ูุตููุง ุฅูู ุงููู |
|
|
|
99 |
|
00:07:26,810 --> 00:07:33,290 |
|
ูู ู
ุซุงููุง ุงูุชุงูู ุฃูู ูู ูุงูุช F ู
ู I ูุนูุฏ .. F ู
ู I |
|
|
|
100 |
|
00:07:33,290 --> 00:07:40,090 |
|
ุงููู ูู 01 ูุนูุฏ ุงู .. ุงู R be defined by ุฃุฎุฏูุง |
|
|
|
101 |
|
00:07:40,090 --> 00:07:45,990 |
|
ุงูุฏุงูุฉ ูู
ุง ููู ุงููู ูู ููููุง ุฃู F of X F of X |
|
|
|
102 |
|
00:07:45,990 --> 00:07:53,040 |
|
ุจุณุงูู ูุงุญุฏ ุฅุฐุง ูุงูุช x rational number element in Q |
|
|
|
103 |
|
00:07:53,040 --> 00:08:00,100 |
|
ูุจุณุงูู 0 ุฅุฐุง ูุงูุช x element in IQ ุฃู element in Q |
|
|
|
104 |
|
00:08:00,100 --> 00:08:04,660 |
|
complement ุงููู ูู ุงู rational numbers ุงูุขู ุจุฏูุง |
|
|
|
105 |
|
00:08:04,660 --> 00:08:11,200 |
|
ูุซุจุช ุจููู show that this function F ุทุจุนุง ุฃูุง method |
|
|
|
106 |
|
00:08:11,200 --> 00:08:17,340 |
|
F ุนูู ุงููู ูู ุงูู Q ุชูุงุทุน ุทุจุนุง ุงูู 0 ู 1 ุงููู ูู |
|
|
|
107 |
|
00:08:17,340 --> 00:08:19,920 |
|
ุงูู interval ุงููู ุจุฏุฃ ุนูููุง ุงูุชูุงุทุน ุงูู 0 ู 1 |
|
|
|
108 |
|
00:08:19,920 --> 00:08:25,160 |
|
ุจู
ุนูู ุฅู ุฏุงูุช F ุตุงุฑุช ู
ู I ุงููู ูู ุนุจุงุฑุฉ ุนู 0 ู 1 |
|
|
|
109 |
|
00:08:26,040 --> 00:08:29,380 |
|
ุงููู ุนูุฏ R ูุงุถุญ ุงู ุงูุฏุงูุฉ ูุฐู is a bounded |
|
|
|
110 |
|
00:08:29,380 --> 00:08:33,560 |
|
function ุงูุขู ุจุฏุฃ ุฃุซุจุช ููู
ุงู ูุฐุง ุงูุฏุงูุฉ is not |
|
|
|
111 |
|
00:08:33,560 --> 00:08:38,120 |
|
integrable on this interval is not integrable on |
|
|
|
112 |
|
00:08:38,120 --> 00:08:44,100 |
|
this interval ุงูุขู ุนูุดุงู ุฃุตู ุงููู ูู ุงููู ูู ุงู |
|
|
|
113 |
|
00:08:44,100 --> 00:08:48,180 |
|
ูุฐุง ุงูุฏุงูุฉ ุบูุฑ ูุงุจูุฉ ุชูุงู
ู ุจุงููุณุจุฉ ูุชูุงู
ู ุจุงููุณุจุฉ |
|
|
|
114 |
|
00:08:48,180 --> 00:08:55,650 |
|
ูุชูุงู
ู ุงูุฑูู
ุงู ุจุฏู ุงุฎุฏ ุงูุงู B ุฃุฎุฏูุง ุฃู partition X0 |
|
|
|
115 |
|
00:08:55,650 --> 00:09:02,550 |
|
X1 ูุนูุฏ Xn ูุฐุง any partition ูุฅูู ุงู interval ุงููู |
|
|
|
116 |
|
00:09:02,550 --> 00:09:06,790 |
|
ูู ุงููุชุฑุฉ ู
ูู Zero ู ูุงุญุฏ ูุนูู ุจู
ุนูู ุฃุชูุช ูููุชุฑุฉ |
|
|
|
117 |
|
00:09:06,790 --> 00:09:14,030 |
|
Zero ู ูุงุญุฏ ู ุฌุฒูุชูุง X0 X1 ูุนูุฏ ู
ุคุตู ูุนูุฏ ู
ูู ูุนูุฏ |
|
|
|
118 |
|
00:09:14,030 --> 00:09:18,610 |
|
Xn ุงููู ูู ุฅูุด ุจุชุณุงูู ุจุชุณุงูู ูุงุญุฏ ุงูุขู ูุฐุง ุงู |
|
|
|
119 |
|
00:09:18,610 --> 00:09:22,130 |
|
partition ุงุฎุฏุชู arbitrarily ุงููู ูู partition |
|
|
|
120 |
|
00:09:22,130 --> 00:09:31,790 |
|
ููุชุฑุฉ L ุนูุฏู ุงูุขู ุจุฏู ุงุญุณุจ ุงู Lof B ู F ููุฐุง ุงู |
|
|
|
121 |
|
00:09:31,790 --> 00:09:34,990 |
|
partition ุฃูุด ุจุชุณุงูู ุญุณุจ ุงููู ุนุฑููุงูุง ุณุงุจูุง ุจุชุณุงูู |
|
|
|
122 |
|
00:09:34,990 --> 00:09:40,610 |
|
ุงู summation ูู M K ูู X K minus X K minus ูุงุญุฏ K |
|
|
|
123 |
|
00:09:40,610 --> 00:09:46,330 |
|
ู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ ู
ูู ูุนูุฏ ุงููู ูู N ููุณุงูู ุงูุขู ุงู |
|
|
|
124 |
|
00:09:46,330 --> 00:09:52,450 |
|
M K ุนุฑููุงูุง ุงู M K ูู ุนุจุงุฑุฉ ุนู ุงู infimum ูููู
ุฉ ุงู |
|
|
|
125 |
|
00:09:52,450 --> 00:09:56,470 |
|
function F of X ุญูุซ X ุชูุชู
ู ุฅูู ุงููุชุฑุฉ X K minus |
|
|
|
126 |
|
00:09:56,470 --> 00:10:02,210 |
|
ูุงุญุฏ ูุนูุฏ X K ุทุจุนุง ุงููู ูู F of X ู
ุนุฑูุฉ ุนูู |
|
|
|
127 |
|
00:10:02,210 --> 00:10:05,130 |
|
ุฃุณุงุณููุง ูุง ุฅู
ุง ูุงุญุฏ ูุง ุฅู
ุง ุณูุฑ ุญุณุจ ุฅููุง ุชููู |
|
|
|
128 |
|
00:10:05,130 --> 00:10:08,030 |
|
rational ุฃู ุฅูุด ุงู rational ูุนูู ุงู function F |
|
|
|
129 |
|
00:10:08,030 --> 00:10:11,910 |
|
ุฃุตูุง ุงููู ูู ููู
ุชูู ุจุณ ุฅุฐุง ุงูุขู ุงู infimum ูู F of |
|
|
|
130 |
|
00:10:11,910 --> 00:10:16,630 |
|
X ุนูุฏูุง ูุง ููููู ูุงุญุฏ ูุง ููููู ุณูุฑ ููุดุ ูุฃู ุฃุตูุง |
|
|
|
131 |
|
00:10:16,630 --> 00:10:23,340 |
|
ุงููุชุฑุฉ ูุฐู ูููุง ุฃู ูุชุฑุฉ subinterval xk-1xk ูููุง |
|
|
|
132 |
|
00:10:23,340 --> 00:10:27,620 |
|
rational ูirrational ุฅุฐุง ููู
ุฉ ุงู up of x ูู ุงููุชุฑุฉ |
|
|
|
133 |
|
00:10:27,620 --> 00:10:31,260 |
|
ูุชูุงูู ุนูุฏ ููู
ูุงุญุฏ ูุชูุงูู ุฃููุฏ ุนูุฏ ููู
ุฃุด ุจุชุณุงูู |
|
|
|
134 |
|
00:10:31,260 --> 00:10:35,000 |
|
ุจุณุงูู ุณูุฑ ุฅุฐุง ุงู infimum ูู ูุฐู ุงูุญุงูุฉ ูู ุนุจุงุฑุฉ ุนู |
|
|
|
135 |
|
00:10:35,000 --> 00:10:42,320 |
|
ุฅูุด ูุณุงูู ุณูุฑ ุฅุฐุง ุงู summation ู 0 ูู xk-xk-1 ูุงู
ู |
|
|
|
136 |
|
00:10:42,320 --> 00:10:46,120 |
|
ุนูุฏ ูุงุญุฏ ุนูุฏ ุฃูู ุทุจูุนู ูุฐุง ุจุฏููู ุฅูุด ููุณุงูู ุจุณุงูู |
|
|
|
137 |
|
00:10:46,120 --> 00:10:52,410 |
|
ุณูุฑ ุฅุฐู ุงูุขู L of F ุจู ู F ุณุงูุฉ ุณูุฑ ููุฑ ุฃู ุจูุฑุชูุดู |
|
|
|
138 |
|
00:10:52,410 --> 00:10:59,370 |
|
ุจูู ุฅุฐุง ุงู L of F ุงููู ูู ุนุจุงุฑุฉ ุนู ุงูุฃู ุงูู |
|
|
|
139 |
|
00:10:59,370 --> 00:11:06,070 |
|
Supremum ุงูู Supremum ููู ุงูู L of B ู F Such that |
|
|
|
140 |
|
00:11:06,070 --> 00:11:09,890 |
|
B element in the set of all partitions ุงููู ูู B |
|
|
|
141 |
|
00:11:09,890 --> 00:11:14,090 |
|
ูู ููููู ุงูู .. ุงูู Supremum ุงููู ููููู ุตูุฑ ูุฃู ูู |
|
|
|
142 |
|
00:11:14,090 --> 00:11:18,350 |
|
ุงููู ููููู ุฃุตูุง ุฅูุด ุจุชูุทูุน .. ุจุชูุทูุน ุจุณุงูู ุตูุฑ ุฅุฐุง |
|
|
|
143 |
|
00:11:18,350 --> 00:11:23,070 |
|
ูุฐุง ุฅูุด ููุณุงูู ูุง ุดุจุงุจุ ูู ูุณุงูู Zero ุฅุฐุง ุทูุน ุนูุฏู |
|
|
|
144 |
|
00:11:23,070 --> 00:11:28,150 |
|
ุงูู lower sum ุจุณุงูู 0 ุงูุขู ุจุฏู ุฃุญุณุจ ููู
ู
ูู ุฃุญุณุจ ููู
|
|
|
|
145 |
|
00:11:28,150 --> 00:11:31,390 |
|
ุงูู upper sum ุณุงู
ุญููู ุฃูุชุจ ููุง ุจุณ ุนุดุงู ุงููู ูุจูู |
|
|
|
146 |
|
00:11:31,390 --> 00:11:39,670 |
|
ููู ู
ูุชูุจ ุนูุฏู ููุฌุฏ ุงูู upper sum ุงูู upper sum ุงููู |
|
|
|
147 |
|
00:11:39,670 --> 00:11:45,510 |
|
ูู ุงูู UPUF ุจุณุงูู summation ููู n K capital ูู XK |
|
|
|
148 |
|
00:11:45,510 --> 00:11:51,740 |
|
minus XK minus ูุงุญุฏ K ู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ ุงูู n ุงูุขู |
|
|
|
149 |
|
00:11:51,740 --> 00:11:55,900 |
|
ูุฐุง ุจูุณุงูู ุงูู Mk ุฒู ู
ุง ูููุง ูุจู ููู ุงูู Mk ุจุฏู ู
ุง |
|
|
|
150 |
|
00:11:55,900 --> 00:11:59,400 |
|
ูู ุงูู M ูู ู
ู
ูุฒุฉ ุงุณุชุนุฑูููุง ุงูู Mk ุจุชุณุงูู ุงูู |
|
|
|
151 |
|
00:11:59,400 --> 00:12:03,780 |
|
supremum ููุฐู ุงูู 6 ูุฒู ู
ุง ูููุง ุงูู 6 ูุฐู ูู ุฏุงุฎููุง |
|
|
|
152 |
|
00:12:03,780 --> 00:12:08,400 |
|
ูุง ูุงุญุฏ ูุง ุฒูุฑู ูุธุฑุง ูุฃู ุงููู ูู ุฃู sub interval |
|
|
|
153 |
|
00:12:08,400 --> 00:12:11,820 |
|
ููููู ูููุง rational ู irrational ูุชุจุนุง ููุง ููููู |
|
|
|
154 |
|
00:12:11,820 --> 00:12:16,060 |
|
ููู
ุฉ ุงูู function ูู ุฏุงุฎููุง ูุงุญุฏ ุฃู ุตูุฑ ูุงุญูุง ุจูุจุญุซ |
|
|
|
155 |
|
00:12:16,060 --> 00:12:19,280 |
|
ุนู ุงูู supremum ุฅุฐุง ููููู ุงูู supremum ูู ูู ุงูุฃุญูุงู |
|
|
|
156 |
|
00:12:19,280 --> 00:12:25,600 |
|
ุงูู Mk ุจุชุณุงูู ูุงุญุฏ ู
ุถุฑูุจุฉ ูู xk-xk-1 k ู
ู ุนูุฏ 1 ูุนูุฏ |
|
|
|
157 |
|
00:12:25,600 --> 00:12:30,700 |
|
n ููุฑุฏูุง ูุฐู ููุณุงูู ุงููู ููุจุตูุฑ k ู
ู ุนูุฏ 1 ูุนูู x1 |
|
|
|
158 |
|
00:12:30,700 --> 00:12:39,570 |
|
-x0 ุฒุงุฆุฏ x2-x1 ุฒุงุฆุฏ ุฅูู ุขุฎุฑ ูู
ุง ุฃุตู ูุนูุฏ xn-1 ูุงูุต xn |
|
|
|
159 |
|
00:12:39,570 --> 00:12:44,550 |
|
ูุงูุต ูุงุญุฏ ุทุจุนุง ูุงุถุญ ุฅูู ุนูุฏู ุงูู x ูุงุญุฏ ูุช cancel ู
ุน |
|
|
|
160 |
|
00:12:44,550 --> 00:12:48,270 |
|
ูุงูุต x ูุงุญุฏ ู ุงูู x ุงุชููู ู
ุน ูุงูุต x ุงุชููู ูู
ุง ูุตู |
|
|
|
161 |
|
00:12:48,270 --> 00:12:52,450 |
|
ููุงุฎุฑ ููููู ูู ุนูุฏู ุงุช cancel ุงูุฌู
ูุน ุจุณ ุถู ุนูุฏู |
|
|
|
162 |
|
00:12:52,450 --> 00:12:58,170 |
|
ุงูู xn ู ุงูู x note ู ูุฏ ุจุชุณุงูู xn ูุงูุต x note ู |
|
|
|
163 |
|
00:12:58,170 --> 00:13:01,750 |
|
ูุณุงูู ุงูู xn ุทุจุนุง ุฅูุด ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ู ุงูู x note |
|
|
|
164 |
|
00:13:01,750 --> 00:13:07,190 |
|
ุฅูุด ูู ุดุจู ุตูุฑ ู ูุณุงูู ูุงุญุฏ ูุงูุต ุตูุฑ ู ูุณุงูู ูุงุญุฏ |
|
|
|
165 |
|
00:13:07,570 --> 00:13:12,930 |
|
ุฅุฐุง ุทูุน ุนูุฏู ุงูู Upper Sum ูุฃู Bar ุชุดู
ู ุจูุ ููุชูุน |
|
|
|
166 |
|
00:13:12,930 --> 00:13:18,510 |
|
ุฅูุด ุจุณุงููุ ุจุณุงูู ูุงุญุฏุฉ ุฅุฐุง ุงูุขู ูู
ุง ุจุฏู ุฃุฎุฏ ุงูู U |
|
|
|
167 |
|
00:13:18,510 --> 00:13:23,510 |
|
of F ุงููู ูู Upper Integral ููุณุงูู ุนุจุงุฑุฉ ุนู ุงูู |
|
|
|
168 |
|
00:13:23,510 --> 00:13:30,220 |
|
Infimum ูู
ููุ ููู U, B ูF such that B element in |
|
|
|
169 |
|
00:13:30,220 --> 00:13:34,580 |
|
the set of all partitions B of I ูุงูู U, B ูF |
|
|
|
170 |
|
00:13:34,580 --> 00:13:38,840 |
|
ููู
ุชู ุซุงุจุชุฉ for ุฃู partition ุจูุณุงูู ูุงุญุฏ ุฅุฐุง ุงูู |
|
|
|
171 |
|
00:13:38,840 --> 00:13:43,300 |
|
infimum ููู ุงููู ููุง ุนุจุงุฑุฉ ุนู ุจุฑุถู ุฅูุด ุจูุณุงูู ูุงุญุฏ |
|
|
|
172 |
|
00:13:43,300 --> 00:13:47,410 |
|
ุตุงุฑ ุนูุฏู ุงูุขู lower integral ู ุงูู upper integral |
|
|
|
173 |
|
00:13:47,410 --> 00:13:51,110 |
|
have different values ูุงุญุฏ ุจูุณุงูู ุตูุฑ ูุงุญุฏ ุจูุณุงูู |
|
|
|
174 |
|
00:13:51,110 --> 00:13:56,890 |
|
ูุงุญุฏ ูุจูุงุก ุนููู ุจุชููู ุนูุฏ ุงููู ูู ุงูู F is not |
|
|
|
175 |
|
00:13:56,890 --> 00:14:03,150 |
|
Riemann integrable ุฃู ุณุคุงูุ ุทูุจ ู
ุงุดู ุงูุญุงุฌุฉ |
|
|
|
176 |
|
00:14:03,150 --> 00:14:10,930 |
|
ุงูุขูุตุงุฑ ุนูุฏู ุฃุฎุฐูุง ู
ุซุงููู ุงูู
ุซุงู ุงูุฃูู ุงููู ูู |
|
|
|
177 |
|
00:14:10,930 --> 00:14:16,770 |
|
ุฃุซุจุชูุง ุฅู off of x ุจูุณุงูู x is integrable ุนูู |
|
|
|
178 |
|
00:14:16,770 --> 00:14:22,010 |
|
ุงููุชุฑุฉ 0 ู1 ูุฃุซุจุชูุงูุง ุจูุงุณุทุฉ ุงูุชุนุฑูู ูุฃูุถุง ุฃุซุจุชูุง |
|
|
|
179 |
|
00:14:22,010 --> 00:14:26,190 |
|
ู
ุซุงู ุขุฎุฑ ูู bounded function ุฃูุถุง ููุงูุช is not |
|
|
|
180 |
|
00:14:26,190 --> 00:14:31,250 |
|
Riemann integrable ุงููู ูู off of x ุจูุณุงูู 1 ุฅุฐุง |
|
|
|
181 |
|
00:14:31,250 --> 00:14:36,090 |
|
ูุงูุช x rational ููุณุงูู 0 ุฅุฐุง ูุงูุช x irrational ูุฐุง |
|
|
|
182 |
|
00:14:36,090 --> 00:14:43,040 |
|
ุงููู ูู ุงูู
ุซุงู ุงูุซุงูู ุงูุขู ููุฌู ููู ูู criterion |
|
|
|
183 |
|
00:14:43,040 --> 00:14:49,280 |
|
ู
ูู
ุฉ ุงููู ุงุญูุง ุจูุณู
ููุง ุงููู ูู ุนุจุงุฑุฉ ุนู Riemann |
|
|
|
184 |
|
00:14:49,280 --> 00:14:54,800 |
|
criterion for |
|
|
|
185 |
|
00:14:54,800 --> 00:15:01,490 |
|
integrability ุงุญูุง ุทุจุนุง ุชุญุฏุซูุง ุนู ุงูู Riemann |
|
|
|
186 |
|
00:15:01,490 --> 00:15:05,330 |
|
Integrability ููู ูุซุจุช ุฃูู Riemann Integrable ุนู |
|
|
|
187 |
|
00:15:05,330 --> 00:15:09,470 |
|
ุทุฑูู ุงูุชุนุฑูู ุทุจุนุง ุงูุขู ู
ุด ุฏุงุฆู
ุง ุจุฏูุง ูุซุจุช ุนู ุทุฑูู |
|
|
|
188 |
|
00:15:09,470 --> 00:15:14,350 |
|
ุงูุชุนุฑูู ุฅุฐุง ุจุฏูุง ุงููู ูู ุทุฑู ุฃุฎุฑู ูุญุงูู ุงููู ูู |
|
|
|
189 |
|
00:15:14,350 --> 00:15:21,780 |
|
ููุณุน ุงููู ูู ุฅู
ูุงููุงุชูุง ูู ุงูุญูู
ุนูู ุงูุฏุงูุฉ ุฅููุง |
|
|
|
190 |
|
00:15:21,780 --> 00:15:26,860 |
|
integrable ุฃู ู
ุด integrable ููุฐู ุงูุฅู
ูุงููุฉ ุงูุฃุฎุฑู |
|
|
|
191 |
|
00:15:26,860 --> 00:15:31,400 |
|
ุบูุฑ ุงูุชุนุฑูู ูู ุงููู ุจูุณู
ููุง ุงููู ูู ุงูู Riemann |
|
|
|
192 |
|
00:15:31,400 --> 00:15:36,500 |
|
integrability criterion ุฃู criterion for |
|
|
|
193 |
|
00:15:36,500 --> 00:15:41,340 |
|
integrability ูุดูู ุฅูุด ุจูููู ุงููุธุฑูุฉ |
|
|
|
194 |
|
00:15:43,700 --> 00:15:48,060 |
|
ูุช I ุจุณุงูู A ูB ููุช F ู
ู I ูู R ุจูู bounded ููุชุฑุถ |
|
|
|
195 |
|
00:15:48,060 --> 00:15:51,360 |
|
ุฃู F ุนุจุงุฑุฉ ุนู ุฅูู ุฅูุด ู
ุงููุง ูุง ุฌู
ุงุนุฉุ bounded function |
|
|
|
196 |
|
00:15:51,360 --> 00:15:57,500 |
|
then F is integrable on I if and only if for each |
|
|
|
197 |
|
00:15:57,500 --> 00:16:00,340 |
|
epsilon ุฃูุจุฑ ู
ู 0 there exists a partition B |
|
|
|
198 |
|
00:16:00,340 --> 00:16:04,660 |
|
epsilon of I such that U B epsilon ูุงูุต ุงูู L B |
|
|
|
199 |
|
00:16:04,660 --> 00:16:10,730 |
|
epsilon ุฅูุด ุฅูุด ู
ุงูู ุฃุตุบุฑ ู
ู ุงููู ูู ุฅุจุณููู ุฅุฐู ุงููู |
|
|
|
200 |
|
00:16:10,730 --> 00:16:16,410 |
|
ูู ูุงุถุญ ุฅูู ุนูุฏู ูุตุงุฑ ููู test ูู integrability ุฃู |
|
|
|
201 |
|
00:16:16,410 --> 00:16:20,150 |
|
ุงููู ูู ุทุฑููุฉ ููุญูู
ุนูู ุงู integrability ุฃุฎุฑู ุบูุฑ |
|
|
|
202 |
|
00:16:20,150 --> 00:16:26,430 |
|
ุงูุชุนุฑูู ุงููู ูู ุจุชููู F is integrable |
|
|
|
203 |
|
00:16:28,870 --> 00:16:32,890 |
|
if and only if ุทุจุนุง ูุฐู ูู
ูู ุงูู Fุ F ุนุจุงุฑุฉ ุนู ุฒู |
|
|
|
204 |
|
00:16:32,890 --> 00:16:36,190 |
|
ู
ุง ุฃูุชู
ุนุงุฑููู bounded function ูุฃู ูู ุดุบููุง |
|
|
|
205 |
|
00:16:36,190 --> 00:16:40,010 |
|
ุฃุตูุง ุนูู ุงููู ูู Riemann integrability ุฃูู ููุชุฑุถ |
|
|
|
206 |
|
00:16:40,010 --> 00:16:43,210 |
|
ุฃูู ุงูู F bounded ุนุดุงู ุงููู ูู ุชููู ุงูู supremum ู |
|
|
|
207 |
|
00:16:43,210 --> 00:16:46,330 |
|
ุงูู infimum ุงููู ู
ุจูู ุนูููุง ุงูุชุนุฑูู ุชููู ู
ุถู
ูู ุฅููุง |
|
|
|
208 |
|
00:16:46,330 --> 00:16:49,870 |
|
ู
ูุฌูุฏุฉ ุนุดุงู ููู ุจูุญูู ุฃู F is bounded function ุทูุจ |
|
|
|
209 |
|
00:16:49,870 --> 00:16:56,140 |
|
ุฅุฐุง ุงูู F is integrable if and only if ุงููู ูู ููู |
|
|
|
210 |
|
00:16:56,140 --> 00:17:00,620 |
|
ุฅุจุณููู ุฃูุจุฑ ู
ู 0 there exists a partition P ุฅุจุณููู |
|
|
|
211 |
|
00:17:00,620 --> 00:17:04,240 |
|
ูุฐุง ุงูู P ุงููู ูู ุงูู partition ูุนุชู
ุฏ ุนุงูู
ูุง ุนูู |
|
|
|
212 |
|
00:17:04,240 --> 00:17:07,820 |
|
ุฅุจุณููู ููู ุฅุจุณููู ุจุงููู ุฏู partition P ุฅุจุณููู ูู
ูู |
|
|
|
213 |
|
00:17:07,820 --> 00:17:11,840 |
|
ุงูู partition ุทุจุนุง ููู interval ุงููู ุนูุฏูุง ุงููู ูู I |
|
|
|
214 |
|
00:17:11,840 --> 00:17:17,040 |
|
there exists P ุฅุจุณููู a partition of I such that |
|
|
|
215 |
|
00:17:17,040 --> 00:17:25,210 |
|
ุงูู U P ุฅุจุณููู ู ุงูู F ูุงูุต ุงูู L ุจู ุฅุจุณููู ู |
|
|
|
216 |
|
00:17:25,210 --> 00:17:31,050 |
|
F ูููู ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุฅุจุณููู ุงูุขู ุฅุฐุง ูุงู ูุฌููุง |
|
|
|
217 |
|
00:17:31,050 --> 00:17:34,190 |
|
ููู ุฅุจุณููู ูุฌููุง ุจู ุฅุจุณููู ุจุญูุซ ูุฐุง ูุชุญูู ู
ุนูุงุชู F |
|
|
|
218 |
|
00:17:34,190 --> 00:17:37,590 |
|
is integrable and conversely if F is integrable |
|
|
|
219 |
|
00:17:37,590 --> 00:17:42,550 |
|
ุฃููุฏ ููู ุฅุจุณููู ููุฌู ุจู ุฅุจุณููู ุจุญูุซ ุฃู ูุฐุง ูุชุญูู |
|
|
|
220 |
|
00:17:42,550 --> 00:17:48,170 |
|
ุฎูููุง ููุฌู ุงูุขู ูุจุฑูู ู ูุดูู ููู ุจุฏูุง ูุจุฑูู |
|
|
|
221 |
|
00:17:48,170 --> 00:17:53,880 |
|
ูุธุฑูุชูุง ุงูุขู ุจุฏูุง ููุชุฑุถ ุฃู F ุฅูุด ู
ุงูู is |
|
|
|
222 |
|
00:17:53,880 --> 00:18:00,240 |
|
integrable ููุตู ู
ููุง ููู ุนุงูุฒููู ุงููู ูู ุงูู partition |
|
|
|
223 |
|
00:18:00,240 --> 00:18:07,040 |
|
ุงููู ู
ุฐููุฑ ู
ุฏุงู
F is integrable ุฅุฐุง ูุงูุช .. ุงูุขู |
|
|
|
224 |
|
00:18:07,040 --> 00:18:16,100 |
|
ุจูููู suppose that F is integrable ู
ุฏุงู
integrable |
|
|
|
225 |
|
00:18:16,100 --> 00:18:22,090 |
|
ูุง ุดุจุงุจ ุฃููุฏ ุนูุฏ ุงููู ูู ุงูู U of F ุจุณุงูู L of |
|
|
|
226 |
|
00:18:22,090 --> 00:18:29,490 |
|
ุฅูุดุ Of Fุ ู
ุธุจูุทุ ุฃููุฏ ุงูู L of .. ุงูู U of F |
|
|
|
227 |
|
00:18:29,490 --> 00:18:33,410 |
|
ุจุณุงูู ุงูู L of F ุฅูุด ุงููู ุจูุฏู ุนูููุ ุจูุฏู ุนููู ูุฃู |
|
|
|
228 |
|
00:18:33,410 --> 00:18:35,810 |
|
ุฅุจุณููู ุฃูุจุฑ ู
ู ุตูุฑ ุจุฏูุฌู ุจุฅุจุณูููุ ุดูููุง ููู |
|
|
|
229 |
|
00:18:35,810 --> 00:18:41,090 |
|
ุจููุฌููุ ุงูุขู ููุชุฑุถ ุฅู ุฅุจุณููู let ุฅุจุณููู ุฃูุจุฑ ู
ู |
|
|
|
230 |
|
00:18:41,090 --> 00:18:47,810 |
|
ุตูุฑ be givenุ ู
ุงุดู ุงูุญุงู ุนูุฏู ุงูู U of F ูู ุฅูุด ูุง |
|
|
|
231 |
|
00:18:47,810 --> 00:18:54,910 |
|
ุดุจุงุจุ ูู ุนุจุงุฑุฉ ุนู ุงูู infimum ููู L of B ู F such |
|
|
|
232 |
|
00:18:54,910 --> 00:19:01,170 |
|
that B element in B of Iุ ู
ุธุจูุทุ ุฅุฐุง ุงูู U of F |
|
|
|
233 |
|
00:19:01,170 --> 00:19:05,830 |
|
ุนุจุงุฑุฉ ุนู infimum ูุนูู ูู ุนุจุงุฑุฉ ุนู greatest lower |
|
|
|
234 |
|
00:19:05,830 --> 00:19:11,630 |
|
bound ูู ูุฐุง ุงูู greatest lower bound ุถููุง ุฅููู ุฃู |
|
|
|
235 |
|
00:19:11,630 --> 00:19:17,230 |
|
ูู
ูุฉ ููุจุทู ุงูู lower bound ูุฃู ูู ุฃุตูุง ุฅูุด ุงุณู
ู |
|
|
|
236 |
|
00:19:17,230 --> 00:19:23,510 |
|
greatest lower bound ุฅุฐุง ูู ุงููU of F ุถูุช ูู Y ุนูู |
|
|
|
237 |
|
00:19:23,510 --> 00:19:28,610 |
|
2 ู
ุซูุง ุทุจุนุง ูุฐุง ุงูู
ูุฏุงุฑ ููุจุทู ุงูู lower bound ุฅูุด |
|
|
|
238 |
|
00:19:28,610 --> 00:19:33,690 |
|
ู
ุนูุงุชู ุจุทู ุงูู lower boundุ ูุนูู ุจู
ุนูู ุขุฎุฑ ููููู ูู |
|
|
|
239 |
|
00:19:33,690 --> 00:19:44,080 |
|
ุนูุฏู ุฅุดู ุฃุตุบุฑ ู
ูู ููููู ุนูุฏู ุฃุตุบุฑ ู
ู ุงูู U of F ุฃู ุจู |
|
|
|
240 |
|
00:19:44,080 --> 00:19:49,740 |
|
ูุงุญุฏ ู
ุซูุง ู F for some B ูุงุญุฏ ุฅุฐุง ูู
ุง ูุดูู |
|
|
|
241 |
|
00:19:49,740 --> 00:19:54,600 |
|
ู
ู ุงูู infimum ุฅุจุณููู |
|
|
|
242 |
|
00:19:54,600 --> 00:19:57,740 |
|
ุนูู ุงุชููู ููุจุทู ูุฐุง lower bound ูุนูู ุจู
ุนูู ุขุฎุฑ |
|
|
|
243 |
|
00:19:57,740 --> 00:20:03,280 |
|
ููุงูู ุงููู ูู lower bound |
|
|
|
244 |
|
00:20:07,660 --> 00:20:12,140 |
|
ุนูุฏ ุงูู Y ุฃูุจุฑ ู
ู 0 ุฎููููู ุฃุจุฏุฃ ูุช Y ุฃูุจุฑ ู
ู 0 ุจู |
|
|
|
245 |
|
00:20:12,140 --> 00:20:17,940 |
|
given ุฅุฐุง ุนูุฏู ุงูุขู ุจุฏู ุฃุซุจุช ูู ุจุฏู ุฃุฌูุจ ูู |
|
|
|
246 |
|
00:20:17,940 --> 00:20:21,440 |
|
partition ุจูุจุณููู ุจุญูุซ ุฅูู ูุฐุง ูุงูุต ูุฐุง ูููู ุฃุตุบุฑ |
|
|
|
247 |
|
00:20:21,440 --> 00:20:26,070 |
|
ู
ู ู
ูู ู
ู ุฅุจุณููู ุดูู ููู ุจุฏู ุฃุนู
ู ุงูุขู ุฃูุง ุนูุฏู ุงูู |
|
|
|
248 |
|
00:20:26,070 --> 00:20:30,710 |
|
U of F ุฅูุด ุจูุณุงูู ูุง ุฌู
ุงุนุฉ ุงูู U of F ุจูุณุงูู ุงูู |
|
|
|
249 |
|
00:20:30,710 --> 00:20:39,590 |
|
infimum ููู L ุจููู ุจ element I ุทูุจ ุงูู U of F ุขุณู ูุง |
|
|
|
250 |
|
00:20:39,590 --> 00:20:43,010 |
|
ุฌู
ุงุนุฉ ุงูู U of F ุจูุณุงูู ุงูู infimum ูู
ูู ููู U ุจููู |
|
|
|
251 |
|
00:20:43,720 --> 00:20:49,780 |
|
ู
ุงุดู ุงูุญุงู ุงูุขู ุฅูุด ู
ุนูุงู ุฅูู ูุฐุง infimum ู
ุนูุงุชู |
|
|
|
252 |
|
00:20:49,780 --> 00:20:55,100 |
|
ูุฐุง ูู ุนุจุงุฑุฉ ุนู ุงูู greatest lower bound ู
ุฏุงู
ุงูู |
|
|
|
253 |
|
00:20:55,100 --> 00:20:59,450 |
|
greatest lower bound ุฅุฐุง ุงูู lower bound ูุฐุง ุฃู ุงูู |
|
|
|
254 |
|
00:20:59,450 --> 00:21:03,330 |
|
Greatest Lower Bound ูู ุถูุช ูู ุฃู ุฑูู
ุฅุจุณููู ุนูู |
|
|
|
255 |
|
00:21:03,330 --> 00:21:06,370 |
|
ุงุชููู ู
ุซูุง ุจุงูุฐูุจ ุฅุจุณููู ุนูู ุงุชููู ุงูู game |
|
|
|
256 |
|
00:21:06,370 --> 00:21:09,670 |
|
ุจุชุนุฑููุง ููุด ุฅุจุณููู ุนูู ุงุชููู ูุนูู ูู ุถูุช ูู ุฃู ุฑูู
|
|
|
|
257 |
|
00:21:09,670 --> 00:21:14,730 |
|
ุจูุจุทู Lower Bound ุฅูุด ู
ุนูุงุชู ุจูุจุทู Lower Bound |
|
|
|
258 |
|
00:21:14,730 --> 00:21:21,830 |
|
ูุนูู ููุตูุฑ ูุฐุง ุฃูุจุฑ ู
ู ุงูู UB 1 of F for some B |
|
|
|
259 |
|
00:21:21,830 --> 00:21:27,510 |
|
ูุงุญุฏุฉ ูุฃูู ุจุทู ุฅูุด ู
ุงูู ูุฐุง ุจุทู lower bound ุจุทู ูููู |
|
|
|
260 |
|
00:21:27,510 --> 00:21:32,670 |
|
ุฃุตุบุฑ ู
ู ุงููู ู
ู ูุงู ูุนูู ููุงุฌู ูุงุญุฏ ู
ู ูุงู ูู ู
ุด |
|
|
|
261 |
|
00:21:32,670 --> 00:21:36,830 |
|
ุฃุตุบุฑ ู
ูู ุฃู ุจู
ุนูู ุขุฎุฑ U, P, 1 ู F ุฃุตุบุฑ ู
ู ุงููู ูู |
|
|
|
262 |
|
00:21:36,830 --> 00:21:44,850 |
|
ูุฐุง ุงูู
ูุฏุฑ ุทูุจ similarly ุงูู L of F ูู ุนุจุงุฑุฉ ุนู ุงูู |
|
|
|
263 |
|
00:21:44,850 --> 00:21:52,050 |
|
supremum ููู L, P ู F such that P elemented P of I |
|
|
|
264 |
|
00:21:53,040 --> 00:21:57,780 |
|
ุจููุณ ุงูุทุฑููุฉ ูุง ุฌู
ุงุนุฉ ุงูู L of F ูู ุนุจุงุฑุฉ ุนู ุฅูุด ุงูู |
|
|
|
265 |
|
00:21:57,780 --> 00:22:04,040 |
|
least upper bound ูุนูู ูุฐุง ูู least upper bound |
|
|
|
266 |
|
00:22:04,040 --> 00:22:07,200 |
|
Upper bound ูู ูุงู ุฃุตุบุฑ ู ุฃุญุฏ ูู ูุฐุง least upper |
|
|
|
267 |
|
00:22:07,200 --> 00:22:11,000 |
|
bound ุฑุงุญุช ู
ูู ุนุฏุฏ ููู ุตุบูุฑ ุฌุฏุง ููููู ุฅุจุณููู ุนูู |
|
|
|
268 |
|
00:22:11,000 --> 00:22:16,800 |
|
ุงุชููู ููุจุทู ูุฐุง ุนุจุงุฑุฉ ุนู upper bound ูุนูู ููุงูู |
|
|
|
269 |
|
00:22:16,800 --> 00:22:24,280 |
|
ูุงุญุฏ ู
ู ุงููู ูุงู ุงููู ูู L of B2 ูF ู
ุซูุง ุฃูุจุฑ ู
ูู |
|
|
|
270 |
|
00:22:24,280 --> 00:22:30,560 |
|
ูุฃูู ููุจุทู ูุฐุง ุฅูุด ู
ุงูู upper bound ูุฃูู ูู ุงูู least |
|
|
|
271 |
|
00:22:30,560 --> 00:22:35,780 |
|
ูู
ุง ุทูุนุช ู
ูู ุจุทู ู
ู ุงูู upper bounds ูุนูู ูุฌูุช ูุงุญุฏ |
|
|
|
272 |
|
00:22:35,780 --> 00:22:43,120 |
|
ู
ู ูุฐูู ุฃูุจุฑ ู
ูู ุฅุฐุง ุตุงุฑ ูู ุนูุฏู ุงููู ูู ูุฌูุช ุจู |
|
|
|
273 |
|
00:22:43,120 --> 00:22:53,960 |
|
ูุงุญุฏ ุจุญูู ุงูุฃููู ู ุจูุชููู ุจุญูู ุงูุชุงููุฉ ูุฃู ุฎุฐ ุงูุขู |
|
|
|
274 |
|
00:22:53,960 --> 00:22:58,840 |
|
ุฎุฐ ูู ุจู ุฅุจุณููู ูุฐุง ุงููู ุจุฏููุง ูุฐุง ูุญูู ุงููู ุงููู |
|
|
|
275 |
|
00:22:58,840 --> 00:23:03,600 |
|
ุจุฏููุง ุฎุฐ ุจู ุฅุจุณููู ุฅูุด ุจูุณุงูู ุงูู ุจู ูุงุญุฏ ุงููู ูุฌูุชู |
|
|
|
276 |
|
00:23:03,600 --> 00:23:12,050 |
|
ููุง ุงุชุญุงุฏ ุงูู B2 ุงููู ูุฌูุชู ูุงู ุงุชุญุงุฏ ู
ููุ B2 ุตุงุฑ |
|
|
|
277 |
|
00:23:12,050 --> 00:23:18,510 |
|
ุนูุฏู .. ุตุงุฑ ุนูุฏู ุงูุขู ู
ุน ุจุนุถ ุฎูููู ุฃู
ุณุญ ูุฃููู
ุ |
|
|
|
278 |
|
00:23:18,510 --> 00:23:22,170 |
|
ู
ูู
ุดุ |
|
|
|
279 |
|
00:23:22,170 --> 00:23:31,670 |
|
ุตุงุฑ |
|
|
|
280 |
|
00:23:31,670 --> 00:23:41,110 |
|
ุนูุฏู ู
ุง ููููุ ุตุงุฑ ุนูุฏู ุงูุขู L of F ูุงูุต |
|
|
|
281 |
|
00:23:41,110 --> 00:23:53,490 |
|
Y ุนูู 2 ุฃุตุบุฑ ู
ู L of B2 Fุ ุงููู ูู ุฃููุฏ ุฃุตุบุฑ ุฃู |
|
|
|
282 |
|
00:23:53,490 --> 00:23:59,750 |
|
ูุณุงูู L of Byุ ููุทูุ ููุดุ ูุฃู ุงููBy ูุง ุฌู
ุงุนุฉ ุนุจุงุฑุฉ |
|
|
|
283 |
|
00:23:59,750 --> 00:24:04,570 |
|
ุนู refinement ูููB2 ูุงููlower ูู
ุง ูุตูุฑ ููู ุชุญุณูู |
|
|
|
284 |
|
00:24:04,570 --> 00:24:08,510 |
|
ุจูุจูุฑุ ุจุฑูุญ ูุญู ุงุชุฌุงู ููู ุงููู ูู ุงูู
ูุญูุฉ ุงูุชุงููุฉ |
|
|
|
285 |
|
00:24:08,510 --> 00:24:14,010 |
|
ู
ุณุงุญุฉ ุชุญุช ุงูู
ูุญูุฉ ุงููููุฉ ูุฃู ุฃูุถุง ูู ุฌูุช ูููุช ุงููU |
|
|
|
286 |
|
00:24:14,010 --> 00:24:24,400 |
|
of F ุฒุงุฏ ุฅุจุณููู ุนูู ุงุชููู ูุชูุงูููุง ุฃูุจุฑ ู
ู ุงู U B |
|
|
|
287 |
|
00:24:24,400 --> 00:24:30,410 |
|
ูุงุญุฏ ู Fุ ูุฃููุฏ ุนูุฏู ุงูู U of F ุฒุงุฆุฏ ุฅุจุณููู ุนุฏูุงู |
|
|
|
288 |
|
00:24:30,410 --> 00:24:34,490 |
|
ุฃูุจุฑ ู
ู ุงูู U B1 of Fุ ููููู ูุฐุง ุฃูุจุฑ ุฃู ูุณุงูู ุงูู |
|
|
|
289 |
|
00:24:34,490 --> 00:24:39,610 |
|
U B epsilon of Fุ ูุฃู ุงูู B epsilon refinement ูู
ูู |
|
|
|
290 |
|
00:24:39,610 --> 00:24:44,790 |
|
ุจุฑุถูุ ููู B1ุ ุจุฒุงู
refinementุ ุฅุฐู ุงููู ูู ุงูุชุญุณูู |
|
|
|
291 |
|
00:24:44,790 --> 00:24:50,270 |
|
ุจูุฒุบูุฑ ุงููุจูุฑ ูุจุฑูุญ ูุงุญูุฉ ุงููู ูู ุงูู
ูุญูุฉุ ุฅุฐู ุงูุขู |
|
|
|
292 |
|
00:24:50,270 --> 00:24:55,480 |
|
ู
ู ุงูู tip 2 ูุฐููุฉุ ูุงุฌุฏูุง ุทุจุนุง ุงุญูุง ุชูุณูุด ุงู ุงุญูุง |
|
|
|
293 |
|
00:24:55,480 --> 00:24:59,100 |
|
ู
ูุชุฑุถูู ู
ู ุฑุฃุณ ุงูุฏูู ุงู U of F is integrableุ ูุนูู |
|
|
|
294 |
|
00:24:59,100 --> 00:25:05,340 |
|
ู
ูุชุฑุถูู ุงู ุงู L of F ุงูุด ุจุชุณุงูู U of Fุ ุชูุณูุงุด ูุฐู |
|
|
|
295 |
|
00:25:05,340 --> 00:25:12,540 |
|
ููู ุฌูุช ุชูุชุฑ ู
ุน ุจุนุถ ุฏูู ุจูุตูุฑ ุนูุฏูุ ุงูุญุตู ุนูู L of F |
|
|
|
296 |
|
00:25:12,540 --> 00:25:22,970 |
|
ูุงูุต Y ุนูู 2ุ ุงููู ูู ุงุตุบุฑ ู
ู Lof B, Epsilon ู F |
|
|
|
297 |
|
00:25:22,970 --> 00:25:30,110 |
|
ูุงูู L ูุงูู U of F ุฒุงุฆุฏ Epsilon ุนูู 2 ุฃูุจุฑ ู
ู U, |
|
|
|
298 |
|
00:25:30,190 --> 00:25:35,290 |
|
B, Epsilon ู Fุ ุฃูุง ุฅูุด ุบุฑุถูุ ุบุฑุถู ุฃุซุจุช ุฅู U, B, |
|
|
|
299 |
|
00:25:35,350 --> 00:25:39,130 |
|
Epsilon ู F ูุงูุต L, B, Epsilon ู F ุฃุตุบุฑ ู
ู Epsilon |
|
|
|
300 |
|
00:25:39,130 --> 00:25:42,890 |
|
ููุง ุฅุชุฑุญู ู
ู ุจุนุถุ ุฅุฐุง ุจูุตูุฑ ุนูุฏูุ ุจุชุญุตู ุงูุจุฏููุฉ |
|
|
|
301 |
|
00:25:42,890 --> 00:25:48,570 |
|
ุจูุตูุฑ ุนูุฏู ุงูุขูุ ุจุทุฑุญ ุญูุงุฉ ุฏูุ ุจููู U, B, Epsilon ู |
|
|
|
302 |
|
00:25:48,570 --> 00:25:53,240 |
|
Fุ ูุงูุต ูุฃูู ูู
ุง ูุถุฑุจ ูุฐุง ูู ูุงูุต ูุชูุนูุณ ูุนูู ูุชุตูุฑ |
|
|
|
303 |
|
00:25:53,240 --> 00:25:57,100 |
|
ูุฐู ูุง ุฌู
ุงุนุฉ ูุงูุต ููุฐู ุฒุงุฆุฏ ููุฐู ูุชูุนูุณ ููู ูููุตูุฑ |
|
|
|
304 |
|
00:25:57,100 --> 00:26:05,600 |
|
ุงูุงุด ูุงูุต ุจูุตูุฑ ุนูุฏู U B ู F ูุงูุต ุงู L B ู Fุ ููุตูุฑ |
|
|
|
305 |
|
00:26:05,600 --> 00:26:11,820 |
|
ุฃุตุบุฑ ู
ู ู
ููุ ู
ู ูุงูุต L of Fุ ูุงุฎุฏ ูุฐุง ูุจู ุฒู ู
ุง ุงุญูุง |
|
|
|
306 |
|
00:26:11,820 --> 00:26:20,690 |
|
ู
ุฑุชุจูููุงุ U of F ุฒุงุฆุฏ ู ุนูู 2 ูุงูุต L of F ุฒู ุฅุจุณููู |
|
|
|
307 |
|
00:26:20,690 --> 00:26:24,790 |
|
ุนูู 2 ูุทุจุนุง ุฅุญูุง ุฌุงูููู ุฅู F is integrable ูุนูู |
|
|
|
308 |
|
00:26:24,790 --> 00:26:28,770 |
|
ุงูู U of F ุจูุณุงูู L of Fุ ุฅุฐุง ูุฐู ุจุชุฑูุญ ู
ุน ูุฐู ุจุธู |
|
|
|
309 |
|
00:26:28,770 --> 00:26:33,610 |
|
ุงูู ุดู
ุงููุ ุจุธู ุฅุจุณูููุ ุฅุฐุง ุฅุญูุง ููู ุฅุจุณููู ุฃูุจุฑ ู
ู |
|
|
|
310 |
|
00:26:33,610 --> 00:26:36,950 |
|
ุตูุฑ ูุฌููุง ุจู ุจู ุฅุจุณูููุ ูู ูู ุงููุงูุน ุจู ุฅุจุณููู ุงููู |
|
|
|
311 |
|
00:26:36,950 --> 00:26:39,970 |
|
ูุฌููุงูุง ุจู ุจู ูุงุญุฏ ุงุชุญุงุฏ ุจู ุงุชูููุ ุญูุซ ุจู ูุงุญุฏ ุงููู |
|
|
|
312 |
|
00:26:39,970 --> 00:26:44,120 |
|
ูุฌููุงูุง ูุงูุ ูุงูู ุจู ุงุชููู ุงููู ูุฌููุงูุง ูุงู such that U |
|
|
|
313 |
|
00:26:44,120 --> 00:26:49,120 |
|
P Y of F ููุต L P Y of F ุฃุตุบุฑ ู
ู ุงููู ูู Epsilon |
|
|
|
314 |
|
00:26:49,120 --> 00:26:57,480 |
|
ููู ุงูู
ุทููุจุ ุฃู ุณุคุงูุ ุทูุจุ ู
ุงุดู ูุง ุดุจุงุจุ ุงูุขู ุฎูุตูุง |
|
|
|
315 |
|
00:26:57,480 --> 00:27:04,420 |
|
ุงูุฌุฒุก ุงูุฃูู ู
ู ุงููุธุฑูุฉุ ุฃุซุจุชูุง ุงููู ุจุฏูุง ูุง ุงูู ุงููู |
|
|
|
316 |
|
00:27:04,420 --> 00:27:08,860 |
|
ูู ูุฐู ุงูุนูุงูุฉ ุตุญูุญุฉุ ูุฃููุง ููุชุฑุถ ุงูู suppose that |
|
|
|
317 |
|
00:27:08,860 --> 00:27:12,380 |
|
star holdsุ ุงููู ูู starุ ููู ูุฐูุ ููุชุฑุถ ุงู ููู |
|
|
|
318 |
|
00:27:12,380 --> 00:27:15,380 |
|
epsilon ุฃูุจุฑ ู
ู 0 there exists B of epsilon such |
|
|
|
319 |
|
00:27:15,380 --> 00:27:18,680 |
|
that U B Epsilon ู F ููุตูุง ุฏู ุฃุตุบุฑ ู
ู Epsilon ู |
|
|
|
320 |
|
00:27:18,680 --> 00:27:24,280 |
|
ุจุฏูุง ูุตู ู
ู ุฎูุงููุง ูุฅูุดุ ูุฃู ุงู F is integrable |
|
|
|
321 |
|
00:27:24,280 --> 00:27:25,760 |
|
ููุดูู |
|
|
|
322 |
|
00:27:40,480 --> 00:27:47,440 |
|
ุงูุจุฑูุงู ุจุณูุทุ ูู ุทูุนูุง ุนููู ู
ุจุงุดุฑุฉ ุนูู ุงูููุญ ุงูุขู |
|
|
|
323 |
|
00:27:47,440 --> 00:27:52,140 |
|
ุจุฏูุง ููุชุฑุถ ุฃู ูุฐู ุชุชุญููุ ุงููู ูู ููุชุฑุถ ุฃูู ููู ู |
|
|
|
324 |
|
00:27:52,140 --> 00:27:57,020 |
|
ุฃูุจุฑ ู
ู 0 ููุฌุฏ ุจู ุฅุจุณููู ุจุญูุซ ุฃู ูุฐุง ุงููู ูู ุชุชุญูู |
|
|
|
325 |
|
00:27:57,020 --> 00:28:01,620 |
|
ุนุดุงู ุฃุตู ุจุฏู ุฃุตููู
ูู ุงูููุงูุฉ ุฃู L of F ูู ุฅูุด |
|
|
|
326 |
|
00:28:01,620 --> 00:28:05,810 |
|
ุจุชุณุงูู U of Fุ ุดูู ููู ุจุฏู ูุตููุงุ ุงููู ูุจุฏุฃ ุฃููููู ุงููู |
|
|
|
327 |
|
00:28:05,810 --> 00:28:08,650 |
|
ูู ููุชุฑุถ ุงูู ุฒู ู
ุง ูููุง ุงูู star holds ุงููู ุญูููุง |
|
|
|
328 |
|
00:28:08,650 --> 00:28:12,990 |
|
ุนููุงุ ูุฃู for any partition B ููููู ุงู L B of F |
|
|
|
329 |
|
00:28:12,990 --> 00:28:17,970 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู L of Fุ ู ุงู U of F ุฃุตุบุฑ ุฃู ูุณุงูู ู
ููุ ุงู U |
|
|
|
330 |
|
00:28:17,970 --> 00:28:25,970 |
|
B of Fุ ูุงุถุญุ ุฅุฐุง ุฃุตุงุฑ ุนูุฏู ุงูุขู Lุ ูู
ูู ุฃูุถุญููู
ุนูู |
|
|
|
331 |
|
00:28:25,970 --> 00:28:35,790 |
|
ุงูููุญุ L of B of F ุฏู ุงู B ุฃู partition ุฃุตุบุฑุ ู
ุธุจูุทุ |
|
|
|
332 |
|
00:28:35,790 --> 00:28:40,910 |
|
ุฃู ูุณุงูู ุงู L of Fุ ูุงูู ุงู L of F ูุง ุฌู
ุงุนุฉ |
|
|
|
333 |
|
00:28:40,910 --> 00:28:47,330 |
|
ูู ุงู supremum ุงููู ููุงุ ู ุงู U ุจููู |
|
|
|
334 |
|
00:28:47,330 --> 00:28:53,130 |
|
ุฃูุจุฑ ุฃู ูุณุงูู ุงู U of Fุ ูุงูู ุงู U of F ูุง ุฌู
ุงุนุฉ |
|
|
|
335 |
|
00:28:53,130 --> 00:28:57,950 |
|
ูู ุนุจุงุฑุฉ ุนู ู
ููุ ุนุจุงุฑุฉ ุนู ุงู infimumุ ุฅุชุฑุญููู ุงูุฌูุฉ |
|
|
|
336 |
|
00:28:57,950 --> 00:29:01,410 |
|
ุงูุชุงููุฉุ ูุฐุง ุทุจุนุง ููู ู
ููุ ููู ุงู partitions ุงููู ูู |
|
|
|
337 |
|
00:29:01,410 --> 00:29:06,750 |
|
ุงูุฏููุงุ ู
ู ุถู
ููู
ุงู P Epsilon ุงููู ุงุญูุง ู
ุง ุนุทููุงูุง |
|
|
|
338 |
|
00:29:06,750 --> 00:29:12,250 |
|
ูู ุงูู .. ุงููู ูู ูุต ุงููุธุฑูุฉุ ุฅุฐุง ุจุณูุฑู ุนูุฏู ูุฃู ูู |
|
|
|
339 |
|
00:29:12,250 --> 00:29:19,990 |
|
ุงุฌูุจ ุทุฑุญุฉ ุงู U F ูุงูุต L Fุ ุงู U F ูุงูุต L F ููุตูุฑ ุฅูุด |
|
|
|
340 |
|
00:29:19,990 --> 00:29:23,850 |
|
ู
ุงูู ูุง ุฌู
ุงุนุฉุ ูุนูู ุทุฑููุฉ ุฑุญูุฉ ู
ู ูุฐู ุจูุตูุฑ ุฃุตุบุฑ |
|
|
|
341 |
|
00:29:23,850 --> 00:29:28,510 |
|
ุฃู ูุณุงูู ูุฅู ูุฐู ุจุชุถุฑุจูุง ูู ูุงูุต ู ูุฐู ูุงูุต ู |
|
|
|
342 |
|
00:29:28,510 --> 00:29:32,750 |
|
ุจุชูููุจ ุฒู ู
ุง ุนู
ููุง ูุจู ู ุดููุฉ ุจูุตูุฑ ุฃุตุบุฑ ุฃู ูุณุงูู |
|
|
|
343 |
|
00:29:32,750 --> 00:29:43,640 |
|
U P of F ูุงูุต ุงู L B of Fุ ูุฐุง ุงูููุงู
ุตุญูุญ ูุฅูุดุ ููู |
|
|
|
344 |
|
00:29:43,640 --> 00:29:48,200 |
|
partition ูู ุงูุฏููุง ู
ู ุถู
ููุง ุงูู
ููุ ุงู partition |
|
|
|
345 |
|
00:29:48,200 --> 00:29:52,580 |
|
ุงูู
ูุงุทุน ููุงุ ูุนูู ุญูุตูุฑ ุนูุฏ ูุฐุง ููุทุจู ุจุฑุถู ุนูู ุงู |
|
|
|
346 |
|
00:29:52,580 --> 00:29:57,500 |
|
ุจู ุฅุจุณูููุ ุฅุฐุง ุตุงุฑ ูุฐุง ุฃุตุบุฑ ูุณูู ุจู ุฅุจุณููู ููุต ุงู |
|
|
|
347 |
|
00:29:57,500 --> 00:30:01,740 |
|
ุจู ุฅุจุณููู of Fุ ุทูุจ ูู
ูุนุทููู ุฅู ูุฐุง ุงูู
ูุฏุงุฑ ุฅูุด |
|
|
|
348 |
|
00:30:01,740 --> 00:30:06,260 |
|
ู
ุงููุ ุฃุตุบุฑ ู
ู ุฅุจุณููู ูุฃู ุฅุจุณููู ูู ุงูุฏููุงูู ุฃูุง |
|
|
|
349 |
|
00:30:06,260 --> 00:30:10,580 |
|
ุจุนุฑู ุฃู ูุฐุง ุงูู
ูุฏุงุฑ ููุณู ุฃูุจุฑ ุฃู ูุณุงูู ุฅูุดุ ุตูุฑุ ุตุงุฑ |
|
|
|
350 |
|
00:30:10,580 --> 00:30:17,720 |
|
ุนูุฏู ุงูุขู ุงู U of F ูุงูุต ุงู L of F ุฏุงูู
ุง ุฃุตุบุฑ ู
ู |
|
|
|
351 |
|
00:30:17,720 --> 00:30:23,420 |
|
ุฅุจุณููู ู ุฃูุจุฑ ุฃู ูุณุงูู ุตูุฑ ููู ุฅุจุณููู ุฃูุจุฑ ู
ู ุตูุฑ |
|
|
|
352 |
|
00:30:23,420 --> 00:30:28,260 |
|
ุฅุฐุง ุนูู ุทูู ู
ู ูุธุฑูุฉ ูู ุชุญููู ูุงุญุฏ ููููู ูุฐุง ุงููู |
|
|
|
353 |
|
00:30:28,260 --> 00:30:36,250 |
|
ุนูุฏู ุฅุฐุง U of F ูุงูุต L of F ุจูุณุงูู ุตูุฑุ ุฅุฐุง U of F |
|
|
|
354 |
|
00:30:36,250 --> 00:30:44,850 |
|
ุจูุณุงูู L of F ููุฐุง ูุนูู F is a Riemann Integral ูู |
|
|
|
355 |
|
00:30:44,850 --> 00:30:52,110 |
|
ุงูู
ุทููุจ ุจูููู ุงุญูุง ููู ุฃุซุจุชูุง ุงููู ูู Integrable |
|
|
|
356 |
|
00:30:52,110 --> 00:30:58,350 |
|
criterion ุฃู ุงููู ูู ุทุฑููุฉ ูุชุญุฏูุฏ ุงููู ูู ุงู |
|
|
|
357 |
|
00:30:58,350 --> 00:31:02,270 |
|
function is integrable ุฃู ูุงุ ุบูุฑ ุงููู ูู ุทุฑููุฉ |
|
|
|
358 |
|
00:31:02,270 --> 00:31:07,110 |
|
ุงูุชุนุฑููุ ุงูุขู ูู ุนูุฏ ููุฑููุงุฑู ุจุนุฏูุงุ ููุฑููุงุฑู |
|
|
|
359 |
|
00:31:07,110 --> 00:31:11,530 |
|
ุงูููุฑููุงุฑู |
|
|
|
360 |
|
00:31:11,530 --> 00:31:16,230 |
|
ูู ุชููู ูู
ุง ููู ุงูุขูุ ุจุฏูุง ูุชุฑุฌู
ุงูุญุฏูุซ ุจุฏู ู
ุง ูุงู |
|
|
|
361 |
|
00:31:16,230 --> 00:31:22,710 |
|
ุจุฅุจุณููู ูุญูู ุนู ู
ููุ ุนู ุงููู ูู sequence of |
|
|
|
362 |
|
00:31:22,710 --> 00:31:29,870 |
|
partitionsุ ุทุจุนุง ูู ูุฐุง ู
ุนููุฏ ุงูุชุญููู ูู ูุธุฑูุงุช |
|
|
|
363 |
|
00:31:29,870 --> 00:31:34,590 |
|
ู
ุดุงุจูุฉ ูู ุญุชู ูู ููุฑุณุงุช ุฃุฎุฑูุ ุฎููููุง ูุดูู ุนูุฏูุง |
|
|
|
364 |
|
00:31:34,590 --> 00:31:38,790 |
|
ุงููู ูู ุงููุธุฑูุฉ ุงูุด ุจู .. ุฃู ุงูููุฑูุฑู ุงูุด ุจุชููู |
|
|
|
365 |
|
00:31:38,790 --> 00:31:43,350 |
|
ุจุชููู let I ุจุณุงูุฉ A ู B and let F ู
ู I ูR be a |
|
|
|
366 |
|
00:31:43,350 --> 00:31:48,600 |
|
bounded functionุ ูุฃู ูู ูุฑุถูุง ุจู ุฃู ุฃู element none |
|
|
|
367 |
|
00:31:48,600 --> 00:31:52,300 |
|
is a sequence of partitions of I ุจุญูุซ ุฃู ุงู limit |
|
|
|
368 |
|
00:31:52,300 --> 00:31:55,920 |
|
ูุฐุง ุจูุณุงูู ุตูุฑุ then f is integrable and ุงู limit |
|
|
|
369 |
|
00:31:55,920 --> 00:31:58,040 |
|
ูู integration ุจูุณุงูู ุงู integrationุ ุจูุณุงูู ุงู |
|
|
|
370 |
|
00:31:58,040 --> 00:32:04,480 |
|
limitุ ุงู ุฃุณูุ ุงู limit ูู lower p and f ุจูุณุงูู ุงู |
|
|
|
371 |
|
00:32:04,480 --> 00:32:07,020 |
|
limit ูู upper p and f ุงููู ูู ุจูุณุงูู ููู
ุฉ ุงู |
|
|
|
372 |
|
00:32:07,020 --> 00:32:13,000 |
|
integrationุ ุญุชู ุงู converse ูุง ุฌู
ุงุนุฉ ุงููู ูู ุงููู ูุจู |
|
|
|
373 |
|
00:32:13,000 --> 00:32:16,820 |
|
ุจุดููุฉ ุงููู ูุงู .. ุงููู ูู ูุงูุช F ุงูุฏููู F ูุฃู ูู |
|
|
|
374 |
|
00:32:16,820 --> 00:32:21,520 |
|
ูุงูุช F is integrableุ ุฃููุฏ ููุงูู sequence ู
ู |
|
|
|
375 |
|
00:32:21,520 --> 00:32:25,380 |
|
partitions ุจุญูุซ ุฃูู ุงู limit ุงููู ุญุงุตู ุงูุทุฑุญ ุจุณุงูู |
|
|
|
376 |
|
00:32:25,380 --> 00:32:29,760 |
|
ุตูุฑุ ุงููู ูู ุงูุจุฑูุงู ู
ุดุงุจู ูุฅู ุงููู ุญูููุงู ููู ุงููู |
|
|
|
377 |
|
00:32:29,760 --> 00:32:34,500 |
|
ูู ุจุฑูุงู ุฅูุฌุงุฏ ุงูู B epsilon ูููู ููุง ุจูุฌุฏ ุงููู ูู |
|
|
|
378 |
|
00:32:34,500 --> 00:32:37,380 |
|
ุงูู Epsilon ุจุณุงููุฉ ูุงุญุฏุ ูุฃู ูุจููุงูู ุงููู ูู ุงู |
|
|
|
379 |
|
00:32:37,380 --> 00:32:42,380 |
|
sequence ูุฐู ูู ุงู corollary .. ูู ู
ู ู
ุดุงุจู .. ุดูุก |
|
|
|
380 |
|
00:32:42,380 --> 00:32:45,900 |
|
ู
ุดุงุจู ูู ุจุฑูุงู ุงููุธุฑูุฉ ุงูุฃููู ุงููู ูุจู ุจุดููุฉ ู |
|
|
|
381 |
|
00:32:45,900 --> 00:32:49,360 |
|
ูุงุฑูุช ุชุฌุฑุจููุง ุนูุฏูู
ุ ุฎูููุง ูุงุฎุฏ ุงููู .. ุงููู ู
ูุฌูุฏ |
|
|
|
382 |
|
00:32:49,360 --> 00:32:54,160 |
|
ุญุงููุง ุงููู ูู ุงูุงุชุฌุงู ูุฐุงุ ุฅู ูู ูุฌููุง sequence of |
|
|
|
383 |
|
00:32:54,160 --> 00:32:59,430 |
|
partitions ููุงู ุงู limit ูู U P N ู F ููุต ุงู L P N ู |
|
|
|
384 |
|
00:32:59,430 --> 00:33:02,870 |
|
F ุจุณุงูุฉ ุตูุฑุ ุฅุฐุง ูุชููู F is integrable ู ูุชููู ุงู |
|
|
|
385 |
|
00:33:02,870 --> 00:33:07,990 |
|
limit ููุฃููู ุจุณุงูุฉ limit ููุซุงููุฉ ุจุณุงูุฉ ููู
ุฉ ุงู |
|
|
|
386 |
|
00:33:07,990 --> 00:33:08,970 |
|
integration |
|
|
|
387 |
|
00:33:12,900 --> 00:33:17,500 |
|
ุนูุฏู
ุง ุฃุนุทููู limit ูุฐุง ุฅูุด ุจุณุงููุ ุตูุฑุ ุฎููููุง ูุฏุฎู |
|
|
|
388 |
|
00:33:17,500 --> 00:33:20,580 |
|
ุนูู ุงูุชุนุฑูู ู
ุจุงุดุฑุฉุ ุชุนุฑูู ุงู limitุ ุจุชุนุฑููุง ุชุนุฑูู ุงู |
|
|
|
389 |
|
00:33:20,580 --> 00:33:23,140 |
|
limit ูุง ุดุจุงุจุ ุงููู ูู ููู ุฅุจุณููู ุฃูุจุฑ ู
ู ุตูุฑ |
|
|
|
390 |
|
00:33:23,140 --> 00:33:26,160 |
|
there exist k such that ููู ุฃู ุฃูุจุฑ ุณูู k ุจูุตูุฑ |
|
|
|
391 |
|
00:33:26,160 --> 00:33:33,200 |
|
ูุฐุง ูุงูุต ูุฐุง ุฃุตุบุฑ ู
ู ู
ููุ ู
ู ุงููู ูู ุฅุจุณูููุ ููุฐุง |
|
|
|
392 |
|
00:33:33,200 --> 00:33:35,980 |
|
ุนูู ุทูู ูุนุทููุง as integralุ ุฎูููุด ุชุดูู ุฃูุด ุงููู |
|
|
|
393 |
|
00:33:35,980 --> 00:33:43,000 |
|
ุจูููููุ ูุฃู since ุนูุฏ ู
ุง ุฃุนุทููู limit U P N ู F ูุงูุต |
|
|
|
394 |
|
00:33:43,000 --> 00:33:51,240 |
|
ุงู L P N ู F as N goes to infinity ุจุณุงูุฉ ุตูุฑุ ู
ุธุจูุทุ |
|
|
|
395 |
|
00:33:51,240 --> 00:33:56,220 |
|
ูู ูู ู
ุง ุฃุนุทููููุง ูุฌู ููุชุนุฑููุ ุฅุฐุง ุชุนุฑูู ุงู |
|
|
|
396 |
|
00:33:56,220 --> 00:33:58,880 |
|
sequence ุนุงุฏูุฉ for every epsilon ุฃูุจุฑ ู
ู ุตูุฑ there |
|
|
|
397 |
|
00:33:58,880 --> 00:34:02,680 |
|
exists K element in N such that for every N ุฃูุจุฑ |
|
|
|
398 |
|
00:34:02,680 --> 00:34:13,090 |
|
ุณูู K ุงููู ูู ุนูุฏู ุงู U P N ู F ูุงูุต L P N ู F ุฃุตุบุฑ ู
ู |
|
|
|
399 |
|
00:34:13,090 --> 00:34:19,010 |
|
ุฅุจุณูููุ ุฅุฐุง ู
ุด ูุฌููุง ุจุงุฑุชุดู ูุงุญุฏ ูุฌููุง ุจุงุฑุชุดู ุจู ู |
|
|
|
400 |
|
00:34:19,010 --> 00:34:22,710 |
|
ุจู ุฒุงุฆุฏ ูุงุญุฏ ู ุจู ุฒุงุฆุฏ ุงุชููู ู ุจู ุฒุงุฆุฏ ุชูุงุชุฉ ูููู
|
|
|
|
401 |
|
00:34:22,710 --> 00:34:29,110 |
|
ุจุณุจุจ ุฅู ุงู UBK ุฃู ุงู UBK ุฒุงุฆุฏ ูุงุญุฏ ุฃู ุงูุงุฎุฑู ูุงูุต |
|
|
|
402 |
|
00:34:29,110 --> 00:34:32,590 |
|
ุงูููููุง ุฃุตุบุฑ ู
ู 100 ู
ู ุฅุจุณูููุ ุฅุฐุง ุงู criterion |
|
|
|
403 |
|
00:34:32,590 --> 00:34:36,550 |
|
ุงููู ูู ุงูููุฑููุงุฑูุช ุญููุชุ ุฅุฐุง ุตุงุฑุช ุนูุฏู ูุฐู ุฅุฐุง F |
|
|
|
404 |
|
00:34:36,550 --> 00:34:41,830 |
|
is integrableุ ูุนูู ู
ุด ุจู ุฅุจุณููู ูุงุญุฏ ุงููู ุฌููุง ูุฃ |
|
|
|
405 |
|
00:34:41,830 --> 00:34:46,550 |
|
ู
ู ุนูุฏ ุจู ูุทุงูุน ูู ุงู partitions ูุฐู ุงููู ูู ุจู ู |
|
|
|
406 |
|
00:34:46,550 --> 00:34:49,950 |
|
ุจู ุฒุงุฆุฏ ูุงุญุฏ ู ุจู ุฒุงุฆุฏ ุงุชููู ุจุชุนู
ู ุนู
ู ุงู ุจู |
|
|
|
407 |
|
00:34:49,950 --> 00:34:53,510 |
|
ุฅุจุณููู ุงููู ูู ูููุ ูู ุงููุธุฑูุฉุ ุฅุฐุง ุงู F ุฃุดู
ุงููุง |
|
|
|
408 |
|
00:34:53,510 --> 00:34:58,750 |
|
ุตุงุฑุช ุงู F ุนุจุงุฑุฉ ุนู Integrable ู
ู ุงููุธุฑูุฉ ุงูุณุงุจูุฉ |
|
|
|
409 |
|
00:34:58,750 --> 00:35:05,200 |
|
ุงูุขู ุงูุฏูุฑ ุฏู ุงู ูุซุจุช ู
ููุ ุงู ุงู limit ูู ุงููู ูู |
|
|
|
410 |
|
00:35:05,200 --> 00:35:09,260 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ูู limit ููุฐุง ุงูู
ูุฏุงุฑุ ุจุณุงูู ุฅูุดุ ุงููู |
|
|
|
411 |
|
00:35:09,260 --> 00:35:12,540 |
|
ุฌูุง ุทุจุนุงุ ูู ูู ูุงูุช ูุง ุฌู
ุงุนุฉ limit ูุฐุง ููุต ูุฐุง ุตูุฑ |
|
|
|
412 |
|
00:35:12,540 --> 00:35:15,920 |
|
ู
ุด ู
ุนูุงุชู ุงู limit ุงูุฃูู ู limit ุงูุซุงูู existุ ูุงู |
|
|
|
413 |
|
00:35:15,920 --> 00:35:20,610 |
|
ู
ุซูุง ูุฐู ูู ูุงูุช ูุฐู un ุชุฑุจูุน ููุฐู unุ unterm .. ุขุณู |
|
|
|
414 |
|
00:35:20,610 --> 00:35:24,610 |
|
un ุชุฑุจูุน ู un ุชุฑุจูุน ุฃู un ู unุ limit un ููุต un ุนูู |
|
|
|
415 |
|
00:35:24,610 --> 00:35:27,850 |
|
ุทูู ุตูุฑุ ููู ูุง limit ุงูุฃููู ุนุฏุฏ ููุง limit ุงูุซุงูู |
|
|
|
416 |
|
00:35:27,850 --> 00:35:33,270 |
|
ุนุฏุฏุ ุงุชููู ุงุชูู ุจูุฑูุญูู ุฅูู ู
ุงูุง ููุงูุฉุ ูุงูุงู ููู ูู |
|
|
|
417 |
|
00:35:33,270 --> 00:35:37,390 |
|
ูุฐู ุงูุญุงูุฉ ูุธุฑุง ููู
ุนุทูุงุช ุงููู ู
ูุฌูุฏุฉ ู ุงููู ูู |
|
|
|
418 |
|
00:35:37,390 --> 00:35:40,930 |
|
ุทุจูุนู ุงููู ูู ุงููู ุจูุญูู ููู NuF is bounded ู ุจุจู |
|
|
|
419 |
|
00:35:40,930 --> 00:35:45,550 |
|
ู ุงูุงุฎุฑูุ ูู ุงุณุชุฎุฏุงู
ุงูุณุงุจู ููุทูุน ุนูุฏู ูุนูุง ุงู |
|
|
|
420 |
|
00:35:45,550 --> 00:35:50,840 |
|
limit ูู lower ุจูุณุงูู limit ููุฃุจุฑ ุจูุณุงูู ููู
ุฉ ุงู |
|
|
|
421 |
|
00:35:50,840 --> 00:36:08,200 |
|
integration ู
ุงุดู ุงุทูุนูุง ูุง ุฌู
ุงุนุฉ ุนูุฏู ุงูุขู ุฎูููู |
|
|
|
422 |
|
00:36:08,200 --> 00:36:15,240 |
|
ุฃุทูุน .. ูุญุท ุงูุจุฑูุงู ุฃู
ุงู
ูุงุ ุจุฏู ุงูุขู ุฎูุตุช ุงููู ูู F |
|
|
|
423 |
|
00:36:15,240 --> 00:36:21,500 |
|
is integrable ุจุฏู ุฃุณุชุฎุฏู
ุฒู ุฌุงุจู ุจุดููุฉ ุจุงูุธุจุท ุงููู |
|
|
|
424 |
|
00:36:21,500 --> 00:36:28,570 |
|
ูู ุชุนุฑูู ุงูู L of F ู U of F ูุฅูุด ุชุนุฑูููุง ุฐุง ู
ุง |
|
|
|
425 |
|
00:36:28,570 --> 00:36:32,250 |
|
ุจุฏูุด ุฃุนูุฏ ุงููู ุญููุชู ูุจู ุจุดููุฉุ ุงูุขู ุจู
ุง ุฃู ุงูู L of |
|
|
|
426 |
|
00:36:32,250 --> 00:36:42,370 |
|
F ุนุจุงุฑุฉ ุนู ุงููู ูู supremum ููู L B of Fุ ุฅุฐุง ููู |
|
|
|
427 |
|
00:36:42,370 --> 00:36:46,610 |
|
ู ุณุงูู ูุงุญุฏุฉ ูุฃู there exists B N partition of I |
|
|
|
428 |
|
00:36:46,610 --> 00:36:50,390 |
|
such that L of F ูุงูุต 1 ูุฃู ุฃุตุบุฑ ู
ู ู
ููุ ู
ู ุงูู L B |
|
|
|
429 |
|
00:36:50,390 --> 00:36:54,070 |
|
N of F ุฒู ู
ุง ููุช ูุจู ุดููุฉุ ูู ุงูู Supremum ุทุฑุญูุง |
|
|
|
430 |
|
00:36:54,070 --> 00:36:57,270 |
|
ุงููู ูู ุงูู Least Upper Boundุ ุทุฑุญูุง ู
ูู ุฃู ุนุฏุฏุ 1 |
|
|
|
431 |
|
00:36:57,270 --> 00:37:01,330 |
|
ุนูู Nุ ุฅุฐุง ููุงุฌูุ ูู ุจุทู ุฅูุด ู
ุงููุ Upper Boundุ ุฅูุด |
|
|
|
432 |
|
00:37:01,330 --> 00:37:04,190 |
|
ู
ุนูุงู ูุจุทู Upper Boundุ ูููุงุฌู ูุงุญุฏ ู
ู ุงูู
ุฌู
ูุนุฉ |
|
|
|
433 |
|
00:37:04,190 --> 00:37:08,230 |
|
ุฃูุจุฑ ู
ููุ ููุฐุง ูุนูุง ุงููู ูุงุฌููุง BN ุจุญูุซ ุฃู ุงูู BN |
|
|
|
434 |
|
00:37:08,230 --> 00:37:13,910 |
|
ู F ุฃูุจุฑ ู
ู ุงูู F ูุงูุต 1 ูุฃูุ ุงูุขู ู
ู ูุฐุง .. ู
ู |
|
|
|
435 |
|
00:37:13,910 --> 00:37:16,670 |
|
.. ู
ู .. ู
ู ุงู .. ุงู .. ุงู .. ูุงุฎุฐ ูุฐุง ุนูู ุงูุทุฑู |
|
|
|
436 |
|
00:37:16,670 --> 00:37:19,970 |
|
ุงูุซุงูู ุนูู ุงูุทุฑู ููุงุ ู ูุงุฎุฐ ูุฐุง ุนูู ุงูุทุฑู ูุฐุง ุจุตูุฑ |
|
|
|
437 |
|
00:37:19,970 --> 00:37:23,890 |
|
ุนูุฏู L of F ูุงูุต Lb of F ุฃุตุบุฑ ู
ู 1 ุงูุขู ูุฃูุง |
|
|
|
438 |
|
00:37:23,890 --> 00:37:28,670 |
|
ุจุนุฑู ุฃู ูุฐุง ุฏุงูู
ุง ุฃูุจุฑ ูุณุงูู ูุฐุง ูุฃู ูุฐุง ุงูู |
|
|
|
439 |
|
00:37:28,670 --> 00:37:32,410 |
|
supremum ู
ููู
ุ ุฅุฐุง ุฃูุง ููููู ุฃูุจุฑ ูุณุงูู ุตูุฑุ ุงูุขู |
|
|
|
440 |
|
00:37:32,410 --> 00:37:38,440 |
|
ุฎุฏูุง ุงูู limit ููุฌูุชูู as n goes to infinity ุจูุตูุฑ |
|
|
|
441 |
|
00:37:38,440 --> 00:37:43,160 |
|
ุนูุฏู ูุฐุง ุงููู ูู limit |
|
|
|
442 |
|
00:37:43,160 --> 00:37:48,060 |
|
ูู L ุจููู ููู ุฃูุ ุญูุซ ุงูู L ุฃูู ุฃู ูุฅูู ุญูุซูุฑ ุงูู |
|
|
|
443 |
|
00:37:48,060 --> 00:37:53,720 |
|
limit ูุฐุง ุฃูุด ุจูุณุงููุ ุจูุณุงูู ุตูุฑุ ูุงุถุญุงูุงู ูุง ุฌู
ุงุนุฉ |
|
|
|
444 |
|
00:37:53,720 --> 00:37:58,400 |
|
ุนูุฏู ุงูู L of F ูุงูุต ุงูู P L of F ุฃุตุบุฑ ู
ู 1 ูุฃูู |
|
|
|
445 |
|
00:37:58,400 --> 00:38:03,660 |
|
ุฃูุจุฑ ูุณุงูู ุตูุฑ ูุฃู ู
ุนููุ ุงูุขู ูุฐุง ููู ุฅุจุณููู ุงููู ูู |
|
|
|
446 |
|
00:38:03,660 --> 00:38:07,300 |
|
1 ูุฃู ูุฌููุง partition ูุนูู ููุฅุจุณููู ุจูุณุงูู |
|
|
|
447 |
|
00:38:07,300 --> 00:38:09,360 |
|
1ุ ูุฌููุง ุจูู 1ุ ููุฅุจุณููู ุจูุณุงูู 2 ุจูู |
|
|
|
448 |
|
00:38:09,360 --> 00:38:12,160 |
|
2ุ ููุฅุจุณููู 3 ุจูู 3 ุฅุฐุง ุตุงุฑ ุนูุฏู |
|
|
|
449 |
|
00:38:12,160 --> 00:38:16,580 |
|
sequence of ุงููู ูู ุฅูุด partitions ุงูุขู ุทูุน ุนูุฏู |
|
|
|
450 |
|
00:38:16,580 --> 00:38:20,460 |
|
ุฏุงุฆู
ุง ุฏุงุฆู
ุง ุฏุงุฆู
ุง L of F ูุงูุต ุงูู PN of F ุฃุตุบุฑ ู
ู |
|
|
|
451 |
|
00:38:20,460 --> 00:38:25,440 |
|
1 ุนูู N ููู Nุ ุงูุขู as N goes to infinity ูุฐุง ุงูู |
|
|
|
452 |
|
00:38:25,440 --> 00:38:30,620 |
|
limit ููุตูุฑ ุตูุฑุ ููุฐุง ุตูุฑุ ุฅุฐุง ููุตูุฑ limit ูุฐุง as N |
|
|
|
453 |
|
00:38:30,620 --> 00:38:33,200 |
|
goes to infinity ุจูุณุงูู ุตูุฑ ููู ุงูู L of F ุฃุตูุง |
|
|
|
454 |
|
00:38:33,200 --> 00:38:37,860 |
|
independent of N ุฅุฐุง ููุตูุฑ limit PN of F as N goes |
|
|
|
455 |
|
00:38:37,860 --> 00:38:43,720 |
|
to infinity ุจูุณุงูู L of F ูุฃู ุงูู
ูุงุถุญุงุช ููุด ูุง ุดุจุงุจ |
|
|
|
456 |
|
00:38:43,720 --> 00:38:52,360 |
|
limit L of F ูุงูุต L B N ู F ููุณุงูู 0 as N goes to |
|
|
|
457 |
|
00:38:52,360 --> 00:38:56,920 |
|
infinity ููุฐุง ุงูู
ูุฏุงุฑ ุนุจุงุฑุฉ ุนู ู
ูุฏุงุฑ ุซุงุจุช |
|
|
|
458 |
|
00:38:56,920 --> 00:39:04,740 |
|
independent of N ุฅุฐุง ููุตูุฑ ุนูุฏู limit L B N ู F |
|
|
|
459 |
|
00:39:04,740 --> 00:39:10,540 |
|
ุจุชุณุงูู limit L of F ูุงูุต |
|
|
|
460 |
|
00:39:17,660 --> 00:39:27,170 |
|
L of P L ู F ุฒุงุฆุฏ L of F ู
ุธุจูุทุ ุทูุจ ูุฐุง ุงูุขู |
|
|
|
461 |
|
00:39:27,170 --> 00:39:33,590 |
|
ุงูู
ูุฏุงุฑ ู
ุนุฑูู ุฃูู ุจูุณุงูู 0 ููุฐุง ุซุงุจุช ุฅุฐุง ุจูุฏุฑ ุฃูุฒุน |
|
|
|
462 |
|
00:39:33,590 --> 00:39:37,210 |
|
ุงูู limit ุนูู ุงูุฌูุชูู ูุฃูุง ู
ุฑุชุงุญุ ุฅุฐุง ุจูุณุงูู limit |
|
|
|
463 |
|
00:39:37,210 --> 00:39:42,950 |
|
ุงูุฃูู ุงููู ูู 0 ุฒุงุฆุฏ limit ุงูุซุงูู ููุณู ูุฃูู ุซุงุจุช |
|
|
|
464 |
|
00:39:42,950 --> 00:39:46,450 |
|
ุฅุฐุง ุตุงุฑ ุนูุฏู limit L P N of F as N goes to |
|
|
|
465 |
|
00:39:46,450 --> 00:39:54,710 |
|
infinity ุจูุณุงูู L of F ูู
ุง ูู ุญูููุง ุนูู ุญูุงุ ู
ู ุฌูุฉ |
|
|
|
466 |
|
00:39:54,710 --> 00:39:58,650 |
|
ุฃุฎุฑู limit ุงูู U ูุงูุต limit ุงูู L ุงูู
ุนุทููุฉ ูู ุจูุณุงูู |
|
|
|
467 |
|
00:39:58,650 --> 00:40:03,490 |
|
0ุ ุฅุฐุง ุตุงุฑ ุนูุฏู ุณูู ุฃู ุฃูุฌุฏ mean ุจุฑุถู limit ุงูู U |
|
|
|
468 |
|
00:40:03,490 --> 00:40:08,990 |
|
ุงููู ูู limit ุงูู U ุฅูุด ููุณุงููุ ูุงูุต ุงููู ูู .. ุงูู |
|
|
|
469 |
|
00:40:08,990 --> 00:40:12,670 |
|
.. ุงู .. ููุณุงูู limit ุงูู L of Fุ ูุณุงูู ุงูู U of F |
|
|
|
470 |
|
00:40:12,670 --> 00:40:17,270 |
|
ูุณุงูู ุงู integration ุฃูุซุฑ ุชูุถูุญุงูุ and ุจููุงุฌุฏู |
|
|
|
471 |
|
00:40:17,270 --> 00:40:22,420 |
|
ุฃุนุชูุฏ ุฃูู ูุงุถุญุ ููู ุฎูููุง ููุถุญู ุจุดูู ุฃูุจุฑ ุนุดุงู |
|
|
|
472 |
|
00:40:22,420 --> 00:40:34,100 |
|
ู
ุง ูุถูุด ู
ุดู ุนูุฏู limit U P N of F ุฅูุด ููุณุงููุ ููุณุงูู |
|
|
|
473 |
|
00:40:34,100 --> 00:40:44,560 |
|
ุงููู ูู limit U |
|
|
|
474 |
|
00:40:44,560 --> 00:40:49,740 |
|
P N of F |
|
|
|
475 |
|
00:40:52,490 --> 00:40:58,090 |
|
limit U P N ู F ูุงูุต |
|
|
|
476 |
|
00:40:58,090 --> 00:41:07,810 |
|
L of P N of F ุฒุงุฆุฏ L P N of F ูุงุถุญุฉ ูุง ุดุจุงุจ ุฃูุ |
|
|
|
477 |
|
00:41:07,810 --> 00:41:12,690 |
|
ุงูุขู ูุฐุง ู
ุถู
ูู ุฃูู ู
ูุฌูุฏ ูุตูุฑ ููุฐุง ู
ุถู
ูู ู |
|
|
|
478 |
|
00:41:12,690 --> 00:41:18,350 |
|
ุฃุซุจุชูุงูุ ุฅูุด ุจูุณุงููุ L of F ุฅุฐุง ุฅูุด ุตุงุฑ ุจูุณุงููุ |
|
|
|
479 |
|
00:41:18,350 --> 00:41:21,810 |
|
ุจูุณุงูู ุงููู ูู ูุฐุง ุตูุฑุ ุฅุฐุง ุตุงุฑ ุจูุณุงูู ุฃูู ู ูุฃู |
|
|
|
480 |
|
00:41:21,810 --> 00:41:25,510 |
|
ุฅุฐุง ุตุงุฑ ูุฐุง ุจุฑุถู ุจูุณุงูู ุฃูู ู ูุฃูุ ููู ุฃูุง ู
ุซุจุช ูุจู |
|
|
|
481 |
|
00:41:25,510 --> 00:41:29,610 |
|
ุจุดููุฉ ุฃู ุงูู F is integrable ูุนูู ุงูู U ูู F ุฅูุด |
|
|
|
482 |
|
00:41:29,610 --> 00:41:34,550 |
|
ูุชุณุงููุ ุงููู ุฃูู ู ูุฃูุ ููุฐู ุฃุซุจุชูุงูุง ุฅูุด ุจุชุณุงููุ |
|
|
|
483 |
|
00:41:34,550 --> 00:41:39,350 |
|
limit U P N ู F ููุฐู ููุณูุง ุฃุซุจุชูุงูุง ูุจู ุจุดููุฉ ุฅูุด |
|
|
|
484 |
|
00:41:39,350 --> 00:41:46,070 |
|
ุจุชุณุงููุ limit L P N ู F ููู ุงูู
ุทููุจ ุทุจุนุงูุ ู
ุฏุงู
|
|
|
|
485 |
|
00:41:46,070 --> 00:41:49,370 |
|
integration ูุฐูุ ููุฐู ูู ุนุจุงุฑุฉ ุนู ุงู integration |
|
|
|
486 |
|
00:41:49,370 --> 00:41:55,410 |
|
ุนูู ุงููุชุฑุฉ ุงููู ุจูุญูู ุนููุงุ ุงูุฅูููุง ุจูู ูููู
ุฉ ุงูู F |
|
|
|
487 |
|
00:41:55,410 --> 00:42:01,710 |
|
ูุฃู ุตุงุฑ ุนูุฏู ูู ุงูููุงู
ูุฐู ู
ุชุณุงููุฉุ ูุตุงุฑ ุนูุฏู ุฅูุฌุงุฏ |
|
|
|
488 |
|
00:42:01,710 --> 00:42:07,610 |
|
ุงูู limit ููู U P N ู F ุฃู limit ููู L P N ู F ูููู |
|
|
|
489 |
|
00:42:07,610 --> 00:42:11,330 |
|
ุฃูู ููุฌุฏ ููู ููู
ุฉ ุงูู integration ุจุนุฏ ู
ุง ุฃุซุจุชูุงู ุฃู |
|
|
|
490 |
|
00:42:11,330 --> 00:42:16,260 |
|
ุชุญุช ุงูุธุฑูู ุงููู ูู ูู ุงูููุฑู ุงูุฃุฎุฑูุ ูุฃ ููุฌู ุจุฏูุง |
|
|
|
491 |
|
00:42:16,260 --> 00:42:22,660 |
|
ูุจุฑูู ุงููู ูู ุงูู
ุซุงู ุงููู ุจุฑููุงู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ |
|
|
|
492 |
|
00:42:22,660 --> 00:42:27,660 |
|
ุจุงูุชุนุฑูู ุจุฏูุง ูุจุฑููู ุจูุงุณุทุฉ ุงููู ูู ุงูู corollary |
|
|
|
493 |
|
00:42:27,660 --> 00:42:33,060 |
|
ุงููู ุนูุฏูุง ุจุฏูุง ูุจุฑูู ุงููู ูู ุงููู ูู ูุซุจุช ุฃูู |
|
|
|
494 |
|
00:42:36,170 --> 00:42:42,070 |
|
ูุซุจุช ุฃู F of X ุจุณุงูุฉ X ูุง ุดุจุงุจ ุนุจุงุฑุฉ ุนู Integrable |
|
|
|
495 |
|
00:42:42,070 --> 00:42:45,770 |
|
ุฃู ุงููู ุณู
ูุงูุง G of X ุจุณุงูุฉ X is Integrable ุนูู |
|
|
|
496 |
|
00:42:45,770 --> 00:42:48,830 |
|
ุงููุชุฑุฉ Zero ูุงุญุฏุ ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุฃุซุจุชูุงูุง ูููุ |
|
|
|
497 |
|
00:42:48,830 --> 00:42:54,230 |
|
ุฃุซุจุชูุงูุง ุฒู ู
ุง ุฃูุชู
ู
ุชุฐูุฑูู ุจูุงุณุท ุงูุชุนุฑููุ ู
ุธุจูุทุ |
|
|
|
498 |
|
00:42:54,230 --> 00:42:58,610 |
|
ุทูุจ ุฌูุจูุง ุงููู ูู ุงูู upper sum ูุงูู lower sum ู |
|
|
|
499 |
|
00:42:58,610 --> 00:43:02,930 |
|
ุจุนุฏูู ุฌูุจูุง ุงูู upper integral ูุงูู lower integral |
|
|
|
500 |
|
00:43:02,930 --> 00:43:04,750 |
|
ู ุฃุซุจุชูุง ุฃู ุงูู upper integral ุจุณุงูู ุงูู lower |
|
|
|
501 |
|
00:43:04,750 --> 00:43:08,760 |
|
integral ูุฎูุตูุงูุ ุงูุขู ุจุฏูุง ูุซุจุชูุง ุจุทุฑููุชูุง ุงููู ูู |
|
|
|
502 |
|
00:43:08,760 --> 00:43:12,540 |
|
ุนูู ุงูููุฑููุฑ ุงููู ุฌุงุจู ุจุดููุฉ ุนูุฏ g of x ุณุงูุฉ x ุนูู |
|
|
|
503 |
|
00:43:12,540 --> 00:43:16,600 |
|
ุงููุชุฑุฉ 0 ุจูุงุญุฏุ ูู ุงูู
ุทููุจ ุฅุซุจุงุชูุง show that g is |
|
|
|
504 |
|
00:43:16,600 --> 00:43:20,940 |
|
integrable ุนูู ูุฐู ุงููุชุฑุฉุ ุงูุขู ุจุฏูุด ุฃุนูุฏ ุงููู |
|
|
|
505 |
|
00:43:20,940 --> 00:43:23,850 |
|
ุญููุชู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉุ ุงููู ุญูููุงู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉุ ู
ู |
|
|
|
506 |
|
00:43:23,850 --> 00:43:26,910 |
|
ุงูู Example ุงููู ุฃุซุจุชูุง ููู ุฅููุง Integra ุจุงูุจูุงุณุทุฉ |
|
|
|
507 |
|
00:43:26,910 --> 00:43:31,470 |
|
ุงููู ูู ุงูุชุนุฑูู ุฃุฎุฏูุง P N ุงููู ูู ุตูุฑ ูุงุญุฏ ุนูู N |
|
|
|
508 |
|
00:43:31,470 --> 00:43:34,910 |
|
ูุงุซููู ุนูู Nุ ูุงู ูุงูุต 1 ุนูู N ูุนูุฏ ุงููุงุญุฏุ ุฃุฎุฏูุง |
|
|
|
509 |
|
00:43:34,910 --> 00:43:39,290 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู Any Partition ุงููู ูู ุจุงูุทุฑููุฉ |
|
|
|
510 |
|
00:43:39,290 --> 00:43:43,710 |
|
ุงููู ุฃู
ุงู
ูุ ูุนูู ุญุณุจ N ุจูุตูุฑ ุจุฎุชูู ุงูู Partition ุฃู
ุง |
|
|
|
511 |
|
00:43:43,710 --> 00:43:46,730 |
|
ุฅูุด ููุฑุฉ ุงูู Partition ุฒู ู
ุง ูููุง ุงูู
ุฑุฉ ุงููุงุฆุชุฉ ู
ู |
|
|
|
512 |
|
00:43:46,730 --> 00:43:51,350 |
|
0 ูุนูุฏ 1 ุฌุฒุฃูุงูุง ุฅูู ุฃุฌุฒุงุก ู
ุชุณุงููุฉ ุฅูู N ู
ู |
|
|
|
513 |
|
00:43:51,350 --> 00:43:55,350 |
|
ุงูุฃุฌุฒุงุก ุงูู
ุชุณุงููุฉ ุตุงุฑ ุทูู ูู sub integral ุนุจุงุฑุฉ ุนู |
|
|
|
514 |
|
00:43:55,350 --> 00:44:00,850 |
|
ุฅููุ ุฅูุด ุนุจุงุฑุฉ ุนู 1 ุนูู Nุ ูุฃูุฌุฏูุง ูู ุญููู ุงููู ูู |
|
|
|
515 |
|
00:44:00,850 --> 00:44:08,470 |
|
ุงูู U P N O G ููุงุฌูุงูุง ุจุชุณุงูู ุฅูู ุฏูุ ุจุชุชุฐูุฑูุง ูุต ูู |
|
|
|
516 |
|
00:44:08,470 --> 00:44:13,710 |
|
1 ุฒุงุฆุฏ 1 ุนูู Nุ ูุฃูุฌุฏูุง ุจุฑุถู ุงูู P N O G |
|
|
|
517 |
|
00:44:13,710 --> 00:44:18,910 |
|
ููุงุฌูุงูุง ุนุจุงุฑุฉ ุนู ูุต ูู 1 ูุงูุต 1 ุนูู N ูู
ุง |
|
|
|
518 |
|
00:44:18,910 --> 00:44:26,960 |
|
ุฃุฐูุฑ ู
ุงุดู ุงูุญุงู ูุนูุงู ุทูุจุ ุงูุขู ุตุงุฑ ุนูุฏู ุงูู PN ูู |
|
|
|
519 |
|
00:44:26,960 --> 00:44:29,780 |
|
ุงููุงูุน ุนุจุงุฑุฉ ุนู sequence of partitions |
|
|
|
520 |
|
00:44:35,190 --> 00:44:39,110 |
|
ูุฐู ุตุงุฑุช sequence of partitionsุ ุจูุงุญุฏ ุจุชุนูุฏ ุนู ุฃูุง |
|
|
|
521 |
|
00:44:39,110 --> 00:44:42,750 |
|
ุจูุงุญุฏุ ุจุงุชููู ูุฏูุ ุจุชูุงุชุฉ ูุฏูุ ุจุฃุฑุจุนุฉ ูุฏูุ ููู ูู |
|
|
|
522 |
|
00:44:42,750 --> 00:44:47,270 |
|
ุงูุฃุญูุงู ุงูู U, B, N ู G ุงูุญุฑูุง ููููุงุ ูุงูู L, B, N |
|
|
|
523 |
|
00:44:47,270 --> 00:44:51,490 |
|
ู G ุจุณุงูู ุฅูุด ุงูู
ูุฏุงุฑ ุงูุฃู
ุงู
ูุ ุงูุขู ุนุดุงู ุฃุซุจุช ุฅููุง |
|
|
|
524 |
|
00:44:51,490 --> 00:44:56,590 |
|
integrable ูููู ู
ู ุงููุธุฑูุฉ ุงูููุฑููุงุฑู ุฅู ูุงุนุฏ ุฃููู |
|
|
|
525 |
|
00:44:56,590 --> 00:45:03,290 |
|
ุทุจ ุฎูููุง ูุดูู limit ุงูู U, B, N ู G ูุงูุต ุงูู L, B, |
|
|
|
526 |
|
00:45:03,450 --> 00:45:09,840 |
|
N ู G as n goes to infinity ุจุณุงูุฉ ุฅูู ูุง ุนุดุงู ุจุณุงูุฉ |
|
|
|
527 |
|
00:45:09,840 --> 00:45:16,360 |
|
ุตูุฑ ูุดูููุง ุตุญ ููุง ูุฃุ ุทุจุนุงู ุฃููุฏ ู
ุน ุญุณุจุฉ ุจุณูุทุฉ |
|
|
|
528 |
|
00:45:16,360 --> 00:45:24,580 |
|
ุงุญุณุจูููุง ุจุณุงูุฉ limit ูุต ูู 1 ุฒูุงุฏุฉ 1 ูุฃู ุฒูุงุฏุฉ |
|
|
|
529 |
|
00:45:24,580 --> 00:45:28,600 |
|
ูุต ูู 1 ูุงูุต 1 ูุฃู as n goes to infinity |
|
|
|
530 |
|
00:45:28,600 --> 00:45:32,260 |
|
ูุฐู ุตูุฑ ููุฐู ุตูุฑ ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต |
|
|
|
531 |
|
00:45:32,260 --> 00:45:32,340 |
|
ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต |
|
|
|
532 |
|
00:45:32,340 --> 00:45:32,920 |
|
ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต |
|
|
|
533 |
|
00:45:32,920 --> 00:45:38,340 |
|
ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต ููุฐู ูุต |
|
|
|
534 |
|
00:45:38,340 --> 00:45:45,580 |
|
ููุฐู ุงููู ูู y ุณุงูู ูุต ูุงูุต ุงููุตุ y ุณุงูู ุตูุฑ ูุงุถุญ ุฃูู |
|
|
|
535 |
|
00:45:45,580 --> 00:45:50,120 |
|
ุนูุฏู ุงููู ูู ูุงุฏ ุตูุฑ ููุงุฏ ุตูุฑ ููุต ูุงูุต ุงููุตุ y |
|
|
|
536 |
|
00:45:50,120 --> 00:45:54,920 |
|
ุณุงูู ุตูุฑุ ู
ุงุฏุงู
ุตูุฑ ุฅุฐุง ุฅูู ุดู
ุงููุงุ ุฅุฐุง the function |
|
|
|
537 |
|
00:45:54,920 --> 00:46:02,720 |
|
d of x ุณุงูู x is integrable on zero ูุงุญุฏ ูุฐุง by |
|
|
|
538 |
|
00:46:02,720 --> 00:46:06,560 |
|
mean by ุงูู corollary ุงููู ูุจู ุจุดููุฉ |
|
|
|
539 |
|
00:46:15,600 --> 00:46:19,420 |
|
ุงูุขู ููู
ุฉ ุงูู integration ุฅูุด ูููููุ ููู
ุฉ ุงูู limit |
|
|
|
540 |
|
00:46:19,420 --> 00:46:24,280 |
|
limit u, b, n, g ูููุฏุฑ ุงูุบุฑุถุ ู limit l of n of g |
|
|
|
541 |
|
00:46:24,280 --> 00:46:29,320 |
|
ูููุฏุฑ ุงูุบุฑุถ ููุดุ ูุฃู limit ูุฐุง ุฃุตูุงู ููุทูุน ูู limit |
|
|
|
542 |
|
00:46:29,320 --> 00:46:35,710 |
|
ุงูู u, b, n ู g ูู ุนุจุงุฑุฉ ุนู ููู
ุฉ integration ู
ู A ูู |
|
|
|
543 |
|
00:46:35,710 --> 00:46:42,370 |
|
B ุญุณุจ ุงููุธุฑูุฉ ุงูู Corollary ููุณุงูู limit 2.5 ูู 1 |
|
|
|
544 |
|
00:46:42,370 --> 00:46:48,600 |
|
ุฒุงุฆุฏ 1 ู N ููุณุงูู ูุฐุง ุชุฑูุญ ูู 0ุ ููุณุงูู ูุตุ ูุฃูุถุงู |
|
|
|
545 |
|
00:46:48,600 --> 00:46:54,080 |
|
ูู ุฌุฑุจุช ุญุณุจ ุชุงุจ limit ุงูู b, n ู g ุทุจุนุงู ููุทูุน ููุณ |
|
|
|
546 |
|
00:46:54,080 --> 00:46:58,200 |
|
ุงูุฌูุงุจุ ูุฅูุง ุฅู ูุงู ููุงู ู
ุดููุฉ ูุฏููุง limit ูุต ูู |
|
|
|
547 |
|
00:46:58,200 --> 00:47:02,340 |
|
1 ูุงูุต 1 ุนูู n ููุณุงูู ุจุฑุถู ุฌุฏูุงุด ูุตุ ุฅุฐู |
|
|
|
548 |
|
00:47:02,340 --> 00:47:06,700 |
|
ููู
ุฉ ุงูู integration ุจุณุงูุฉ ูุตุ ุฅุฐู ูุฐู ุทุฑููุฉ ุฃุฎุฑู |
|
|
|
549 |
|
00:47:06,700 --> 00:47:11,780 |
|
ูุญุณุงุจ ุงููู ูู ุฃู ูุฅุซุจุงุช ุฃู g of x ุจุณุงูุฉ x is |
|
|
|
550 |
|
00:47:11,780 --> 00:47:17,560 |
|
integrable ุงูุขู ุจุฏูุง ูุฏุฎู ุนูู ุฃู
ุฑ ุขุฎุฑุ ุงูุฃู
ุฑ ูู ูู |
|
|
|
551 |
|
00:47:17,560 --> 00:47:24,500 |
|
ุงููุงูุน ูุง ุดุจุงุจ ุฃูู ุจุฏูุง ูุดูู ุฅูุด ูู ู
ู ุนุงุฆูุงุช |
|
|
|
552 |
|
00:47:24,500 --> 00:47:28,400 |
|
ุงูุฏูุงูุ ุนุงุฆูุงุช ุงูุฏูุงู ุฅููุง ุชููู Integrable ุงูุขู |
|
|
|
553 |
|
00:47:28,400 --> 00:47:31,720 |
|
ุจุฏูุง ููุฌู ูุญูุด ุงูุฏูุงู ุงูู Integrable ุฅุญูุง ุนุฑููุง ุจุณ |
|
|
|
554 |
|
00:47:31,720 --> 00:47:36,500 |
|
ุฏู ูุฃ D of X ุณู X is Integrable ููููุงูู ุฒููุง ููู |
|
|
|
555 |
|
00:47:36,500 --> 00:47:40,960 |
|
ุงูุขู ุจุฏูุง ููุฌู ูุญูู ุนู ุฏูุงู ุงููู ูู ุนุงุฆูุงุช ู
ู |
|
|
|
556 |
|
00:47:40,960 --> 00:47:45,480 |
|
ุงูุฏูุงูุ ุงูุฃูู ุนุงุฆูุฉ ู
ู ุงูุนุงุฆูุงุช ุงูู
ูู
ุฉ ุงููู ูู ุงูู |
|
|
|
557 |
|
00:47:45,480 --> 00:47:48,960 |
|
monotone functions ูุนูู ุงูุฏูุงู ุงููู ุจุชููู ูุง |
|
|
|
558 |
|
00:47:48,960 --> 00:47:52,360 |
|
increasing ุนูู ูู ุงููุชุฑุฉ ูุง decreasing ุนูู ูู |
|
|
|
559 |
|
00:47:52,360 --> 00:47:59,320 |
|
ุงููุชุฑุฉุ ุจููู ููู
ูุฐุง ุนูู ุงููู ูู F ู
ู F ุงูู function |
|
|
|
560 |
|
00:47:59,320 --> 00:48:04,000 |
|
ูู ูุงูุช bounded ูู ูุงูุช monotone ุนูู ุงููู ูู |
|
|
|
561 |
|
00:48:04,000 --> 00:48:09,660 |
|
ุนูู ุทูู integrable ุฅุฐู closed bounded interval I |
|
|
|
562 |
|
00:48:09,660 --> 00:48:16,700 |
|
ุนููุฉ ูุจูุฑุฉ ุนููุฉ ุงูุฏูุงู ุงููู ุจุชููู ูุง increasing ูุง |
|
|
|
563 |
|
00:48:16,700 --> 00:48:22,380 |
|
decreasing ุนูู ูู ุงููุชุฑุฉ a ู b ูุฐู ู
ุถู
ูู ุฃู ุชููู |
|
|
|
564 |
|
00:48:22,380 --> 00:48:26,980 |
|
ุงูุฏูุงู ุงูู ุดู
ุงููุง ุนุจุงุฑุฉ ุนู integrable functions |
|
|
|
565 |
|
00:48:26,980 --> 00:48:35,090 |
|
ุฅุฐุง ุฃูู ุฅุนูุงู ุงูุขู ุงููู ูู any monotone function on |
|
|
|
566 |
|
00:48:35,090 --> 00:48:40,850 |
|
a closed bounded interval is integrable ููุฐุง ุงููู |
|
|
|
567 |
|
00:48:40,850 --> 00:48:47,090 |
|
ูู ุนููุงููุง integrability of monotone functions ูู I |
|
|
|
568 |
|
00:48:47,090 --> 00:48:51,650 |
|
ุจุชุณุงูู A ู B ู ูู F ู
ู I ูู R ุจูููู ู
ูููุชูู ูุงููุดู |
|
|
|
569 |
|
00:48:51,650 --> 00:48:57,370 |
|
on I ุซู
F ุฃุดู
ุงููุง is integrable on I ููุชุฑุถ ุฃู F |
|
|
|
570 |
|
00:48:57,370 --> 00:49:03,110 |
|
ุงูุชูู ูู ู
ูููุชูุฑ ูุตู ุฅูููุง integrable ููุชุฑุถ ุฃู F |
|
|
|
571 |
|
00:49:03,110 --> 00:49:09,440 |
|
ู
ุซูุง increasing ููุตู ุฅููุง integrable ู similarly |
|
|
|
572 |
|
00:49:09,440 --> 00:49:14,560 |
|
ููุนูุง similarly ูู ูุงูุช f is decreasing ูุชููู ุจุฑุถู |
|
|
|
573 |
|
00:49:14,560 --> 00:49:21,500 |
|
is integrable ุฎูููุง ู
ุน ุจุนุถ ุดุจุงุจ ููุชุฑุถ suppose |
|
|
|
574 |
|
00:49:21,500 --> 00:49:31,240 |
|
that f is increasing ูุนูู ุงูุฏุงูุฉ ุนูู ุงููุชุฑุฉ ูู a |
|
|
|
575 |
|
00:49:31,240 --> 00:49:37,760 |
|
ู b ู
ุซูุง ูุงูุฏุงูุฉ ูุชููู ุฃุดู
ุงููุง ุชุฒุงูุฏูุฉ ูุง ููู ูุง ููู |
|
|
|
576 |
|
00:49:37,760 --> 00:49:41,620 |
|
ุทุจุนุง ุญุณุจ ู
ุด ู
ุดููุฉ ุจุชูุฑุฌ ุฃุดู
ุงููุง ู
ุงุดู ุงูุญุงู ุงููู ูู |
|
|
|
577 |
|
00:49:41,620 --> 00:49:47,060 |
|
ุงูุฏุงูุฉ ุฃุดู
ุงููุง is increasing is increasing ุจุชุฏุฎู |
|
|
|
578 |
|
00:49:47,060 --> 00:49:53,500 |
|
ุงูุขู ุจู ุฃู ุงููู ูู ุนุจุงุฑุฉ ุนู any partition ุงููู ูู |
|
|
|
579 |
|
00:49:55,970 --> 00:50:00,970 |
|
ุจุณ ุจุฏู ุฃุฌุฒู ุฒู ู
ููุฌ ุงููู ุนู
ูุชู ู
ุนู ุงููู ูู f of x |
|
|
|
580 |
|
00:50:00,970 --> 00:50:05,370 |
|
ุจุณุงูู x ุงููู ูุจูู ุดููุฉ ุจุฏู ุฃุฌุฒู ุฅูู ุฃุฌุฒุงุก ู
ุชุณุงููุฉ |
|
|
|
581 |
|
00:50:05,370 --> 00:50:11,130 |
|
ูุนูู ุจุฏู ุฃุฌุฒ ุงูููุฑุฉ a ู b ุฅูู ุฃุฌุฒุงุก ู
ุชุณุงููุฉ ุงูุฃููู |
|
|
|
582 |
|
00:50:11,130 --> 00:50:15,730 |
|
ุจุฏู ุฃุณู
ููุง x note ุงููู ุจุนุฏูุง x1 ุงููู ุจุนุฏูุง x2 ูู
ุง |
|
|
|
583 |
|
00:50:15,730 --> 00:50:21,780 |
|
ุฃุตู ูุขุฎุฑ 11 ุฃุณู
ููุง xn ููููู ุทูู ูู ูุงุญุฏุฉ ู
ุชุณุงููุฉ |
|
|
|
584 |
|
00:50:21,780 --> 00:50:26,340 |
|
ููุซุงููุฉ ุฅุฐุง ุงูุขู ุฅุฐุง ุจุฏู ุฃุฌุฒุฆูุง ุฅูู N ุฅูู N ู
ู ุงู |
|
|
|
585 |
|
00:50:26,340 --> 00:50:30,240 |
|
sub intervals ุจูุตูุฑ ุทูู ูู ูุชุฑุฉ ุนุจุงุฑุฉ ุนู B minus A |
|
|
|
586 |
|
00:50:30,240 --> 00:50:35,080 |
|
ุนูู ู
ููุ ุนูู N ุทูู ุงููุชุฑุฉ ุนูู ุนุฏุฏ ุงููุชุฑุงุช ุงููู |
|
|
|
587 |
|
00:50:35,080 --> 00:50:39,400 |
|
ุจุชุฏููุง ุฃูุง ุจุฏูู ุงููุชุฑุงุช ุฅูุด ุนุฏุฏูุงุ N ูุจูุตูุฑ ุนูุฏ ุจู |
|
|
|
588 |
|
00:50:39,400 --> 00:50:43,320 |
|
ู
ุงููุณ ุฅูู ุนูู ู
ูู ุนูู N ูุฐุง ุทูู ุงููุชุฑุฉ ูุนูู ุงููุชุฑุฉ |
|
|
|
589 |
|
00:50:43,320 --> 00:50:47,740 |
|
ุงููู
ูุฐุฌูุฉ ูุฃู K X K minus X K minus ูุงุญุฏ ููุชู
ูู |
|
|
|
590 |
|
00:50:47,740 --> 00:50:52,560 |
|
ุทูููุง ุนุจุงุฑุฉ ุนู ุจู ู
ุงููุณ ุฅูู ุนูู N for every K ููู |
|
|
|
591 |
|
00:50:52,560 --> 00:50:56,000 |
|
ุทุจุนุง ุฅูู ุฃุดู
ุงููุงุ ูุง ู
ุง ุจูุณุงูู Zero ูุง ูุงุญุฏุ ูุนูุฏ |
|
|
|
592 |
|
00:50:56,000 --> 00:51:01,100 |
|
ู
ุงุตูุ ูุนูุฏ ู
ููุ ูุนูุฏ N ุฃู K ุจูุณุงูู ูุงุญุฏ ูุนูุฏ N |
|
|
|
593 |
|
00:51:04,810 --> 00:51:10,230 |
|
xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n |
|
|
|
594 |
|
00:51:10,230 --> 00:51:14,230 |
|
-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n |
|
|
|
595 |
|
00:51:14,230 --> 00:51:14,590 |
|
-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n |
|
|
|
596 |
|
00:51:14,590 --> 00:51:17,070 |
|
-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n-xn-n |
|
|
|
597 |
|
00:51:17,070 --> 00:51:25,770 |
|
-xn-n-xn-n-xn-n-xn-n-xn-n ูุฃ ูู ุฌููุง ูุฐุง increasing |
|
|
|
598 |
|
00:51:25,770 --> 00:51:30,170 |
|
ู
ุฏุงู
increasing ุฅุฐู ุงูู Mk ุงููู ูู ุนุจุงุฑุฉ ุนู ุงู |
|
|
|
599 |
|
00:51:30,170 --> 00:51:35,510 |
|
supremum ุงููู ููุง supremum ููุฐู Mk ุงู supremum |
|
|
|
600 |
|
00:51:35,510 --> 00:51:39,910 |
|
ุงููู ููุง ููููู ุนูู ุฃุฎุฑ ูุงุญุฏุฉ ูุฃู ุฃุฌู
ููุง ุฏู ูุง is |
|
|
|
601 |
|
00:51:39,910 --> 00:51:45,510 |
|
increasing ุฅุฐู ููููู ุงู Mk ูู F of XK ุฑุณู
ุนููุง |
|
|
|
602 |
|
00:51:45,990 --> 00:51:51,210 |
|
ุจุณุงูู F of X K ุทูุจ ุงู M K Small ุฃููุฏ ููููููุง ูููู
|
|
|
|
603 |
|
00:51:51,210 --> 00:51:54,010 |
|
ูุชูููู ุจุชุณุงูู ุงู M ูู ู
ุนู
ุน ุงููุชุฑุฉ ู
ุฏุงู
ุงู M ูู |
|
|
|
604 |
|
00:51:54,010 --> 00:51:57,370 |
|
ู
ุนู
ุน ุงููุชุฑุฉ ุฅุฐุง ุฃูู ูุงุญุฏุฉ ูููู
ุฅุฐุง ูู F of X K |
|
|
|
605 |
|
00:51:57,370 --> 00:52:04,530 |
|
minus ูุงุญุฏุ ู
ุธุจูุท ุดุจุงุจุ ุทูุจุ ู
ุธุจูุท ูุฐู ุงููู ูู |
|
|
|
606 |
|
00:52:04,530 --> 00:52:10,750 |
|
ู
ุงููุง ุงูุฏุงูุฉ ุงููู ุจุชููู monotone ุนูุฏูุ |
|
|
|
607 |
|
00:52:10,750 --> 00:52:21,840 |
|
ุงุญุณุจูู ุงูุขู ุงู U P N ู F ููุต ุงูู BNOF ุฅูุด ููุณุงููุ |
|
|
|
608 |
|
00:52:21,840 --> 00:52:26,840 |
|
ุฌูุฒุฉ ุงูุฃู
ูุฑ ุจุณุงูู ุงูู summation ูู
ููุ ููู MK |
|
|
|
609 |
|
00:52:26,840 --> 00:52:36,190 |
|
Capital ูู XK ููุต XK minus ูุงุญุฏู ู
ู ุนูุฏ 1 ูุนูุฏ n |
|
|
|
610 |
|
00:52:36,190 --> 00:52:44,370 |
|
ููุต summation mk ูู xk minus xk minus 1 k ู
ู ุนูุฏ 1 |
|
|
|
611 |
|
00:52:44,370 --> 00:52:49,440 |
|
ูุนูุฏ n ููุณุงูู ุงูู Mk ูุฌุฏูุงูุงุ ุงููู ูู ุนุจุงุฑุฉ ุนู ู
ููุ |
|
|
|
612 |
|
00:52:49,440 --> 00:52:55,420 |
|
F of Xk ููุณุงูู ุงูู summation ููู F of Xk ูู ู
ูู |
|
|
|
613 |
|
00:52:55,420 --> 00:53:00,200 |
|
ู
ุถุฑูุจุฉุ ูู ูุฐูุ ูุฐู ูุฏู ุทูููุง ุซุงุจุชุ ู
ุง ุงุญูุง ููู |
|
|
|
614 |
|
00:53:00,200 --> 00:53:02,540 |
|
ุนูู ูุฐุง ุงูุฃุณุงุณ ุฅุฐุง ุงุฎุชุฑูุง ุงูู sequence of |
|
|
|
615 |
|
00:53:02,540 --> 00:53:05,320 |
|
partitions ุงููู ุนูุฏูุงุ ุงููู ูู ุทูุงูุซ ูู |
|
|
|
616 |
|
00:53:05,320 --> 00:53:09,580 |
|
subintervals ุซุงุจุชุฉุ ูู ูุงุญุฏ ุงุณู
ู ูุดู
ูู B minus A |
|
|
|
617 |
|
00:53:09,580 --> 00:53:14,250 |
|
ุนูู Nุ ูุฐุง K ู
ู ูุงุญุฏ ุฅู ุนูุฏูุง ูุงูุต ุฎูููู ุฃุถุนู ูู |
|
|
|
618 |
|
00:53:14,250 --> 00:53:18,550 |
|
summation 1 ูุงูุต ููุณ ุงููุตุฉ ุงููู ูู m k small ุฅูุด |
|
|
|
619 |
|
00:53:18,550 --> 00:53:23,710 |
|
ูู ูุง ุฌู
ุงุนุฉ ุงุชูุงููุง ุนุจุงุฑุฉ ุนู f of x k minus 1 ูู |
|
|
|
620 |
|
00:53:23,710 --> 00:53:27,610 |
|
ูุฐู ุฎูููู ุฃุฎุฏูุง ุนุงู
ู ู
ุดุชุฑู ุจุนุฏ ุฅุฐููู
ูุฅู ูู |
|
|
|
621 |
|
00:53:27,610 --> 00:53:31,070 |
|
ู
ูุฌูุฏุฉ ููุง ูู
ูุฌูุฏุฉ ููุง ุฎูููู ุฃุทููุญูุง ุจุฑุง ูุงุถุญุฉ |
|
|
|
622 |
|
00:53:31,070 --> 00:53:36,070 |
|
ุฃุดูู ูุฐู ุจุฑุง ุจูุตูุฑ ุงููู ูู ู
ุถุฑูุจุฉ ูู b minus a ุนูู |
|
|
|
623 |
|
00:53:36,910 --> 00:53:42,350 |
|
ู ุฃุตูุง ูุฐู ุซุงุจุชุฉ ุจุงููุณุจุฉ ูู summation ููุดุ ูุฃู ุงู |
|
|
|
624 |
|
00:53:42,350 --> 00:53:46,110 |
|
summation ุงูุนุฏุงุฏ K ู
ู ูุงุญุฏ ุนูุฏูุง ุฃู ูุฐู N ุซุงุจุชุฉ |
|
|
|
625 |
|
00:53:46,110 --> 00:53:52,870 |
|
ุจุงููุณุจุฉ ูู K ูุฐูู ุจุชุณุงูู B minus A ุนูู N ู
ุถุฑูุจุฉ ูู |
|
|
|
626 |
|
00:53:52,870 --> 00:53:59,280 |
|
ู
ูู ูู ุงู summation ููู f of x k minus f of x k |
|
|
|
627 |
|
00:53:59,280 --> 00:54:03,840 |
|
minus ูุงุญุฏ k ู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ ู
ูู ูุง ุฌู
ุงุนุฉ ูุนูุฏ ุงู |
|
|
|
628 |
|
00:54:03,840 --> 00:54:07,920 |
|
ุจุนุฏูู the is and could ุจุฏู ุฃูุฑุทูุง ูุฐู ุจูุตูุฑ ุนูุฏู y |
|
|
|
629 |
|
00:54:07,920 --> 00:54:14,880 |
|
ุณุงูู ูุฐุง ุงููู ูู ู
ูู ููู ุงููู ุฌุงุนุช ุจุญุณุจู ุงู u,b,n |
|
|
|
630 |
|
00:54:14,880 --> 00:54:19,320 |
|
ู f ูุงูุต ุงู b,n ู f ููุณูู ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู b |
|
|
|
631 |
|
00:54:19,320 --> 00:54:25,970 |
|
minus a ุนูู ุงูู
ุถุฑูุจ ููู ุงูุขู ุงู summation ุนุจุงุฑุฉ ุนู |
|
|
|
632 |
|
00:54:25,970 --> 00:54:32,630 |
|
k ุจ 1 ุจุตูุฑ f of x 1 ูุงูุต f of x naught ุงููู ุจุนุฏูุง |
|
|
|
633 |
|
00:54:32,630 --> 00:54:40,170 |
|
k ุจ 2 ุฒุงุฆุฏ f of x 2 ูุงูุต f of x 1 ุงููู ุจุนุฏูุง ุฒุงุฆุฏ |
|
|
|
634 |
|
00:54:40,170 --> 00:54:46,130 |
|
f of x 3 ูุงูุต f of x 2 ูู
ุง ููุถู ุงููู ู
ุงุดู ูุฃุฎุฑ |
|
|
|
635 |
|
00:54:46,130 --> 00:54:53,140 |
|
ูุงุญุฏ ุจููู ุนูุฏู f of x n ูุงูุต f of x n ูุงูุต ูุงุญุฏ |
|
|
|
636 |
|
00:54:57,360 --> 00:55:04,840 |
|
F of X1 ุจูุทูุฑ ู
ุน ุณุงูุจ F of X1 ู F of X2 ุจูุทูุฑ ู
ุน |
|
|
|
637 |
|
00:55:04,840 --> 00:55:09,840 |
|
ุณุงูุจ F of X2 ู ููุฐุง ุจุธู ู
ุงุดู ูู
ุง ููู ูุฑูุญ ู
ุน ููู |
|
|
|
638 |
|
00:55:09,840 --> 00:55:16,640 |
|
ู
ุง ุนุฏุง ุจุธู ุนูุฏู ุงููู ูู ุฃูู ููู
ุฉ ุงููู ูู F of X |
|
|
|
639 |
|
00:55:16,640 --> 00:55:22,660 |
|
note ุจุงูุณุงูุจ ู
ุน F of Xn ุงูุฃุฎูุฑุฉ ุจุงูู
ูุฌุจ ุจูุตูุฑ ุนูุฏู |
|
|
|
640 |
|
00:55:22,660 --> 00:55:34,740 |
|
Y ุณุงูู B minus A ุนูู N ูู F of Xn ูุงูุต F of X0 ุทุจุนุง |
|
|
|
641 |
|
00:55:34,740 --> 00:55:39,420 |
|
Xn ุขุฎุฑ ูุงุญุฏุฉ ุงููู ูู B ู X0 ุฃูู ูุงุญุฏุฉ ุงููู ูู A |
|
|
|
642 |
|
00:55:39,420 --> 00:55:46,580 |
|
ุฅุฐู ููุณุงูู ูุฐุง ุนุจุงุฑุฉ ุนู B minus A ูู F of B minus |
|
|
|
643 |
|
00:55:46,580 --> 00:55:53,150 |
|
F of A ุงููู ูุฐุง ู
ุฌุณูู
ุนูู ู
ูู ูุง ุฌู
ุงุนุฉุ ุนูู N ูุฐุง |
|
|
|
644 |
|
00:55:53,150 --> 00:55:58,090 |
|
ุนุจุงุฑุฉ ุนู ุซุงุจุช ููุฐุง ุนุจุงุฑุฉ ุนู ุซุงุจุช ููุฐุง ุงูุขู ูู ุงููู |
|
|
|
645 |
|
00:55:58,090 --> 00:56:03,670 |
|
ุจุฏูุงูุชูุง ููุชูุจ ุงู partitions ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ุจุนุฏ |
|
|
|
646 |
|
00:56:03,670 --> 00:56:07,230 |
|
ูู ุงููู ุญููุชู ููุง ุฃุฎุฏุช ุงู ุจู ุฃู ุจุงูุดูู ุงููู ุฃู
ุงู
ู |
|
|
|
647 |
|
00:56:07,230 --> 00:56:12,190 |
|
ุนุจุงุฑุฉ ุนู sequence of partitions ููุตููุง ุฅูู ู
ุง |
|
|
|
648 |
|
00:56:12,190 --> 00:56:17,890 |
|
ูุงููุง ููู ูุง ุฌู
ุงุนุฉ ุงููู ูู ูุตููุง ุฃู ุงู you ุจู ุฃู ู |
|
|
|
649 |
|
00:56:17,890 --> 00:56:26,260 |
|
ุฃู ูุงูุต ุงู ุจู ุฃู ู ุฃู ุฃุตุบุฑ ุฃู ูุณุงูู ุทุจุนุง ุฃููุฏ ุฃูุจุฑ |
|
|
|
650 |
|
00:56:26,260 --> 00:56:29,600 |
|
ูุณุงูู ุตูุฑ ูุฃู ูุฐุง ุฏุงูู
ุง ุฃูุจุฑ ูุณุงูู ูุฐุง ุฃุตุบุฑ ูุณุงูู |
|
|
|
651 |
|
00:56:29,600 --> 00:56:36,140 |
|
B minus A ู F of B ุฃููุฏ ุนุฑูุช ุฃุดูุฏ ุฃุณุงูู ููุต F of A |
|
|
|
652 |
|
00:56:36,140 --> 00:56:41,720 |
|
ุนูู ุงููู ูู N ุงูู N ุฎุฏ ุงู limit ููุฌูุชูู as N goes |
|
|
|
653 |
|
00:56:41,720 --> 00:56:45,160 |
|
to infinity as N goes to infinity ูุฐุง goes to zero |
|
|
|
654 |
|
00:56:45,160 --> 00:56:51,730 |
|
ููุฐุง ุฃุตูุง ุตูุฑ ูุจูุตูุฑ ุนูุฏู limit ุฅุฐุง .. ุฅุฐุง limit ุงู |
|
|
|
655 |
|
00:56:51,730 --> 00:56:59,290 |
|
U P N ู F ูุงูุต ุงูู L P N ู F as N goes to infinity |
|
|
|
656 |
|
00:56:59,290 --> 00:57:04,210 |
|
ุจุณุงูู ุณูุฑ ุฅุฐุง ุตุงุฑ ุนูุฏู sequence of partitions ุชุญูู |
|
|
|
657 |
|
00:57:04,210 --> 00:57:07,730 |
|
ููุฐุง ุฅุฐุง ุญุณุจ ุงูู Corollary ุงููู ุญููุชูุง ูุจู ุจุดููุฉ |
|
|
|
658 |
|
00:57:07,730 --> 00:57:17,130 |
|
ุฅุฐุง F is integrable ููู ุงูู
ุทููุจ ุฅุฐุง ุตุงุฑ ุนูุฏู ุฃู |
|
|
|
659 |
|
00:57:17,130 --> 00:57:21,850 |
|
increasing function is integrable similarly for |
|
|
|
660 |
|
00:57:21,850 --> 00:57:26,170 |
|
decreasing ูู
ุงุฐุง similarly ูุฃูู ุชุตุจุญ ุงูุฏุงูุฉ ุจุฏู ู
ุง |
|
|
|
661 |
|
00:57:26,170 --> 00:57:30,950 |
|
ูู ุทุงูุน ููู ุชุตุจุญ ุฃุดู
ุงููุง ูุงุฒูุฉ ูุฒูู ุงูุฏุงูุฉ ูุจุตูุฑ |
|
|
|
662 |
|
00:57:30,950 --> 00:57:35,430 |
|
ุนูุฏู ุงููู ูู ุงู maximum ูู ุงูุฃููู ุฃู ุงู supremum |
|
|
|
663 |
|
00:57:35,430 --> 00:57:41,920 |
|
ูู ุฃู ุจุตูุฑ ุงูู MK ุจุณูุก F of XK minus ูุงุญุฏ ู ุงูู MK |
|
|
|
664 |
|
00:57:41,920 --> 00:57:46,760 |
|
ุจุณูุก F of XK ู ุจูุชูุงู
ููุง ุงูุจุฑูุงู ุจููุณ ุงูุทุฑููุฉุ ููุทูุน |
|
|
|
665 |
|
00:57:46,760 --> 00:57:52,040 |
|
ุนูุฏูู
ุงูุจุฑูุงู automatic ูุจุดูู ุณูู ูุจุดูู ุณูุณุ |
|
|
|
666 |
|
00:57:52,040 --> 00:57:58,500 |
|
similar ุฃู ุณุคุงูุ ุฅุฐู ุงูุฅุนูุงู ุงููู ุฃุนูููุงู ูุจู |
|
|
|
667 |
|
00:57:58,500 --> 00:58:04,800 |
|
ุจุดููุฉ ุฃูู any monotone function ูุนูู any increasing |
|
|
|
668 |
|
00:58:04,800 --> 00:58:08,780 |
|
function on a closed bounded interval must be |
|
|
|
669 |
|
00:58:08,780 --> 00:58:15,740 |
|
integrable and any decreasing function on a closed |
|
|
|
670 |
|
00:58:15,740 --> 00:58:20,420 |
|
bounded interval ุจุฑุถู must be integrable ุฅุฐุง ุตุงุฑ |
|
|
|
671 |
|
00:58:20,420 --> 00:58:26,060 |
|
ูู ุนูุง ุนุงุฆูุฉ ูุงู
ูุฉ ู
ู ุงูุฏูุงู ุงููุงุจูุฉ ููุชูุงู
ู ุจูุงุณุท |
|
|
|
672 |
|
00:58:26,060 --> 00:58:32,160 |
|
ุงูุชูุงู
ู remand ุงูุขู ุจุฏูุง ููุชูู ุฅูู ุนุงุฆูุฉ ุฃุฎุฑู |
|
|
|
673 |
|
00:58:32,160 --> 00:58:38,300 |
|
ูุนุงุฆูุฉ ูุง ุชูู ุฃูู
ูุฉ ุนู ูุฐู ุงูุนุงุฆูุฉ ูุนุงุฆูุฉ ูุนูู |
|
|
|
674 |
|
00:58:38,300 --> 00:58:45,560 |
|
ู
ุญุจูุจุฉ ุนููุง ุงููู ูู ุงููู |
|
|
|
675 |
|
00:58:45,560 --> 00:58:53,960 |
|
ูู ุนุงุฆูุฉ ุงูุฏูุงู ุงูู
ุชุตูุฉ ุงููู ูู integrable of |
|
|
|
676 |
|
00:58:53,960 --> 00:58:56,140 |
|
continuous functions |
|
|
|
677 |
|
00:59:00,850 --> 00:59:06,130 |
|
ุงููู ูู integrability of continuous functions |
|
|
|
678 |
|
00:59:06,130 --> 00:59:12,210 |
|
ุงููุธุฑูุฉ ุจุชููู ู
ุง ููู ูู ุฃ .. ุทุจุนุง ุนูุฏู ุงู function |
|
|
|
679 |
|
00:59:12,210 --> 00:59:16,410 |
|
ุนูู closed bounded interval ูู F ู
ู I ูู R be |
|
|
|
680 |
|
00:59:16,410 --> 00:59:20,750 |
|
continuous on I then F is integrable on I ุฅุฐุง ุงูุขู |
|
|
|
681 |
|
00:59:20,750 --> 00:59:24,230 |
|
any continuous function on a closed bounded |
|
|
|
682 |
|
00:59:24,230 --> 00:59:29,600 |
|
interval must be integrable ูู
ุงู ู
ุฑุฉ any continuous |
|
|
|
683 |
|
00:59:29,600 --> 00:59:33,840 |
|
function on a closed bounded interval must be |
|
|
|
684 |
|
00:59:33,840 --> 00:59:38,920 |
|
integrable ุทุจุนุง ุญูุฒูุง ูู ุงูุจุฑูุงู ุดุบูุฉ ุงููู ูู |
|
|
|
685 |
|
00:59:38,920 --> 00:59:45,080 |
|
ุฃุฎุฏูุงูุง ุณุงุจูุง ุฃูู Any continuous function on a |
|
|
|
686 |
|
00:59:45,080 --> 00:59:49,840 |
|
closed bounded interval must attain its maximum |
|
|
|
687 |
|
00:59:49,840 --> 00:59:57,800 |
|
and minimum on this interval ุจู
ุนูู |
|
|
|
688 |
|
00:59:57,800 --> 01:00:01,970 |
|
ุขุฎุฑ ูููุงูููู ูุงูุช F is continuous ุนูู ุงููู ูู ุงูู |
|
|
|
689 |
|
01:00:01,970 --> 01:00:05,990 |
|
A ู ุงูู B ูููุงูู ููุทุฉ ูู ุฏุงุฎู ุงููุชุฑุฉ A ู B ุจุญูุซ |
|
|
|
690 |
|
01:00:05,990 --> 01:00:09,570 |
|
ุฃููุง ุชููู ุงูู F ุนูุฏูุง ููุทุฉ maximum ู ูููุงูู ููุทุฉ |
|
|
|
691 |
|
01:00:09,570 --> 01:00:12,750 |
|
ุฃุฎุฑู ูู ุฏุงุฎู ูุฐู ุงููุชุฑุฉ ูููุงูู ุงููู ูู ุงูู |
|
|
|
692 |
|
01:00:12,750 --> 01:00:15,930 |
|
function ุนูุฏูุง ุฃุดู
ุงููุง is minimum ุทุจุนุง absolute ู |
|
|
|
693 |
|
01:00:15,930 --> 01:00:24,180 |
|
absolute ููุฌู ูุดูู .. ููุฌู ููุจุฑูุงู ุงูุขู .. ูุธุฑูุฉ |
|
|
|
694 |
|
01:00:24,180 --> 01:00:28,540 |
|
ุฃุฎุฑู ุฃูุถุง .. ุจุฑุถู ุฎูููุง ูููููุง ุฃู ูู ูุงูุช F is |
|
|
|
695 |
|
01:00:28,540 --> 01:00:32,580 |
|
continuous ุนูู closed bounded interval then F is |
|
|
|
696 |
|
01:00:32,580 --> 01:00:43,820 |
|
uniformly continuous ุงูุขู F .. ุนูุฏ F ู
ู A ู B ูุนูุฏ |
|
|
|
697 |
|
01:00:43,820 --> 01:00:51,090 |
|
R is continuous on A ู B continuous ุนุงูู
ูู ุนูู |
|
|
|
698 |
|
01:00:51,090 --> 01:00:54,450 |
|
closed bounded interval ูู ุนูุฏูุง ูุธุฑูุฉ ุงููู ุจุชููู |
|
|
|
699 |
|
01:00:54,450 --> 01:00:58,270 |
|
any continuous function ูู ุงููุงุญุฏ on a closed |
|
|
|
700 |
|
01:00:58,270 --> 01:01:02,230 |
|
bounded interval must be uniformly continuous ุฅุฐุง |
|
|
|
701 |
|
01:01:02,230 --> 01:01:10,030 |
|
then f is uniformly continuous |
|
|
|
702 |
|
01:01:10,730 --> 01:01:15,290 |
|
on a ู b ุงูุด ูุนูู uniformly continuous ูุนูู ููู |
|
|
|
703 |
|
01:01:15,290 --> 01:01:18,810 |
|
ุงุจุณููู ุฃูุจุฑ ู
ู ุตูุฑ there exist ุฏูุชุง ุฃูุจุฑ ู
ู ุตูุฑ |
|
|
|
704 |
|
01:01:18,810 --> 01:01:22,990 |
|
ุฏูุชุง ุจุณ ุจุชุนุชู
ุฏ ุนุงูู
ูุง ุนูู ุงุจุณููู ุจุชููุน ููู ุงู X ู |
|
|
|
705 |
|
01:01:22,990 --> 01:01:30,810 |
|
ุงู Y such that if X minus Y ุฃู U ูุงูุต V ุฒู ู
ุง ูู |
|
|
|
706 |
|
01:01:30,810 --> 01:01:40,200 |
|
ู
ุณู
ููุง U minus V ุฃุตุบุฑ ู
ู ุฏูุชุง then F of U ูุงูุต F of |
|
|
|
707 |
|
01:01:40,200 --> 01:01:49,800 |
|
V ุฃุตุบุฑ ู
ู ุฅุจุณููู ููู UV element in A ุฃู B ุฅุฐู ููู y |
|
|
|
708 |
|
01:01:49,800 --> 01:01:52,900 |
|
ุฃูุจุฑ ู
ู 0 there exists Delta ุฏูุชุง ูุง ุจุชุนุชู
ุฏ |
|
|
|
709 |
|
01:01:52,900 --> 01:01:56,280 |
|
ุนูู ู
ูู ุจุณ ุนูู ุฅุจุณููู ูู ุญุงูุฉ ุงู continuity |
|
|
|
710 |
|
01:01:56,280 --> 01:02:01,560 |
|
ุงูุนุงุฏูุฉ ุจูููู ุฅุญูุง limit f of x as x ุจุชุฑูุญ ูู a |
|
|
|
711 |
|
01:02:01,560 --> 01:02:07,260 |
|
ุจุณุงูู ุงูุด f of a ุจูููู ุงูุขู ุฅูู limit f of x ุจุณุงูู |
|
|
|
712 |
|
01:02:07,260 --> 01:02:13,450 |
|
f of a as x ุจุชุฑูุญ ูู a ููู ุฅุจุณููู ุฃูุจุฑ ู
ู 0 ูุตุจ ู
ูู |
|
|
|
713 |
|
01:02:13,450 --> 01:02:18,070 |
|
ุจุงูู a ูุฐู there exist ุฏู ู ููู a element in a |
|
|
|
714 |
|
01:02:18,070 --> 01:02:23,270 |
|
there exist delta such that ุงููู ูู
ุง ูููู x minus |
|
|
|
715 |
|
01:02:23,270 --> 01:02:27,190 |
|
a ุฃุตุบุฑ ู
ู delta ุจูุนุทููุง f of x ูุงูุต f of a ุฃุตุบุฑ ู
ู |
|
|
|
716 |
|
01:02:27,190 --> 01:02:32,550 |
|
ุฅุจุณููู ูุนูู ุจูููู ุงูู delta ููุง ุชุนุชู
ุฏ ุนูู ุงูุฅุจุณููู |
|
|
|
717 |
|
01:02:32,550 --> 01:02:37,550 |
|
ูุชุนุชู
ุฏ ุนูู ุงู a ุงููู ุนูุฏูุง ุงู continuity ููู ูู ุงูู |
|
|
|
718 |
|
01:02:37,550 --> 01:02:41,890 |
|
Uniform Continuous ุงูู Delta ุงููู ุงููู ุฌูุช ููุง |
|
|
|
719 |
|
01:02:41,890 --> 01:02:47,510 |
|
ุจุชููุน ููู ุงููู ูู ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
720 |
|
01:02:47,510 --> 01:02:47,890 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
721 |
|
01:02:47,890 --> 01:02:47,910 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
722 |
|
01:02:47,910 --> 01:02:48,290 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
723 |
|
01:02:48,290 --> 01:02:48,530 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
724 |
|
01:02:48,530 --> 01:02:50,270 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
725 |
|
01:02:50,270 --> 01:02:50,330 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
726 |
|
01:02:50,330 --> 01:02:50,410 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
727 |
|
01:02:50,410 --> 01:02:54,250 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
728 |
|
01:02:54,250 --> 01:02:59,970 |
|
ุงู .. ุงู ..F is continuousุ ุฅุฐู ููููุฑู
ุงูู |
|
|
|
729 |
|
01:02:59,970 --> 01:03:02,650 |
|
continuousุ ุฅูุด ู
ุนูุงุชูุ ูู ุฅุจุณููู ุฃูุจุฑ ู
ู ุตูุฑุ |
|
|
|
730 |
|
01:03:02,650 --> 01:03:05,490 |
|
there exists ุฏูุชุงุ ุจุญูุซ ุฅู U minus V ุฃุตุบุฑ ู
ู ุฏูุชุง |
|
|
|
731 |
|
01:03:05,490 --> 01:03:08,690 |
|
ูุนุทููู F of U ูุงูุต F of V ุฃุตุบุฑ ู
ู ุฅูุดุ ู
ู ุฅุจุณูููุ |
|
|
|
732 |
|
01:03:08,690 --> 01:03:11,870 |
|
ูุฎููู ูุฐู ุฅูุด ู
ุงููุง ูู ุงูุฐุงูุฑุฉุ ุฃูุง ุนุดุงู ุงูุญุณุงุจุงุช |
|
|
|
733 |
|
01:03:11,870 --> 01:03:15,890 |
|
ุจุฏู ุฃุฎูููุง ุฅุจุณููู ุนูู ู
ููุ ุนูู B minus Aุ ุทูู |
|
|
|
734 |
|
01:03:15,890 --> 01:03:19,070 |
|
ุงููุชุฑุฉ ุงููู ุฃูุง ุจุดุชุบู ุนูููุงุ ูุชุดูููุง ููุด ูุชุจุช ูููุ |
|
|
|
735 |
|
01:03:19,070 --> 01:03:22,720 |
|
ุจุณ ูุง ุงูุญุณุงุจุงุช ุจูุฏุฑ ุฃู ุจูุฏุฑ ูุฅู ูู ุฃุตุบุฑ .. ุฃู ุจูุฏุฑ |
|
|
|
736 |
|
01:03:22,720 --> 01:03:25,140 |
|
ุฎููู ุฃุตุบุฑ ู
ู ุงูู Epsilon ูู ุงูุฏููุง ู
ู ุถู
ู ุฅู ูู |
|
|
|
737 |
|
01:03:25,140 --> 01:03:27,520 |
|
ุงูู Epsilon ุนู ุงูู B minus A ููู ุงูู Epsilonุงุช |
|
|
|
738 |
|
01:03:27,520 --> 01:03:34,040 |
|
ุงููู ูู ุงูุฏููุง ุทูุจ ูุฃู ุดูู ููู ุจุฏู ุฃุฑูุญุ ุจุฏู ุฃุฑูุญ |
|
|
|
739 |
|
01:03:34,040 --> 01:03:39,250 |
|
ูู Integrability ูู ุงูู function F ุงูุขู ุฎูุฏ n ุงูุขู |
|
|
|
740 |
|
01:03:39,250 --> 01:03:42,190 |
|
ุจุฏูุง ูุนู
ู partitions ุจุฏูุง ูุฌูุจ sequence of |
|
|
|
741 |
|
01:03:42,190 --> 01:03:45,890 |
|
partitions Bn ุงู sequence of partitions ูุฐู ูู |
|
|
|
742 |
|
01:03:45,890 --> 01:03:50,010 |
|
ุงููู ูุชุฎุฏู
ูู ูุชุฎุฏู
ูู ู
ุชูุ ุจุนุฏ ุดููุฉ ุจุชุดูููุง ููุด |
|
|
|
743 |
|
01:03:50,010 --> 01:03:54,110 |
|
ูุชุฎุฏู
ูู ููู ุงูุฃูุงุช ุงููู ููู ู
ุง ูุฅู ุงููู ุฃูุจุฑ ู
ู ุงู |
|
|
|
744 |
|
01:03:54,110 --> 01:03:59,370 |
|
B minus A ุนูู ู
ููุ ุนูู ุงู delta ุงููู ูุฌูุชูุง ุฅุฐุง |
|
|
|
745 |
|
01:03:59,370 --> 01:04:04,130 |
|
ุงููู ุตุงุฑุช ุงู delta ุจูู ุฅูุฏูุง ุฅุฐุง ุจูููู ุงูุขู choose |
|
|
|
746 |
|
01:04:05,140 --> 01:04:12,320 |
|
N element in N such that ู
ุง ููุง N ุฃูุจุฑ ู
ู B minus |
|
|
|
747 |
|
01:04:12,320 --> 01:04:17,620 |
|
A ุนูู ู
ูู ุนูู ุฏูุชุง ุจุฑุถู B minus A ุนุดุงู ุงูุญุณุจุงู N |
|
|
|
748 |
|
01:04:17,620 --> 01:04:21,240 |
|
ุฃูุจุฑ ู
ู B minus A ุนูู ู
ูู ุนูู ุฏูุชุง ูุนูู ุงูุขู ุฃูุง |
|
|
|
749 |
|
01:04:21,240 --> 01:04:26,920 |
|
ุจุญูู ุจุญูู ุนู ุงูุฃูุงุช ุงููู ุจููู ุฃูุจุฑ ู
ู B minus A |
|
|
|
750 |
|
01:04:26,920 --> 01:04:31,460 |
|
ุนูู ู
ูู ุนูู ุงูุฏูุชุง ุงููู ูุฌูุชูุง ููู ุนูุฏู ูู ุงููู ูู |
|
|
|
751 |
|
01:04:31,460 --> 01:04:37,080 |
|
ูุฐุง ูุงุญุฏ ู
ุงุดู ุงูุญุงูุฉ ุงูุขู ุจุชุจุฏุฃ ุฃูููู partitions ู
ู |
|
|
|
752 |
|
01:04:37,080 --> 01:04:42,480 |
|
ู
ููุ ู
ู ุงูุฃู
ูุงุช ูุฐู ุงูุขู ุจุชุงุฎุฏ ุจูุฆุง ุงูู partitions |
|
|
|
753 |
|
01:04:42,480 --> 01:04:47,220 |
|
ุงูู partitions ุจุฑุถู ุฃุดู
ุงูู with equal ุงููู ูู ุฅูุด |
|
|
|
754 |
|
01:04:47,220 --> 01:04:54,240 |
|
sub intervals ูุนูู X ููุช ู X ูุงุญุฏ ูุนูุฏ X ุงู ูุนูู |
|
|
|
755 |
|
01:04:54,240 --> 01:04:58,540 |
|
ุทูู ูู ูุชุฑุฉ ู
ููู
ุจุฑุถู ุทูู .. ุจุชุงุฎุฏ ุงููู ูู ูููู
|
|
|
|
756 |
|
01:04:58,540 --> 01:05:03,590 |
|
ุฃุดู
ุงููู ู
ู ุนูุฏ A ูุนูุฏ B ูููู ุฅู ูู ุงู sub intervals |
|
|
|
757 |
|
01:05:03,590 --> 01:05:08,530 |
|
ุฌุช ุจุนุถ ูุนูู ุจู
ุนูู ุขุฎุฑ ููููู ุงู XK minus XK minus |
|
|
|
758 |
|
01:05:08,530 --> 01:05:12,970 |
|
ูุงุญุฏ ุจูุณุงูู B minus A ุนูู N ุทูู ูู ูุชุฑุฉ ุงูุด ุจูุณุงูู |
|
|
|
759 |
|
01:05:12,970 --> 01:05:16,950 |
|
B minus A ุนูู ุนุฏุฏ ุงููุชุฑุงุช ุงููู ูู N ูุจููู B minus |
|
|
|
760 |
|
01:05:16,950 --> 01:05:21,250 |
|
A ุนุงูู
ูุง ุนูู N ุฃูุง ุญุฑูู ุฅููู
ุฃูุงูู ูู ุงูููุงูุฉ |
|
|
|
761 |
|
01:05:21,250 --> 01:05:25,630 |
|
sequence of partitions BN limit ุงูู U B N ู F ูุงูุต |
|
|
|
762 |
|
01:05:25,630 --> 01:05:29,290 |
|
ุงูู L B N ู F ุจุณุงูู 0 ุจูููู F is integrable ุฎูุตูุง |
|
|
|
763 |
|
01:05:29,290 --> 01:05:32,950 |
|
ุฃูุง ูุงุนุฏ ุงุฎุชุฑุช ุงููู ูู sequence of partitions ุจูุงุก |
|
|
|
764 |
|
01:05:32,950 --> 01:05:36,390 |
|
ุนูู ุงูู Delta ุงููู ูุฌูุชูุง ูู ุงู uniformity ู |
|
|
|
765 |
|
01:05:36,390 --> 01:05:39,830 |
|
ุงูุฃูุงุช ุงููู ุฃูุจุฑ ู
ููุง ู ุญุทูุช ุงู partition ุงููู ูู |
|
|
|
766 |
|
01:05:39,830 --> 01:05:44,710 |
|
ุจุดูู ุงููู ูู ุชููู ุงู subintervals ูููุง ููุง ููุณ |
|
|
|
767 |
|
01:05:44,710 --> 01:05:46,230 |
|
ุงูุทูู ุทูุจ |
|
|
|
768 |
|
01:05:48,470 --> 01:05:56,170 |
|
ุงูุขู ุฒู ู
ุง ููุช ูุจู ุจุดููุฉ negation ุนูู ุงููุชุฑุฉ xk ู |
|
|
|
769 |
|
01:05:56,170 --> 01:06:01,710 |
|
minus 1 ู xk ูุฐุง ุงู sub interval ุงู function is |
|
|
|
770 |
|
01:06:01,710 --> 01:06:03,550 |
|
continuous ุนูููุง ูุฃููุง continuous ุนูู ูู ุงู |
|
|
|
771 |
|
01:06:03,550 --> 01:06:06,970 |
|
interval a ู b ู
ุฏุงู
continuous ุนูููุง ุฅุฐุง it |
|
|
|
772 |
|
01:06:06,970 --> 01:06:10,310 |
|
attains its maximum and its minimum on this |
|
|
|
773 |
|
01:06:10,310 --> 01:06:16,100 |
|
interval ุฃููุฏุ ููุฏ ุญุฏ ูุฏู ูุจู ุจุดููุฉ ุฅุฐู ุจู
ุง ุฃู ุงูู |
|
|
|
774 |
|
01:06:16,100 --> 01:06:18,480 |
|
F is continuously not closed bound in ุงูู interval |
|
|
|
775 |
|
01:06:18,480 --> 01:06:26,800 |
|
ูุฐู ุฅุฐู there exist ุณู
ููุง U K ู V K element in X K |
|
|
|
776 |
|
01:06:26,800 --> 01:06:33,720 |
|
minus ูุงุญุฏ ู X K such that F of U K ูู ุงู maximum |
|
|
|
777 |
|
01:06:33,720 --> 01:06:41,190 |
|
ุนูู ูู ูุฐู ุงู maximum ู
ุนูุงุชู ูู ุงู supremum of K ุฃู |
|
|
|
778 |
|
01:06:41,190 --> 01:06:47,110 |
|
ุฃูุถูุง ุนูุฏ ุงูู VK F of VK ูู ุงูู Minimum ุนูู ูุฐู |
|
|
|
779 |
|
01:06:47,110 --> 01:06:52,310 |
|
ู
ุถู
ูู ู
ูุฌูุฏ ูููุงูุง ูู ุทุจุนูุง ู
ุฏุงู
ุฉ Minimum ุนูู ูู |
|
|
|
780 |
|
01:06:52,310 --> 01:06:56,150 |
|
ุงููุชุฑุฉ ุฅุฐูุง ูู ุงูู Infimum ุงููู ุจุจุญุซ ุนููุง ุงููู
ูู |
|
|
|
781 |
|
01:06:56,150 --> 01:07:00,850 |
|
MK ุนูู ูุฐู ุงููุชุฑุฉ ููุง ุงูู
ูุชุงุญ ุฃุตูุง ูู ุงุณุชุฎุฏุงู
ุงูู |
|
|
|
782 |
|
01:07:00,850 --> 01:07:06,120 |
|
Continuity ุฅู ุถู
ู ููุฌูุฏ ููุทุฉ ุนูุฏูุง ุงู maximum ูู |
|
|
|
783 |
|
01:07:06,120 --> 01:07:10,540 |
|
ูุฐู ุงูู
ูุทูุฉ ูุถู
ู ุงููู ูุฌูุฏ ููุทุฉ ููุง ุถู
ู ุงููู ูุฌูุฏ |
|
|
|
784 |
|
01:07:10,540 --> 01:07:13,680 |
|
ุงู minimum ุนูุฏูุง ู ุงู minimum ู ุงู maximum ู
ุฏุงู
|
|
|
|
785 |
|
01:07:13,680 --> 01:07:18,100 |
|
ุนูุฏ ููุงุท ู
ุญุฏุฏุฉ ูู ุงููุชุฑุฉ ูู ูุชุชูุงูู ู ุชููู ูู |
|
|
|
786 |
|
01:07:18,100 --> 01:07:21,780 |
|
ุนุจุงุฑุฉ ุนู ุงู supremum ู ุงู infimum ุนูู ุงู sub |
|
|
|
787 |
|
01:07:21,780 --> 01:07:29,160 |
|
interval ุฃู ุณุคุงู ุทูุจ ุงูุขู ุถุงู ุนูููุง ุฅูุด ูุณูู ุฅู |
|
|
|
788 |
|
01:07:29,160 --> 01:07:35,610 |
|
ูุญุณุจ ุงูุญุณุงุจุงุช ุงููู ูู ูุจุฏุฃ ูู ุญุณุงุจุงุชูุง ุงููู ูู ูุญุณุจ |
|
|
|
789 |
|
01:07:35,610 --> 01:07:44,230 |
|
ุงูู U ู ูุญุณุจ ู
ูู ูุง ุฌู
ุงุนุฉ ุฃู ูุญุณุจ ุงููู ูู ุงู ุงู ุงู |
|
|
|
790 |
|
01:07:44,230 --> 01:07:44,930 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
791 |
|
01:07:44,930 --> 01:07:44,950 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
792 |
|
01:07:44,950 --> 01:07:45,050 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
793 |
|
01:07:45,050 --> 01:07:45,070 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
794 |
|
01:07:45,070 --> 01:07:45,130 |
|
ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู ุงู |
|
|
|
795 |
|
01:07:45,130 --> 01:07:53,950 |
|
ุงู ุงู ุงูุช ุญุณุจููู |
|
|
|
796 |
|
01:07:54,430 --> 01:07:59,790 |
|
ูุงูุต L, P, N ู F ุทุจุนุง ุฃููุฏ ูุฐุง ุฃูุจุฑ ูุณุงูู ุตูุฑ ุญูุธูุง |
|
|
|
797 |
|
01:07:59,790 --> 01:08:04,050 |
|
ุนู ุบูุฑู ูุฐุง ุฃูู ุฃูุจุฑ ุฃู ูุณุงูู ุตูุฑ ู
ุนุฑูู ุถู ุจุฏู |
|
|
|
798 |
|
01:08:04,050 --> 01:08:08,850 |
|
ุฃุญุณุจูู
ู
ุน ุจุนุถ ุงู summation ุนุจุงุฑุฉ ุนู ุจุณุงูู |
|
|
|
799 |
|
01:08:08,850 --> 01:08:13,610 |
|
summation ุงููู ูู ุงู M K ุตุงุฑุช ู
ู ุงู M K capital |
|
|
|
800 |
|
01:08:13,610 --> 01:08:19,950 |
|
ุงููู ูู F of U K ุตุญ ููุง ูุฃ ูุง ุฌู
ุงุนุฉ ุฃู ุตุญ ู ุงู U K |
|
|
|
801 |
|
01:08:19,950 --> 01:08:26,220 |
|
ููู ู
ูุฌูุฏุฉ ูู ูุฐู ุงูุขู ูู ู
ููุ ูู xk minus xk minus |
|
|
|
802 |
|
01:08:26,220 --> 01:08:31,520 |
|
ูุงุญุฏ xk minus xk minus ูุงุญุฏ ูุงู
ู ุนูุฏ ูุงุญุฏ ุงููู |
|
|
|
803 |
|
01:08:31,520 --> 01:08:37,020 |
|
ุนูุฏูุง ุงููุฏู
ูู ูู ุงูู U ุงูุขู ุฒููุง ู
ูู ุงู L ูุงูุต |
|
|
|
804 |
|
01:08:37,020 --> 01:08:42,600 |
|
summation ุงูุขู ู
ูู ุนูุฏ ุงู MK small ุงู F of VK ุงู |
|
|
|
805 |
|
01:08:42,600 --> 01:08:48,920 |
|
VK ุงููู ูุงุฌููุงูุง ุจุฑุถู ูุงู ุงููู ูู F of VK ู
ุถุฑูุจุฉ ูู |
|
|
|
806 |
|
01:08:48,920 --> 01:08:54,380 |
|
ุทูู ุงููุชุฑุฉ xk-xk-1 ูุงู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ ู
ูู ูุง ุฌู
ุงุนุฉ |
|
|
|
807 |
|
01:08:54,380 --> 01:09:00,000 |
|
ูุนูุฏูุง ุฎุฏููู ุงูุขู xk-xk-1 ุนุงู
ู ู
ุดุชุฑู ูุทุจุนุง ุฃูุง |
|
|
|
808 |
|
01:09:00,000 --> 01:09:03,220 |
|
ู
ูุชุฑุถูุง ุงููู ูู ูู
ุงุฎุฏูุง ุฅูุง ุทูู ุงู intervals ุฃู |
|
|
|
809 |
|
01:09:03,220 --> 01:09:07,080 |
|
sub intervals ู
ุชุณุงูู ูุนูู ุทูู ูุฐู ูุทูู ูุฐู ูู |
|
|
|
810 |
|
01:09:07,080 --> 01:09:10,600 |
|
ุนุจุงุฑุฉ ุนู b-a ุนูู n ุฒู ุงููุธุฑูุฉ ุงูุณุงุจูุฉ ููุณุงูู ุงู |
|
|
|
811 |
|
01:09:10,600 --> 01:09:17,850 |
|
summation ูู F of uk ูุงูุต F of vk ุงููู ู
ุถุฑูุจ ูู ู
ูู |
|
|
|
812 |
|
01:09:17,850 --> 01:09:26,030 |
|
ูุง ุฌู
ุงุนุฉ ูู B-A ุนูู N N ุฃู K ู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ ุฅูุด |
|
|
|
813 |
|
01:09:26,030 --> 01:09:36,830 |
|
ูุนูุฏ N ุฃู ุณุคุงู ุทูุจ ุดูููุง ุงูุขู ุงุณู
ุญููู ุจุณ ููุง ุฃุดุชุบู |
|
|
|
814 |
|
01:09:36,830 --> 01:09:39,730 |
|
ุดููุฉ ุทูุจ |
|
|
|
815 |
|
01:09:42,370 --> 01:09:47,490 |
|
ุทูููุง ุฑูุญูู
ุนูุฏูุง ุฎูุตูุง ูุนูู ุฌุฑุจูุง ุฅุฐุง ุตุงุฑ ุนูุฏู ุงู |
|
|
|
816 |
|
01:09:47,490 --> 01:09:51,870 |
|
U, P, N ู F ุนุดุงู ุชุนุฑููุง ุฃูู ุฑุงูุญ ุฃูุง ูู ุงู U, P, N |
|
|
|
817 |
|
01:09:51,870 --> 01:09:55,550 |
|
ู F ูุงูุต ุงู P, N ู F ุฃูุจุฑ ูุณุงูู ุงูุตูุฑ ุงููู ุฌูุชู |
|
|
|
818 |
|
01:09:55,550 --> 01:10:00,610 |
|
ุฃุตุบุฑ ูุณุงูู ุงูู
ูุฏุงุฑ ุงููู ุฃู
ุงู
ู ุงูุขู ุฎูููู ุฃุทูุน ุญุฏ |
|
|
|
819 |
|
01:10:00,610 --> 01:10:06,400 |
|
ุจุฑุง ุจุนุฏ ุงุณู
ูู
ูู B- a ุนูู n ูุฃููุง ุนุจุงุฑุฉ ุนู ุซุงุจุช ูู |
|
|
|
820 |
|
01:10:06,400 --> 01:10:13,020 |
|
ุงู summation f of u,k ูุงูุต f of v,k ูุงู
ูุฉ ุนูุฏ ูุงุญุฏ |
|
|
|
821 |
|
01:10:13,020 --> 01:10:20,340 |
|
ูุฃูู ูุงุญุธูุง ู
ุง ููู ูุง ุฌู
ุงุนุฉ ุนูุฏ ุงู u,k ู ุงู v,k |
|
|
|
822 |
|
01:10:20,340 --> 01:10:27,480 |
|
ููู ู
ูุฌูุฏุฉ ูู ุงู x,k minus ูุงุญุฏ ู ุงู x,k ุงู ู
ุธุจูุท |
|
|
|
823 |
|
01:10:27,480 --> 01:10:32,540 |
|
ูุนูู ุงูุขู ุงููู ูู ุทูู |
|
|
|
824 |
|
01:10:34,610 --> 01:10:41,150 |
|
ุทูู ุงููุชุฑุฉ ุทูู ุงููุชุฑุฉ xk ุนูู ุฌูุฉ ุฏู ุจุณ ูุง ุดุจุงุจ |
|
|
|
825 |
|
01:10:41,150 --> 01:10:46,850 |
|
ูุงูุต xk minus ูุงุญุฏ ุทูู ุงููุชุฑุฉ ูุฅู ูุงุฏ ุตุงุฑุช ูู xk |
|
|
|
826 |
|
01:10:46,850 --> 01:10:53,480 |
|
minus ูุงุญุฏ ููู xk ู
ุงุดู ุฌูุงุช ููุง ุงู mean ุงู UKู ุงูู |
|
|
|
827 |
|
01:10:53,480 --> 01:10:56,860 |
|
VK ูู ู
ูุงู ุงูู
ุงุฏุ ุงูุชูุชูู ุงูู
ูู
ุฌูุง ุงูุชูุชูู ูุนูู |
|
|
|
828 |
|
01:10:56,860 --> 01:10:59,840 |
|
ุงูู
ุณุงูุฉ ุจูู ุงููู ุจุฑุง ูุฏููุ ุญุชู ูู ูุงู ุงูุชูุชูู |
|
|
|
829 |
|
01:10:59,840 --> 01:11:04,120 |
|
ุฒูููุ ุจููู ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู
ุณุงูุฉ ุจูู ุงูุชูุชูู ูุฏูู |
|
|
|
830 |
|
01:11:04,120 --> 01:11:11,560 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู
ุณุงูุฉ ูุฐูุ ุงููู ูู UK ูุงูุต VKุ |
|
|
|
831 |
|
01:11:11,560 --> 01:11:17,010 |
|
ู
ุธุจูุทุ ุขุณูุ ุงูุนูุณุ ุฃูุจุฑ ุดูุฑุง ุณุงู
ุญููุง ุฃูุจุฑ ุฅูุด ุฃู |
|
|
|
832 |
|
01:11:17,010 --> 01:11:21,310 |
|
ูุณุงูู ุตุงุฑุช ุงูู
ุณุงูุฉ ุจูู ุงูุฌูุชูู ูุฏููุฉ ุฃููุฏ ุฃุตุบุฑ |
|
|
|
833 |
|
01:11:21,310 --> 01:11:24,970 |
|
ุฃุดูุฑ ู
ู ุงูู
ุณุงูุฉ ุงููููุฉ ุงููู ููุง ุจูููู
ุทูุจ ุงูู
ุณุงูุฉ |
|
|
|
834 |
|
01:11:24,970 --> 01:11:28,890 |
|
ุจูู ูุฐู ููุฐู ุงุญูุง ู
ุงุฎุฏูููุง ุฃุตูุง ุทูู ุงู interval |
|
|
|
835 |
|
01:11:28,890 --> 01:11:29,670 |
|
ุฅูุด ุจุชุณุงูู |
|
|
|
836 |
|
01:11:33,030 --> 01:11:39,710 |
|
ุนูู N ุฅุฐุง ุงูู
ุณุงูุฉ ูุฐู ุฃุตูุง ุนุจุงุฑุฉ ุนู B-A ุนุงูู
ูู ุนูู |
|
|
|
837 |
|
01:11:39,710 --> 01:11:43,890 |
|
N ุณุงู
ุญููู ุฃูู ุจููุชุจูุง ููุง ุฅุฐุง ุตุงุฑ ุนูุฏู ุงููู ูู ุงู |
|
|
|
838 |
|
01:11:43,890 --> 01:11:50,230 |
|
U K ูุงูุต ุงู V K ุฃุตุบุฑ ุฃู ูุณุงูู B-A ุนุงูู
ูู ุนูู N ุฅุฐุง |
|
|
|
839 |
|
01:11:50,230 --> 01:11:58,530 |
|
ูุง ุดุจุงุจ ุฑุงุญุธููู ููุง U K ูุงูุต V K ุตุงุฑุช ุฃุตุบุฑ ุฃู |
|
|
|
840 |
|
01:11:58,530 --> 01:12:06,440 |
|
ูุณุงูู B-A ุนุงูู
ูู ุนูู n ูุงุถุญุฉ ุทูุจ ูุดูู ุงูุด ู
ุนูุงู ูุฐุง |
|
|
|
841 |
|
01:12:06,440 --> 01:12:08,700 |
|
ุงูููุงู
ูุฅูุด ุงููู ุจุชููููุ ููุด ุจุชููููุง ูุฐุง ุงูููุงู
ุ |
|
|
|
842 |
|
01:12:08,700 --> 01:12:13,620 |
|
ุจูููู ุนุดุงู ุงูููุงู
ู
ูู
ุ ูุฐุง ููุ ุดูููุง ููู
ุชููุ ุฃูุง ู
ุฎุชุงุฑ |
|
|
|
843 |
|
01:12:13,620 --> 01:12:19,260 |
|
ุงูู n ุฃูุจุฑ ู
ู ู
ููุ ู
ู b minus a ุนูู deltaุ ูุนูู ุจู
ุนูู |
|
|
|
844 |
|
01:12:19,260 --> 01:12:24,280 |
|
ุขุฎุฑ ุฅูุด ู
ุนูู ูุฐุงุ ูุนูู b minus a ุนูู n ุฃุตุบุฑ ู
ู ู
ููุ |
|
|
|
845 |
|
01:12:24,280 --> 01:12:29,640 |
|
ู
ู deltaุ ูุนูู ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู ุฅูุด ูุง ุฌู
ุงุนุฉุ ู
ู |
|
|
|
846 |
|
01:12:29,640 --> 01:12:35,160 |
|
deltaุ ุตุงุฑุช ุงูู U k ูุงูุต ุงูู V k ุฃุตุบุฑ ู
ู ู
ููุ ู
ู delta |
|
|
|
847 |
|
01:12:35,160 --> 01:12:40,800 |
|
ูุงุญูุง ุจูููู ุฃู ุงูู
ูุงุทุน ุงููู ุจุชุญูู ูููุง ุงูู U ูุงูุต V |
|
|
|
848 |
|
01:12:40,800 --> 01:12:44,560 |
|
ุฃุตุบุฑ ู
ู delta ุจููู ุนูุฏู F of U ูุงูุต F of V ุฃุตุบุฑ ู
ู |
|
|
|
849 |
|
01:12:44,560 --> 01:12:50,240 |
|
ู
ูู ูุง ุฌู
ุงุนุฉุ ู
ู Epsilon ุนูู B minus Aุ ุฅุฐุง ุตุงุฑุช |
|
|
|
850 |
|
01:12:50,240 --> 01:12:55,100 |
|
ุนูุฏู ุงูู
ูุงุทุนูู ูุฐููุฉ ุงูู U k ูุงูุต ุงูู V k ุงููู ุฃุตุบุฑ ู
ู |
|
|
|
851 |
|
01:12:55,100 --> 01:13:04,770 |
|
deltaุ ุฅุฐุง ุฃููุฏ ู
ู ูุงุญุฏ ููููู ุนูุฏู F of U k ูุงูุต F of |
|
|
|
852 |
|
01:13:04,770 --> 01:13:12,670 |
|
V k ุฅูุด ูููููุ ููููู ุนุจุงุฑุฉ ุนู ุฃุตุบุฑ ู
ู Epsilon ุนูู B |
|
|
|
853 |
|
01:13:12,670 --> 01:13:20,410 |
|
minus Aุ ุฅุฐุง ุงูุขู ุจูุญู
ููู ุฃูู ุฃููู ุฃู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
854 |
|
01:13:20,410 --> 01:13:24,400 |
|
ุงููู ุนูุฏูุ ุงููู ูู ุทุจุนุง ูุฐุง ุงููุจูุฑ ููุฐุง ุงูุตุบูุฑ ุทุจุนุง |
|
|
|
855 |
|
01:13:24,400 --> 01:13:27,800 |
|
ุนูู absolute value ููุณู ุจูุญู
ููู ุฅู ุฃููู ูุฐุง ุฃุตุบุฑ ุฃู |
|
|
|
856 |
|
01:13:27,800 --> 01:13:34,680 |
|
ูุณุงูู B minus A ุนูู N ู
ุถุฑูุจ ูู ู
ููุ ูู ุงูู summation |
|
|
|
857 |
|
01:13:34,680 --> 01:13:42,480 |
|
ููู Epsilon ุนูู B minus Aุ ูุงู
ู ุนูุฏ ูุงุญุฏ ูุนูุฏ ู
ููุ |
|
|
|
858 |
|
01:13:42,480 --> 01:13:50,100 |
|
ูุนูุฏ Nุ ูุงุถุญ |
|
|
|
859 |
|
01:13:52,720 --> 01:13:58,440 |
|
ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ุงููู ูู ุงููู ุฃุซุจุชู ุฃูู U P N ู F |
|
|
|
860 |
|
01:13:58,440 --> 01:14:04,220 |
|
ูุงูุต L P N ู F ุฃุตุบุฑ ุฃู ูุณุงูู B minus A ุนูู N ูู |
|
|
|
861 |
|
01:14:04,220 --> 01:14:10,300 |
|
.. ุฎููููู ุฃููู ูุฃููููุง.. ุฃู.. ุงูุชุธุฑ.. ุฃุนู
ู ูู.. |
|
|
|
862 |
|
01:14:13,410 --> 01:14:18,250 |
|
ุฅุฐุง ุงููู ูุตููุง ูู ูุง ุฌู
ุงุนุฉ ุงููู ูู ุฃู ุงูู U P N ู F |
|
|
|
863 |
|
01:14:18,250 --> 01:14:21,650 |
|
ูุงูุต ุงูู L P N ู F ุฃูุจุฑ ูุณุงูู ุตูุฑ ููู ููุณ ุงูููุช ุฃุตุบุฑ |
|
|
|
864 |
|
01:14:21,650 --> 01:14:24,430 |
|
ูุณุงูู B Minus A ุนูู N ูู ุงูู summation ููู Epsilon ุนูู |
|
|
|
865 |
|
01:14:24,430 --> 01:14:28,630 |
|
B Minus A ุงููู ูู ูุงู
ู ุนูุฏ ูุงุญุฏ ูู Nุ ูุนูู ูุฐู ูุงุนุฏุฉ |
|
|
|
866 |
|
01:14:28,630 --> 01:14:34,050 |
|
ุนู
ุงููุง ูู ู
ุฑุฉ ุจุชุนุฏ Epsilon ุนูู B Minus A ูู
ู
ุฑุฉุ |
|
|
|
867 |
|
01:14:34,050 --> 01:14:37,670 |
|
ุจุชุนุฏ N ู
ู ุงูู
ุฑุงุชุ ุฅุฐุง ุญูุตูุฑ ุนูุฏู ูุฐุง ุนุจุงุฑุฉ ุนู B |
|
|
|
868 |
|
01:14:37,670 --> 01:14:43,170 |
|
Minus A ุนูู N ูุงููู ุจูุนุฏ ููุง N ู
ู ุงูููู
ุฉ ุงููู ูุฐู |
|
|
|
869 |
|
01:14:43,170 --> 01:14:47,630 |
|
ูุนูู N ูู Epsilon ุนูู B minus Aุ ุงูุขู B minus A ู
ุน |
|
|
|
870 |
|
01:14:47,630 --> 01:14:51,970 |
|
ุงูู B minus A ูุงูู N ู
ุน ุงูู Nุ ูุจูุตูุฑ ุฃูุตููุง ุงุญูุง ุฅูู |
|
|
|
871 |
|
01:14:51,970 --> 01:14:55,950 |
|
ู
ุง ูููุ ุงูุชุจููุง ูููุชูุฌุฉ ุงูููุงุฆูุฉ ุงููู ุจุชูุตูู ูู |
|
|
|
872 |
|
01:14:55,950 --> 01:15:04,310 |
|
ุงููู ูู ุงูู
ุทููุจุ ุงููุชูุฌุฉ ุงููู ูุตูุช ููุง ุฅูู ุฅุฐุง U P N |
|
|
|
873 |
|
01:15:04,310 --> 01:15:12,430 |
|
ู F ูุงูุต L P N ู F ุฃูุจุฑ ุฃู ูุณุงูู ุตูุฑ ูุฃุตุบุฑ ู
ู ู
ููุ |
|
|
|
874 |
|
01:15:12,430 --> 01:15:19,190 |
|
ู
ู Epsilon ููู Epsilon ุฃูุจุฑ ู
ู ุตูุฑุ ุฅุฐุง ุงููู ุฌูุง ุบุตุจ |
|
|
|
875 |
|
01:15:19,190 --> 01:15:24,310 |
|
ุนููุ ุฅุฐุง ูุงุฒู
ูููู ุงููู ูู ูู ุฃุฎุฐุช ุงูู limit ููุธู |
|
|
|
876 |
|
01:15:24,310 --> 01:15:30,220 |
|
limit ุงูู U ุจู ูุฃู ูุฐุง ุฃุตูุง ุตุญูุญ ุนูู
ูุง ููุฅูุงุช |
|
|
|
877 |
|
01:15:30,220 --> 01:15:34,200 |
|
ุงููุจูุฑุฉุ ููู
ุง ุฃุฎุฏ ุงูู limit ุฃุฒูู ุฌูุฒู infinity ุจูุถู |
|
|
|
878 |
|
01:15:34,200 --> 01:15:38,280 |
|
ูู ุงูู safe sideุ ูุนูู ุจูุถู ูู ุงููู ุจุชุญูู ููู ูุฐุงุ ุฅุฐุง |
|
|
|
879 |
|
01:15:38,280 --> 01:15:45,630 |
|
ุงูู limit U, B, N ู F ูุงูุต L, B, N ู F ููููู ุฃูุจุฑ ุฃู |
|
|
|
880 |
|
01:15:45,630 --> 01:15:50,490 |
|
ูุณุงูู ุตูุฑ ูุฃุตุบุฑ ุฃู ูุณุงูู Epsilonุ ููุฐุง ุงูููุงู
as |
|
|
|
881 |
|
01:15:50,490 --> 01:15:53,530 |
|
n goes to infinityุ ููุฐุง ุงูููุงู
ุตุญูุญ ุจุฑุถู ูู
ููุ |
|
|
|
882 |
|
01:15:53,530 --> 01:15:58,790 |
|
ููู Epsilon ุฃูุจุฑ ู
ู ุตูุฑุ ุฅุฐุง ุบุตุจ ุนููุง ููููู ุงููู ุฌูุง |
|
|
|
883 |
|
01:15:58,790 --> 01:16:08,780 |
|
limit U P N ู F-L P N ู F ูุงุฒู
ูุณุงูู ุฅูุดุ ุตูุฑุ as N ููุต |
|
|
|
884 |
|
01:16:08,780 --> 01:16:14,780 |
|
infinityุ ููุฐุง by corollary ุงููู ูุจู ุจุดููุฉุ ููุนูู ุฅู |
|
|
|
885 |
|
01:16:14,780 --> 01:16:23,310 |
|
F is integrableุ Hence, F is integrableุ ูููุฐุง |
|
|
|
886 |
|
01:16:23,310 --> 01:16:27,610 |
|
ุฃุซุจุชูุง ุงูุนุงุฆูุฉ ุงูุซุงููุฉ ู
ู ุงูุฏูุงู ุงูู continuous |
|
|
|
887 |
|
01:16:27,610 --> 01:16:31,170 |
|
function ุนูู closed bounded interval is a |
|
|
|
888 |
|
01:16:31,170 --> 01:16:34,210 |
|
continuous function is an integrable function |
|
|
|
889 |
|
01:16:34,210 --> 01:16:40,790 |
|
ูููุฐุง ุฎูุตูุง ุงูู section ุงูุฃูู ูุงูู homework ูู |
|
|
|
890 |
|
01:16:40,790 --> 01:16:46,750 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงูุชูุฎูุตุ ูุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุฅู ุดุงุก ุงููู |
|
|
|
891 |
|
01:16:47,630 --> 01:16:57,970 |
|
ุฅู ุดุงุก ุงููู ุจููู ุงุญูุง ุจูุจุฏุฃ ูู ุงููู ูู ุงูู section |
|
|
|
892 |
|
01:16:57,970 --> 01:17:03,510 |
|
ุงููู ุจุนุฏู ุงููู ูู properties of the Riemann |
|
|
|
893 |
|
01:17:03,510 --> 01:17:04,470 |
|
Integral |
|
|